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ABSTRACT

Training-free zero-shot composed image retrieval (ZS-CIR) models are recently
gaining increasing research interest due to their generalizability and flexibility in
unseen multimodal retrieval. Recent LLM-based advances focus on generating
the expected target caption by exploring the compositional ability behind the
LLMs. Although efficient, we find that 1) the generated captions tend to introduce
unexpected features from the reference image due to the semantic gap between the
input image and text modification, where the image contains much more details
than the text; 2) the point-to-point alignment during the retrieval stage fails to
capture diverse compositions. To address these challenges, this paper introduces a
novel Semantic Transition and Transportation (STT) framework for training-free
ZS-CIR tasks. Specifically, given the composed caption inferred by an LLM, we
aim to refine it through a transition vector in the embedding space and make it closer
to the target image. Combining LL.Ms with user instruction, the refined caption
concentrates more on the core modification intent and thus filters out unnecessary
noise. Moreover, to explore diverse alignment during the retrieval stage, we model
the caption and image as discrete distributions and reformulate the retrieval task
as a set-to-set alignment task. Finally, a bidirectional transportation distance is
developed to consider fine-grained alignments across modalities and calculate the
retrieval score. Extensive experiments and ablations demonstrate that our method
can be general, effective, and beneficial for many CIR tasks.

1 INTRODUCTION

Composed Image Retrieval (CIR) aims to search for a target image using a compositional query
of a reference image and text modification Vo et al. (2019b); Lee et al. (2021); Hosseinzadeh &
Wang (2020); Chen et al. (2020b); Baldrati et al. (2022). One of the key challenges is to model the
multimodal relationship of the triplet: <reference image, text modification, target image>. Previous
studies have focused on fusing the input image and modifications within a shared embedding space
in a supervised manner Vo et al. (2019a); Delmas et al. (2022); Anwaar et al. (2021a). Generally,
these models typically rely on expensive manually-annotated triplets and often exhibit suboptimal
performance in unseen scenarios Baldrati et al. (2023); Karthik et al. (2023). Motivated by the success
of textual inversion in image generation Gal et al.; Mokady et al. (2023), recent studies have proposed
Zero-Shot Composed Image Retrieval (ZS-CIR) Saito et al. (2023); Zeng et al. (2023); Jiang et al.
(2024). These models focus on training a mapping network to convert the reference image into
continuous textual embeddings and then merge them with text modifications using static templates
for target captions, enabling CIR without explicit supervision. Unfortunately, these models also need
image-caption pairs to learn the mapping parameters, and the mismatch between textual inversion
and CIR may hamper their ability to accurately infer the implicit user intent conveyed in the text
modification.

Alternatively, training-free approaches paired with foundation models can achieve effective CIR
without additional training and offer improved reasoning capabilities Karthik et al. (2023); Tang
et al. (2024a). There are mainly two directions: two-stage methods typically require an image
captioner and an LLM to first generate detailed captions of the reference image and then fuse them
with text modification via an LLLM to produce the target descriptions; one-stage methods unify
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Figure 1: Motivation of our proposed model. Predicted captions from MLLM:s typically consist of expected
ground-truth sentences (red words) and unexpected visual details (gray words).

this process by employing an MLLM to directly output the target captions given the multimodal
queries. Despite considerable progress, several challenges remain. First, the above generation-then-
retrieval pipeline is prone to Extraneous Cognitive Load Sweller (1988). Specifically, the reference
image may trigger information leakage, which in turn leads to overemphasis on irrelevant details,
affecting the retrieval performance. As shown in Fig.1, the target caption generated by MLLMs
includes extraneous elements such as “red jacket and sunglasses”, which are unrelated to the textual
modification. Therefore, distracting from the core intent, it diminishes the ability to identify key
information, such as “snow-covered mountains”. Second, most existing models generate either a
single description or simply average multiple descriptions to obtain the final representation Tang et al.
(2024a); Yang et al.. However, as one image is worth a thousand words, such point-to-point alignment
focuses on partial features and fails to capture complex relations. This inherent heterogeneity between
visual and textual representations inevitably leads to semantic imbalance across modalities, leading
to suboptimal retrieval prediction Zhu et al. (2024); Chen et al. (2023); Wang et al. (2023).

To address the above issues, this work proposes STT, a novel one-stage, training-free ZS-CIR
framework that improves the existing generation-then-retrieval pipeline by introducing Semantic
Transition and Transportation. Like previous works Tang et al. (2024a), we explore the in-context
learning of MLLM:s and directly query an MLLM to generate the target caption given the reference
image and text modification. Importantly, to address the above asymmetry issues, STT utilizes the
uncertainty ability of the language decoder and views the description as a discrete distribution by
generating multiple candidates. Each candidate in the distribution focuses on a specific composition
pattern, and they together provide a comprehensive understanding of the given query input.

