ReflCtrl: Controlling LLM Reflection via
Representation Engineering

Ge Yan Chung-En Sun Tsui-Wei (Lily) Weng
CSE, UCSD CSE, UCSD HDSI, UCSD
geyan@ucsd. edu cesun@ucsd.edu lweng@ucsd. edu
Abstract

Large language models (LLMs) with Chain-of-Thought (CoT) reasoning have
achieved strong performance across diverse tasks, including mathematics, cod-
ing, and general reasoning. A distinctive ability of these reasoning models is
self-reflection: the ability to review and revise previous reasoning steps. While
self-reflection enhances the reasoning performance, it also increases inference cost.
In this work, we study self-reflection through the lens of representation engineer-
ing. We segment model’s reasoning into steps, identify the steps corresponding
to reflection, and extract a reflection direction in the latent space that governs this
behavior. Using this direction, we propose a stepwise steering method that can
control reflection frequency. We call our framework ReflCtrl. Our experiments
show that: (1) for many cases the reflections are redundant, especially in stronger
models (in our experiment, we can save up to 33.6% of reasoning tokens while
preserving the performance), and (2) model’s reflection behavior is highly corre-
lated with internal uncertainty signal, implying self-reflection may be controlled
by model’s uncertainty.

1 Introduction

Large language models (LLMs) have shown great success in many reasoning-related tasks, including
math, coding, and general reasoning. A common technique for enhancing LLM reasoning is Chain-
of-Thought (CoT) prompting [Wei et al., 2022], which asks the model to decompose the reasoning
process into intermediate steps. Recently, a new class of models has been trained to develop native
reasoning ability, such as OpenAl’s ol [OpenAl, 2024] and DeepSeek-r1 [DeepSeekAl et al., 2025].
They can automatically generate reasoning steps before providing a response, even without being
prompted to do so.

Notably, these reasoning models develop the ability to self-reflect, i.e. rethink their previous reasoning
during training. This is described by DeepSeek-R1 [DeepSeekAl et al., 2025] as the “aha moment".
The self-reflection ability is a key difference between reasoning models and their non-reasoning
counterparts, and is widely believed to contribute to improved reasoning ability. Additionally, it is
also a costly component in inference: our empirical study finds self-reflection consumes 25-30% of
total reasoning tokens.

Despite its potential importance, the underlying mechanism of self-reflection is not yet well un-
derstood. In this work, we take the first step to investigate this phenomenon through the lens of
representation engineering [Zou et al., 2023], focusing on two central research questions:

RQ1: When does the model initiate reflection during its reasoning process?

RQ2: How does reflection influence the model’s reasoning performance?

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability Workshop at NeurIPS 2025.



Extraction: @ Split reasoning steps 2 Extract step embedding 3 Calculate reflection direction

User: Calculate the prime PN
8 factorization of 1304.
Okay, so I need to
Assistant: figure out ...
E Okay, so | need to figure out the
prime factorization of 1304...\n\n
First off, what is 13047 It's an G TS [ 2 S
even number because it ends 13047...
with a 4...\n\n
Is 163 a prime number? Hmm, Is 163 a prime number?
let me check...\nin Hmm, let me check...
Steering:
) istant: Original representatioin
User: Calculate the prime e ) 9 p
. 3 Okay, so | need to figure

factorization of 2201. out the prime factorization i

of 2201...\n\n >

\

First off, what is 22017 It's AJ

an odd number because it ‘\

ends with a 1...\n\n \

\
\

 Steered representation

Figure 1: Overview of the proposed ReflCtr]l framework. The model’s reasoning is first segmented
into steps, then reflection-related steps are identified through keywords. Finally, a reflection direction
is extracted by calculating the mean difference in the latent space. This direction can be used to steer
the model’s self-reflection behavior via the proposed stepwise steering method, enabling control over
reflection frequency and inference cost.

To answer these questions, we propose a novel method to identify the reflection direction in
the model’s latent representation space. Our steering experiments demonstrate that this direction
can effectively control the number of reflections during reasoning. Our empirical analysis further
reveals that in many cases, the model’s reflections are redundant, offering an opportunity to reduce
computational cost without sacrificing accuracy. Our contributions can be summarized as follows:

1. We identify a reflection direction in the model’s representation space that controls self-
reflection, enabling us to steer model’s reflection behavior according to user’s intention.

2. We answer RQ1 by connecting the model’s reflection direction to model’s internal uncer-
tainty. In Sec. 3.5, we show that model’s activation along reflection direction can effectively
predict answer’s correctness. This implies model’s reflection behavior may be controlled by
internal uncertainty measurement.

3. Utilizing the reflection directions that we discovered, we steer model’s reflection to answer
RQ2: Empirical results suggest in many cases model’s self-reflection could be redundant.
Further, we design a novel stepwise steering method to address reflection redundancy. This
new method reduces inference cost by up to 33.6%, while preserving reasoning performance.

