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Abstract

Large language models (LLMs) with Chain-of-Thought (CoT) reasoning have1

achieved strong performance across diverse tasks, including mathematics, coding,2

and general reasoning. A distinctive ability of these reasoning models is self-3

reflection: the ability to review and revise previous reasoning steps. While self-4

reflection enhances the reasoning performance, it also increases inference cost. In5

this work, we study self-reflection through the lens of representation engineer-6

ing. We segment model’s reasoning into steps, identify those corresponding to7

reflection, and extract a reflection direction in the latent space that governs this8

behavior. Using this direction, we propose a stepwise steering method that can9

control reflection frequency. We call our framework ReflCtrl. Our experiments10

show that (1) for many cases the reflections are redundant, especially in stronger11

models. In our experiment, we can save up to 33.6% while preserving the perfor-12

mance. (2) model’s reflection behavior is highly correlated with internal uncer-13

tainty signal, implying self-reflection may be controlled by model’s uncertainty.14

1 Introduction15

Large language models (LLMs) have shown great success in many reasoning-related tasks, including16

math, coding, and general reasoning. A common technique for enhancing LLM reasoning is Chain-17

of-Thought (CoT) prompting [Wei et al., 2022], which asks the model to decompose the reasoning18

process into intermediate steps. Recently, a new class of models has been trained to develop native19

reasoning ability, such as OpenAI o1 [OpenAI, 2024] and Deepseek-r1 [DeepSeekAI et al., 2025].20

They can automatically generate reasoning steps before providing a response, even without being21

prompted to do so.22

Notably, these reasoning models develop the ability to self-reflect, i.e. rethink their previous rea-23

soning during training. This is described by Deepseek-R1 [DeepSeekAI et al., 2025] as the “aha24

moment”. The self-reflection ability is a key difference between reasoning models and their non-25

reasoning counterparts, and is widely believed to be a reason for boosted reasoning ability. Addition-26

ally, it is also a costly component in inference: our empirical study finds self-reflection consumes27

25-30% of total reasoning tokens.28

Despite its potential importance, the mechanism underlying self-reflection has not been well under-29

stood. In this work, we investigate this phenomenon through the lens of representation engineer-30

ing [Zou et al., 2023], focusing on two central research questions:31

RQ1: When does the model initiate reflection during its reasoning process?32

RQ2: How does reflection influence the model’s reasoning performance?33
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Figure 1: Overview of the proposed ReflCtrl framework. The model’s reasoning is first seg-
mented into steps, then reflection-related steps are identified through keywords. Finally, a reflection
direction is extracted by calculating mean difference in the latent space. This direction can be used
to steer the model’s self-reflection behavior via the proposed stepwise steering method, enabling
control of reflection frequency and inference cost.

To answer these questions, we propose a novel method to identify the reflection direction in the34

model’s latent representation space. Steering experiments demonstrate that this direction can effec-35

tively control the number of reflections during reasoning. Our empirical analysis further reveals that36

in many cases, the model’s reflections are redundant, offering an opportunity to reduce computa-37

tional cost without sacrificing accuracy. Our contributions can be summarized as:38

1. We identify reflection direction in the model’s representation space that controls self-39

reflection, enabling steering model’s reflection behavior according to user’s intention.40

2. We connect the model’s reflection direction to model’s internal uncertainty. Using model’s41

representation projection on reflection direction as features, we show the performance is42

better than using representation from last layer. This implies model’s reflection behavior43

may be controlled by internal uncertainty measurement.44

3. Utilizing reflection direction we discover, we steer model’s reflection to analyze the impact45

of reflections on reasoning performance. Empirical results suggests in many cases model’s46

self-reflection could be redundant. Further, we design a novel stepwise steering method to47

address reflection redundancy. This new method reduces inference cost while preserving48

reasoning performance.49

2 Related works50

Reasoning LLMs Motivated by the success of Chain-of-Thought reasoning, several models have51

been trained to enhance native reasoning capability by generating thinking steps. OpenAI’s o1 [Ope-52

nAI, 2024] leverages reinforcement learning to deliberate thinking during inference. DeepSeekAI53

et al. [2025] introduces a more cost-efficient training method with the Grouped Relative Policy54