Since reference images may inevitably introduce irrelevant information into captions generated by
MLLMs, we propose guiding the textual caption toward the target image via a transition vector in the
embedding space (as seen in Fig. 1). Intuitively, an ideal transition vector should bridge the semantic
gap between the generated caption and the target image. Here, we aim to solve it in a training-free
manner and estimate the transition vector by feeding the text modification into the CLIP text encoder.
For one thing, since both the text modification and the generated caption share the same modality,
the former can seamlessly refine the latter without introducing a modality gap or requiring extra
parameters. For another, the text modification encapsulates the incremental, high-quality, and dense
information that shifts from the reference image to the target image, guiding the model to refocus
on core semantic information. This transition operates directly in the embedding space—simple yet
efficient—and ensures that the final target caption retains diversity while reducing distortion, all of
which is highly relevant and beneficial to the retrieval process.

After obtaining high-quality and diverse features of the target captions, it is crucial to align them
more effectively with the target images in the embedding space. Similar to the textual domain, STT
also models the target image as a discrete distribution by augmenting the image multiple times, where
each augmentation captures local visuals of the target image, and they together provide a rich visual
representation from the visual domain, facilitating fine-grained alignments in the retrieval process.
Finally, a novel bidirectional transport distance is further developed to calculate the similarity of
two discrete distributions across the vision-language modalities. Specifically, given the cost matrix
that measures the transport cost between the captions and image augmentation, STT designs both a
forward path and a backward path to calculate the transport distance from the caption set to the target
image set and that from the target image set back to the caption set, respectively. This formulation
effectively uncovers fine-grained cross-modal correlations by minimizing the bidirectional transport
cost between modalities.
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In summary, the proposed STT shares the following contributions:

* We propose a novel one-stage, training-free framework that considers both semantic transi-
tion and transportation for ZS-CIR. By introducing the modification-driven transition to the
generated caption, the feature drift caused by additional irrelevant noise is compensated in
the embedding space.

* We elegantly transform the retrieval procedure into a bidirectional transport problem. Explic-
itly explore fine-grained alignments between diverse refined textual captions and enhanced
target images.

* Extensive comparisons and ablations on four benchmarks demonstrate the effectiveness of
the proposed STT with competitive performance in all settings.

2 RELATED WORK

2.1 COMPOSED IMAGE RETRIEVAL

Composed Image Retrieval (CIR) has inspired various architectural innovations Vo et al. (2019b);
Chen et al. (2020b); Lee et al. (2021). Early methods adopt a fusion paradigm to learn joint
embeddings of reference image and modification features via contrastive or attention-based objectives
Chen & Bazzani (2020); Anwaar et al. (2021b). Some recent works train large-scale retrieval models
on millions of web-mined tripletsZhang et al. (2024), but reliance on supervision limits scalability. To
address this, Zero-Shot CIR (ZS-CIR) enables retrieval without labeled data. For example, Pic2Word
Anwaar et al. (2021b) projects image features into a token embedding space, while SEARLE Baldrati
et al. (2023) improves alignment via a text inversion network. Another line of work generates
synthetic triplets from image-caption pairs using generative models Gu et al. (2023).

With the advent of foundation models, recent studies have tackled CIR in a training-free manner,
leveraging their strong contextual understanding. Two main paradigms have emerged: two-stage
methods performs reference image captioning and text manipulation separately, while one-stage
methods generate target captions directly from multimodal inputs. For example, CIReVLKarthik
et al. (2023) initially employs pre-trained captioning models Li et al. (2023a) to generate caption for
a given image. Subsequently, it queries an LLM to refine and recompose the caption based on text
modifications for text-to-image retrieval. LDREYang et al. (2024b) considers diverse semantics of
the CIR and generates diverse captions at the first stage, and then adopts an ensemble strategy to
get the final single feature for the multiple captions. OSrCIRTang et al. (2024a) uses MLLMs to
infer user intent by directly processing a query pair, guided by a reflective chain-of-thought prompt.
However, both are overwhelmed by the rich semantic information from the reference image, which
may overshadow the key modifications. Different from existing LLM-based methods, our STT
aims to refine the captions after the generation and improve semantic alignments by formulating the
retrieval task as the bidirectional transportation problem.