2 Related works

Reasoning LLMs Motivated by the success of Chain-of-Thought reasoning, several models have
been trained to enhance native reasoning capability by generating thinking steps. OpenAI’s ol [Ope-
nAl, 2024] leverages reinforcement learning to deliberate its thinking during inference. DeepSeekAl
et al. [2025] introduces a more cost-efficient training method with the Grouped Relative Policy
Optimization (GRPO) algorithm, as well as its distilled variants (DeepSeek-r1-distilled) that equip
smaller models with thinking ability. QwQ-32b [Team, 2024] is a medium-sized reasoning model
that achieves competitive performance with DeepSeek-r1 and ol. In this work, we focus on QwQ-
32B [Team, 2024] and DeepSeek-r1-distill series, as they are open-sourced, allowing us to apply
representation engineering techniques.

Representation engineering on LLMs While modern LLMs demonstrate remarkable capabilities,
their internal mechanism is still not fully understood. Various efforts aim to make models more
steerable [Srivastava et al., 2024, Sun et al., 2024, Kulkarni et al., 2025]: among these, representation



engineering [Zou et al., 2023, Bartoszcze et al., 2025] offers a principled way to analyze and guide
model behavior by directly manipulating their internal representations. Zou et al. [2023] shows
that representation engineering can be applied to multiple safety-related aspects by reading and
editing model’s internal representation. With the rise of reasoning models, representation engineering
methods specialized for these models have emerged: ThinkEdit [Sun et al., 2025b] identifies a set
of neurons controlling “short-thinking" and mitigates it via weight editing. Wang et al. [2025b]
identifies special experts that coordinate reasoning and improves models’ reasoning performance
with a training-free method called RICE. Li et al. [2025] achieves machine unlearning via activation
steering. Sun et al. [2025a] design LLMs to natively support interpretable concept steering. In
contrast, our work focuses on the reflection behavior of reasoning LLMs, which is an interesting
reasoning pattern introduced in reinforcement learning but not yet systematically investigated from a
representation engineering perspective.

Self-reflection. DeepSeekAl et al. [2025] report that models learn to self-reflect autonomously,
described as the “aha moment". Yang et al. [2025] examine this phenomenon by comparing reasoning
models with their non-reasoning counterparts in terms of linguistic patterns and description of uncer-
tainty. Wang et al. [2025a] propose reducing excessive reflection by suppressing corresponding tokens
to reduce models’ overthinking. In this work, we adopt a representation engineering perspective,
revealing that models’ reflection is correlated with its internal uncertainty representation and can be
directly controlled via our proposed method.

3 ReflCtrl: Probing and steering self-reflection

In this section, we investigate reflection behavior in reasoning models through the lens of represen-
tation engineering. We start by identifying reflection steps in the model’s reasoning, then extract a
reflection direction in the latent space, and finally use this direction to steer the model’s behavior.

3.1 Background

Reasoning LLMs are built upon the Transformer decoder architecture [Vaswani et al., 2017], which
stacks multiple identical layers. Each decoder layer [ processes the hidden representation z; € R?. It
consists of two major components: a self-attention block and a feed-forward MLP block. Formally, it
can be written as:

Z1 =z + 2", z" = Attn(LN(z;)),

mlp _m (H
Zie1 = 5 4 2™, 2™ = MLP(LN(z)).

Here, LN(-) denotes layer normalization, Attn(-) is the self-attention block and MLP(+) is the feed-
forward network. We denote Z; as the intermediate state after the attention block.

3.2 Identify reflection behavior

Reasoning LLMs usually produce a long, multi-step thinking process. To facilitate our analysis of
model’s reasoning, we first split the generated reasoning into thinking steps. We observe that such
steps are naturally separated by the token sequence “\n\n" (an empty line) in most reasoning models,
with each segment representing a coherent chunk of reasoning. Therefore, we treat each segment
separated by “\n\n" as the smallest unit of analysis.

To identify reflection steps, we search for specific keywords within each step that mark the start of a
new reflection, e.g., “Let me think", “Wait". While a reflection may span multiple steps, we identify
it by detecting its initial step containing these keywords.

3.3 Extract reflection direction

With labeled reflection steps, we next compute the reflection direction in the latent space. For each
step s at layer [, we extract all internal representations from the MLP and attention output of the

first token, denoted as z"™™") (). We use the first token because it captures the model’s internal

state when reflection is initialized, allowing us to investigate the triggering mechanism of reflections.
The reflection direction is then defined as the mean difference between reflection and non-reflection



embeddings:
attn,m 1 2 : attn,m
dl{ ttn, IP} — Zl{ ttn, IP} (S)

- m s€ER 2
1 {attn,mlp} @
- |NR‘ Z Zl (5)7
sENR

where R and NR are the sets of reflection and non-reflection steps, respectively.

3.4 Steer model’s reasoning

—e— Average Reflections s log —e— Average Reflections
7)) —e— Accuracy 7)) —e— Accuracy 98
830 ' 515 _
‘g J 92§ ‘g /' 97§
= . Fry = ’ . ey
&20 //\// ~—. 1908 5ol 7\ T~ | 8
~ . — 5 p” N — 9 5
> / ~N_ ) Q > " 3
© o 88 o © — o
5 10{ ¢ e < 5 5 — <
> — > ———— 95
< — <

e 86

0 -0.96 -0.84 -0.72 0.6 -0.48 -0.36 -0.24 -0.12 0 0.12 0.24 0.36 0 -0.96 -0.84 -0.72 0.6 -0.48 -0.36 -0.24 -0.12 0 0.12 0.24 0.36
Intervention Strength Intervention Strength
(a) DeepSeek-R1 Llama 8b (b) QwQ-32B

Figure 2: Accuracy and number of reflection steps under different intervention strengths.
Results are shown for DeepSeek-R1 Llama 8b (distilled model) and QwQ-32B (non-distilled model)
on GSMS8k. Accuracy remains largely stable, while the number of reflection steps decreases as
intervention strength decreases.

