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Abstract

Membership inference attacks (MIAs) are currently
considered one of the main privacy attack strate-
gies, and their defense mechanisms have also been
extensively explored. However, there is still a gap
between the existing defense approaches and ideal
models in both performance and deployment costs.
In particular, we observed that the privacy vulnera-
bility of the model is closely correlated with the gap
between the model’s data-memorizing ability and
generalization ability. To address it, we propose a
new architecture-agnostic training paradigm called
Center-based Relaxed Learning (CRL), which is
adaptive to any classification model and provides
privacy preservation by sacrificing a minimal or
no loss of model generalizability. We emphasize
that CRL can better maintain the model’s con-
sistency between member and non-member data.
Through extensive experiments on common clas-
sification datasets, we empirically show that this
approach exhibits comparable performance without
requiring additional model capacity or data costs.
The code of this work can be found here: https:
//github.com/JEKimLab/UAI24_CRL

1 INTRODUCTION

Recently, machine learning has been increasingly questioned
with regard to data privacy issues due to the increasing inci-
dents of data leakage in practice. Some studies Fredrikson
et al. [2015], Song et al. [2017], Carlini et al. [2019] have
addressed that machine learning models tend to memorize
the training data, and some techniques are able to even re-
construct those data Salem et al. [2020], Haim et al. [2022].
Research on deploying privacy protection solutions in ma-
chine learning models has become a pressing need to play a
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better role in privacy-sensitive applications.

In machine learning, Membership Inference Attack (MIA)
Shokri et al. [2017] is one of the most important data infer-
ence attacks. In membership inference attacks, an attacker
tries to determine whether a sample is a member of a tar-
get model’s training set. MIAs try to develop a proxy to
help the attacker distinguish if a sample is a ‘member’ or
‘non-member.’ Depending on specific MIAs’ policies, the
proxy can be a model or a threshold. In general, the attack’s
difficulty of MIAs depends on the learning task’s difficulty
of the target model.

We observed that it is the discrepancy in the prediction distri-
bution of the model on member data and non-member data
that leads to the leakage of privacy. Therefore, we conjecture
that if the two prediction distributions coincide, the model
will no longer leak membership information. In theory, a
perfect model achieves perfect confidence and accuracy in
both the training and testing sets. However, it is challeng-
ing to train a model that perfectly conforms to the above
conception under the current state of the art and resources.
Hence, we slightly relax the constraint: while maintaining
generalization ability, we would like to develop a model that
tries to make the distributions of prediction on the training
and testing sets as close as possible.

To achieve this goal, in this paper, we introduce a new training
paradigm that can be effective against MIAs by enhancing
model generalizability. Our approach is based on the insight
that learning models usually show under-confidence and
overconfidence in non-member and member data, respec-
tively. Accordingly, our design goal is intuitive: making two
distributions close to each other so that the model becomes
neither overconfident nor underconfident. Additionally, our
approach can easily be applied to train any classification
model. In summary, this paper makes the following contri-
butions:

1. We propose CRL, a novel defense mechanism, helping
classification models gain more robust privacy protec-
tion capabilities.

https://github.com/JEKimLab/UAI24_CRL
https://github.com/JEKimLab/UAI24_CRL


2. To the best of our knowledge, our approach is the first
to enhance and maintain models’ prediction confidence
in nonmember data while mitigating overconfidence in
the models’ prediction distribution on member data.

3. Through extensive evaluations, we empirically show
that our approach outperforms existing defense mecha-
nisms.

2 RELATED WORK

2.1 MEMBERSHIP INFERENCE ATTACKS AND
DEFENSES

MIAs usually attack the target model through a black box
model Shokri et al. [2017]. Label-only MIAs Choquette-
Choo et al. [2021] can defeat some confidence obfuscation-
based methods without confidence score. FAR Rezaei and
Liu [2021] was introduced as a MIAs evaluation metric.
Song and Mittal [2021] derived a privacy risk score metric
for fine-grained privacy analysis and evaluated a series of
metric-based attacks. SAMIA Yuan and Zhang [2022] tried
to use Gaussian random noise to interfere with the model’s
reaction. Li et al. [2022] designed a MIAs approach that
applies knowledge distillation technology to train shadow
models. Adversarial distance MIAs Del Grosso et al. [2022]
use Auto attack Croce and Hein [2020] to grab the reaction
differences of models.

On the other hand, some studies to defend against MIAs are
also proposed. Nasr et al. [2018] proposed a training frame-
work with an inference model to let the target and inference
models conduct adversarial regularization. MemGuard Jia
et al. [2019] interferes with the prediction distribution of the
model by additional noise. Distillation approach for mem-
bership privacy (DMP) Shejwalkar and Houmansadr [2021]
trains a protected model via selected data and labels from
an unprotected model. Kaya and Dumitras [2021] explored
when and how data augmentation helps MIAs or defenses
while they proposed loss-rank-correlation (LRC) metric to
measure the similarity of different augmentation mecha-
nisms’ effects on privacy leakage. Exploring how pruning
affects neural networks’ privacy protection ability, contradic-
tory conclusions were obtained in Yuan and Zhang [2022],
Wang et al. [2021]. RelaxLoss Chen et al. [2022] defends the
MIAs by relaxing the model’s prediction distribution via loss.
SELENA Tang et al. [2022] aggregates multiple networks
with different training samples for imitating the distribution
of the testing set. Yang et al. [2023] designed a reformer to
‘purify’ the confidence scores. Tan et al. [2023] found there
exist trade-offs between parameter size and privacy–utility.