2.2 ALIGNMENT VIA TRANSPORT DISTANCE

Recently, Optimal Transport (OT) Villani (2009) has been widely used for aligning distributions in
various domains Redko et al. (2019); Zhao & Zhou (2018;?); Lee et al. (2019); Chen et al. (2020a).
Unlike traditional distance metrics like Euclidean distance, OT provides a more geometrically nuanced
measure that captures structural similarities between distributions. However, it typically requires
iterative optimization via the Sinkhorn algorithm Cuturi (2013), which can be time-consuming. To
this end, Conditional Transport (CT) considers the transport plan based on the semantic similarity
between samples from two distributions bidirectionally Zheng & Zhou (2021). Its flexibility allows
seamless integration with deep learning frameworks, offering lower computational complexity and
better scalability, resulting in superior performance in recent alignment tasks Liu et al.. For instance,
Tian et al. (2023) exploits transferable statistics with CT to refine biased prototypes to capture
unbiased statistics within imbalanced query samples. Li et al. (2023b) design a sparse and layer-
wise CT framework to enhance interactions between visual patches and textual labels, ensuring
higher semantic consistency for multi-label classification. Notably, CT is inherently well-suited
for a key step in CIR—aligning multiple captions with target images—especially when multimodal
representations are involved. Motivated by this potential, we transform the traditional point-to-point
similarity measure into a minimization of CT-based distance from a distributional perspective.
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Figure 2: The overall framework of the proposed STT. STT first queries MLLMs to generate multiple captions
and then refines them towards the target image via the transition vector. STT models the transferred captions and
augmented images as two discrete distributions for fine-grained alignment.

3.1 PRELIMINARIES

Let us denote (z,m,y) as the CIR triplet <reference image, text modification, target image>,
respectively. The first two are multimodal inputs from users describing their retrieval intent. Training-
free ZS-CIR aims to search a target image y from an image database Y = {y,,}2\_; that satisfies the
semantic consistency with both x and m, without requiring additional training. Generally, existing
approaches follow a generation-then-retrieval pipeline to make the final prediction. They first feed
the reference image « and text modification m into a fusing model (such as an MLLM) to obtain the
composed description of the target image, denoted as ¢ = MLLM(xz, m). The retrieval score is then
calculated by CLIP similarity:

exp(—dis(t,y:)/7)
N A )
2 n=1eXp(—dis(t,yn)/7)
where t € R? and y € R? are the latent features of ¢ and y in CLIP space, with d denotes the
embedding dimension. dis is the distance function and 7 is the temperature parameter. £ in Eq. 1 can
be viewed as prototypes that capture reasonable visual features of y. To find the optimal ¢, recent

LLM-based models develop various attempts, including two-stage generation and chain-of-thought
reasoning Yang et al. (2024b); Li et al. (2024b); Tang et al. (2024a).

p(y = ilz,m) = (1)

Despite their promising results, We find that 1) the generated description ¢ usually inherits the
unnecessary details from the reference image, leading to suboptimal prototype learning; 2) The point
estimation of ¢ fails to model complex composed relations, this may limit the uncertainty of ¢ and
diminish the generalizability.

3.2 SEMANTIC TRANSITION AND TRANSPORTATION

Starting from Eq. 1, we propose a novel training-free ZS-CIR framework to solve the mentioned
shortcomings, as illustrated in Fig. 2. Specifically, our proposed model consists of three modules:
Querying, Transition, and Alignment. Unlike previous point estimation of £, STT views the composed
prototype as a discrete distribution, e.g., P;, over the caption space. This allows P; to focus on various
possible target captions, showing higher diversity. To alleviate the issues of unnecessary information
pollution, we further transfer the obtained ¢ using the text modification m in the embedding space.
m contains high-quality relative information linking the reference image to its target image. Thus, a
simple combination strategy is developed to push ¢ to its target image, resulting in more precise .
Finally, we also view the target image as a discrete distribution and develop a bidirectional transport
distance to align the composed prototypes and target images for fine-grained retrieval.

Querying. As discussed above, one of the core challenges is to generate reasonable captions ¢ for
image y. Inspired by previous works Li et al. (2023a; 2024a), STT aims to solve this with MLLMs
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due to their impressive performance in image-text understanding. Concretely, here we explore the
in-context learning of MLLM and complete the prompt template: “<in-context prompt>. <z>.
Instruction:<m>. Edited Description:”. Where <in-context prompt> helps MLLMs understand the
CIR task and output the expected target descriptions. <x>, <m> are the placeholder of the reference
image and text modification.

Intuitively, there are likely several plausible ¢ for each x and m pair, they describe the same target
image from different views, To simulate such an ability, we explore the uncertainty generation of
MLLMs via sampling from the language model’s decoder, to replace the naive greedy decoding
used in previous single target description generations. Formally, we combine the top-k and top-p
sampling strategy in (Holtzman et al., 2020) and collect K possible target description ¢ with a
discrete distribution:

1 K
Pt:?];&k, @

where ¢, refers to a point mass located at coordinate ¢, and ¢, denotes the text embedding of k-th
generated description. P; can be viewed as a semantic set containing /K reasonable descriptions, and
it thus considers diverse visual features of the target image.

