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ABSTRACT

Training-free zero-shot composed image retrieval (ZS-CIR) models are recently
gaining increasing research interest due to their generalizability and flexibility in
unseen multimodal retrieval. Recent LLM-based advances focus on generating
the expected target caption by exploring the compositional ability behind the
LLMs. Although efficient, we find that 1) the generated captions tend to introduce
unexpected features from the reference image due to the semantic gap between the
input image and text modification, where the image contains much more details
than the text; 2) the point-to-point alignment during the retrieval stage fails to
capture diverse compositions. To address these challenges, this paper introduces a
novel Semantic Transition and Transportation (STT) framework for training-free
ZS-CIR tasks. Specifically, given the composed caption inferred by an LLM, we
aim to refine it through a transition vector in the embedding space and make it closer
to the target image. Combining LLMs with user instruction, the refined caption
concentrates more on the core modification intent and thus filters out unnecessary
noise. Moreover, to explore diverse alignment during the retrieval stage, we model
the caption and image as discrete distributions and reformulate the retrieval task
as a set-to-set alignment task. Finally, a bidirectional transportation distance is
developed to consider fine-grained alignments across modalities and calculate the
retrieval score. Extensive experiments and ablations demonstrate that our method
can be general, effective, and beneficial for many CIR tasks.

1 INTRODUCTION

Composed Image Retrieval (CIR) aims to search for a target image using a compositional query
of a reference image and text modification Vo et al. (2019b); Lee et al. (2021); Hosseinzadeh &
Wang (2020); Chen et al. (2020b); Baldrati et al. (2022). One of the key challenges is to model the
multimodal relationship of the triplet: <reference image, text modification, target image>. Previous
studies have focused on fusing the input image and modifications within a shared embedding space
in a supervised manner Vo et al. (2019a); Delmas et al. (2022); Anwaar et al. (2021a). Generally,
these models typically rely on expensive manually-annotated triplets and often exhibit suboptimal
performance in unseen scenarios Baldrati et al. (2023); Karthik et al. (2023). Motivated by the success
of textual inversion in image generation Gal et al.; Mokady et al. (2023), recent studies have proposed
Zero-Shot Composed Image Retrieval (ZS-CIR) Saito et al. (2023); Zeng et al. (2023); Jiang et al.
(2024). These models focus on training a mapping network to convert the reference image into
continuous textual embeddings and then merge them with text modifications using static templates
for target captions, enabling CIR without explicit supervision. Unfortunately, these models also need
image-caption pairs to learn the mapping parameters, and the mismatch between textual inversion
and CIR may hamper their ability to accurately infer the implicit user intent conveyed in the text
modification.

Alternatively, training-free approaches paired with foundation models can achieve effective CIR
without additional training and offer improved reasoning capabilities Karthik et al. (2023); Tang
et al. (2024a). There are mainly two directions: two-stage methods typically require an image
captioner and an LLM to first generate detailed captions of the reference image and then fuse them
with text modification via an LLM to produce the target descriptions; one-stage methods unify

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

M

L

L

M

Reference Image

Text Modification

Add mountains in 
the background and 
change the number 
of dogs to nine.

A man wearing a red jacket 

and sunglasses is riding a dog 

sled pulled by nine huskies 

through a snowy landscape. 

The dogs are harnessed and 

running energetically. The 

background features snow-

covered mountains, scattered 

leafless trees, and a clear sky.

Predicted Caption

Generated caption

Refined caption

Retrieved image (wrong)

Retrieved image (right)

Noise visuals

Interest visuals

Figure 1: Motivation of our proposed model. Predicted captions from MLLMs typically consist of expected
ground-truth sentences (red words) and unexpected visual details (gray words).

this process by employing an MLLM to directly output the target captions given the multimodal
queries. Despite considerable progress, several challenges remain. First, the above generation-then-
retrieval pipeline is prone to Extraneous Cognitive Load Sweller (1988). Specifically, the reference
image may trigger information leakage, which in turn leads to overemphasis on irrelevant details,
affecting the retrieval performance. As shown in Fig.1, the target caption generated by MLLMs
includes extraneous elements such as “red jacket and sunglasses”, which are unrelated to the textual
modification. Therefore, distracting from the core intent, it diminishes the ability to identify key
information, such as “snow-covered mountains”. Second, most existing models generate either a
single description or simply average multiple descriptions to obtain the final representation Tang et al.
(2024a); Yang et al.. However, as one image is worth a thousand words, such point-to-point alignment
focuses on partial features and fails to capture complex relations. This inherent heterogeneity between
visual and textual representations inevitably leads to semantic imbalance across modalities, leading
to suboptimal retrieval prediction Zhu et al. (2024); Chen et al. (2023); Wang et al. (2023).

To address the above issues, this work proposes STT, a novel one-stage, training-free ZS-CIR
framework that improves the existing generation-then-retrieval pipeline by introducing Semantic
Transition and Transportation. Like previous works Tang et al. (2024a), we explore the in-context
learning of MLLMs and directly query an MLLM to generate the target caption given the reference
image and text modification. Importantly, to address the above asymmetry issues, STT utilizes the
uncertainty ability of the language decoder and views the description as a discrete distribution by
generating multiple candidates. Each candidate in the distribution focuses on a specific composition
pattern, and they together provide a comprehensive understanding of the given query input.

Since reference images may inevitably introduce irrelevant information into captions generated by
MLLMs, we propose guiding the textual caption toward the target image via a transition vector in the
embedding space (as seen in Fig. 1). Intuitively, an ideal transition vector should bridge the semantic
gap between the generated caption and the target image. Here, we aim to solve it in a training-free
manner and estimate the transition vector by feeding the text modification into the CLIP text encoder.
For one thing, since both the text modification and the generated caption share the same modality,
the former can seamlessly refine the latter without introducing a modality gap or requiring extra
parameters. For another, the text modification encapsulates the incremental, high-quality, and dense
information that shifts from the reference image to the target image, guiding the model to refocus
on core semantic information. This transition operates directly in the embedding space—simple yet
efficient—and ensures that the final target caption retains diversity while reducing distortion, all of
which is highly relevant and beneficial to the retrieval process.

After obtaining high-quality and diverse features of the target captions, it is crucial to align them
more effectively with the target images in the embedding space. Similar to the textual domain, STT
also models the target image as a discrete distribution by augmenting the image multiple times, where
each augmentation captures local visuals of the target image, and they together provide a rich visual
representation from the visual domain, facilitating fine-grained alignments in the retrieval process.
Finally, a novel bidirectional transport distance is further developed to calculate the similarity of
two discrete distributions across the vision-language modalities. Specifically, given the cost matrix
that measures the transport cost between the captions and image augmentation, STT designs both a
forward path and a backward path to calculate the transport distance from the caption set to the target
image set and that from the target image set back to the caption set, respectively. This formulation
effectively uncovers fine-grained cross-modal correlations by minimizing the bidirectional transport
cost between modalities.
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In summary, the proposed STT shares the following contributions:

• We propose a novel one-stage, training-free framework that considers both semantic transi-
tion and transportation for ZS-CIR. By introducing the modification-driven transition to the
generated caption, the feature drift caused by additional irrelevant noise is compensated in
the embedding space.

• We elegantly transform the retrieval procedure into a bidirectional transport problem. Explic-
itly explore fine-grained alignments between diverse refined textual captions and enhanced
target images.

• Extensive comparisons and ablations on four benchmarks demonstrate the effectiveness of
the proposed STT with competitive performance in all settings.

2 RELATED WORK

2.1 COMPOSED IMAGE RETRIEVAL

Composed Image Retrieval (CIR) has inspired various architectural innovations Vo et al. (2019b);
Chen et al. (2020b); Lee et al. (2021). Early methods adopt a fusion paradigm to learn joint
embeddings of reference image and modification features via contrastive or attention-based objectives
Chen & Bazzani (2020); Anwaar et al. (2021b). Some recent works train large-scale retrieval models
on millions of web-mined tripletsZhang et al. (2024), but reliance on supervision limits scalability. To
address this, Zero-Shot CIR (ZS-CIR) enables retrieval without labeled data. For example, Pic2Word
Anwaar et al. (2021b) projects image features into a token embedding space, while SEARLE Baldrati
et al. (2023) improves alignment via a text inversion network. Another line of work generates
synthetic triplets from image-caption pairs using generative models Gu et al. (2023).