With the reflection direction, we can steer the model’s reasoning by injecting this direction into its
internal representations. Specifically, the intervention is applied by directly adding the direction

vector: \ ' |
{attn,mlp} _ Zl{attn,m p} + /\d;[attn,m p}. (3)

L,intv
Here, z; denotes the model output at layer [, and A is a hyperparameter controlling the intervention
strength.

In standard representation-steering approaches, the intervention is applied at every token generation
step. However, at high intervention strengths, this may push the model’s representation far from the
training distribution and degrade model’s performance.

To address this, we propose stepwise steering: instead of applying intervention on every token, we
apply it only when the model begins a new thinking step. Specifically, the intervention is triggered
when the last generated token matches the step delimiter ‘“\n\n". As shown in figs. 4a and 4b, this
method preserves intervention effects while avoiding the performance drop observed in full-token
steering at high intervention strengths, allowing users to have more control on inference tokens
without sacrificing performance.

3.5 Probing model’s uncertainty on reflection direction

Another application of reflection direction is to investigate RQ1 we proposed in Sec. 1: When will
self-reflection be triggered? Our hypothesis is that: Reasoning LLMs trigger reflection when their
internal uncertainty is high.

To verify our hypothesis, we need an approach to quantify the model’s uncertainty during the genera-
tion process. Here, we follow [Mielke et al., 2022] and train an auxiliary classifier to predict model
answer correctness. For each instance, we compute the projection of the intermediate representation
on the reflection direction across all layers. These values are concatenated into a feature vector pipy:

N mlpy V)
Pinty = Concat({p?nn l:]aiav {pl p}l:]a{ﬂ)a “)
{attn,mlp}

where p, = cos(dl{m“’mlp}7 zl{‘mn"mlp}). We extract the feature vector piny from the end of
thinking token (</think> for models we use in the paper), and train a logistic regression model



®
N
5}

90 o PS
85.0
g 89 L 825
> >
8 § 800
S 88 g
8 8
< RefiCtrl L 7 RefiCtrl
87 Base model 75.0 Base model
NoWait NoWait
725
1000 1500 2000 2500 3000 3500 2000 3000 4000 5000 6000
Number of Thinking Tokens Number of Thinking Tokens
(a) Llama 8b, GSM8k (b) Llama 8b, MATH-500
92
95.15 ¢ RefiCtrl o RefiCtrl
95.10 Base model 90 Base model
& 9505 NoWait S o NoWait
) 3
@ 95.00 @ 86
3 3
&% 94.95 &% 84
94.90 82
94.85 80
500 1000 1500 2000 2500 3000 3500 1000 2000 3000 4000 5000 6000
Number of Thinking Tokens Number of Thinking Tokens
(c) Qwen 14b, GSM8k (d) Qwen 14b, Math-500

Figure 3: Accuracy versus reasoning token usage for ReflCtrl compared with NoWait [Wang
et al., 2025a]. Results are shown for DeepSeek-R1 Llama 8b and DeepSeek-R1 Qwen 14b across
GSM8k and MATH-500 benchmarks. ReflCtrl allows fine-grained control over the trade-off between
accuracy and reasoning cost via intervention strength, while NoWait can only suppress reflections
entirely. Additionally, ReflCtrl achieves lower performance loss for similar token usage.

upon it on GSM8k training dataset to predict whether model’s answer is correct. If our hypothesis
is correct, the classifier should achieve high accuracy, since the reflection direction is aligned with
the model’s uncertainty. As the baseline, we use the representation of the last token at the final
layer. Results on the GSM8Kk test set (table 1) show that features derived from the reflection direction
achieves higher AUROC and F1 scores, despite having fewer dimensions. This suggests that model’s
uncertainty information is encoded in the reflection direction, and may be a key factor in triggering
self-reflection.

Model final layer embedding | reflection direction
AUROC FI1 AUROC F1
deepseek-llama-8b 0.736 0.946 0.772 0.948
qwg-32b 0.555 0.636 0.564 0.839
deepseek-qwen-14b 0.716 0.929 0.850 0.976

Table 1: Probing results for uncertainty detection. We train a logistic regression classifier to predict
answer correctness using (i) the last token embedding at the final layer or (ii) feature vector piyey
derived from reflection direction. Reflection-based features achieve higher AUROC and F1 scores
despite lower dimensionality, suggesting that uncertainty is encoded in the reflection direction.

4 Experiments

In this section, we conduct an empirical study of our ReflCtrl framework, evaluating how reflection
influence model’s performance (RQ2) and how our stepwise steering reduces reasoning budget.



4.1 Settings

Models. In this work, we primarily study the DeepSeek-R1-Distilled series of models, including
the distilled version of Qwen-2.5 14B and Llama 8B, as these models are publicly available. We also
evaluate the QwQ-32B model as a non-distilled reasoning model.