Optimization (GRPO) algorithm, as well as its distilled variants (Deepseek-r1-distilled) that equip55

smaller models with thinking ability. QwQ-32b [Team, 2024] is a medium-sized reasoning model56

that achieves competitive performance with Deepseek-r1 and o1. In this work, we focus on QwQ-57

32b [Team, 2024] and Deepseek-r1-distill series, as they are open-sourced, allowing us to apply58

representation engineering techniques.59
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Representation engineering on LLMs While modern LLMs demonstrate remarkable capabili-60

ties, their internal mechanism is still not fully understood. Representation engineering [Zou et al.,61

2023, Bartoszcze et al., 2025] provides a tool to understand and steer model behavior by manipulat-62

ing internal representations. Zou et al. [2023] shows that representation engineering can be applied63

to multiple safety-related aspects by reading and editing model’s internal representation. With the64

rise of reasoning models, representation engineering methods specialized for these models have65

emerged: ThinkEdit [Sun et al., 2025] identifies a set of neurons controlling “short-thinking” and66

mitigates it via weight editing. Wang et al. [2025b] identifies special experts that coordinate rea-67

soning and improves models’ reasoning performance with a training-free method called RICE. In68

contrast, our work focuses on the reflection behavior of reasoning LLMs, which is an interesting69

reasoning pattern introduced in reinforcement learning but not yet systematically investigated from70

a representation engineering perspective.71

Self-reflection. DeepSeekAI et al. [2025] report that models learn to self-reflect autonomously, de-72

scribed as the “aha moment”. Yang et al. [2025] examines this phenomenon by comparing reasoning73

models with their non-reasoning counterparts in terms of linguistic patterns and description of un-74

certainty. Wang et al. [2025a] proposed reducing excessive reflection by suppressing corresponding75

tokens to reduce models’ overthinking. In this work, we adopt a representation engineering perspec-76

tive, revealing that model’s reflection is correlated with its internal uncertainty representation and77

can be directly controlled via our proposed method.78

3 Probing and steering self-reflection79

In this section, we investigate reflection behavior in reasoning models through the lens of represen-80

tation engineering. We start by identifying reflection steps in the model’s reasoning, then extract a81

reflection direction in the latent space, and finally use this direction to steer model’s behavior.82

3.1 Background83

Reasoning LLMs are built upon the Transformer decoder architecture [Vaswani et al., 2017], which84

stacks multiple identical layers. Each decoder layer l processes the hidden representation zl ∈ Rd. It85

consists of two major components: a self-attention block and a feed-forward MLP block. Formally,86

it can be written as:87

z̃l = zl + zattn
l , zattn

l = Attn(LN(zl)),

z + l + 1 = z̃l + zmlp
l , zmlp

l = MLP(LN(zl)).
(1)

Here, LN(·) denotes layer normalization, Attn(·) is the self-attention block and MLP(·) is the feed-88

forwards network. We denote z̃l as the intermediate state after the attention block.89

3.2 Identify reflection behavior90

Reasoning LLMs usually produce a long, multi-step thinking process. To facilitate our analysis91

of model’s reasoning, we first split the generated reasoning into thinking steps. We observe that92

such steps are naturally separated by the token sequence “\n\n” (an empty line) in most reasoning93

models, with each segment representing a coherent chunk of reasoning. Therefore, we treat each94

segment separated by “\n\n” as the smallest unit of analysis.95

To identify reflection steps, we search for specific keywords within each step that mark the start of a96

new reflection, e.g., “Let me think”, “Wait”. While a reflection may span multiple steps, we identify97

it by detecting their initial step containing these keywords.98

3.3 Extract reflection direction99

With labeled reflection steps, we next compute the reflection direction in the latent space. For each100

step s at layer l, we extract all internal representations from the MLP and attention output of the101

first token, denoted as z{attn,mlp}
l (s). We use the first token because it captures the model’s internal102

state when reflection is initialized, allowing us to investigate the triggering mechanism of reflections.103