2.2 METRIC LEARNING

Wen et al. [2016] proposed a distance metric approach, Cen-
ter Loss, to learn common features within a class through

a learnable class center. Some following studies He et al.
[2018], Li et al. [2019], Zhao et al. [2020], Rajoli et al.
[2023] improved its performance in the face recognition
task. Wang et al. [2019] combined multiple similarity loss
functions to achieve better performance. Chen et al. [2020]
designed a label-free learning mechanism based on metric
learning. SimSiam Chen and He [2021] achieved better ac-
curacy through representation alignment learning under an
asymmetric neural network structure while Barlow Twins
Zbontar et al. [2021] provided a simpler learning paradigm
via cross-correlation matrix. VICReg Bardes et al. [2022a]
incorporated the invariance of augmented data, the covari-
ance of the dimensions, and the variance of different samples
into the training objectives. And further added the local crite-
rion in Bardes et al. [2022b] . Garrido et al. [2023] extended
the two-branch learning paradigm to four-branch learning
paradigm via deploying a hypernetwork-based predictor. Fini
et al. [2023] combined metric learning techniques in self-
and semi-supervised learning to make the model perform
better.

3 PRELIMINARIES AND PROBLEM
FORMULATION

Membership inference attacks aim to detect whether a sample
belongs to the target model’s training set or not. Hence, it
can be formulated as a binary classification task. Suppose
there is an attack model 𝑓𝑎 (·; 𝜃𝑎) with parameters 𝜃𝑎 and
a target model 𝑓 (·; 𝜃) with parameters 𝜃. Then the attacker
can predict whether the sample 𝑥 is in or out of the target
model’s training dataset:

arg max 𝑓𝑎 ( 𝑓 (𝑥; 𝜃); 𝜃𝑎) (1)

If one were to develop an attack model, the model needs to
mimic the target model’s prediction distribution. A widely
adopted solution is the shadow model approach Shokri et al.
[2017]. Through some shadow models 𝑓 (·; 𝜃) with parame-
ters 𝜃𝑠 , the attack model tries to find the best decision bound-
ary to determine the samples:

max
𝜃𝑎
[E(𝑥,𝑦) ∈𝐷𝑖𝑛

𝑓𝑎 ( 𝑓𝑠 (𝑥; 𝜃𝑠); 𝜃𝑎)

+[E(𝑥,𝑦) ∈𝐷𝑜𝑢𝑡
(1 − 𝑓𝑎 ( 𝑓𝑠 (𝑥; 𝜃𝑠); 𝜃𝑎))]

(2)

where 𝐷𝑖𝑛 is the shadow models’ training set and 𝐷𝑜𝑢𝑡 is
a non-intersection set of the training set. Once the MIA’s
successful rate is maximized on the shadow models, the
attack model can be considered to be successfully trained.
In the appendix, a summary and discussion/comparisons of
existing defense mechanisms are provided.

4 METHODOLOGY

The ideal goal is to make the model privacy-safe with no or
little generalizability loss. To achieve the goal, we consider



Figure 1: Relationship between the distance to the origin
and the distance to the decision boundary in Cross entropy,
RelaxLoss, and our proposed approach, CRL. The blue points
are Member data while the green points are non-member
data. We compute the distance to the decision boundary
by subtracting 2nd largest confidence from the 1st largest
confidence. Therefore, more overlap between Member and
Non-member is better for privacy.

of employing RelaxLoss and CenterLoss. RelaxLoss Chen
et al. [2022] can mitigate MIAs by reducing distinguishabil-
ity between the member and non-member loss distributions.
CenterLoss Wen et al. [2016] can enhance the discriminative
power of the deeply learned features. The benefits of incorpo-
rating both of them are i) it helps to keep the discriminative
power of deep features while “relaxing” the model; ii) both
of them do not require additional training information or
data sources; iii) low training costs and no modifications to
the model’s inference in the evaluation phase make them
easy to apply in most scenarios.

As we describe above, they bring exclusive advantages. How-
ever, those advantages are not utilized by simply combining
RelaxLoss and CenterLoss. Hence, we propose CRL to uti-
lize their advantages harmoniously.

4.1 MECHANISM OF RELAXLOSS

The insight of relaxed loss function (RelaxLoss) Chen et al.
[2022] is to adjust the fitting degree of the model on the
training set through mini-batches. RelaxLoss sets three stages
for achieving this goal. The algorithm can be formulated as

follows:

RelaxLoss(𝑦, 𝑝, 𝛼𝑟𝑐𝑒, 𝑒𝑝𝑜𝑐ℎ)

=


L𝑐𝑒, if L𝑐𝑒 > 𝛼𝑟𝑐𝑒,

|L𝑐𝑒 − 𝛼𝑟𝑐𝑒 |, else if epoch%2 = 0,
L𝑠𝑐𝑒, otherwise

(3)

whereL𝑐𝑒 denotes cross-entropy loss function, 𝛼𝑟𝑐𝑒 denotes
the threshold hyper-parameter, 𝑦 denotes the ground-truth,
𝑝 denotes the prediction probabilities, and L𝑠𝑐𝑒 denotes the
soft cross-entropy loss function formulated later in Eq. 8
(without logits normalization). RelaxLoss sets a threshold,
𝛼𝑟𝑐𝑒, to judge if the model should become more fitting on
the mini-batch sample. When L𝑐𝑒 is below 𝛼𝑟𝑐𝑒, RelaxLoss
relieves the fitting degree in two ways. The first case, which
only happens in an even number of epochs, reverses the
cross-entropy’s gradient direction so the model degenerates
to the threshold. The other case takes the soft cross-entropy
loss function to enable the model to further fine-tune its
prediction distribution. The combination of these two cases
prevents the model from merely returning to the state before
further fitting.