With the advent of foundation models, recent studies have tackled CIR in a training-free manner,
leveraging their strong contextual understanding. Two main paradigms have emerged: two-stage
methods performs reference image captioning and text manipulation separately, while one-stage
methods generate target captions directly from multimodal inputs. For example, CIReVLKarthik
et al. (2023) initially employs pre-trained captioning models Li et al. (2023a) to generate caption for
a given image. Subsequently, it queries an LLM to refine and recompose the caption based on text
modifications for text-to-image retrieval. LDREYang et al. (2024b) considers diverse semantics of
the CIR and generates diverse captions at the first stage, and then adopts an ensemble strategy to
get the final single feature for the multiple captions. OSrCIRTang et al. (2024a) uses MLLMs to
infer user intent by directly processing a query pair, guided by a reflective chain-of-thought prompt.
However, both are overwhelmed by the rich semantic information from the reference image, which
may overshadow the key modifications. Different from existing LLM-based methods, our STT
aims to refine the captions after the generation and improve semantic alignments by formulating the
retrieval task as the bidirectional transportation problem.

2.2 ALIGNMENT VIA TRANSPORT DISTANCE

Recently, Optimal Transport (OT) Villani (2009) has been widely used for aligning distributions in
various domains Redko et al. (2019); Zhao & Zhou (2018;?); Lee et al. (2019); Chen et al. (2020a).
Unlike traditional distance metrics like Euclidean distance, OT provides a more geometrically nuanced
measure that captures structural similarities between distributions. However, it typically requires
iterative optimization via the Sinkhorn algorithm Cuturi (2013), which can be time-consuming. To
this end, Conditional Transport (CT) considers the transport plan based on the semantic similarity
between samples from two distributions bidirectionally Zheng & Zhou (2021). Its flexibility allows
seamless integration with deep learning frameworks, offering lower computational complexity and
better scalability, resulting in superior performance in recent alignment tasks Liu et al.. For instance,
Tian et al. (2023) exploits transferable statistics with CT to refine biased prototypes to capture
unbiased statistics within imbalanced query samples. Li et al. (2023b) design a sparse and layer-
wise CT framework to enhance interactions between visual patches and textual labels, ensuring
higher semantic consistency for multi-label classification. Notably, CT is inherently well-suited
for a key step in CIR—aligning multiple captions with target images—especially when multimodal
representations are involved. Motivated by this potential, we transform the traditional point-to-point
similarity measure into a minimization of CT-based distance from a distributional perspective.
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Figure 2: The overall framework of the proposed STT. STT first queries MLLMs to generate multiple captions
and then refines them towards the target image via the transition vector. STT models the transferred captions and
augmented images as two discrete distributions for fine-grained alignment.

3.1 PRELIMINARIES

Let us denote (x,m, y) as the CIR triplet <reference image, text modification, target image>,
respectively. The first two are multimodal inputs from users describing their retrieval intent. Training-
free ZS-CIR aims to search a target image y from an image database Y = {yn}Nn=1 that satisfies the
semantic consistency with both x and m, without requiring additional training. Generally, existing
approaches follow a generation-then-retrieval pipeline to make the final prediction. They first feed
the reference image x and text modification m into a fusing model (such as an MLLM) to obtain the
composed description of the target image, denoted as t = MLLM(x,m). The retrieval score is then
calculated by CLIP similarity:

p(y = i|x,m) =
exp(−dis(t,yi)/τ)∑N

n=1 exp(−dis(t,yn)/τ)
, (1)

where t ∈ Rd and y ∈ Rd are the latent features of t and y in CLIP space, with d denotes the
embedding dimension. dis is the distance function and τ is the temperature parameter. t in Eq. 1 can
be viewed as prototypes that capture reasonable visual features of y. To find the optimal t, recent
LLM-based models develop various attempts, including two-stage generation and chain-of-thought
reasoningYang et al. (2024b); Li et al. (2024b); Tang et al. (2024a).

Despite their promising results, We find that 1) the generated description t usually inherits the
unnecessary details from the reference image, leading to suboptimal prototype learning; 2) The point
estimation of t fails to model complex composed relations, this may limit the uncertainty of t and
diminish the generalizability.

3.2 SEMANTIC TRANSITION AND TRANSPORTATION

Starting from Eq. 1, we propose a novel training-free ZS-CIR framework to solve the mentioned
shortcomings, as illustrated in Fig. 2. Specifically, our proposed model consists of three modules:
Querying, Transition, and Alignment. Unlike previous point estimation of t, STT views the composed
prototype as a discrete distribution, e.g., Pt, over the caption space. This allows Pt to focus on various
possible target captions, showing higher diversity. To alleviate the issues of unnecessary information
pollution, we further transfer the obtained t using the text modification m in the embedding space.
m contains high-quality relative information linking the reference image to its target image. Thus, a
simple combination strategy is developed to push t to its target image, resulting in more precise t.
Finally, we also view the target image as a discrete distribution and develop a bidirectional transport
distance to align the composed prototypes and target images for fine-grained retrieval.

Querying. As discussed above, one of the core challenges is to generate reasonable captions t for
image y. Inspired by previous works Li et al. (2023a; 2024a), STT aims to solve this with MLLMs

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

due to their impressive performance in image-text understanding. Concretely, here we explore the
in-context learning of MLLM and complete the prompt template: “<in-context prompt>. <x>.
Instruction:<m>. Edited Description:”. Where <in-context prompt> helps MLLMs understand the
CIR task and output the expected target descriptions. <x>, <m> are the placeholder of the reference
image and text modification.

Intuitively, there are likely several plausible t for each x and m pair, they describe the same target
image from different views, To simulate such an ability, we explore the uncertainty generation of
MLLMs via sampling from the language model’s decoder, to replace the naive greedy decoding
used in previous single target description generations. Formally, we combine the top-k and top-p
sampling strategy in (Holtzman et al., 2020) and collect K possible target description t with a
discrete distribution:

Pt =
1

K

K∑
k=1

δtk , (2)

where δt refers to a point mass located at coordinate t, and tk denotes the text embedding of k-th
generated description. Pt can be viewed as a semantic set containing K reasonable descriptions, and
it thus considers diverse visual features of the target image.

Transition. Another challenge comes from the semantic gap between the generated description t
and the target image y. Generally, an ideal t should highlight the semantic changes while avoiding
unnecessary information instructions from the reference image. On one hand, we empirically find
that existing LLM-based generators can successfully describe the changed context. On the other hand,
they also pay more attention to the reference image due to the limited guidance in text modification
m. As a result, the output caption usually contains many visual details of the reference image, which
act as noise and mislead the retrieval process. To this end, we propose a transition step that pushes the
generated captions to the target image at the embedding space. As shown in Fig. 2, let ∆m denote
the difference between x and y, it provides incremental semantics from the reference image to its
target. Recalling that the text modification m contains high-quality relative information, it is natural
to estimate ∆m using m:

∆m = y − x,∆m̂ = f(m), (3)
where x ∈ Rd represents the visual embeddings of the reference image x generated by the CLIP
image encoder, f is the CLIP text encoder. Once obtaining the relative guidance ∆m̂, tk can be
updated via a simple fusing strategy:

t̂k = (1− α)tk + α∆m̂, (4)

where the first term tk comes from the MLLMs, and it encodes multimodal knowledge based on
the MLLM’s understanding of the composed input (x,m). The second term ∆m̂ is derived from
the text modification estimation and contains high-quality relative instruction between the reference
and target image. The transferred caption t̂k takes guidance from both directions with a trade-off
hyperparameter α ∈ [0, 1]. Now, we can rewrite Pt as: Pt =

1
K

∑K
k=1 δt̂k .