The reflection direction is then defined as the mean difference between reflection and non-reflection104
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embeddings:105

d
{attn,mlp}
l =

1

|R|
∑
s∈R

z
{attn,mlp}
l (s)− 1

|NR|
∑
s∈NR

z
{attn,mlp}
l (s), (2)

where R and NR are the sets of reflection and non-reflection steps, respectively.106

3.4 Steer model’s reasoning107

With the reflection direction, we can steer the model’s reasoning by injecting this direction into its108

internal representations. Specifically, the intervention is applied by directly adding the direction109

vector:110

z
{attn,mlp}
l,intv = z

{attn,mlp}
l + λd

{attn,mlp}
l . (3)

Here, zl denotes the model output at layer l.111

In standard representation-steering approaches, the intervention is applied at every token gener-112

ation step. However, at high intervention strengths, this may push the model’s representation far113

from the training distribution, thereby hurting performance.114

To address this, we propose stepwise steering: instead of applying intervention on every token, we115

apply it only when the model begins a new thinking step. Specifically, the intervention is triggered116

when the last generated token matches the step delimiter “\n\n”. As shown in figs. 4a and 4b, this117

method preserves intervention effects while avoiding the performance drop observed in full-token118

steering at high intervention strengths, allowing users to have more control on inference tokens119

without sacrificing performance.120

3.5 Probing model’s uncertainty on reflection direction121

Another application of reflection direction is to investigate RQ1 we proposed in Sec. 1: When will122

self-reflection be triggered? Our hypothesis is:123

Reasoning LLMs trigger reflection when its internal uncertainty is high.124

To verify, we need an approach to quantify the model’s uncertainty during the generation process.125

Here, we follow [Mielke et al., 2022] and train an auxiliary classifier to predict model answer’s126

correctness. For each instance, we compute the projection of the intermediate representation on the127

reflection direction across all layers. These values are concatenated into a feature vector pintv:128

pintv = concat({pattn
l }Nlayer

l=1 , {pmlp
l }Nlayer

l=1 )

where p
{attn,mlp}
l = cos(d

{attn,mlp}
l , z

{attn,mlp}
l ).

(4)

We extract the feature vector pintv from the end of thinking token (</think> for models we use129

in the paper), and train a logistic regression model upon it on GSM8k training dataset to predict130

whether model’s answer is correct. If our hypothesis is correct, the classifier should achieve high131

accuracy, since the reflection direction is aligned with the model’s uncertainty. As the baseline, we132

use the representation of the last token at the final layer. Results on the GSM8k test set (table 1) show133

that features derived from the reflection direction achieves higher AUROC and F1 scores, despite134

having fewer dimentions. This suggests that model’s uncertainty information is encoded in the135

reflection direction, and may be a key factor in triggering self-reflection.

Model final layer embedding reflection direction
AUROC F1 AUROC F1

deepseek-llama-8b 0.736 0.946 0.772 0.948
qwq-32b 0.555 0.636 0.564 0.839
deepseek-qwen-14b 0.716 0.929 0.850 0.976

Table 1: Probing results for uncertainty detection. We train a logistic regression classifier to
predict answers’ correctness using (i) the last token embedding at the final layer or (ii) feature
vector pintv derived from reflection direction. Reflection-based features achieve higher AUROC
and F1 scores despite lower dimensionality, suggesting that uncertainty is encoded in the reflection
direction.

136
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(a) Deepseek-r1 Llama 8b (b) QwQ-32b

Figure 2: Accuracy and number of reflection steps under different intervention strengths. Re-
sults are shown for Deepseek-R1 Llama 8b (distilled model) and QwQ-32b (non-distilled model) on
GSM8k. Accuracy remains largely stable, while the number of reflection steps decreases as inter-
vention strength becomes more negative.