4.2 MECHANISM OF CENTER LOSS

As an auxiliary loss function, the center loss Wen et al. [2016]
does not act directly on the output layer. Instead, it assumes
that a classification model can summarize each class’ general
features. In detail, each class has a feature vector or a feature
map so that the sample is similar to the feature vector or
map corresponding to its class after the model processes the
sample. To find a set of class centers, we randomly generate
a set of vectors, {𝑐}𝐶

𝑖=1, for 𝐶 classes. Then, we compute the
distance between the sample’s output of the intermediate
layer (usually the second or the global pooling layer) and the
corresponding center is,

L𝑐𝑡 = −
1
|M|

∑︁
(𝑥,𝑦) ∈M

1
2
∥ 𝑓𝑒 (𝑥; 𝜃𝑒) − 𝑐𝑦 ∥22 (4)

where ∥ · ∥2 is the function of euclidean distance,M denotes
the set of a mini-batch, and 𝑦 is the ground-truth of the input
𝑥. And 𝑓𝑒 (·; 𝜃𝑒) is a model without the classifier part. Rep-
resentations of samples from the same class are encouraged
to approach each other during training. The intuitive idea of
why we choose center loss is that the model is more likely to
make similar predictions when features in the representation
space are closer to their class members. In other words, we
try to bring this mechanism to privacy protection so that the
member and non-member data of the model overlap more in
the representation space, shown in CRL in Fig. 1, to obtain
more consistent predictions. However, it does not mitigate
the problem that the model is too confident in predicting
training samples. We improve it in the next subsection to
make it capable of this problem.
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Figure 2: An overview of the proposed relaxed center loss
function. The mini-batch determines which scenario to exe-
cute.

4.3 CENTER-BASED RELAXED LEARNING
METHOD (CRL)

RelaxLoss shows outstanding performance considering trade-
offs between models’ generalizability and the prediction dis-
tribution gap between training data and testing data, which
leads to the behavioral differences of the model on the train-
ing members and non-members. However, we observe that
the cross-entropy loss function is prone to make the model
overconfident in some training samples. To ameliorate the
impact of the issue, as a part of our approach, CRL, we pro-
pose an improved relaxed loss (ImpRelaxLoss), which
is inspired by Wei et al. [2022]. First, we define the model’s
function without softmax as 𝑓 (·; 𝜃), and the parameters 𝜃 is
a superset of 𝜃𝑒. Then, we revisit the softmax probabilities
and define the normalized probabilities:

𝑝𝑖 =
𝑒𝑔𝑖∑𝐶
𝑗=1 𝑒

𝑔 𝑗

, 𝑝𝑖,𝑛𝑜𝑟𝑚 =
𝑒𝑔𝑖/(1+𝜏𝑟𝑐𝑒 ∥𝑔∥2 )∑𝐶
𝑗=1 𝑒

𝑔 𝑗/(1+𝜏𝑟𝑐𝑒 ∥𝑔∥2 )
(5)

where 𝑔 = 𝑓 (𝑥; 𝜃), and 𝜏𝑟𝑐𝑒 is a scaling factor to control
the degree of how much the predicting probabilities are
normalized. One different point is that we add 1 to ∥𝑔∥2 to
ensure the denominator is always greater than or equal to 1.
Normalization can amplify the loss of difficult samples more
so that the model preferentially focuses on difficult samples,
intensifying the goal of RelaxLoss. Next, we compute the
cross-entropy loss with logit-normalized probabilities:

L𝑙𝑐𝑒 = −
1
|M|

∑︁
(𝑥,𝑦) ∈M

𝐶∑︁
𝑖=1

𝑦𝑖log(𝑝𝑖,𝑛𝑜𝑟𝑚) (6)

whereM is the set of a mini-batch, and 𝑝𝑖,𝑛𝑜𝑟𝑚 is the nor-
malized probability of the 𝑖-th class for each sample 𝑦 in
the mini-batch. Afterward, we compute the soft label for the
loss function. We change the non-normalized probabilities
to produce soft label, 𝑝𝑡𝑎𝑟 . The probabilities are averaged
except the probabilities of the corresponding class:

𝑝𝑖,𝑡𝑎𝑟 =

{
𝑝𝑦 , 𝑖 = 𝑦,

(1 − 𝑝𝑦)/(𝐶 − 1), 𝑖 ≠ 𝑦
(7)
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Figure 3: An overview of CRL’s training and testing phases.
The parameters of centers are a part of the loss function but
not a part of the model.

where 𝑝𝑖,𝑡𝑎𝑟 is the 𝑖-th class probability of the soft label 𝑝𝑡𝑎𝑟 .
Then, we compute the soft cross-entropy loss as follows:

L𝑠𝑐𝑒 = −
1
|M|

∑︁
(𝑥,𝑦) ∈M

𝐶∑︁
𝑖=1

𝑝𝑖,𝑡𝑎𝑟 log(𝑝𝑖,𝑛𝑜𝑟𝑚) (8)

According to the size difference of L𝑙𝑐𝑒 and 𝛼𝑟𝑐𝑒, the
ImpRelaxLoss function is formulated as follows:

ImpRelaxLoss(𝑦, 𝑝, 𝛼𝑟𝑐𝑒, 𝜏𝑟𝑐𝑙 , 𝑒𝑝𝑜𝑐ℎ)

=


|L𝑙𝑐𝑒 − 𝛼𝑟𝑐𝑒 |, if epoch%2 = 0,
L𝑙𝑐𝑒, else if L𝑙𝑐𝑒 > 𝛼𝑟𝑐𝑒,

L𝑠𝑐𝑒, otherwise

(9)

Then, ImpRelaxLoss is assigned to 𝐿𝑟𝑐𝑒 (Line 20 in Al-
gorithm 1.)

For the next part of CRL, we introduce the Relaxed center loss
function of which overview is described in Fig. 2. Similar to
RelaxLoss, there are three scenarios in the Relaxed center
loss. To determine which scenario to execute, we use the
epoch index and distance to the class center (similar to what
vanilla center loss does) at the mini-batch level as a metric.