Alignment. Given the collected discrete distribution Pt in the text domain, we in this section aim
to explore the diverse visual features in the image domain with a similar motivation:

Qy =
1

M

M∑
m=1

δym
, (5)

where we augment the target image M −1 times and {ym}Mm=2 are the embeddings of the augmented
images. Unlike previous ZS-CIR models that view the target image as a single point, Qy in Eq. 5
provides us with multiple views of y, leading to the following fine-grained retrieval strategy.

Moving beyond the point-to-point similarity measurement in Eq. 1, we here develop a bidirectional
distance of two discrete distributions Lbi(Pt, Qy) under the CT framework. Specifically, Lbi consists
of two transport costs: the forward cost that measures the expected transport cost from the reference
to the target image and the backward cost that inverses the direction:

Lbi(Pt, Qy) = LPt→Qy (Pt, Qy) + LQy→Pt(Pt, Qy)

=
∑
m,k

π(ym|t̂k)c(t̂k,ym) + π(t̂k|ym)c(ym, t̂k), (6)
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where the cost function c(y, t̂) = c(t̂,y) is specified as the cosine distance to measure the transport
cost between points t̂ and y. π(y|t̂) denotes the transport plan in the forward path, and it measures
how likely t̂ will be transported to y:

π(ym|t̂k) =
exp(t̂Tk ym/τ)∑M

m′=1 exp(t̂Tk ym′/τ)
. (7)

Naturally, the closer t̂ and y are in the embedding space, the higher the transport probability from t̂
to y. π(t̂|y) is defined in a similar way:

π(t̂k|ym) =
exp(yT

mt̂k/τ)∑K
k′=1 exp(yT

mt̂k′/τ)
. (8)

Mathematically, Lbi in Eq. 6 calculates the distance between two discrete distributions in both
forward and backward directions. This benefits the alignment across the vision and language domains,
showing better multimodal retrieval ability. Moreover, Lbi views the generated caption and target
image as two discrete distributions, which show great potential in modeling diverse semantics.

Once obtain the bidirectional distance between the generated descriptions and the target image, we
can rewrite Eq. 1 with Lbi, resulting in a more general and fine-grained prediction score:

p(y = i|x,m) =
exp(−Lbi(Pt, Qyi))∑N
n=1 exp(−Lbi(Pt, Qyn

)
. (9)

We summarize the whole inference algorithm of STT in the Appendix. 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following previous works Tang et al. (2024a), we evaluate our proposed model on four
commonly used CIR datasets , which vary in CIR tasks, image domains and dataset sizes, including
CIRR Liu et al. (2021), CIRCO Baldrati et al. (2023), FashionIQ Wu et al. (2021), and GeneCIS Vaze
et al. (2023). CIRR is the first natural image dataset for CIR. CIRCO comes from COCO2017 Lin
et al. (2014) and has multiple ground truths for each query. FashionIQ focuses on fashion-related
retrieval and consists of three subsets: shirt, dress, and toptee. GeneCIS contains images from
MS-COCO Lin et al. (2014) and Visual Attributes in the Wild Pham et al. (2021), offering four task
variations around objects and attributes. We report the original benchmark metrics for each dataset:
e.g., Recall@k(R@k) for CIRR, GeneCIS, and FashionIQ, and mean average precision (mAP@k) for
CIRCO due to its multiple labels.
Baselines. We compare our STT with recent advances, grouped as training-dependent and training-
free models. The former often optimize a mapping network to project the reference image into text
tokens, including 1) Pic2Word Saito et al. (2023), 2) SEARLE Baldrati et al. (2023), 3) Context-
I2W Tang et al. (2024b), and 4) LinCIR Gu et al.. Training-free methods focus more on improving
ZS-CIR with large language models, including 5) CIReVL Karthik et al. (2023), 6) LDRE Yang
et al. (2024b), 7) OSrCIR Tang et al. (2024a) and 8) SEIZE Yang et al. (2024a). Unlike previous
training-free methods, the proposed STT aims to refine the composed caption in the embedding space
and explore fine-grained alignment across vision-language domains. For all training-based baselines,
we directly report the results according to their official papers. For training-free models, to make
a fair comparison, we reproduce their results on the FashionIQ dataset according to their released
codes and report results on other datasets according to the original papers.
Implementation Details. We employ the open-source Qwen2-VL-7B as our MLLM by default,
while we also report the results on various MLLMs in Appendix Sec. A.3. To generate diverse
descriptions, we follow the similar setting to previous works and apply τ = 0.7, top-k(k=50), top-
p(p=0.8) at the querying stage. In terms of the image augmentation, we used only random resized
crop and random horizontal flip for each image. We set the number of captions as K = 5, the number
of augmentations as M = 10, and employ a default value of α = 0.45. The default retrieval model
is CLIP-L/14 from the official OpenAI implementation Radford et al. (2021). We also report the
retrieval results of LLM-based models (CIReVL, OSrCIR, and our STT) on CLIP-bigG-14 from the
OpenCLIP implementation Cherti et al. (2023) for the analysis of scaling laws. All experiments are
conducted on a single NVIDIA A6000 GPU.
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Table 1: Performance comparison on CIRCO and CIRR datasets. The top two results are highlighted in bold
and underline, respectively. More comparisons are reported in the Appendix Tab. 6.

CIRCO + CIRR → CIRCO CIRR
Metric mAP@k Recall@k RecallSubset@k

Arch Method Train k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3

ViT-L/14

Pic2Word ✓ 8.72 9.51 10.64 11.29 23.90 51.70 65.30 53.76 74.46 87.08
SEARLE ✓ 11.68 12.73 14.33 15.12 24.24 52.48 66.29 53.76 75.01 88.19
LinCIR ✓ 12.59 13.58 15.00 15.85 25.04 53.25 66.68 57.11 77.37 88.89

Context-I2W ✓ 13.04 14.62 16.14 17.16 25.60 55.10 68.50 - - -
CIReVL ✗ 18.57 19.01 20.89 21.80 24.55 52.31 64.92 59.54 79.88 89.69
LDRE ✗ 23.35 24.03 26.44 27.50 26.53 55.57 67.54 60.43 80.31 89.90

OSrCIR ✗ 23.87 25.33 27.84 28.97 29.45 57.68 69.86 62.12 81.92 91.10
SEIZE ✗ 24.98 25.82 28.24 28.35 28.65 57.16 69.23 62.22 84.05 92.34

STT(Ours) ✗ 25.55 26.27 28.81 29.99 28.87 57.97 69.90 65.22 84.10 92.37

ViT-G/14
CIReVL ✗ 26.77 27.59 29.96 31.03 34.65 64.29 75.06 67.95 84.87 93.21
LDRE ✗ 31.12 32.24 34.95 36.03 36.15 66.39 77.25 68.82 85.66 93.76

OSrCIR ✗ 30.47 31.14 35.03 36.59 37.26 67.25 77.33 69.22 85.28 93.55
SEIZE ✗ 32.46 33.77 36.46 37.55 38.87 69.42 79.42 74.15 89.23 95.71

STT (Ours) ✗ 34.40 35.56 38.07 40.02 39.23 69.95 79.56 73.56 89.50 95.86

Table 2: Performance comparison on Fashion-IQ datasets. The top two results are highlighted in bolded and
underlined. More results with different backbones are reported in Tab. 7.

Fashion-IQ → Shirt Dress Toptee Average
Arch Method Train R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

ViT-G/14

Pic2Word ✓ 33.17 50.39 25.43 47.65 35.24 57.62 31.28 51.89
SEARLE ✓ 36.46 55.35 28.16 50.32 39.83 61.45 34.81 55.71
LinCIR ✓ 46.76 65.11 38.08 60.88 50.48 71.09 45.11 65.69
CIReVL ✗ 29.85 51.07 27.07 49.53 35.80 56.14 32.19 52.36
OSrCIR ✗ 38.65 54.71 33.02 54.78 41.04 61.83 37.57 57.11
SEIZE ✗ 43.60 65.42 39.61 61.02 45.94 71.12 43.05 65.85

STT(Ours) ✗ 39.48 56.59 35.04 56.74 42.86 64.95 39.12 59.43

Table 3: Performance comparison on GeneCIS datasets. The top two results are highlighted in bolded and
underlined, respectively.