Datasets. For math tasks, we use the GSM8k and MATH-500 as test datasets. For general reasoning
tasks, we use the MMLU benchmark, selecting three subsets: Profeessional accounting, highschool
computer science and formal logic.

Generation settings. We follow the standard generation configurations for each model. For math
tasks, we use the prompt “Please reason step by step, and put your final answer within \boxed" after
each question. For MMLU benchmark, we use the prompt "“Please reason step by step, and put your
final answer (only the letter) within \boxed." The maximum completion tokens are set to 8192, except
for MATH-500 where we use 16384 due to its higher complexity.

20 i = T T4 14000
— 7 . P, . - epwise
e / \\ / £ 90 y '._./ T T —— i:\ lpokens
= P = . J
L8 . 5 89 /
N [ 9
a _/ e 3000 e} E 88 ]
© 4 [=2] > . A
5 86 / ’ £ b8r
3 L = o
3] ¢ e 2000.£ 5 86
< 77 —e— Stepuiise (Acc) = Q .
84 el —e— Alltokens (Acc)) = 2 85
—=% - -~ Stepwise (Length)
e =+ Al tokens (Length) |}, 1000 84
-0.4 -0.2 0.0 0.2 0.4 83

Intervention Strength 1000 1500 2000 2500 3000 3500 4000 4500
. . Thinking Length
(a) Accuracy and reasoning token usage under differ-

ent intervention strength. (b) Accuracy under different reasoning token usage.

Figure 4: Comparison of stepwise versus all-token steering. (a) Accuracy under different interven-
tion strengths when interventions are applied at the start of each reasoning step (stepwise) or at every
token (all-token). (b) Accuracy versus reasoning token usage under the two approaches. Stepwise
steering preserves accuracy while reducing cost, whereas all-token steering causes significant degra-
dation at large intervention strengths.

Reflection direction extraction. To extract the reflection direction, we use the GSM8k dataset to
generate model responses. Then, we apply the method we propose in Sec. 3 to extract the direction.
The final step in the reasoning process is omitted as we observe that it is usually a conclusion sentence
unrelated to reasoning.

Steering. For the results we show in this section, we apply the stepwise steering method we propose
in Sec. 3 unless otherwise specified. The intervention is applied in all layers except the first and last
six layers. We further discuss this choice in Sec. 4.4.

4.2 Main experiments

In this section, we study RQ2: How does reflection influence the model’s reasoning performance.
We begin with DeepSeek-R1 Llama 8b model and test it on GSM8k and MATH-500 datasets with
N = 10 samples per question. We measure the correctness rate and the reflection rate (number of
reflection steps / number of total reasoning steps). As shown in Fig. 5, the correctness rate drops as
reflection rate goes higher. However, this does not indicate self-reflection hurts model performance:
one possible reason is that the model tends to reflect more when the question is difficult, and the
accuracy is generally lower for harder question. We further verify this hypothesis in Sec. C.

To understand the causal relationship between reflection and model performance, we apply different
strengths of interventions to the model to intervene self-reflection, and check the model’s performance
change under intervention. Fig. 2 shows the accuracy and number of reflection steps under different
intervention strengths. We choose DeepSeek-R1 Llama 8b as the distilled model and QwQ-32b for



—— MATH-500

0.91 \\ gsm8k
/\

0.84 \\

=~

~\ .

Correctness Rate
o
~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Reflection rate

Figure 5: Relationship between correctness rate and reflection rate on MATH-500 and GSM8k
datasets. Higher reflection frequency correlates with lower accuracy, partly due to more reflections
are generated on difficult questions.

. Reflection Strength

Category Model Metric 096 043 0 043
DS-Llama-8b | Accuracy | 88.34% 89.46% 90.09% 90.25%
Tokens 821.0 1032.6  1595.7 3577.1
QwQ-32b Accuracy | 96.36% 96.50% 96.50% 96.44%

GSM-8k Tokens 1006.7 1162.5 1488.6  2256.9
DS-qwen-14b | Accuracy | 95.07% 95.15% 95.15% 94.84%

Tokens 747.8 880.2 13159 37464

DS-Llama-8b | Accuracy | 82.14% 84.46% 85.98% 86.90%

Tokens 2738.1  3123.8 4000.7 6017.8

MATH-500 QwQ-32b Accuracy | 92.72% 92.58% 93.06% 93.08%

Tokens 29929 32534 3786.0 50289
DS-qwen-14b | Accuracy | 89.22% 90.18% 91.44% 91.86%
Tokens 2247.1 25347 33153  5789.0

Table 2: Accuracy and average reasoning token usage under different intervention strengths. Re-
sults are reported on GSM8k and MATH-500 datasets for DeepSeek-R1 Llama 8B, and DeepSeek-R1
Qwen 14B, and QwQ-32B. The numbers reported are averaged over 10 runs. Negative intervention
strengths reduce reflection frequency and reasoning token usage with minimal accuracy loss, suggest-
ing potential reflection redundancy.

non-distilled model. The results show that in both cases, interventions effectively control the number
of reflection steps. In terms of accuracy, DeepSeek-R1 Llama 8b gains marginal improvement with
more reflections, while QwQ-32b is largely insensitive to the number of reflections. We observe:

1. Most models are less sensitive to additional reflections. From the table, the only model
that benefits from positive intervention (more reflections) is the DeepSeek-Llama-8b dis-
tilled model, which receives 0.16% and 0.92% accuracy gain on GSM8k and MATH-500,
respectively, at the cost of around 2000 additional reasoning tokens for each question.