First, we set a distance boundary 𝛼𝑟𝑐𝑙 . The boundary is a
hypersphere since we use Euclid distance as a measuring
metric. The simplest scenario is shown in Fig. 2 (a): when the
average distance of the mini-batch to corresponding centers
is larger than the boundary, the centers and samples are
driven to close each other. The second scenario illustrated in
Fig. 2 (b) occurs only when the index of the current epoch
is even. In this scenario, a boundary of distance to centers is



Algorithm 1 Center-Based Relaxed Learning method (CRL)
Input: Training DatasetD = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 in a random order, train-
ing epochs 𝐸 , model learning rates 𝜏, class centers learning rates 𝜏𝑐 ,
mini-batch size 𝐵, number of output classes 𝐶, improved relaxed
loss function’s threshold value 𝛼𝑟𝑐𝑒, relaxed center loss function’s
threshold value 𝛼𝑟𝑐𝑙 , normalized factor 𝜏𝑟𝑐𝑒 and 𝜏𝑟𝑐𝑙 , the joint
loss adjustment coefficient 𝜆;
Parameter: Model’s encoder part parameters 𝜃𝑒, classifier part
parameters 𝜃𝑐 , class centers’ parameter {𝑐}𝐶

𝑖=1;
Output: Model 𝑓 (·; 𝜃) (inclusive of encoder 𝑓𝑒 (·; 𝜃𝑒) and clas-
sifier 𝑓𝑐 (·; 𝜃𝑐)) with parameters 𝜃 (both 𝜃𝑒 and 𝜃𝑐 are inclu-
sive);
1: Randomly initialize the model’s parameters 𝜃 and class centers’

parameters {𝑐}𝐶
𝑖=1

2: for 𝑒𝑝𝑜𝑐ℎ in {1, 2, · · · , 𝐸} do
3: repeat
4: Sample a mini-batch {(𝑥 𝑗 , 𝑦 𝑗 )}𝐵𝑗=1 from D
5: /* Perform forward pass */
6: 𝑞 𝑗 = 𝑓𝑒 (𝑥 𝑗 ; 𝜃𝑒), 𝑝 𝑗 = 𝑓𝑐 (𝑞 𝑗 ; 𝜃𝑐)
7: 𝑞 𝑗 ,𝑛𝑜𝑟𝑚 =

𝑞 𝑗

1+𝜏𝑟𝑐𝑙 ∥𝑞 𝑗 ∥2 , 𝑐𝑦 𝑗 ,𝑛𝑜𝑟𝑚 =
𝑐𝑦𝑗

1+𝜏𝑟𝑐𝑙 ∥𝑐𝑦𝑗 ∥2
8: /* Compute relaxed center loss */
9: L𝑐𝑡 =

∑𝐵
𝑗=1 ∥𝑞 𝑗 ,𝑛𝑜𝑟𝑚 − 𝑐𝑦 𝑗 ,𝑛𝑜𝑟𝑚∥22/2𝐵

10: if 𝑒𝑝𝑜𝑐ℎ%2 = 0 then
11: L𝑟𝑐𝑙 = |L𝑐𝑡 − 𝛼𝑟𝑐𝑙 |
12: else if L𝑐𝑡 > 𝛼𝑟𝑐𝑙 then
13: L𝑟𝑐𝑙 = L𝑐𝑡

14: else
15: 𝑡 𝑗 ,𝑦 = 𝑝𝑦 𝑗

// confidence of the true class
16: 𝑡 𝑗 ,𝑜 = 1 − 𝑝𝑦 𝑗

17: L𝑟𝑐𝑙 =
∑𝐵

𝑗=1 [𝑡 𝑗 ,𝑦 ∥𝑞 𝑗 ,𝑛𝑜𝑟𝑚 − 𝑐𝑦 𝑗 ,𝑛𝑜𝑟𝑚∥22 +
𝑡 𝑗 ,𝑜 ∥𝑞 𝑗 ,𝑛𝑜𝑟𝑚∥22]/2𝐵

18: end if
19: /* Compute improved relaxed loss */
20: L𝑟𝑐𝑒 = ImpRelaxLoss(𝑦 𝑗 , 𝑝 𝑗 , 𝛼𝑟𝑐𝑒, 𝜏𝑟𝑐𝑙 , 𝑒𝑝𝑜𝑐ℎ)
21: /* Compute total loss */
22: L = L𝑟𝑐𝑒 + 𝜆L𝑟𝑐𝑙
23: /* Update model’s and centers’ parameters */
24: 𝑐𝑦 𝑗

← 𝑐𝑦 𝑗
− 𝜏𝑐∇L𝑟𝑐𝑙

25: 𝜃 ← 𝜃 − 𝜏∇L
26: until all training samples are sampled in this 𝑒𝑝𝑜𝑐ℎ
27: end for

defined as a hyperplane in which all points have the same
specific distance to the corresponding class centers. It aims
to keep the samples around the boundary of distance to their
class centers to prevent the collapse of the classifier caused
by excessive relaxation when merely relaxing cross entropy.
The last scenario shown in Fig. 2 (c) prevents the center and
samples from staying too far from the zero point.

Unlike RelaxLoss (Cross-Entropy part), relaxed center loss
encourages the samples to stay around the connection line
between the class center and the origin in this scenario, which
implicitly reconstructs the training sample representation’s
magnitude and direction, helping more relaxed magnitude
and narrower angle. In the relaxation process, narrowing
the angle helps better generalization Liu et al. [2016]. As

shown in Fig. 1, scenario 3 helps the model’s member and
non-member samples distribution become sharper than the
other two methods. The details are presented in Algorithm 1.