Transition. Another challenge comes from the semantic gap between the generated description ¢
and the target image y. Generally, an ideal ¢ should highlight the semantic changes while avoiding
unnecessary information instructions from the reference image. On one hand, we empirically find
that existing LLM-based generators can successfully describe the changed context. On the other hand,
they also pay more attention to the reference image due to the limited guidance in text modification
m. As aresult, the output caption usually contains many visual details of the reference image, which
act as noise and mislead the retrieval process. To this end, we propose a transition step that pushes the
generated captions to the target image at the embedding space. As shown in Fig. 2, let Am denote
the difference between x and y, it provides incremental semantics from the reference image to its
target. Recalling that the text modification m contains high-quality relative information, it is natural
to estimate Amn using m:

Am =y — @, At = f(m), 3)
where = € R? represents the visual embeddings of the reference image z generated by the CLIP
image encoder, f is the CLIP text encoder. Once obtaining the relative guidance Arn, t;, can be
updated via a simple fusing strategy:

t, = (1 — )ty + aAm, 4)

where the first term £ comes from the MLLMSs, and it encodes multimodal knowledge based on
the MLLM’s understanding of the composed input (z,m). The second term A is derived from
the text modification estimation and contains high-quality relative instruction between the reference
and target image. The transferred caption t;, takes guidance from both directions with a trade-off

hyperparameter o € [0, 1]. Now, we can rewrite P, as: P, = & Zle Oz, -

Alignment. Given the collected discrete distribution P; in the text domain, we in this section aim
to explore the diverse visual features in the image domain with a similar motivation:

1 M
Q=17 mZzléy 8)

where we augment the target image M — 1 times and {y,,, }M_, are the embeddings of the augmented
images. Unlike previous ZS-CIR models that view the target image as a single point, Q) in Eq. 5
provides us with multiple views of y, leading to the following fine-grained retrieval strategy.

Moving beyond the point-to-point similarity measurement in Eq. 1, we here develop a bidirectional
distance of two discrete distributions Ly; (P, Q) under the CT framework. Specifically, £; consists
of two transport costs: the forward cost that measures the expected transport cost from the reference
to the target image and the backward cost that inverses the direction:

Lyi(Pr, Qy) = Lp,—q, (P, Qy) + Lo, —p, (P, Qy)
= Z 7r(ym|£k)c(£k‘7 ym) =+ 7T(£k|ym)c(ym7 tAk)a ©)

m,k
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where the cost function c(y, ) = c(£, y) is specified as the cosine distance to measure the transport
cost between points ¢ and y. 7(y|t) denotes the transport plan in the forward path, and it measures
how likely ¢ will be transported to y:

exp(ti Ym /7)

7 - .
Z'm/zl exp(tzym, /T)
Naturally, the closer £ and y are in the embedding space, the higher the transport probability from ¢
to y. 7(t|y) is defined in a similar way:

T(Ymltr) = 7

T
r(Eilm) = o mte/T) @®)
2 k=1 eXP(Yhtr /T)
Mathematically, £;; in Eq. 6 calculates the distance between two discrete distributions in both
forward and backward directions. This benefits the alignment across the vision and language domains,
showing better multimodal retrieval ability. Moreover, L;; views the generated caption and target
image as two discrete distributions, which show great potential in modeling diverse semantics.

Once obtain the bidirectional distance between the generated descriptions and the target image, we
can rewrite Eq. 1 with Ly;, resulting in a more general and fine-grained prediction score:
. exp(—Lui (P, Qs
ply =ilz,m) = —x CLlPQy)) ©
2 on=1exp(—Lyi (P, Qy,)

We summarize the whole inference algorithm of STT in the Appendix. 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following previous works Tang et al. (2024a), we evaluate our proposed model on four
commonly used CIR datasets , which vary in CIR tasks, image domains and dataset sizes, including
CIRR Liu et al. (2021), CIRCO Baldrati et al. (2023), FashionIQ Wu et al. (2021), and GeneCIS Vaze
et al. (2023). CIRR is the first natural image dataset for CIR. CIRCO comes from COCO2017 Lin
et al. (2014) and has multiple ground truths for each query. FashionlQ focuses on fashion-related
retrieval and consists of three subsets: shirt, dress, and toptee. GeneCIS contains images from
MS-COCO Lin et al. (2014) and Visual Attributes in the Wild Pham et al. (2021), offering four task
variations around objects and attributes. We report the original benchmark metrics for each dataset:
e.g., Recall@k(R @k) for CIRR, GeneCIS, and FashionlQ, and mean average precision (mAP@k) for
CIRCO due to its multiple labels.

Baselines. We compare our STT with recent advances, grouped as training-dependent and training-
free models. The former often optimize a mapping network to project the reference image into text
tokens, including 1) Pic2Word Saito et al. (2023), 2) SEARLE Baldrati et al. (2023), 3) Context-
I2W Tang et al. (2024b), and 4) LinCIR Gu et al.. Training-free methods focus more on improving
ZS-CIR with large language models, including 5) CIReVL Karthik et al. (2023), 6) LDRE Yang
et al. (2024b), 7) OSrCIR Tang et al. (2024a) and 8) SEIZE Yang et al. (2024a). Unlike previous
training-free methods, the proposed STT aims to refine the composed caption in the embedding space
and explore fine-grained alignment across vision-language domains. For all training-based baselines,
we directly report the results according to their official papers. For training-free models, to make
a fair comparison, we reproduce their results on the FashionIQ dataset according to their released
codes and report results on other datasets according to the original papers.