2. Reflection redundancy exists in many cases, especially for stronger models. For example,
in QwQ-32b model, the largest model in our test, the performance loss is only 0.14% and
0.34% on two datasets at intervention strength —0.96, while the reasoning token budget is
reduced by 32.4% and 21.0%, respectively. This demonstrates that reasoning cost, which is
substantially higher than non-reasoning models, can be reduced with minimal accuracy loss.

To further understand how reflection affects the trade-off between thinking cost and performance, we
calculate the reasoning token usage and accuracy under different intervention strengths and report the
results in table 2. For each question, we sample 10 responses and report the mean result. The results
confirm our findings, showing that in many cases, reflections can be reduced without sacrificing
performance.



Reflection Strength

Category Model Metric 096 043 0 043

DS-Llama-8b | Accuracy | 50.1% 53.4% 56.5% 57.3%
Tokens 1453.6  1668.8 2097.5 2807.7

DS-qwen-14b | Accuracy | 78.5% 76.8% T1.8% T7.6%

Professional accounting Tokens | 983.9 1103.1 1482.1 2470.1

QwQ-32b Accuracy | 89.3% 89.5% 885% 89.2%
Tokens 1231.2 13137 1648.0 22343

DS-Llama-8b | Accuracy | 79.6% 82.7% 87.3% 88.0%
Tokens 1016.1 11579 13654 1970.4

DS-qwen-14b | Accuracy | 952% 95.4% 95.0% 94.8%

Highschool computer science Tokens 7119 7879 9335 1498.7

QwQ-32b Accuracy | 96.6% 96.2% 96.7% 97.0%
Tokens 771.6 7419  871.0 1004.7

DS-Llama-8b | Accuracy | 60.5% 61.0% 62.1% 62.7%
Tokens 2266.5 25869 33783 45535

DS-qwen-14b | Accuracy | 91.8% 92.2% 92.6% 92.8%

Formal logic Tokens 1287.2 1440.1 1891.4 3196.5

QwQ-32b Accuracy | 96.3% 955% 957% 96.0%
Tokens 14814 14478 1716.6 2175.6

Table 3: Accuracy and reasoning token usage under different intervention strengths(\) on
MMLU subsets. The numbers reported are averaged over 10 runs. Smaller models (e.g., DS-Llama-
8B) are more sensitive to reflection reduction, while larger models (DS-Qwen-14B and QwQ-32B)
maintain accuracy with fewer reflections, saving up to 33.6% of reasoning tokens.

To evaluate the effectiveness of ReflCtrl, we compare it with the baseline, NoWait [Wang et al., 2025a].
NoWait is a recent work that reduces redundant reflection by directly suppressing corresponding
reflection tokens. We plot the accuracy versus number of thinking tokens in Fig. 3. From the results,
we can see that ReflCtrl is more flexible: the intervention strength can control the trade-off between
performance and cost, while NoWait can only completely disable reflection. Additionally, ReflCtrl
generally incurs smaller performance loss under similar token budget.

4.3 Stepwise steering

In this section, we study the stepwise steering strategy for controlling model reflection. We compare it
with a baseline method where the intervention is applied to all generation tokens. In this experiment,
we use DeepSeek-R1 Llama 8b as the base model and evaluate on GSM8k dataset. As shown in
figs. 4a and 4b, we observe that:

1. Under the same intervention strength, stepwise intervention achieves performance similar to
intervention at all tokens. The baseline method produces stronger effects when applying
positive intervention, i.e. increasing model’s reflection.

2. In terms of accuracy, stepwise intervention maintains accuracy close to the original model,
whereas the baseline method degrades performance significantly at larger intervention
strengths (< —0.2 or > 0.3). Fig. 4b further shows that, under the same thinking token
usage, stepwise intervention generally achieves higher accuracy.

4.4 Ablation study: impact of layers

In this section, we study the effect of applying intervention at different layers of the LLM. We
experiment with two strategies: Skipping the first £ layers and skipping the last k layers. The results
in Fig. 6 indicate that the performance is best when skipping both the first and last six layers. We
adopt this configuration accordingly in our main experiments.



4.5 Non-mathematical benchmarks

To evaluate the proposed ReflCtrl on non-mathematical reasoning tasks, we conduct extensive
experiments on MMLU subsets. As shown in table 3, we observe a similar phenomenon as in math
tasks. In general, the smallest model, DeepSeek Llama 8b, is most sensitive to reflection. In contrast,
the larger DeepSeek Qwen 14b and QwQ-32b are hardly affected by the reduction of reflections.
Using the proposed stepwise steering, up to 33.6% of reasoning tokens can be saved.

5 Conclusion and limitation

In this work, we propose ReflCtrl, a representation engineering framework for understanding and
steering self-reflection behavior in reasoning LLMs. By segmenting the model’s reasoning into
thinking steps and identifying reflection-related steps, we extract a reflection direction in the latent
space, enabling direct control over self-reflection frequency during inference. We further introduce
a stepwise steering strategy that only applies interventions at the start of new thinking steps, sub-
stantially reducing reasoning token usage while preserving performance. Across multiple math and
general-domain reasoning benchmarks, we find that:

1. Reflection redundancy is common, particularly in stronger models where minimal accuracy
loss is observed when reflections are reduced.