4 Experiments137

In this section, we conduct an empirical study of our reflection extraction method.138

4.1 Settings139

Models. In this work, we mainly study the Deepseek-r1-distilled series of models, including the140

distilled version of Qwen-2.5 14B and Llama 8B, as these models are open-sourced. Additionally,141

we evaluate the QwQ-32B model as a non-distilled reasoning model.142

Datasets. For math tasks, we use the GSM8k and MATH-500 as test datasets. For general reason-143

ing tasks, we use the MMLU benchmark, selecting three subsets: Profeessional account, highschool144

computer science and formal logic.145

Generation settings. We follow the standard generation configurations for each model. For math146

tasks, we use the prompt “Please reason step by step, and put your final answer within \boxed”147

after each question. For MMLU benchmark, we use the prompt ”“Please reason step by step, and148

put your final answer (only the letter) within \boxed.” The maximum completion tokens are set to149

8192m, except for MATH-500 where we use 16384 due to its higher complexity.150

Reflection direction extraction. To extract the reflection direction, we use the GSM8k dataset to151

generate model responses. Then, we apply the method we propose in Sec. 3 to extract the direction.152

We omit the last step in the reasoning process as we observe that it is usually a conclusion sentence153

that is not related to reasoning.154

Steering. For the results we show in this section, we apply the stepwise steering method we pro-155

pose in Sec. 3 unless otherwise specified. The intervention is applied in all layers except the first156

and last six layers. We further discuss this choice in Sec. 4.4.157

4.2 Main experiments158

To answer RQ2: How does reflection influence the model’s reasoning performance, we apply dif-159

ferent strengths of interventions to the model to steer self-reflection, and check the model’s perfor-160

mance change. Fig. 2 shows the accuracy and number of reflection steps under different intervention161

strengths. We choose Deepseek-R1 Llama 8b as the distilled model and QwQ-32b for non-distilled162

model. The results show that in both cases, the intervention effectively controls the number of re-163

flection steps. In terms of accuracy, Deepseek-R1 Llama 8b gains marginal improvement with more164

reflections, while QwQ-32b is largely insensitive to the number of reflections. We observe:165

1. Most models are less sensitive to additional reflections. From the table, the only model166

that benefits from positive intervention (more reflections) is the Deepseek-Llama-8b dis-167
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(a) Llama 8b, GSM8k (b) Llama 8b, MATH-500 (c) Qwen 14b, GSM8k (d) Qwen 14b, Math-500

Figure 3: Accuracy versus reasoning token usage for ReflCtrl compared with NoWait [Wang
et al., 2025a]. Results are shown for Deepseek-R1 Llama 8b and Deepseek-R1 Qwen 14b across
GSM8k and MATH-500 benchmarks. ReflCtrl allows fine-grained control of the trade-off between
accuracy and reasoning cost via intervention strength, while NoWait can only suppress reflections
entirely. Additionally, ReflCtrl achieves lower performance loss for similar token usage.

tilled model, which receives 0.16% and 0.92% accuracy gain on GSM8k and MATH-500,168

respectively, at the cost of around 2000 additional reasoning tokens for each question.169

2. Reflection redundancy exists in many cases, especially for stronger models. For example,170

in QwQ-32b model, the largest model in our test, the performance loss is only 0.14% and171

0.34% on two datasets at intervention strength −0.96, while the reasoning token budget is172

reduced by 32.4% and 21.0%, respectively. This demonstrates that reasoning cost, which173

is substantially higher than non-reasoning models, can be reduced with minimal accuracy174

loss.175

To further understand how reflection controls the trade-off between thinking cost and performance,176

we calculate the reasoning token usage and accuracy under different intervention strengths and re-177

port the results in table 2. For each question, we sample 10 responses and report the mean result.178