Implementation Details. We employ the open-source Qwen2-VL-7B as our MLLM by default,
while we also report the results on various MLLMs in Appendix Sec. A.3. To generate diverse
descriptions, we follow the similar setting to previous works and apply 7 = 0.7, top-k(k=50), top-
p(p=0.8) at the querying stage. In terms of the image augmentation, we used only random resized
crop and random horizontal flip for each image. We set the number of captions as K = 5, the number
of augmentations as M = 10, and employ a default value of o = 0.45. The default retrieval model
is CLIP-L/14 from the official OpenAl implementation Radford et al. (2021). We also report the
retrieval results of LLM-based models (CIReVL, OSrCIR, and our STT) on CLIP-bigG-14 from the
OpenCLIP implementation Cherti et al. (2023) for the analysis of scaling laws. All experiments are
conducted on a single NVIDIA A6000 GPU.
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Table 1: Performance comparison on CIRCO and CIRR datasets. The top two results are highlighted in bold
and underline, respectively. More comparisons are reported in the Appendix Tab. 6.

CIRCO + CIRR — CIRCO CIRR
Metric mAP@k Recall@k Recallgypset @k
Arch Method Train | k=5 k=10 k=25 k=50 k=1 k=5 k=10 | k=l k=2 k=3

Pic2Word v 872 951 10.64 1129 || 2390 51.70 6530 | 5376 7446 87.08
SEARLE v 11.68 12.73 1433 15.12 || 2424 5248 66.29 | 53.76 75.01 88.19
LinCIR v 12.59 13.58 15.00 15.85 || 25.04 53.25 66.68 | 57.11 77.37 88.89

ViT-L/14 | Context-I2W v 13.04 14.62 16.14 17.16 || 25.60 55.10 68.50 - - -
CIReVL 18.57 19.01 20.839 21.80 || 24.55 5231 6492 | 59.54 79.88 89.69
LDRE 2335 24.03 2644 2750 || 26.53 55.57 67.54 | 60.43 80.31 89.90
OSrCIR 23.87 2533 27.84 2897 || 2945 57.68 69.86 | 62.12 81.92 91.10
SEIZE 2498 25.82 28.24 2835 || 28.65 57.16 69.23 | 62.22 84.05 92.34
STT(Ours) 25.55 26.27 2881 29.99 || 28.87 57.97 69.90 | 65.22 84.10 92.37
CIReVL 26.77 27.59 29.96 31.03 || 34.65 6429 75.06 | 67.95 84.87 93.21
ViT-G/14 LDRE 31.12 3224 3495 36.03 || 36.15 66.39 77.25 | 68.82 85.66 93.76
OSrCIR 30.47 31.14 35.03 36.59 || 37.26 67.25 77.33 | 69.22 8528 93.55
SEIZE 3246 33.77 3646 37.55 || 38.87 6942 79.42 | 7415 89.23 95.71
STT (Ours) 3440 35.56 38.07 40.02 || 39.23 69.95 79.56 | 73.56 89.50 95.86

Table 2: Performance comparison on Fashion-1Q datasets. The top two results are highlighted in bolded and
underlined. More results with different backbones are reported in Tab. 7.

Fashion-IQ — Shirt Dress Toptee Average
Arch Method Train | R@10 R@50 R@I10 R@50 R@I0 R@50 | R@10 R@50
Pic2Word v 33.17 5039 2543 47.65 3524 57.62 | 31.28 51.89
SEARLE v 3646 5535 28.16 5032 39.83 6145 | 34.81 5571

VIT.G/14 LinCIR 4 46.76  65.11 38.08 60.88 50.48 71.09 | 4511 65.69
CIReVL 29.85 51.07 27.07 4953 3580 56.14 | 32.19 52.36

OSrCIR 38.65 5471 33.02 5478 41.04 61.83 | 37.57 57.11

SEIZE 43.60 6542 39.61 61.02 4594 71.12 | 43.05 65.85

STT(Ours) 39.48 56.59 35.04 5674 4286 6495 | 39.12 5943

Table 3: Performance comparison on GeneCIS datasets. The top two results are highlighted in bolded and
underlined, respectively.