2. Reflection direction is correlated with internal uncertainty signals, implying that the reflec-
tion behavior may be controlled by model’s internal uncertainty perception.

3. Stepwise steering can largely mitigate performance loss. Compared with token-level in-
tervention, stepwise steering can achieve similar intervention performance with over 5%
accuracy improvement.

6 Limitations

Despite these promising results, our work also has some limitations. First, the identification of
reasoning steps relies on keyword search, which may be model specific since different models could
prefer different reflection cues. Second, our ReflCtrl only works for open-source models and it
remains unclear whether it generalizes to SOTA closed-source models such as GPT-4 or Claude,
which is a shared limitation of representation engineering methods.

For future work, we believe that developing uncertainty-aware dynamic steering is a promising direc-
tion: our results preliminarily show a connection between uncertainty and self-reflection. The current
steering method applies a fixed strength across all questions and throughout the generation process.
Enabling the model to dynamically adjust steering strength during inference could substantially
improve reflection efficiency and further reduce inference cost in reasoning LLMs.

A\
N>

—e— First k Layers

Last k Layers

0 2 4 6 8 10
Number of Layers (k)

e
©
o

[
©
~

Accuracy (%)
8 8
o N

o
*®
3

Figure 6: Effect of applying interventions to different layers of the LLM. We vary the number of
skipped layers at the bottom and top of the network, with intervention strength fixed at A = —0.48.
Accuracy is highest when skipping the first and last six layers, which we adopt as the default
configuration in our main experiments.



References

Lukasz Bartoszcze, Sarthak Munshi, Bryan Sukidi, Jennifer Yen, Zejia Yang, David Williams-King,
Linh Le, Kosi Asuzu, and Carsten Maple. Representation engineering for large-language models:
Survey and research challenges. arXiv preprint arXiv:2502.17601, 2025.

DeepSeekAl, Daming Guo, Dayi Yang, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie,
Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

Akshay Kulkarni, Ge Yan, Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Interpretable
generative models through post-hoc concept bottlenecks. In CVPR, 2025.

Yongce Li, Chung-En Sun, and Tsui-Wei Weng. Effective skill unlearning through intervention and
abstention. NAACL, 2025.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversa-
tional agents’ overconfidence through linguistic calibration. Transactions of the Associa-
tion for Computational Linguistics, 10:857-872, 2022. doi: 10.1162/tacl_a_00494. URL
https://aclanthology.org/2022.tacl-1.50/.

OpenAl Openai ol system card, 2024.

Divyansh Srivastava, Ge Yan, and Tsui-Wei Weng. VIg-cbm: Training concept bottleneck models
with vision-language guidance. NeurIPS, 2024.

Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Crafting large language models for enhanced
interpretability. NeurIPS MI Workshop, 2024.

Chung-En Sun, Tuomas Oikarinen, Berk Ustun, and Tsui-Wei Weng. Concept bottleneck large
language models. In ICLR, 2025a.

Chung-En Sun, Ge Yan, and Tsui-Wei Weng. Thinkedit: Interpretable weight editing to mitigate
overly short thinking in reasoning models. EMNLP, 2025b.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://gwenlm.github.io/blog/qwg-32b-preview/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi Zhou.
Wait, we don’t need to" wait"! removing thinking tokens improves reasoning efficiency. arXiv
preprint arXiv:2506.08343, 2025a.

Mengru Wang, Xingyu Chen, Yue Wang, Zhiwei He, Jiahao Xu, Tian Liang, Qiuzhi Liu, Yunzhi
Yao, Wenxuan Wang, Ruotian Ma, et al. Two experts are all you need for steering thinking:
Reinforcing cognitive effort in moe reasoning models without additional training. arXiv preprint
arXiv:2505.14681, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems, volume 35, pages 24824-24837. Curran
Associates, Inc., 2022.

Shu Yang, Junchao Wu, Xin Chen, Yunze Xiao, Xinyi Yang, Derek F Wong, and Di Wang. Un-
derstanding aha moments: from external observations to internal mechanisms. arXiv preprint
arXiv:2504.02956, 2025.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

10



Table of Contents

A Reasoning sample of LLM 11
B Reflection direction attribution to attention heads 12
C Study of model performance on reflection rate 12
D LLM usage 13
E Computational resources 13

A Reasoning sample of LLM

Fig. 7 shows an example of LLM reasoning process. From the figure, we can see:

1. The model’s reasoning is organized as separated steps separated by “\n\n".

2. The reflection process of model, marked as red in the figure, is triggered by specific keywords
like “wait" in this example.

This justifies our reflection direction extraction and intervention method.

Question:
Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with

four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she make every
day at the farmers' market?

Thinking Process:
Okay, let me try to figure out how much Janet makes every day at the farmers' market. So, the problem says that Janet's ducks lay
16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the

remainder at the farmers' market daily for $2 per fresh duck egg. | need to find out how much she makes each day. Hmm, let me
break this down step by step.