GeneCIS → Focus Attribute Change Attribute Focus Object Change Object Average
Arch Method Train R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

ViT-L/14

SEARLE ✓ 17.1 29.6 40.7 16.3 25.2 34.2 12.0 22.2 30.9 12.0 24.1 33.9 14.4
LinCIR ✓ 16.9 30.0 41.5 16.2 28.0 36.8 8.3 17.4 26.2 7.4 15.7 25.0 12.2

Context-I2W ✓ 17.2 30.5 41.7 16.4 28.3 37.1 8.7 17.9 26.9 7.7 16.0 25.4 12.7
CIReV ✗ 19.5 31.8 42.0 14.4 26.0 35.2 12.3 21.8 30.5 17.2 28.9 37.6 15.9
OSrCIR ✗ 20.9 33.1 44.5 17.2 28.5 37.9 15.0 23.6 34.2 18.4 30.6 38.3 17.9
SEIZE ✗ 20.5 33.4 45.0 17.6 28.9 38.5 15.4 25.6 36.2 18.7 30.9 39.8 18.1

STT(Ours) ✗ 20.3 34.6 46.4 18.3 29.8 41.6 16.8 28.5 38.4 18.8 31.0 40.3 18.6

ViT-G/14
CIReVL ✗ 20.9 34.4 44.9 16.5 29.0 39.8 15.1 25.6 33.4 18.5 31.6 41.4 17.8
OSrCIR ✗ 22.7 36.4 47.0 17.9 30.8 42.0 16.9 28.4 36.7 21.0 33.4 44.2 19.6
SEIZE ✗ 22.9 36.2 47.3 18.6 31.4 42.7 18.2 28.8 37.6 19.6 33.0 43.5 19.8

STT (Ours) ✗ 21.9 36.4 47.9 19.6 31.9 42.8 20.2 30.3 39.6 19.7 33.2 43.4 20.4

4.2 RESULTS ANALYSIS

We run all experiments three times with different random seeds and report the mean value to ensure
reliability. We report the comparison on the hidden test set of CIRCO and CIRR datasets in Tab. 1
(All results are obtained from the submission server provided in Baldrati et al. (2023) and Liu et al.
(2021)). These two CIR datasets focus on foreground and background differentiation and fine-grained
image editing. From the results, we find that our proposed STT achieves the best or second-best
results in most cases among baselines, including training-free and textual inversion models. STT
underperforms baselines on the CIRR dataset in the case of k = 1. This may be due to the noisy
annotation in CIRR, where the reference image is less related to the target image Baldrati et al.
(2023).

Tab. 2 shows the comparison in the validation set of the Fashion-IQ dataset with ViT-G/14, and more
comparisons on other backbones can be found in the Appendix Tab. 7. Interestingly, we find that text
inversion-based models (e.g., LinCIR) outperform LLM-based models in the fashion image editing
task. This may be due to the fact that most images in Fashion-IQ are relatively simple, containing only
a pure background. This may limit the ability of MLLMs, and in contrast, training-dependent models
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tend to describe the reference image more correctly. Among LLM-based models, SEIZE achieves the
best recall. Both SEIZE and STT refine the target captions, where STT employs modification text
as transition vectors, while SEIZE utilizes generated reference captions to adjust final predictions.
We find that the modification text in Fashion-IQ is overly simplistic (e.g., is solid white and is a
lighter color), resulting in suboptimal guidance for STT. SEIZE relies on a pre-trained caption model
to generate reference captions, which may be better suited for Fashion-IQ’s simplified scenarios.
However, as shown in the Tab. 5, this approach increases the computational cost during inference.

Lastly, we further test the object and attribute composition ability of our model on the GeneCIS dataset,
with the results listed in Tab. 3. Unlike previous datasets that provide a detailed text modification
sentence, GeneCIS uses single-word instruction to express the user’s intent, e.g., focusing/changing a
specific object or attribute. From the results, we find that our proposed STT achieves the best results
in 19/24 cases and outperforms the others at the average score. On the one hand, STT preserves rich
multimodal knowledge to interpret implicit inputs while filtering out noise through transition. On
the other hand, it views the caption as a discrete distribution, showing great potential in capturing
diverse visual semantics, leading to fine-grained retrieval for this complex task. More comparisons
are reported in Appendix Tab. 8.

4.3 FURTHER ANALYSIS

In addition to the numerical comparisons on four CIR benchmarks. In this section, we provide further
analysis of the ablation results and visualizations of the proposed modules.

Main component analysis. To evaluate the impacts of each proposed module in STT, we report
the ablation results in Tab. 4. We find that 1) both transition and transportation show a positive
improvement compared to the base model (first row). This highlights the motivation of our STT: the
unnecessary visual details introduced in original captions and the simple point-based alignment; 2)
The transition module achieves higher improvements than the transportation module in most cases.
This shows the validity of our proposed transition vector in assessing the difference between the
reference and target images. It highlights the text modification and offers useful guidance to steer the
original caption toward the target image, resulting in more correct alignments.

Table 4: Ablation results on the transition and transportation modules. All results are conducted on CIRCO and
CIRR datasets with CLIP-bigG/14.

CIRCO + CIRR → CIRCO CIRR
Strategy mAP@k Recall@k RecallSubset@k

Transition Transportation k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3
✗ ✗ 31.23 32.87 36.32 38.04 37.22 67.36 77.84 69.93 86.48 94.05
✓ ✗ 31.89 34.46 37.94 39.67 38.33 68.45 78.03 72.81 88.13 94.51
✗ ✓ 32.14 34.78 37.87 39.48 38.48 68.38 78.34 72.15 88.04 94.48
✓ ✓ 34.40 35.56 38.07 40.02 39.23 69.95 79.56 73.56 89.50 95.86

Impacts of caption number and augmentation views. We report the study of caption number K
and augmentation views M in Eq. 5 on CIRCO dataset, with results in Fig. 3 . From these results,
we first find that the performance shows a large improvement when K > 1. This demonstrates the
effectiveness of using diverse captions, especially after semantic transitions, to capture rich semantic
information. Moreover, increasing the number of image augmentations M consistently enhances
performance, highlighting the value of multi-scale image diversity. We suggest that setting K = 5
and M = 10 is sufficient to achieve strong performance across most datasets.

Impacts of the bidirectional distance. Recalling that we propose to measure the distance between
the modified caption Pt and the target image augmentation Qy using a bidirectional transport distance
in Eq. 6. This enables the proposed STT to not only calculate the transport cost from Pt to Qy but
also consider the reverse cost, showing better alignments across the vision-language domains. To
identify such improvements, we replace the bidirectional CT distance with the optimal transport (OT)
distance and report the comparison on four datasets in Fig. 4. Note that the CT distance consistently
beats the OT distance in all cases, showing the effectiveness of our bidirectional alignment.

Visualization Analysis. From the above analysis, we find that the transition module plays a key
role in improving the CIR performance. It estimates the relative vector as the difference between
the reference and target image and provides correct information to refine the generated captions. To
make a clearer understanding, we visualize the heat maps of two samples from the GeneCIS dataset
on the “Focus Object" task in Fig. 5. Here, we directly calculate the cosine similarity between the
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Figure 3: Ablation on the number of descriptions
and image augmentations (Aug-m:m augmenta-
tions per image) on the CIRCO dataset with CLIP-
B/32.

Figure 4: Ablation results of different alignment
strategies across four datasets with CLIP-L/14.

Refrigerator
A large white refrigerator, 

integrating into the outdoor scene. 

Refrigerator stands tall against the 

backdrop of a white fence and a 

brick wall, with a green tree and 

foliage in the background

A large, white refrigerator, placed 

outdoors near a pile of household 

items. Refrigerator has a sleek 

design with a curved top. It may 

be part of a yard sale or disposal 

of unwanted belongings. 