GeneCIS — Focus Attribute Change Attribute Focus Object Change Object Average
Arch Method Train | R@] R@2 R@3 R@] R@2 R@3 R@] R@2 R@3 R@I R@2 R@3 R@1
SEARLE v 171 296 407 163 252 342 120 222 309 120 241 339 14.4
LinCIR v 169 300 415 162 280 368 83 174 262 74 157 250 12.2
Context-I2W v 172 305 417 164 283 37.1 8.7 179 269 7.7 16.0 254 12.7
ViT-L/14 CIReV 195 318 420 144 260 352 123 218 305 172 289 376 15.9
OSrCIR 209 331 445 172 285 379 150 236 342 184 306 383 17.9
SEIZE 205 334 450 17.6 289 385 154 256 362 187 309 398 18.1
STT(Ours) 203 346 464 183 298 416 168 285 384 188 31.0 403 18.6
CIReVL 209 344 449 165 290 398 151 256 334 185 31.6 414 17.8
ViT-G/14 OSrCIR 227 364 470 179 308 420 169 284 367 21.0 334 442 19.6
SEIZE 229 362 473 186 314 427 182 288 376 196 330 435 19.8
STT (Ours) 219 364 479 196 319 428 202 303 39.6 197 332 434 20.4

4.2 RESULTS ANALYSIS

We run all experiments three times with different random seeds and report the mean value to ensure
reliability. We report the comparison on the hidden test set of CIRCO and CIRR datasets in Tab. |
(All results are obtained from the submission server provided in Baldrati et al. (2023) and Liu et al.
(2021)). These two CIR datasets focus on foreground and background differentiation and fine-grained
image editing. From the results, we find that our proposed STT achieves the best or second-best
results in most cases among baselines, including training-free and textual inversion models. STT
underperforms baselines on the CIRR dataset in the case of £ = 1. This may be due to the noisy
annotation in CIRR, where the reference image is less related to the target image Baldrati et al.
(2023).

Tab. 2 shows the comparison in the validation set of the Fashion-1Q dataset with ViT-G/14, and more
comparisons on other backbones can be found in the Appendix Tab. 7. Interestingly, we find that text
inversion-based models (e.g., LinCIR) outperform LLM-based models in the fashion image editing
task. This may be due to the fact that most images in Fashion-IQ are relatively simple, containing only
a pure background. This may limit the ability of MLLMSs, and in contrast, training-dependent models
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tend to describe the reference image more correctly. Among LLM-based models, SEIZE achieves the
best recall. Both SEIZE and STT refine the target captions, where STT employs modification text
as transition vectors, while SEIZE utilizes generated reference captions to adjust final predictions.
We find that the modification text in Fashion-IQ is overly simplistic (e.g., is solid white and is a
lighter color), resulting in suboptimal guidance for STT. SEIZE relies on a pre-trained caption model
to generate reference captions, which may be better suited for Fashion-1Q’s simplified scenarios.
However, as shown in the Tab. 5, this approach increases the computational cost during inference.

Lastly, we further test the object and attribute composition ability of our model on the GeneCIS dataset,
with the results listed in Tab. 3. Unlike previous datasets that provide a detailed text modification
sentence, GeneCIS uses single-word instruction to express the user’s intent, e.g., focusing/changing a
specific object or attribute. From the results, we find that our proposed STT achieves the best results
in 19/24 cases and outperforms the others at the average score. On the one hand, STT preserves rich
multimodal knowledge to interpret implicit inputs while filtering out noise through transition. On
the other hand, it views the caption as a discrete distribution, showing great potential in capturing
diverse visual semantics, leading to fine-grained retrieval for this complex task. More comparisons
are reported in Appendix Tab. 8.

4.3 FURTHER ANALYSIS

In addition to the numerical comparisons on four CIR benchmarks. In this section, we provide further
analysis of the ablation results and visualizations of the proposed modules.

Main component analysis. To evaluate the impacts of each proposed module in STT, we report
the ablation results in Tab. 4. We find that 1) both transition and transportation show a positive
improvement compared to the base model (first row). This highlights the motivation of our STT: the
unnecessary visual details introduced in original captions and the simple point-based alignment; 2)
The transition module achieves higher improvements than the transportation module in most cases.
This shows the validity of our proposed transition vector in assessing the difference between the
reference and target images. It highlights the text modification and offers useful guidance to steer the
original caption toward the target image, resulting in more correct alignments.

Table 4: Ablation results on the transition and transportation modules. All results are conducted on CIRCO and
CIRR datasets with CLIP-bigG/14.