The results confirm our findings, showing that in many cases, reflections can be reduced without179

sacrificing performance.180

To further understand the effectiveness of ReflCtrl, we compare it with the baseline, NoWait [Wang181

et al., 2025a]. NoWait is a recent work that reduces redundant reflection by directly suppressing182

corresponding reflection tokens. We plot the accuracy versus number of thinking tokens in Fig. 3.183

From the results, we can see that ReflCtrl is more flexible: the intervention strength can control184

the trade-off between performance and cost, while NoWait can only completely disable reflection.185

Additionally, ReflCtrl generally incurs smaller performance loss under similar token budget.186

Category Model Metric Reflection Strength
-0.96 -0.48 0 0.48

GSM-8k

DS-Llama-8b Accuracy 88.34% 89.46% 90.09% 90.25%
Tokens 821.0 1032.6 1595.7 3577.1

QwQ-32b Accuracy 96.36% 96.50% 96.50% 96.44%
Tokens 1006.7 1162.5 1488.6 2256.9

DS-qwen-14b Accuracy 95.07% 95.15% 95.15% 94.84%
Tokens 747.8 880.2 1315.9 3746.4

MATH-500

DS-Llama-8b Accuracy 82.14% 84.46% 85.98% 86.90%
Tokens 2738.1 3123.8 4000.7 6017.8

QwQ-32b Accuracy 92.72% 92.58% 93.06% 93.08%
Tokens 2992.9 3253.4 3786.0 5028.9

DS-qwen-14b Accuracy 89.22% 90.18% 91.44% 91.86%
Tokens 2247.1 2534.7 3315.3 5789.0

Table 2: Accuracy and average reasoning token usage under different intervention strengths.
Results are reported on GSM8k and MATH-500 datasets for Deepseek-R1 Llama 8B, and Deepseek-
R1 Qwen 14B, and QwQ-32B. Negative intervention strengths reduce reflection frequency and rea-
soning token usage with minimal accuracy loss, suggesting potential reflection redundancy.

6



4.3 Stepwise steering187

In this section, we study the stepwise steering strategy for controlling model reflection. We compare188

it with a baseline method where the intervention is applied to all generation tokens. In this experi-189

ment, we use Deepseek-R1 Llama 8b as the base model and evaluate on GSM8k dataset. As shown190

in figs. 4a and 4b, we observe that:191

1. Under the same intervention strength, stepwise intervention achieves performance similar192

to intervention at all tokens. The baseline method produces stronger effects when applying193

positive intervention, i.e. increasing model’s reflection.194

2. In terms of accuracy, stepwise intervention maintains accuracy close to the original model,195

whereas the baseline method degrades performance significantly at larger intervention196

strengths (< −0.2 or > 0.3). Fig. 4b further shows that, under the same thinking token197

usage, stepwise intervention generally achieves higher accuracy.198

(a) Accuracy and reasoning token usage under differ-
ent intervention strength. (b) Accuracy under different reasoning token usage.

Figure 4: Comparison of stepwise versus all-token steering. (a) Accuracy under different inter-
vention strengths when interventions are applied at the start of each reasoning step (stepwise) or at
every token (all-token). (b) Accuracy versus reasoning token usage under the two approaches. Step-
wise steering preserves accuracy while reducing cost, whereas all-token steering causes significant
degradation at large intervention strengths.

4.4 Abalation study: impact of layers199

In this section, we study the effect of applying intervention at different layers of the LLM. We200

experiment with two strategies: Skipping the fisrt k layers and skipping the last k layers. The results201

in Fig. 5 indicate that the performance is best when skipping both the first and last six layers. We202

adopt this configuration accordingly in our main experiments.203

Figure 5: Effect of applying interventions to different layers of the LLM. We vary the number
of skipped layers at the bottom and top of the network, with intervention strength fixed at −0.48.
Accuracy is highest when skipping the first and last six layers, which we adopt as the default con-
figuration in our main experiments.
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4.5 Non-math benchmarks204

To evaluate the proposed ReflCtrl on non-math tasks, we conduct extensive experiments on non-205

math datasets. As shown in table 3, we observe a similar phenomenon as in math tasks. In gen-206

eral, the smallest model, Deepseek Llama 8b, is most sensitive to reflection. In contrast, the larger207

Deepseek Qwen 14b and QwQ-32b are hardly affected by the reduction of reflections. Using the208

proposed stepwise steering, up to 33.6% of reasoning tokens can be saved.