A white refrigerator, seamlessly 

integrating into the outdoor scene. 

Refrigerator is positioned in front 

of a white fence and behind a pile 

of debris, including a white plastic 

chair, and blue garbage bags.

Target Image

Reference Image

Instruction
Modified Description

Visualization Before Transition

Visualization After Transition

Bus
A large red bus, prominently 

positioned on the left side of the 

scene. Bus has a red exterior, with 

visible windows and doors, and 

appears to be moving slowly, 

contributing to the city atmosphere.

A large bus occupying the left side 

of the frame. It has a red and 

white color scheme, with the front 

displaying a large window and a 

distinct shape. The bus is parked 

along a road with other vehicles.

A bus driving on a street, 

surrounded by traffic and 

infrastructure.  Bus is in motion, 

traveling through an urban area, 

indicated by the traffic lights, street 

signs, and vehicles in the scene.

Target Image

Reference Image

Instruction
Modified Description

Visualization Before Transition

Visualization After Transition

Figure 5: Visualization of the GeneCIS dataset on the ’Focus Object’ task. Heatmaps before and after the
transition on target image are shown. Captions generated by MLLMs often contain irrelevant visual noise (blue
text), while the STT model effectively suppresses such noise and highlights the correct focus object (red text).

Table 5: Efficiency comparison with SOTA methods. Inference times (seconds per query) are reported for each
model using a single NVIDIA A6000 GPU.

Model Pic2Word SEARLE CIReVL OSrCIR LDRE SEIZE STT
Time (s) <0.01 <0.01 2.97+0.85=3.82 6.65 1.30+2.98=4.28 5.8+4.5=10.3 3.5

visual patch embeddings and the caption embedding as the score of the heat maps. The first row
denotes three generated captions and the last two heat maps denote the corresponding visualization
results before and after the transition module. We find that the generated captions indeed introduce
visual noise for the CIR task. For example, the retrieval attentions are often disturbed by visual noise
such as “white fence", “white color" and “left side of the scene". In contrast, the visualizations of
STT often focus on the correct object, leading to higher CIR performance.

Efficiency Analysis. Table 5 shows the inference times (seconds per query) of various methods.
Overall, LLM-based methods generally incur higher test-time latency than traditional mapping
models due to the query stage. For instance, CIReVL, LDRE and SEIZE are two-stage approaches
that require significant time to generate target descriptions, while OSrCIR involves extensive chain-
of-thought reasoning during inference. In contrast, our STT achieves the lowest test time among
LLM-based methods, showing the efficiency of our proposed modules.

5 CONCLUSION

We propose STT, a novel one-stage, training-free framework for the zero-shot composed image
retrieval task. STT improves the quality of the generated caption by MLLMs via a transition
vector and views the captions and target image as two discrete distributions in the embedding
space. A bidirectional transport distance is developed to measure the similarity across the vision-
language domains. Our approach not only achieves strong performance on four CIR benchmarks but
also, provides interpretability via the visualization of the transferred caption and the target images.
Extensive ablations also demonstrate the effectiveness of the proposed modules.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the model, training procedure, and evaluation in the main
text. Additional implementation details, hyperparameters, and ablation studies are included in the
Appendix.
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A APPENDIX

A.1 ADDITIONAL COMPARATIVE RESULTS.

We in this section included more comprehensive comparisons with more methods across various
architectures on all datasets presented in Tab. 6, Tab. 7, and Tab. 8. It should be noted that in Tab. 7,
the notation (*) indicates that we reproduced the experiments using the OpenAI weights, and the (†)
indicates that we reproduced the experiments using the OpenCLIP weights, respectively. From these
comparisons, our approach outperforms all the baselines in most cases, showing the efficiency of
STT’s three operations.

Table 6: Performance comparison on CIRCO and CIRR datasets. Both ViT-B and ViT-L are loaded
from OpenAI official weights, while ViT-G is loaded from OpenCLIP.

CIRCO + CIRR → CIRCO CIRR
Metric mAP@k Recall@k RecallSubset@k

Arch Method Train k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3

ViT-B/32

PALAVRA ✓ 4.61 5.32 6.33 6.80 16.62 43.49 58.51 41.61 65.30 80.94
SEARLE ✓ 9.35 9.94 11.13 11.84 24.00 53.42 66.82 54.89 76.60 88.19
CIReVL ✗ 14.94 15.42 17.00 17.82 23.94 52.51 66.00 60.17 80.05 90.19
LDRE ✗ 17.96 18.32 20.21 21.11 25.69 55.13 69.04 60.53 80.65 90.70

OSrCIR ✗ 18.04 19.17 20.94 21.85 25.42 54.54 68.19 62.31 80.86 91.13
SEIZE ✗ 19.04 19.64 21.55 22.49 27.47 57.42 70.17 65.59 84.48 92.77

STT(Ours) ✗ 20.26 21.01 23.01 24.04 25.83 55.25 70.20 65.64 83.60 92.80

ViT-L/14

Pic2Word ✓ 8.72 9.51 10.64 11.29 23.90 51.70 65.30 53.76 74.46 87.08
SEARLE ✓ 11.68 12.73 14.33 15.12 24.24 52.48 66.29 53.76 75.01 88.19
LinCIR ✓ 12.59 13.58 15.00 15.85 25.04 53.25 66.68 57.11 77.37 88.89

Context-I2W ✓ 13.04 14.62 16.14 17.16 25.60 55.10 68.50 - - -
CIReVL ✗ 18.57 19.01 20.89 21.80 24.55 52.31 64.92 59.54 79.88 89.69
LDRE ✗ 23.35 24.03 26.44 27.50 26.53 55.57 67.54 60.43 80.31 89.90

OSrCIR ✗ 23.87 25.33 27.84 28.97 29.45 57.68 69.86 62.12 81.92 91.10
SEIZE ✗ 24.98 25.82 28.24 28.35 28.65 57.16 69.23 62.22 84.05 92.34

STT(Ours) ✗ 25.55 26.27 28.81 29.99 28.87 57.97 69.90 65.22 84.10 92.37

ViT-G/14

Pic2Word ✓ 5.54 5.59 6.68 7.12 30.41 58.12 69.23 68.92 85.45 93.04
SEARLE ✓ 13.20 13.85 15.32 16.04 34.80 64.07 75.11 68.72 84.70 93.23
LinCIR ✓ 19.71 21.01 23.13 24.18 35.25 64.72 76.05 63.35 82.22 91.98
CIReVL ✗ 26.77 27.59 29.96 31.03 34.65 64.29 75.06 67.95 84.87 93.21
LDRE ✗ 31.12 32.24 34.95 36.03 36.15 66.39 77.25 68.82 85.66 93.76

OSrCIR ✗ 30.47 31.14 35.03 36.59 37.26 67.25 77.33 69.22 85.28 93.55
SEIZE ✗ 32.46 33.77 36.46 37.55 38.87 69.42 79.42 74.15 89.23 95.71

STT (Ours) ✗ 34.40 35.56 38.07 40.02 39.23 69.95 79.56 73.56 89.50 95.86

A.2 ALGORITHM OF STT PROCESS

We summarize the detailed inference algorithm of STT in Alg. 1.

Algorithm 1: Inference algorithm of STT.

Input: reference image x, text modification m, target image database Y = {yn}Nn=1, a pre-trained CLIP
model, and a pre-trained MLLMs. The number of query times K, and the number of image augmentations
M .

Output: The retrieval score p(y|x,m) over all target images. Querying: Complete the input prompts with
x and m, and query MLLM K times to collect the descriptions Pt from Eq. 2.

Transition: Calculate ∆m in Eq. 3 by feeding m into CLIP text encoder, and then obtain the transferred Pt

from Eq. 4.
Alignment: Collect Qy in Eq. 5 by augmenting target image yn for M − 1 times, and then calculate
LPt,Qyn

from Eq. 6. image yn in Y Calculate LPt,Qyn
according to Alignment step.