CIRCO + CIRR — CIRCO CIRR
Strategy mAP@k Recall@k Recallgypset @k
Transition Transportation | k=5 k=10 k=25 k=50 || k=1 k=5 k=10 | k=I k=2 k=3
X 31.89 3446 3794 39.67 || 38.33 6845 78.03 | 72.81 88.13 94.51

X 32.14 34778 37.87 3948
3440 35.56 38.07 40.02

38.48 6838 7834 | 72.15 88.04 9448

X X 31.23 3287 3632 38.04 || 3722 6736 77.84 | 69.93 8648 94.05
39.23 69.95 79.56 | 73.56 89.50 95.86

Impacts of caption number and augmentation views. We report the study of caption number K
and augmentation views M in Eq. 5 on CIRCO dataset, with results in Fig. 3 . From these results,
we first find that the performance shows a large improvement when K > 1. This demonstrates the
effectiveness of using diverse captions, especially after semantic transitions, to capture rich semantic
information. Moreover, increasing the number of image augmentations M consistently enhances
performance, highlighting the value of multi-scale image diversity. We suggest that setting K = 5
and M = 10 is sufficient to achieve strong performance across most datasets.

Impacts of the bidirectional distance. Recalling that we propose to measure the distance between
the modified caption P; and the target image augmentation @), using a bidirectional transport distance
in Eq. 6. This enables the proposed STT to not only calculate the transport cost from F; to @, but
also consider the reverse cost, showing better alignments across the vision-language domains. To
identify such improvements, we replace the bidirectional CT distance with the optimal transport (OT)
distance and report the comparison on four datasets in Fig. 4. Note that the CT distance consistently
beats the OT distance in all cases, showing the effectiveness of our bidirectional alignment.

Visualization Analysis. From the above analysis, we find that the transition module plays a key
role in improving the CIR performance. It estimates the relative vector as the difference between
the reference and target image and provides correct information to refine the generated captions. To
make a clearer understanding, we visualize the heat maps of two samples from the GeneCIS dataset
on the “Focus Object" task in Fig. 5. Here, we directly calculate the cosine similarity between the
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Figure 5: Visualization of the GeneCIS dataset on the *Focus Object’ task. Heatmaps before and after the
transition on target image are shown. Captions generated by MLLMs often contain irrelevant visual noise (blue
text), while the STT model effectively suppresses such noise and highlights the correct focus object (red text).

Table 5: Efficiency comparison with SOTA methods. Inference times (seconds per query) are reported for each
model using a single NVIDIA A6000 GPU.

Model  Pic2Word SEARLE CIReVL OSrCIR LDRE SEIZE STT
Time (s) <0.01 <0.01 297+0.85=3.82 6.65 1.30+2.98=4.28 5.8+4.5=10.3 3.5

visual patch embeddings and the caption embedding as the score of the heat maps. The first row
denotes three generated captions and the last two heat maps denote the corresponding visualization
results before and after the transition module. We find that the generated captions indeed introduce
visual noise for the CIR task. For example, the retrieval attentions are often disturbed by visual noise

such as “white fence", “white color" and “left side of the scene". In contrast, the visualizations of
STT often focus on the correct object, leading to higher CIR performance.

Efficiency Analysis. Table 5 shows the inference times (seconds per query) of various methods.
Overall, LLM-based methods generally incur higher test-time latency than traditional mapping
models due to the query stage. For instance, CIReVL, LDRE and SEIZE are two-stage approaches
that require significant time to generate target descriptions, while OSrCIR involves extensive chain-
of-thought reasoning during inference. In contrast, our STT achieves the lowest test time among
LLM-based methods, showing the efficiency of our proposed modules.

5 CONCLUSION

We propose STT, a novel one-stage, training-free framework for the zero-shot composed image
retrieval task. STT improves the quality of the generated caption by MLLMs via a transition
vector and views the captions and target image as two discrete distributions in the embedding
space. A bidirectional transport distance is developed to measure the similarity across the vision-
language domains. Our approach not only achieves strong performance on four CIR benchmarks but
also, provides interpretability via the visualization of the transferred caption and the target images.
Extensive ablations also demonstrate the effectiveness of the proposed modules.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the model, training procedure, and evaluation in the main
text. Additional implementation details, hyperparameters, and ablation studies are included in the
Appendix.
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A APPENDIX

A.1 ADDITIONAL COMPARATIVE RESULTS.

We in this section included more comprehensive comparisons with more methods across various
architectures on all datasets presented in Tab. 6, Tab. 7, and Tab. 8. It should be noted that in Tab. 7,
the notation (*) indicates that we reproduced the experiments using the OpenAl weights, and the ()
indicates that we reproduced the experiments using the OpenCLIP weights, respectively. From these
comparisons, our approach outperforms all the baselines in most cases, showing the efficiency of
STT’s three operations.

Table 6: Performance comparison on CIRCO and CIRR datasets. Both ViT-B and ViT-L are loaded
from OpenAl official weights, while ViT-G is loaded from OpenCLIP.