As a result, ImpRelaxLoss and Relaxed center loss com-
pose CRL. The overview of CRL is shown in Fig. 3 and the
algorithm is described in Algorithm 1. Through the encoder
part of the model, the input gets deep features, then the deep
features and their corresponding class centers are normal-
ized. Afterward, the logits produced by the model are also
normalized. We then use the logits to compute L𝑟𝑐𝑒 and
L𝑟𝑐𝑙 , respectively. Hyper-parameter 𝜆 controls the balance
between the two losses. Another feature of CRL is that the
two components do not execute the corresponding scenarios
simultaneously since they have respective thresholds 𝛼𝑟𝑙 and
𝛼𝑟𝑐𝑙 . In other words, the model can relax the cross entropy
loss while maintaining a certain degree of inter-class ag-
gregation in the representation space so that the model can
better keep the model’s generalizability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Attack and Defense Methods We mainly evaluate our
methods and two state-of-the-art defense methods, AdvReg
Nasr et al. [2018] and RelaxLoss Chen et al. [2022]. Also,
we evaluate the following common defense methods:

• Label-Smoothing: Guo et al. [2017], Müller et al. [2019]
• Early-Stopping
• Confidence-Penalty: Pereyra et al. [2017]
• DMP: Shejwalkar and Houmansadr [2021]

A baseline cross-entropy approach with no defense mecha-
nism, CE, is also employed against several MIAs:

• Black-Box Attacks: NN-based MIAs (denoted as
NN-Based) Nasr et al. [2018], Entropy-based MIAs
(denoted as Entropy) Shokri et al. [2017], Modified
Entropy-based MIAs (denoted as M-Entropy) Song
and Mittal [2021]

• White-Box Attacks: Inputs’ Gradient-based MIAs (de-
noted as Grad-x ℓ2) Rezaei and Liu [2021]

For all threshold-based MIAs, we set a threshold for each
class to enhance MIAs’ successful rate. All these methods
require shadow models to mimic the behavior of the target
model. When comparing with other defense mechanisms, we
use AUC score as an evaluation metric of MIAs to minimize
the evaluation biases caused by the different training stability
of different approaches. To accommodate the advancement
of recent defense approaches, an adaptive attack policy is
employed to evaluate defense mechanisms. By an adaptive
attack policy, the attacker knows how we train the target



Table 1: Trade-offs between privacy and utility. The MIAs evaluation results are reported in AUC Scores. Higher is better in
train/test accuracy (↑) while lower is better in AUC for all MIAs (↓).

(a) On CIFAR-10

Model Approach Train Acc. (%) ↑ Test Acc. (%) ↑ NN-Based (%) ↓ Entropy (%) ↓ M-Entropy (%) ↓ Grad-x ℓ2 (%) ↓

CE (no defense) 100.00(±0.00) 76.46(±0.30) 76.31(±0.24) 74.16(±0.26) 74.90(±0.25) 75.33(±0.26)
AdvReg 99.29(±0.31) 69.52(±0.64) 72.44(±0.96) 64.96(±1.12) 69.23(±1.19) 69.84(±1.61)
RelaxLoss 73.00(±3.71) 64.15(±3.02) 64.54(±0.77) 56.89(±0.90) 60.78(±0.68) 66.22(±0.67)VGG11

CRL (ours) 89.37(±0.26) 73.69(±0.36) 61.33(±0.18) 61.95(±0.42) 62.48(±0.40) 61.95(±0.42)

CE (no defense) 100.00(±0.00) 70.31(±0.33) 88.09(±0.23) 85.91(±0.32) 86.44(±0.31) 86.32(±0.31)
AdvReg 97.57(±2.00) 54.97(±5.27) 77.54(±2.12) 71.10(±1.07) 79.28(±1.45) 70.70(±5.11)
RelaxLoss 91.56(±1.91) 69.25(±0.40) 77.32(±1.33) 71.51(±2.37) 72.25(±1.93) 73.51(±1.69)ResNet18

CRL (ours) 86.73(±1.25) 71.53(±0.50) 60.21(±1.35) 63.70(±1.87) 65.15(±1.90) 65.34(±1.66)

CE (no defense) 100.00(±0.00) 84.73(±0.33) 59.00(±0.30) 65.78(±0.25) 66.38(±0.23) N/A
AdvReg 99.98(±0.02) 81.72(±0.75) 55.96(±1.75) 63.69(±2.81) 64.94(±2.43) N/A
RelaxLoss 92.70(±1.45) 80.22(±0.94) 54.38(±0.29) 57.42(±0.43) 59.12(±0.34) N/ADenseNet121

CRL (ours) 91.82(±0.39) 83.03(±0.35) 51.49(±0.06) 53.28(±0.11) 55.23(±0.11) N/A

(b) On CIFAR-100, data augmentations applied

Model Approach Train Acc. (%) ↑ Test Acc. (%) ↑ NN-Based (%) ↓ Entropy (%) ↓ M-Entropy (%) ↓ Grad-x ℓ2 (%) ↓

CE (no defense) 99.78(±0.06) 58.59(±0.32) 82.70(±0.33) 77.40(±0.46) 79.56(±0.38) 79.78(±0.39)
AdvReg 99.22(±0.23) 52.45(±1.22) 84.02(±1.19) 76.20(±2.12) 81.42(±1.29) 80.07(±1.12)
RelaxLoss 90.98(±0.76) 57.90(±0.81) 65.29(±0.58) 70.13(±0.73) 73.79(±0.81) 74.54(±0.71)GoogLeNet

CRL (ours) 87.39(±0.92) 58.16(±0.23) 64.72(±0.61) 67.10(±0.68) 70.08(±0.57) 70.94(±0.47)

CE (no defense) 100.00(±0.00) 58.06(±0.62) 86.88(±0.64) 82.96(±0.49) 84.04(±0.45) 84.20(±0.42)
AdvReg 99.43(±0.47) 48.98(±1.21) 86.99(±1.43) 79.87(±2.04) 85.35(±1.59) 80.03(±0.89)
RelaxLoss 77.46(±0.33) 55.28(±0.47) 69.87(±0.16) 63.52(±0.16) 66.60(±0.20) 69.05(±0.23)ResNet18