Return Calculate the retrieval score from Eq. 9.
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Table 7: Performance comparison on Fashion-IQ datasets. Both ViT-B and ViT-L are loaded from
OpenAI official weights, while ViT-G is loaded from OpenCLIP. (*) denotes we rerun the experiments
on the OpenAI weights, and (†) denotes we rerun the experiments on the OpenCLIP weights.

Fashion-IQ → Shirt Dress Toptee Average
Arch Method Train R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

ViT-B/32

PALAVRA ✓ 21.49 37.05 17.25 35.94 20.55 38.76 19.76 37.25
SEARLE ✓ 24.44 41.61 18.54 39.51 25.70 46.46 22.89 42.53
CIReVL ✗ 28.36 47.84 25.29 46.36 31.21 53.85 28.28 49.35
CIReVL* ✗ 22.03 37.00 13.34 30.14 18.97 38.19 18.11 35.11
CIReVL† ✗ 27.72 46.12 22.01 41.60 30.09 52.22 26.60 46.64
OSrCIR ✗ 31.16 51.13 29.35 50.37 36.51 58.71 32.34 53.40
OSrCIR* ✗ 22.77 40.87 17.01 37.04 20.75 41.00 20.18 39.6
OSrCIR† ✗ 32.83 52.06 29.75 51.91 36.31 58.24 32.96 54.07

SEIZE ✗ 29.38 47.97 25.37 46.84 32.07 54.78 28.94 49.35
STT(Ours) ✗ 25.22 44.16 18.59 40.16 25.97 47.61 23.26 43.98

ViT-L/14

Pic2Word ✓ 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.70
SEARLE ✓ 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23
LinCIR ✓ 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49

Context-I2W ✓ 29.70 48.60 23.10 45.30 30.60 52.90 27.80 48.90
CIReVL ✗ 26.01 44.76 24.79 44.76 31.36 53.65 27.39 47.72
CIReVL* ✗ 24.34 40.28 14.68 32.62 23.41 41.97 20.81 38.29
CIReVL† ✗ 28.85 45.78 22.16 41.35 30.85 51.25 27.29 46.12
OSrCIR ✗ 33.17 52.03 29.70 51.81 36.92 59.27 33.26 54.37
OSrCIR* ✗ 27.58 44.31 18.69 39.02 25.80 46.00 24.02 43.11
OSrCIR† ✗ 33.76 51.86 28.11 49.43 35.70 57.32 32.52 52.87

SEIZE ✗ 33.04 53.22 30.93 50.76 35.57 58.64 33.18 54.21
STT(Ours) ✗ 29.95 48.66 20.21 42.95 31.70 53.21 27.28 48.27

ViT-G/14

Pic2Word ✓ 33.17 50.39 25.43 47.65 35.24 57.62 31.28 51.89
SEARLE ✓ 36.46 55.35 28.16 50.32 39.83 61.45 34.81 55.71
LinCIR ✓ 46.76 65.11 38.08 60.88 50.48 71.09 45.11 65.69
CIReVL ✗ 29.85 51.07 27.07 49.53 35.80 56.14 32.19 52.36
CIReVL* ✗ 31.65 49.07 23.90 43.13 32.53 53.19 29.36 48.46
CIReVL† ✗ 32.63 50.05 25.09 45.12 34.42 55.12 30.71 50.10
OSrCIR ✗ 38.65 54.71 33.02 54.78 41.04 61.83 37.57 57.11
OSrCIR* ✗ 36.56 55.45 30.69 53.25 40.13 61.30 35.79 56.67
OSrCIR† ✗ 37.39 56.92 30.59 53.50 39.72 61.04 35.79 57.15

SEIZE ✗ 43.60 65.42 39.61 61.02 45.94 71.12 43.05 65.85
STT(Ours) ✗ 39.48 56.59 35.04 56.74 42.86 64.95 39.12 59.43

Table 8: Performance comparison on GeneCIS datasets. Both ViT-B and ViT-L are loaded from
openai official weights, while ViT-G is loaded from openclip.

GeneCIS → Focus Attribute Change Attribute Focus Object Change Object Average
Arch Method Train R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

ViT-B/32

SEARLE ✓ 18.9 30.6 41.2 13.0 23.8 33.7 12.2 23.0 33.3 13.6 23.8 33.3 14.4
CIReVL ✗ 17.9 29.4 40.4 14.8 25.8 35.8 14.6 24.3 33.3 16.1 27.8 37.6 15.9
OSrCIR ✗ 19.4 32.7 42.8 16.4 27.7 38.1 15.7 25.7 35.8 18.2 30.1 39.4 17.4

STT(Ours) ✗ 21.1 35.0 45.5 17.9 29.9 40.4 16.4 28.5 38.9 18.3 30.1 39.5 18.4

ViT-L/14

SEARLE ✓ 17.1 29.6 40.7 16.3 25.2 34.2 12.0 22.2 30.9 12.0 24.1 33.9 14.4
LinCIR ✓ 16.9 30.0 41.5 16.2 28.0 36.8 8.3 17.4 26.2 7.4 15.7 25.0 12.2

Context-I2W ✓ 17.2 30.5 41.7 16.4 28.3 37.1 8.7 17.9 26.9 7.7 16.0 25.4 12.7
CIReVL ✗ 19.5 31.8 42.0 14.4 26.0 35.2 12.3 21.8 30.5 17.2 28.9 37.6 15.9
OSrCIR ✗ 20.9 33.1 44.5 17.2 28.5 37.9 15.0 23.6 34.2 18.4 30.6 38.3 17.9
SEIZE ✗ 20.5 33.4 45.0 17.6 28.9 38.5 15.4 25.6 36.2 18.7 30.9 39.8 18.1

STT(Ours) ✗ 20.3 34.6 46.4 18.3 29.8 41.6 16.8 28.5 38.4 18.8 31.0 40.3 18.6

ViT-G/14

LinCIR ✓ 19.1 33.0 42.3 17.6 30.2 38.1 10.1 19.1 28.1 7.9 16.3 25.7 13.7
CIReVL ✗ 20.5 34.0 44.5 16.1 28.6 39.4 14.7 25.2 33.0 18.1 31.2 41.0 17.4
OSrCIR ✗ 22.7 36.4 47.0 17.9 30.8 42.0 16.9 28.4 36.7 21.0 33.4 44.2 19.6
SEIZE ✗ 22.9 36.2 47.3 18.6 31.4 42.7 18.2 28.8 37.6 19.6 33.0 43.5 19.8

STT(Ours) ✗ 21.9 36.4 47.9 19.6 31.9 42.8 20.2 30.3 39.6 19.7 33.2 43.4 20.4

A.3 IMPACTS OF DIFFERENT MLLMS

Like previous works that employ MLLMs to analyze multimodal inputs and generate target descrip-
tions, we specify Qwen2-VL-7B as the MLLM in earlier experiments. Here, we further explore the
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Table 9: Performance comparison on CIRCO and CIRR datasets with various MLLMs.

CIRCO + CIRR → CIRCO CIRR
Metric mAP@k Recall@k RecallSubset@k
Method k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3

Qwen-2B 22.49 23.64 25.90 26.95 26.05 53.28 65.59 64.53 82.46 91.25
Qwen-7B 25.55 26.27 28.81 29.99 28.87 57.97 69.90 65.22 84.10 92.37

LLaVA-Next (Mistral-7B) 24.17 24.73 27.03 28.11 26.97 55.10 66.92 65.01 82.75 91.40
GPT-4o(mini) 25.68 26.50 29.16 30.30 28.59 58.13 69.99 66.15 84.98 92.86

Table 10: Ablation results on the transition and transportation modules. All results are conducted on CIRCO
datasets with GPT-4o(mini).