Category Model Metric Reflection Strength
-0.96 -0.48 0 0.48

Professional accounting

DS-Llama-8b Accuracy 50.1% 53.4% 56.5% 57.3%
Tokens 1453.6 1668.8 2097.5 2807.7

DS-qwen-14b Accuracy 78.5% 76.8% 77.8% 77.6%
Tokens 983.9 1103.1 1482.1 2470.1

QwQ-32b Accuracy 89.3% 89.5% 88.5% 89.2%
Tokens 1231.2 1313.7 1648.0 2234.3

Highschool computer science

DS-Llama-8b Accuracy 79.6% 82.7% 87.3% 88.0%
Tokens 1016.1 1157.9 1365.4 1970.4

DS-qwen-14b Accuracy 95.2% 95.4% 95.0% 94.8%
Tokens 711.9 787.9 933.5 1498.7

QwQ-32b Accuracy 96.6% 96.2% 96.7% 97.0%
Tokens 771.6 741.9 871.0 1004.7

Formal logic

DS-Llama-8b Accuracy 60.5% 61.0% 62.1% 62.7%
Tokens 2266.5 2586.9 3378.3 4553.5

DS-qwen-14b Accuracy 91.8% 92.2% 92.6% 92.8%
Tokens 1287.2 1440.1 1891.4 3196.5

QwQ-32b Accuracy 96.3% 95.5% 95.7% 96.0%
Tokens 1481.4 1447.8 1716.6 2175.6

Table 3: Accuracy and reasoning token usage under different reflection strengths on MMLU
subsets. Smaller models (e.g., DS-Llama-8B) are more sensitive to reflection reduction, while
larger models (DS-Qwen-14B and QwQ-32B) maintain accuracy with fewer reflections, saving up
to 33.6% of reasoning tokens.

209

5 Conclusion and limitation210

In this work, we propose ReflCtrl, a representation engineering framework for understanding and211

steering self-reflection behavior in reasoning LLMs. By segmenting model reasoning into thinking212

steps and identifying reflection-related steps, we extract a reflection direction in the latent space,213

enabling direct control over the number of self-reflections produced during inference. We further214

introduce a stepwise steering strategy that only applies interventions at the start of new thinking215

steps, substantially reducing reasoning token usage while preserving performance. Across multiple216

math and general-domain reasoning benchmarks, we find that:217

1. Reflection redundancy is common, particularly in stronger models where minimal accuracy218

loss is observed when reflections are reduced.219

2. Reflection direction is correlated with internal uncertainty signals, implying that the reflec-220

tion behavior may be controlled by model’s internal uncertainty perception.221

3. Stepwise steering can largely mitigate performance loss. Compared with regular interven-222

tion, stepwise steering can achieve similar intervention performance with over 5% accuracy223

improvement.224

Despite these promising results, our work also has some limitations. First, the identification of225

reasoning steps relies on keyword search, which may be model specific since different models could226

prefer different reflection cues. Second, our ReflCtrl only works for open-source models and it227

remains unclear how it works for SOTA close-source models such as GPT-4 or Claude, which is a228

shared limitation of representation engineering methods.229
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For future work, we believe that developing uncertainty-aware dynamic steering is a promising di-230

rection: our results have preliminarily shown a connection between uncertainty and self-reflection.231

The current steering method applies a fixed strength across all questions and throughout the gener-232

ation process. Enabling the model to dynamically adjust steering strength during inference could233

substantially improve reflection efficiency and further reduce inference cost in reasoning LLMs.234
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