CRL (ours) 79.74(±0.56) 57.53(±0.29) 66.48(±0.31) 63.80(±0.19) 65.09(±0.25) 66.07(±0.25)

CE (no defense) 99.01(±0.20) 62.76(±0.40) 58.92(±0.36) 71.34(±0.48) 74.46(±0.33) N/A
AdvReg 99.16(±1.21) 59.51(±0.80) 59.90(±2.59) 73.52(±4.44) 77.10(±2.13) N/A
RelaxLoss 73.46(±0.56) 58.06(±0.15) 55.12(±0.25) 57.03(±0.25) 61.05(±0.20) N/ADenseNet121

CRL (ours) 77.39(±0.59) 60.32(±0.50) 50.23(±0.23) 59.98(±0.27) 61.58(±0.25) N/A

(c) On SVHN

Model Approach Train Acc. (%) ↑ Test Acc. (%) ↑ NN-Based (%) ↓ Entropy (%) ↓ M-Entropy (%) ↓ Grad-x ℓ2 (%) ↓

CE (no defense) 99.98(±0.00) 92.66(±0.04) 53.09(±0.02) 54.14(±0.06) 54.63(±0.07) 54.51(±0.06)
AdvReg 98.72(±1.25) 90.72(±1.63) 52.40(±0.94) 54.53(±1.38) 55.31(±1.49) 54.54(±0.87)
RelaxLoss 95.42(±0.15) 91.65(±0.04) 51.67(±0.09) 52.02(±0.11) 52.34(±0.10) 52.36(±0.10)VGG11

CRL (ours) 94.70(±0.53) 91.50(±0.55) 50.15(±0.15) 52.32(±0.16) 52.48(±0.20) 52.38(±0.18)

CE (no defense) 100.00(±0.00) 93.04(±0.07) 52.93(±0.14) 54.74(±0.10) 55.07(±0.09) 54.79(±0.09)
AdvReg 99.90(±0.17) 90.47(±1.37) 52.18(±0.51) 55.14(±0.37) 55.79(±0.47) 55.07(±0.13)
RelaxLoss 95.39(±0.21) 93.07(±0.25) 51.80(±0.06) 52.12(±0.05) 52.23(±0.08) 52.08(±0.05)ResNet18

CRL (ours) 95.82(±0.24) 93.13(±0.27) 50.04(±0.04) 51.92(±0.06) 52.02(±0.07) 51.89(±0.07)

model and so applies the same way to the shadow models. In
NN-based MIAs, we train five shadow models to train an
attack model. The other MIAs, which are threshold-based,
do not require shadow models since the AUC score is to
evaluate the target model and its training and testing datasets
directly use corresponding metrics.

Datasets We evaluate our methods on CIFAR-10, CIFAR-
100 Krizhevsky et al. [2009], SVHN Netzer et al. [2011],
and ArXiv-10 (NLP classification dataset) Farhangi et al.
[2022]. Their settings are introduced in detail in the Ap-
pendix. In particular, in CIFAR-100, common data aug-
mentation techniques are applied. To guarantee that target
models and shadow models are trained in datasets without
intersections, we split the whole dataset into target set and

shadow set, with the ratio 0.5 : 0.5. Then, we evenly split
dataset into training and testing sets. To utilize limited data,
we use increasing random seeds to ensure that shadow mod-
els are trained on different training sets. For reproducibility,
we set the default random seed to 0.

Models In CIFAR-10, we evaluate our approach and other
related methods with VGG11 Simonyan and Zisserman
[2015] with batch normalization layers, ResNet18 He et al.
[2016], and DenseNet121 Huang et al. [2017]. In CIFAR-100,
their performances are evaluated by GoogLeNet Szegedy
et al. [2015], Resnet18, and DenseNet121. In SVHN, we
apply VGG11 and ResNet18. In AdvReg, we follow their
settings to produce the inference attack model. In ArXiv-10,
hierarchical attention network (HAN) Yang et al. [2016] is
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Figure 4: Performance of defenses against adaptive attacks (ResNet18, CIFAR-10).
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Figure 5: Performance of defenses against adaptive attacks (ResNet18, CIFAR-100, data augmentation applied).

used for evaluation. For the attack model in NN MIAs, we
use a 4-layer fully connected neural network with hidden
layer sizes [128, 64]. We also apply ReLU Agarap [2018]
and dropout Srivastava et al. [2014] to it. Because the cost
of the white-box attack on DenseNet is too high, we only
report the results of other models under the white-box attack
in this paper.

Configurations We apply stochastic gradient descent
(SGD) optimizer to train all models except the inference
attack models in AdvReg approach (the Adam optimizer
Kingma and Ba [2014] employed). To extract deep features,
we generally choose the last global average pooling layer or
the 2nd last fully connected layer. The learning rate of the
class centers is constantly set at 0.001. To keep a consistent
mini-batch size across all GPUs used for training, we set the
mini-batch size at 32 when we train DenseNet121, and 256
for the other neural networks. For training attack models in
NN MIAs, we always set the mini-batch size at 256. Unless
otherwise stated, all experiments in the experiments section
are repeated in five independent runs. The variance of our
method’s results is insignificant as the maximum variance is
under 3.5%.

5.2 COMPARISON AND ANALYSIS

On CIFAR-10 As shown in Table 1a, our approach per-
forms better in terms of trade-offs of testing accuracy and
privacy-preserving across all three neural networks. An ex-

pected result is that different models have different general-
ization capabilities, leading to gaps in their natural privacy-
preserving abilities. Another discovery is that the model has
the upper limit of representation ability since computation ca-
pacity, which depends on the depth, width, and computation
functions, is positively correlated with privacy protection
capability.