First, let me figure out how many eggs Janet starts with each day. The problem says she lays 16 eggs per day. So, she begins with
16 eggs. Then she eats three for breakfast every morning. So, she uses 3 eggs for breakfast. After that, she bakes mulffins for her
friends, using four eggs each day. So, she uses 4 eggs for baking.

Wait, so she uses 3 eggs in the morning and 4 eggs for the muffins. Let me calculate the total number of eggs she uses in a day. So,
3 plus 4 is 7 eggs. So, she uses 7 eggs each day.

She starts with 16 eggs, uses 7, so how many eggs does she have left? Let me subtract 7 from 16. 16 minus 7 is 9. So, she has 9
eggs left after using them for breakfast and baking.

Now, these remaining 9 eggs, she sells at the farmers' market. The problem says she sells each fresh duck egg for $2. So, | need to
figure out how much money she makes from selling these 9 eggs.

To find the total revenue, | can multiply the number of eggs she sells by the price per egg. So, 9 eggs times $2 per egg. Let me
compute that. 9 times 2 is 18. So, she makes $18 each day at the farmers' market.

Wait, let me double-check my steps to make sure | didn't make a mistake. She lays 16 eggs, uses 3 for breakfast, 4 for muffins,
which totals 7 eggs used. 16 minus 7 is 9 eggs left. 9 eggs times $2 is $18. Hmm, that seems right.

| think that makes sense. So, she starts with 16, uses 7, sells 9, making her $18 each day. Yeah, that adds up.

Just to visualize it, maybe | can represent it with some equations. Let me define variables for clarity. Let E be the number of eggs laid
per day, which is 16. Let B be the number of eggs she eats for breakfast, which is 3. Let M be the number of eggs she uses for
muffins, which is 4. So, the total eggs used per day would be B plus M, so 3 plus 4 is 7.

Then, the eggs she has left would be E minus \(B + M\), which is 16 minus 7, which is 9. Then, the revenue R from selling these
remaining eggs is 9 times the price per egg, which is 2. So, R is 9 times 2, which is 18.

Yes, that all checks out. So, | think | did it correctly. She makes $18 each day at the farmers' market.

Final Answer Janet makes \boxed{18} dollars every day at the farmers' market.

Figure 7: Sample reasoning process of DeepSeek-r1-llama-8b model on a gsm8k question.

11



B Reflection direction attribution to attention heads

In this section, we study the attribution of reflection direction to individual attention heads. We first
take the reflection direction at self-attention layers from a DeepSeek-r1-qwen-1.5b model. Then, we
compare it with the average activation of individual attention heads. We calculate the projection of
average activation on the reflection direction and plot the heatmap in Fig. 8. From the figure, we can
see:

1. Last layer (layer 27) has largest projection magnitude among all the layers. The reason may
be this layer controls generation of keywords directly controlling reflection (e.g., “wait").

2. The heads that have positive projection on reflection direction are sparse and located mostly
in deeper layers of the model. These heads may direction control model’s reflection behavior.

Head Contributions Across Layers
Layer0- -1.14 -1.19 -1.14 -253 -0.85 -091 273 -0.18 -0.14 -0.09 -273 0.05 -' 6
Layer1- -0.27 -0.04 -0.27 -0.34 -0.04 -013 -001 -0.23 014 001 -0.23 -0.03
Layer2- -0.23 -0.23 -0.30 -0.82 -0.08 -0.33 -0.12 001 004 -0.27 001 -0.34
Layer3- 0.05 -0.04 001 000 -0.26 003 -0.45 019 -035 -0.13 -0.11 011 -4
Layer4- 014 -0.19 003 -0.67 -0.52 -1.05 001 003 -0.22 -0.04 -0.50 0.00
Layer5- -0.03 020 -0.29 007 -0.08 -070 002 -0.59 002 008 -068 -0.11
Layer6- -0.09 022 -0.15 -0.14 .17 -011 -0.23 -0.09 004 006 -1.65 -0.52

-2
Layer7- -0.00 -0.19 -0.47 0.52 0.13 -0.00 -0.19 -0.57 -0.17 -045 -0.59 -0.03
Layer 8 - -0.28 0.15 0.18 0.76 -0.50 -0.55 -0.14 -0.01 -0.11 -0.07 0.09 -0.43
Layer9 - 042 -0.20 -0.33 0.02 -0.04 -0.17 0.03 -0.31 0.03 -0.48 -0.65 -0.66