CIRCO + CIRR → CIRCO
Strategy mAP@k

Transition Transportation k=5 k=10 k=25 k=50
✗ ✗ 35.49 37.05 40.02 41.28
✓ ✗ 37.50 39.10 42.24 43.50
✗ ✓ 36.61 38.10 41.11 42.38
✓ ✓ 38.93 40.14 43.18 44.46

performance of STT with different MLLMs. Specifically, we report the results on Qwen2-VL-2B,
Qwen2-VL-7B, LLaVA-Next-7B, and GPT-4o(mini) in Tab. 9. The results show that our STT can be
applied to MLLMs with different architectures and that the performance improves as the number of
MLLM’s parameters increases. This demonstrates the potential of STT in flexibility and scalability,
as it serves as a plug-and-play pipeline that can seamlessly integrate with various MLLMs. Indeed,
we observe that different MLLMs can lead to variations in the generated captions and thus impact
retrieval results. This observation further supports our core motivation: rather than re-training or
fine-tuning the large models, we aim to design a framework that maximizes retrieval effectiveness
given any off-the-shelf MLLM.

In addition to Tab.4 that ablates each module on Qwen-7B, we also report the results with another
MLLM GPT-4o(mini) in Tab.10. The ablations on two MLLMs can show the real efficiency of STT’s
modules: (1) Strategic Synergy Over Raw MLLM Power: The highest mAP@k values (e.g., 38.93
@k=5, 44.46 @k=50) occur when both Transition and Transportation are enabled. This indicates
that STT’s strength lies in its systematic orchestration of strategies rather than relying solely on
MLLM capabilities. Even with the same MLLM (e.g., GPT-4o(mini)), disabling either strategy
reduces performance (e.g., Transportation only yields 36.61 @k=5; Transition only yields 37.50
@k=5), confirming that STT actively improves task-specific reasoning. (2) Modular Adaptability:
The results implies STT’s strategies are architecture-agnostic. While the choice of MLLM impacts
absolute performance, the framework’s relative gains from Transition+Transportation synergy remain
consistent.

A.4 ADDITIONAL ABLATION EXPERIMENTS

A.4.1 IMPACTS OF THE BIDIRECTIONAL DISTANCE.

To conduct a more comprehensive analysis of the impacts of The bidirectional distance, we sup-
plemented experiments with STT under different backbones using CT distance and OT distance as
alignment strategy in Tab. 11 and Tab. 12. The results show that CT outperforms OT, highlighting
the advantages of bidirectional fine-grained alignment.

A.4.2 IMPACTS OF CAPTION NUMBER AND AUGMENTATION VIEWS.

Moreover, for clarity, we have provided the specific values corresponding to Fig. 3 in the main text
and supplemented the results of ablation experiments under different architectures, which can be
found in Tab. 13. It is evident that compared to a single caption (k=1), multiple captions can provide
richer multi-modal knowledge to better understand the implicit input, leading to more accurate
descriptions.
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Table 11: Ablation on CIRCO and CIRR datasets.

CIRCO + CIRR → CIRCO CIRR
Metric mAP@k Recall@k RecallSubset@k

Arch Method k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3

ViT-B/32 (OpenAI) STT 20.26 21.01 23.01 24.04 25.83 55.18 68.22 65.64 83.60 92.80
STT w/OT 19.81 20.48 22.33 23.31 24.72 53.66 66.77 65.23 83.64 92.46

ViT-B-32 (OpenCLIP) STT 28.21 28.99 31.31 32.53 32.56 62.10 73.86 70.00 86.60 94.87
STT w/OT 23.94 24.79 27.01 28.09 31.37 60.97 72.92 69.54 85.76 94.27

ViT-L/14 (OpenAI) STT 25.55 26.27 28.81 29.99 28.87 57.97 69.90 65.22 84.10 92.37
STT w/OT 24.76 25.85 28.52 29.67 28.05 57.01 69.64 65.71 83.74 92.17

ViT-L-14 (OpenCLIP) STT 32.31 33.33 36.32 37.49 35.04 65.57 76.41 71.52 88.00 94.65
STT w/OT 30.23 31.22 34.13 35.2 34.39 64.48 76.17 71.98 88.34 94.68

Table 12: Performance on GeneCIS datasets.

GeneCIS → Focus Attribute Change Attribute Focus Object Change Object Average
Arch Method R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

ViT-B/32 (OpenAI) STT 21.1 35.0 45.5 17.9 29.9 40.4 16.4 28.5 38.9 18.3 30.1 39.5 18.4
STT w/OT 20.5 34.1 44.9 17.5 30.2 40.1 16.3 28.0 38.3 18.3 29.9 39.4 18.2

ViT-B-32 (OpenCLIP) STT 20.8 33.6 44.2 17.6 29.4 39.7 17.4 30.7 40.4 19.6 33.6 44.2 18.9
STT w/OT 20.2 33.4 43.8 17.1 29.4 39.0 17.0 29.7 39.9 20.0 33.4 43.8 18.6

ViT-L/14 (OpenAI) STT 20.3 34.6 46.4 18.3 29.8 41.6 16.8 28.5 38.4 18.8 31.0 40.3 18.6
STT w/OT 20.6 34.5 45.8 18.0 29.2 40.3 16.8 27.9 38.2 18.8 30.2 40.1 18.5

ViT-L-14 (OpenCLIP) STT 20.5 33.8 44.2 18.1 29.0 40.2 18.5 29.4 39.1 19.9 32.9 42.8 19.3
STT w/OT 20.3 33.4 44.4 17.6 28.8 39.9 17.9 28.6 38.1 19.6 33.1 42.3 18.9

Door
A large wooden door with 

a white trim, integrating into the 

interior design of a living room. 

The door, with its elegant 

archway, provides a beautiful 

entrance to the space.

A large, open wooden door with 

intricate carving, integrating into 

the grand and elegant interior 

design of the room. The door, 

adorned with ornate details, 

serves as a focal point.

A wooden door with a curved 

arch, integrating into the rustic 

interior design of the living room. 

The door, with its intricate 

detailing and warm wood tones, 

serves as a beautiful focal point.

Target Image

Reference Image

Instruction
Modified Description

Visualization Before Transition

Visualization After Transition

Pizza
A delicious-looking pizza on a 

wooden table, integrating into the 

outdoor dining scene. The pizza 

has a golden crust and is topped 

with a variety of ingredients.

A large, appetizing pizza with a 

golden-brown crust and various 

toppings, placed on a wooden table 

in an outdoor setting. The pizza is 

surrounded by other food items and 

people enjoying their meal.

A wooden table covered with 

a variety of pizzas, each 

with different toppings. The 

pizzas are arranged in a 

semi-circular pattern, with 

some closer to the edges.

Target Image

Reference Image

Instruction
Modified Description

Visualization Before Transition

Visualization After Transition

Figure 6: Visualization of the GeneCIS dataset on the ’Focus Object’ task. Heatmaps before and after the
transition on target image are shown. Captions generated by MLLMs often contain irrelevant visual noise (blue
text), while the STT model effectively suppresses such noise and highlights the correct focus object (red text).

A.4.3 HYPER-PARAMETERS STUDY

We report a sensitivity analysis of α in Tab.14. The results show that STT exhibits moderate
sensitivity to α, with performance being non-monotonic. Specifically, values in the range of 0.3 –
0.5 yield optimal results, while overly small or large values degrade performance. This confirms
the effectiveness of treating modification as a transition vector, as it helps mitigate biases between
MLLM-generated captions and images. For practical use, in accuracy-critical tasks (e.g., CIRCO),
we suggest α ≤ 0.5 to avoid over-modification; In recall-critical tasks (e.g., CIRR), starting with
α = 0.4 is reasonable. For new datasets, a grid search within [0.3, 0.5] could be conducted, selecting
the optimal α based on validation performance tailored to the application’s specific needs.

A.5 MORE VISUALIZATION

For a more comprehensive qualitative analysis, we present the visualization results of GeneCIS
datasets about the task of focus in Fig. 6. It illustrated that the original generated descriptions
indeed introduce visual noise while our STT often focus on the correct object, leading to higher CIR
performance.
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Table 13: Ablation study on CIRCO and CIRR datasets with different number of image augmentation
on CLIP-B/32 and fix the number of description to 5.