We further evaluate more approaches on CIFAR-10 shown
in Fig. 4. We validate that our method can better mitigate
privacy leakage without losing generalizability. In the figure,
although Label-Smoothing is a bit better at testing accu-
racy, it cannot help privacy preservation.Earlystopping
is not as good as our method and Relaxloss because it
cannot determine which samples should be relaxed or further
learned. DMP does not perform satisfactorily through both
splitting and synthesized data. This is because splitting the
training set can hurt accuracy, and it is impossible to establish
a strong GAN with non-excessive data. Besides, knowledge
distillation can still leak the original model’s privacy via non-
training or even OOD data enquires Nayak et al. [2021]. The
noteworthy point is that our method and RelaxLoss are
more effective on models with more computational capacity.
This exhibits more significant results on CIFAR-100.

On CIFAR-100 In Table 1b, a trend that our approach
can alleviate the predictions overconfidence on the training
set more while keeping prediction confidence on the testing
set more significant. Among all, our approach shows the
most superior privacy-protection capacity in NN, Entropy,
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Figure 6: Histograms of distance to decision boundary on CIFAR-100 with ResNet18 trained and tested in CE (no defense),
AdvReg, RelaxLoss and our approach with various hyper-parameter settings.

M-Entropy and Grad-x ℓ2 MIAs. We empirically found
thatAdvReg is unsuitable for simultaneous deployment with
data augmentation to train models. Under data augmenta-
tion, it becomes more difficult for the model to maintain
accuracy in adversarial regularization training. In particu-
lar, on ResNet18, AdvReg respectively exhibits even 0.11%
and 1.29% increase in NN-Based and M-Entropy MIAs
while there is about 10% decrease in test accuracy. Also,
it has a little impact on Entropy and Grad-x ℓ2 MIAs.
Through experiments in the data augmentation scenario, we
found that the AdvReg model could gradually gain privacy
protection capabilities only after the loss of test accuracy
reaches a certain magnitude.

We further explore how the testing accuracy and MIAs ac-
curacy change when we enhance the privacy-related hyper-
parameter settings. In Fig. 5, we explored the trends between
testing accuracy and MIAs AUC scores in more defense ap-
proaches and settings. Our approach always achieves more
privacy preservation with less testing accuracy loss. Under
a more challenging situation (fewer samples per class and
harder task difficulty), DMP performs poorer than when it
is in CIFAR10. RelaxLoss also shows a stable trend of
trade-offs between testing accuracy and privacy-preserving.
In our method and the other two defense methods, AdvReg
shows the lowest testing accuracy when the three defenses
are at the same privacy level. One of the main reasons for
this phenomenon is that AdvReg requires separating a part
of the training set as a conference set, resulting in additional
data cost and the model’s generalizability pays for that. Be-
sides AdvReg, Confidence-Penalty approach also
shows the effectiveness on Grad-x ℓ2. This is because
both methods reduce the true class prediction probability,
which effectively combats the cross-entropy loss function.

As shown in Fig. 6, we experimented on ResNet18 using
three approaches with different levels of privacy settings. We
found that the prediction distribution of the model without
privacy-preserving measures on the training set is signifi-
cantly different from that on testing. Also, the three defense
approaches show distinctive differences. AdvReg’s testing
prediction distribution shifts to the decision boundary far-
thest among all nine charts, lending to more losses of the
model’s utilities. However, there is still a clear distribution
gap between the training and testing sets, which makes it
not as effective as RelaxLoss and our approach. As for
RelaxLoss, the area of overlap between the two distribu-
tions has been significantly improved.

Compared toRelaxLoss,CRL shows two advantages: (i) it
enhances testing confidence while alleviating training over-
confidence. (ii) it maintains the testing confidence distri-
bution better. The first advantage helps the model achieve
better testing accuracy. The second helps training and testing
distributions overlap at an earlier stage. All three charts of
CRL show better testing confidence than the others. Even
with a large overlap such as Fig. 6i, our method is still more
confident in the testing set than the model with no defense.

On SVHN Shown in Table. 1c, different from CIFAR
datasets, both VGG11 and ResNet18 show over 90% testing
accuracy, which means a smaller distribution gap between
testing predictions and training predictions than the other two
datasets. Overall, we evaluate our method on datasets of dif-
ferent difficulties. In ResNet18, our approach outperforms in
NN-Based MIAs defense and exhibits comparable results
in other MIAs. However, although the data in this dataset
is sufficient to achieve excellent testing accuracy, AdvReg
suffers from a significant testing accuracy decrease without



46 48 50 52 54 56 58 60
Testing Accuracy(%)

50

60

70

80
M

IA
s A

cc
ur

ac
y(

%
) CE (No Defense)

ImpRelaxLoss
Relaxed Center Loss
CRL

Figure 7: Ablation study of defenses with different compo-
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Table 2: Ablation components.

Approach Relaxed Policy Centers Normalization

ImpRelaxLoss ! % !

Relaxed Center Loss ! ! %

CRL ! ! !

enhancement of privacy. This also reflects that methods re-
quiring additional data can lead a model to data starvation.
On both VGG11 and ResNet18, our method performs simi-
larly to RelaxLoss, further suggesting that large models
have more potential for privacy protection.

ArXiv-10 Shown in Table 3, CRL has a better defense
effect against the three kinds of MIAs. With such privacy
preservation, RelaxLoss and CRL are able to maintain more
comparable testing accuracy, as validated in Fig. 8.