-0

Layer10- -0.83 -0.64 -040 -091 -0.57 -0.02 -0.33 033 021 001 023 -0.22
Layer11- 019 -0.23 -002 -093 018 -0.28 006 -028 -1.91 -034 -0.48 017
Layer12- -0.37 -0.13 -0.38 -0.38 -0.36 -0.50 009 -0.01 -0.81 -1.08 -1.09 -0.79
Layer 13- -0.46 -0.27 -0.84 -0.17 -0.54 -057 -0.65 -0.21 -0.14 -0.40 0.29 -0.45 -2
Layer14- -0.37 -0.35 -038 026 000 005 001 -0.84 -0.64 -0.09 -0.80 -0.02
Layer15- -0.19 005 -0.09 -0.10 -0.11 051 -0.53 -0.43 -0.40 -047 -0.47 -0.48
Layer 16 - -0.24 227 -0.21 003 -1.03 -0.82 -0.95 -0.65 -0.59 -1.44 0.53 -0.62 | _,
Layer17- 0.92 027 -043 -0.15 -0.10 -0.03 097 -247 -0.84 -0.63 003 -1.45
Layer18- -0.12 -0.41 000 027 -0.02 -0.43 048 -175 -2.61 -0.07 -0.54 -1.34
Layer19- -0.41 -0.05 -0.85 -0.31 -0.13 -0.40 030 -2.27 -1.74 -0.52 -1.02 -0.81
Layer20- -1.06 -0.14 -0.33 022 -1.22 046 081 116 003 -0.07 -150 -0.26
Layer 21- -0.25 | 4.41 2325 234 -278 015 -0.16 -0.09 044 050 0.36
Layer22- 095 076 035 060 003 -055 011 050 -0.23 -017 -0.43 014
Layer23- -0.64 -0.15 -020 -0.22 -0.38 -0.07 -0.07 -0.73 072 -1.41 031 -1.14 -8
Layer24 . 3.69 019 -095 | 353 -1.14 -0.88 012 -030 | 453 007 098 007
Layer25- 093 012 -0.15 300 -3.30 004 -1.09 -1.33 -1.02 -1.36 -1.02 -0.33

Layers

Layer 26 - -1.38 -0.85 -0.43 0.23 -0.66 =2.12 -0.55 0.93 0.32 0.28 -3.59 -0.08 —-10
Layer 27
[=] — ™~ m g [Ta] (=] ~ [++] [+] o —
] ) k-] k-] k] k=] o b=} o k=] - -
o [+ o o m [} Lis] m o o =} o
o 7} 1} 1} o L1} o 7] @ @ I @
I I I I I T I T I T @ LT}
I I
Heads

Figure 8: Projection of average activation of attention heads on the reflection direction. We use
GSMB&8k dataset and extract results on a DeepSeek-R1 qwen 1.5b model which has 28 layers and 12
attention heads per layer.

C Study of model performance on reflection rate

In this section, we further study how the model’s performance depends on the reflection rate
by categorizing the questions into three classes according to model’s accuracy on this question:
Hard(acc < 50%), Medium (50% < acc < 80%) and Easy (acc > 80%). We study the correctness
vs. reflection rate for these three categories individually and show the results in Fig. 9. We show the
results for base model without intervention and with intervention of —0.98. From the results, we can
see:

12



1. For harder question, model tends to reflect more: The easy questions have an average
reflection rate of 25.8% and the hard questions are 37.5%.

2. Within each category, the correctness rate is not correlated with reflection rate, excluding
some outliers due to rare samples. This hints reflection of models might be redundant.

3. After intervention, reflection rates of all categories are reduced, while harder questions still
get more reflections.

D LLM usage

In the writing of this paper, LLMs are utilized to check grammar errors and typos as well as improving
general writing.

E Computational resources

The main experiments is conducted on 8 NVIDIA 6000 ada gpus for around 200 hours.

13



Easy (n=1107)

Medium (n=107)

Hard (n=105)

1.0
20.98 Q 9 0.25
2 20.9 S
ﬁ 0.96 ﬁ o ﬁ 0.20
5094 = £0.15
o 207 o
5 0.92 e S
O o O 0.10
0.90 0.6
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
Reflection Rate Reflection Rate Reflection Rate

3000 1.0 v s 1.0 ; 250 1.0
[} [} Q
o 0.8 o 0.8 2500 0.8
g g 200 g
$ 2000 0.6 @ 0.6 9150 0.6
[~ x 150 &
‘G 0.4 5 100 0.4 ‘5100 0.4
‘€ 1000 = €
5 0.2 § 50 0.2 é 50 0.2

0 0.0 0 0.0 0 0.0

0.0 0.5 0.0 0.5 0.0 0.5

Reflection Rate

Average Reflection Rate: 0.258

Reflection Rate

Average Reflection Rate: 0.344

Reflection Rate

Average Reflection Rate: 0.375

(a) Base model. Top: Correctness rate vs. reflection rate. Bottom: Reflection rate distribution.

Easy (n=1107) Medium (n=107) Hard (n=105)
1.0 0.70
[} ] 0 0.3
0.9 2 0.68 =
>4 >4 o4
©0.7 © 0.64 ©
£ £ 062 £0.1
8 0.6 8 . 8
0.5 0.60 0.0
0.25 0.50 0.2 0.4 0.25 0.50
Reflection Rate Reflection Rate Reflection Rate
1.0 1.0 1.0
@ 4000 @ ¢ 300
§ 3000 0.8 g 300 0.8 g 0.8
a 06 & 0.6 2500 0.6
-4 2000 200 o
‘G 0.4 5 0.4 5 0.4
- - -~
= cq € 100
3 1000 02 3100 02 3 0.2
O O O
0 0.0 0.0 0.0
0.0 0.5 %.00 0.25 0.50 %.00 0.25 0.50

Reflection Rate

Average Reflection Rate: 0.121

Reflection Rate

Average Reflection Rate: 0.152

Reflection Rate

Average Reflection Rate: 0.163

(b) Intervention. Top: Correctness rate vs. reflection rate. Bottom: Reflection rate distribution.

Figure 9: Correctness rate and reflection rate on three categories of questions for DeepSeek-R1 1lama
8b model on GSM8k dataset.

14