CIRCO + CIRR → CIRCO CIRR
Metrics mAP@k Recall@k RecallSubset@k

Num k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3
1 19.73 19.89 21.68 22.63 25.16 53.59 66.46 63.88 82.87 92.19
5 20.19 20.84 22.70 23.73 25.25 54.00 67.40 64.46 83.61 92.39

10 20.26 21.01 23.01 24.04 25.83 55.25 68.22 65.64 83.60 92.80
25 20.60 21.37 23.55 24.55 25.64 55.45 68.87 65.71 84.41 92.46
50 21.01 21.62 23.74 24.79 26.15 55.78 69.16 66.17 84.74 93.06
100 21.96 22.51 24.60 25.62 25.67 55.69 69.08 65.45 84.36 93.08

Table 14: Sensitivity analysis of α on Qwen2-VL-7B and ViT-B/32 on CIRCO and CIRR datasets
(default α = 0.45 in our main manuscript).

CIRCO + CIRR → CIRCO CIRR
Metrics mAP@k Recall@k RecallSubset@k
α value k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2

0.1 18.37 19.09 20.77 21.76 23.28 49.98 62.36 64.05 83.21
0.2 19.74 20.49 22.34 23.32 24.63 52.46 65.45 64.89 83.40
0.3 21.71 22.36 24.33 25.26 25.35 54.12 67.28 65.49 83.74
0.4 20.73 21.37 23.33 24.37 25.81 55.37 68.34 65.23 83.67

0.45 20.26 21.01 23.01 24.04 25.83 55.25 68.22 65.64 83.60
0.5 21.47 22.47 24.46 25.46 26.02 55.45 68.58 64.82 83.49
0.6 19.77 20.45 22.55 23.48 25.62 55.40 68.22 63.64 83.13
0.7 19.05 20.18 22.11 23.20 25.11 54.65 68.22 63.62 82.68

A.6 STT IN-CONTEXT LEARNING DETAILS

We utilize an in-context learning method in Fig. 7. To achieve ZS-CIR, each sample uses the same
placeholder “<image_url>” instead of an actual reference image URL. By providing several
example outputs, the model is able to understand the required reasoning process without an actual
reference image. This approach ensures efficient reasoning in a zero-sample setting. Each text
requires the model to focus on a specific object and provide a detailed description. This helps the
model understand the key elements in the image and how they relate to each other. We use uniform
placeholders <image_url> and <reference_image_url> to ensure that the input and output
formats are consistent for easy model processing.

A.7 FURTHER COMPARISON WITH SEIZE

We observe that both SEIZE Yang et al. (2024a) and our STT generate multiple captions and apply
the semantic transition process. However, these two models are different from each other in terms
of caption generation, semantic editing strategy, and retrieval score calculation: (1) Two-Stage
Generation vs. One-Stage Generation: SEIZE first generates N captions for the reference image
using a captioner and then modifies them according to the input modification text via an LLM.
In contrast, our STT directly employs an MLLM to generate N captions for the composed input,
eliminating information loss from two-stage approaches. Moreover, the efficiency comparison in Tab.
5 shows that two-stage generation methods are time-consuming, which may limit their applicability
in real-time scenarios. (2) Point-to-Point vs. Set-to-Set: SEIZE represents the final global caption
feature by employing the average pooling on captions, and then measures similarity with candidates
via cosine similarity. Our STT, however, models the captions as a discrete distribution and then
develops a transportation-aware set-to-set metric to calculate the distances. (3) Similarity Space vs.
Embedding Space: SEIZE refines the final retrieval score by directly changing the cosine score. Our
STT aims to refine the generated captions in the CLIP embedding space.
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<Input>
{

"Reference Image 1": <image_url>, (each sample uses the same placeholder "<image_url>" instead of an actual image URL)
"Text modification 1": "Instruction: Focus cardboard and its arrangement with other objects in the image. Describe cardboard with details. Edited Description: 

A flattened piece of cardboard placed at the base of a disorganized pile. The cardboard, with its worn and creased surface, shows frayed edges and slight  
tears,  indicating frequent use or exposure to the elements. It serves as a foundation for the objects stacked above, including bright blue garbage bags, a  
broken  white plastic chair, and parts of a large appliance.“

"Reference Image 2": <image_url>, (each sample uses the same placeholder "<image_url>" instead of an actual image URL)
"Text modification 2": "Instruction: Focus wood floor and its arrangement with other objects in the image. Describe wood floor with details. Edited Description: 

A polished wood floor with a warm, rich tone that adds to the cozy ambiance of the room. The floor's natural grain is partially covered by a soft, beige area 
rug placed in the center, creating a harmonious balance between texture and color. Surrounding the rug, the floor extends under the dark brown sofa and 
armchair, complementing their earthy tones. The floor seamlessly integrates with the room's arrangement, supporting the furniture and decor, such as the 
side tables and potted plants, enhancing the overall inviting atmosphere.“

"Reference Image 3": <reference_image_url_1>,
"Text modification 3": " Instruction: Focus <relative_caption> and its arrangement with other objects in the image. Describe <relative_caption> with details. 

Edited Description: "
}
<Response>
{

"Target Image Description": "A large wooden door with a white trim, integrating into the interior design of a living room. The door, with  its elegant archway, 
provides a beautiful entrance to the space."

}

Example 1

<Input>
{

"Reference Image 1": <image_url>, (each sample uses the same placeholder "<image_url>" instead of an actual image URL)
"Text modification 1": "Instruction: Focus cardboard and its arrangement with other objects in the image. Describe cardboard with details. Edited Description: 

A flattened piece of cardboard placed at the base of a disorganized pile. The cardboard, with its worn and creased surface, shows frayed edges and slight  
tears,  indicating frequent use or exposure to the elements. It serves as a foundation for the objects stacked above, including bright blue garbage bags, a  
broken  white plastic chair, and parts of a large appliance.“

"Reference Image 2": <image_url>, (each sample uses the same placeholder "<image_url>" instead of an actual image URL)
"Text modification 2": "Instruction: Focus wood floor and its arrangement with other objects in the image. Describe wood floor with details. Edited Description: 

A polished wood floor with a warm, rich tone that adds to the cozy ambiance of the room. The floor's natural grain is partially covered by a soft, beige area 
rug placed in the center, creating a harmonious balance between texture and color. Surrounding the rug, the floor extends under the dark brown sofa and 
armchair, complementing their earthy tones. The floor seamlessly integrates with the room's arrangement, supporting the furniture and decor, such as the 
side tables and potted plants, enhancing the overall inviting atmosphere.“

"Reference Image 4": <reference_image_url>,
"Text modification 4": " Instruction: Focus <relative_caption> and its arrangement with other objects in the image. Describe <relative_caption> with details. 

Edited Description: "
}
<Response>
{

"Target Image Description": "A delicious-looking pizza on a wooden table, integrating into the outdoor dining scene. The pizza has a golden crust and is topped 
with a variety of ingredients."

}

Example 2

Figure 7: Examples of our in-context learning on GeneCIS dataset. Each sample uses the same placeholder
“<image_url>” instead of an actual reference image URL.

.

A.8 LIMITATIONS AND FUTURE WORK

Although our method achieves strong performance, there remain several directions for future ex-
ploration. First, when the query image depicts a complex scene involving multiple objects or
relationships, and the accompanying modification text provides insufficient detail, our STT may
focus on the wrong or ambiguous object, leading to unexpected captions. This limitation is consistent
with issues observed in prior CIReVL Karthik et al. (2023) and OSrCIR Tang et al. (2024a) models.
Moreover, current benchmarks suffer from a false-negative problem. As noted in Liu et al. (2021),
each (reference image, modification) pair in FashionIQ can correspond to multiple valid target images,
yet only one is annotated as ground truth. Consequently, semantically correct retrieval results may
be unfairly penalized under existing evaluation protocols. We leave these challenges as promising
directions for future research.

A.9 THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) were used exclusively for language polishing and
spelling correction.
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