5.3 ABLATION STUDY

Here, we evaluate how the main components affect our ap-
proach. We evaluate the importance of two components that
compose CRL: (i) ImpRelaxLoss and (ii) Relaxed center
loss. The details of the components are described in Table 2.
Here, we do not apply normalization when experimenting
with Relaxed center loss to avoid the impact of normaliza-
tion. As shown in Fig. 7, we apply all three approaches to
train ResNet18 on CIFAR-100. Pure Relaxed center loss can
help Resnet18 achieve the highest testing accuracy. However,
as hyper-parameters 𝛼𝑟𝑐𝑒 and 𝛼𝑟𝑐𝑙 increase, which means
more privacy protection, it gradually degenerates to a level
comparable to RelaxLoss. ImpRelaxLoss looks quite
different. Overall, it is slightly but more effective than re-
laxed center loss, especially when they defend the MIAs
completely. However, it falls short compared to Relaxed cen-
ter loss in the highest testing accuracy. Finally, CRL, com-
bining all components, can achieve the best performance in
most situations. Normalization further enhances the relaxed
center loss, allowing the model to resist MIAs with about
6% higher testing accuracy. One of the main reasons is that
normalization increases the loss with insufficient confidence,
making the model pay more attention to those samples.

Table 3: Trade-offs between privacy and utility for ArXiv-10
on HAN. The MIAs evaluation results are reported in AUC
Scores.

Approach NN-Based (%) ↓ Entropy (%) ↓ M-Entropy (%) ↓

CE (no defense) 54.66(±0.16) 51.24(±0.11) 54.94(±0.24)
AdvReg 54.83(±0.14) 51.08(±0.18) 54.88(±0.29)
RelaxLoss 50.38(±0.05) 51.13(±0.14) 54.80(±0.16)
CRL (ours) 50.46(±0.07) 51.07(±0.13) 53.60(±0.15)

No Defense AdvReg RelaxLoss CRL(Ours)65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

Train
Test

Figure 8: Performance of different approaches on ArXiv-10.

6 DISCUSSION AND LIMITATIONS

Compared with RelaxLoss, CRL is more effective for the
model to maintain better generalizability while pursuing
membership privacy. However, there are still room for im-
provement. On the one hand, it is still difficult for CRL to
make the distribution of prediction of the model on the test-
ing and the training sets fully consistent without any loss
of models’ utilities - thus that is a tradeoff. On the other
hand, more hyper-parameters increase the complexity of the
search space. Besides, the performance gap between CRL
and Relaxloss will gradually become narrower as the model
accuracy decreases a lot. We hope this work is inspiring so
that in the future more research efforts can be contributed to
improve the solution.

7 CONCLUSION

In this paper, we present CRL, an easy-deployed yet effective
training paradigm that is able to help classification models
defend against privacy attacks with minimal or no loss, and
even with the improvement of models’ generalization abili-
ties. It makes the model behave indistinguishably on member
and non-member data by encouraging the membership pre-
diction distribution and the non-membership distribution as
consistent as possible. Our experiments show the outperform-
ing results compared to the well-known defense approaches
and the state-of-the-art approaches.
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SUPPLEMENTARY MATERIAL

A EXISTING COMPARABLE DEFENSE METHODS

Adversarial Regularization (AdvReg) The adversarial regularization Nasr et al. [2018] method introduced an inference
attack model to the training framework. With a part of the training data as a conference set, a target model is encouraged to
learn the classification target and try to deceive the inference attack model. In contrast, the inference attack model tries to
attack the target model. Compared with our methods, it requires splitting the training set, leading to additional data costs.
Another weakness is that the model is prone to collapse in the adversarial training process, leading to a significant decrease
in accuracy or complete degeneration. Our experiment results also show this aspect.

Distillation for Membership Privacy (DMP) Distillation for membership privacy Shejwalkar and Houmansadr [2021]
develops a meta-regularization technique based on knowledge transfer. The key difference between AdvReg and DMP is that
DMP sets up an entropy-based criterion to produce the reference set via selecting decision-boundary-unimpactful samples.
Compared with our methods, CRL can achieve a similar effect directly by adjusting the prediction distribution of the model
on the training set, avoiding the potential accuracy loss caused by distilling data.

Relaxed Loss (RelaxLoss) Relaxed loss Chen et al. [2022] tries to limit the loss of mini-batches to a fixed value near a
fixed value 𝛼𝑟𝑐𝑒. It aims to solve cross-entropy’s privacy problem that the model always overfits the training data set. Through
the improvement of traditional cross-entropy (CE) loss, RelaxLoss is divided into three stages: (i) normal cross-entropy loss,
(ii) keeping loss, and (iii) target dispersion. When a mini-batch’s average loss is greater than 𝛼𝑟𝑐𝑒, it executes normal CE
loss. When the loss is less than 𝛼𝑟𝑐𝑒 and the index of the current epoch is even, the absolute value sign reverses the direction
of the gradient. When the index is not even, hard labels are replaced with soft labels produced by predictions. According to
the above method, RelaxLoss can limit the loss of the samples in the training set close to a preset value so as to mitigate the
models’ overconfidence. For our method, we additionally ensure that samples in each class share some common feature
representations, which is beneficial to improve and keep the model’s generalizability.

Early-Stopping The early-stopping method aims to end the training earlier to make the model fit training data less. However,
relax policy in both CRL and RelaxLoss prevents samples that were first fitted from being further fitted and continues
fitting the rest of the samples, always leading to better performance than early-stopping unless the model is heavily over-fitting.

DP-SGD DP-SGD mixes noise into the classifier during training to provide a reliable privacy guarantee. However, keeping
with both acceptable generalization ability loss and privacy guarantees is still challenging Jayaraman and Evans [2019].
Compared with CRL, CRL gives a more appropriate and specific solution based on the fitting degree of samples.

B MORE DETAILS IN EXPERIMENTAL SETTING

Dataset CIFAR-10 and CIFAR-100 are popular image classification datasets, which consist of 60, 000 color images with
the size of 32×32. SVHN, a digits classification dataset, with 10 classes for digits from 0 to 9 and 32×32 image size, includes
over 600, 000 digit images in natural scenes. As for both CIFAR datasets, we apply the commonly used data normalization to
the original training and testing sets. In CIFAR-100, data augmentation techniques, random cropping and random flipping,
are applied to enhance the model’s generalization ability. As for SVHN, we use the matrices of the original RGB image as
inputs.
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