CIRCO + CIRR — CIRCO CIRR
Metric mAP@k Recall@k Recallgypset @k
Arch Method Train | k=5 k=10 k=25 k=50 k=1 k=5 k=10 | k=1 k=2 k=3

PALAVRA v 461 532 633 680 || 16.62 43.49 5851 | 41.61 6530 80.94
SEARLE 4 935 994 11.13 11.84 || 2400 5342 66.82 | 54.890 76.60 88.19

ViT-B/32 CIReVL 1494 1542 17.00 17.82 || 23.94 5251 66.00 | 60.17 80.05 90.19
LDRE 17.96 18.32 20.21 21.11 || 25.69 55.13 69.04 | 60.53 80.65 90.70
OSrCIR 18.04 19.17 20.94 21.85 || 2542 5454 68.19 | 6231 80.86 91.13
SEIZE 19.04 19.64 21.55 2249 || 2747 5742 70.17 | 65.59 84.48 92.77
STT(Ours) 20.26 21.01 23.01 24.04 || 25.83 55.25 70.20 | 65.64 83.60 92.80
Pic2Word 4 872 951 10.64 11.29 || 2390 51.70 65.30 | 53.76 74.46 87.08
SEARLE v 11.68 1273 1433 1512 || 2424 5248 66.29 | 53.76 75.01 88.19
LinCIR v 1259 13.58 15.00 15.85 || 25.04 5325 66.68 | 57.11 77.37 88.89
ViT-L/14 | Context-I2W v 13.04 1462 16.14 17.16 || 25.60 55.10 68.50 - - -
CIReVL 18.57 19.01 20.89 21.80 || 24.55 5231 6492 | 59.54 79.88 89.69
LDRE 2335 2403 2644 2750 || 26.53 55.57 67.54 | 6043 80.31 89.90
OSrCIR 23.87 2533 27.84 2897 || 29.45 57.68 69.86 | 62.12 8192 91.10
SEIZE 2498 25.82 28.24 2835 || 28.65 57.16 69.23 | 6222 84.05 92.34
STT(Ours) 25.55 26.27 2881 29.99 || 28.87 57.97 69.90 | 65.22 84.10 92.37

Pic2Word 4 554 559 6.68 7.2 | 3041 58.12 69.23 | 68.92 8545 93.04

SEARLE v 1320 13.85 1532 16.04 || 34.80 64.07 75.11 | 68.72 8470 93.23

VIT-G/14 LinCIR 4 19.71 21.01 23.13 24.18 || 3525 64.72 76.05 | 63.35 8222 91.98
CIReVL 26.77 2759 2996 31.03 || 34.65 6429 75.06 | 67.95 84.87 93.21

LDRE 31.12 3224 3495 36.03 || 36.15 6639 77.25 | 68.82 85.66 93.76

OSrCIR 3047 31.14 35.03 36.59 || 37.26 6725 77.33 | 69.22 8528 93.55

SEIZE 3246 33.77 3646 37.55 || 3887 69.42 7942 | 7415 89.23 95.71

STT (Ours) 3440 3556 38.07 40.02 || 39.23 69.95 79.56 | 73.56 89.50 95.86

A.2 ALGORITHM OF STT PROCESS

We summarize the detailed inference algorithm of STT in Alg. 1.

Algorithm 1: Inference algorithm of STT.

Input: reference image x, text modification m, target image database Y = {yn}ﬁ]:l, a pre-trained CLIP
model, and a pre-trained MLLMs. The number of query times K, and the number of image augmentations
M.

Output: The retrieval score p(y|x, m) over all target images. Querying: Complete the input prompts with
x and m, and query MLLM K times to collect the descriptions F; from Eq. 2.

Transition: Calculate Am in Eq. 3 by feeding m into CLIP text encoder, and then obtain the transferred P;
from Eq. 4.

Alignment: Collect @), in Eq. 5 by augmenting target image y,, for M — 1 times, and then calculate
Lp,,q,, fromEq.6. image y, in Y Calculate Lp, q,, according to Alignment step.

Return Calculate the retrieval score from Eq. 9.
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Table 7: Performance comparison on Fashion-1Q datasets. Both ViT-B and ViT-L are loaded from
OpenAl official weights, while ViT-G is loaded from OpenCLIP. (*) denotes we rerun the experiments
on the OpenAl weights, and (f) denotes we rerun the experiments on the OpenCLIP weights.

Fashion-1Q — Shirt Dress Toptee Average

Arch Method Train | R@10 R@50 R@I10 R@50 R@I0 R@50 | R@I0 R@30
PALAVRA v 2149 37.05 1725 3594 2055 3876 | 19.76 3725

VIT-B/32 SEARLE v 2444  41.61 1854 3951 25770 4646 | 22.89 4253
CIReVL 2836 47.84 2529 4636 31.21 53.85 | 28.28 4935

CIReVL* 22.03 37.00 1334 30.14 1897 38.19 | 18.11 35.11

CIReVLT 2772  46.12 2201 41.60 30.09 5222 | 26.60 46.64

OSrCIR 31.16  51.13 2935 50.37 36.51 58.71 | 32.34 53.40

OSrCIR* 2277 40.87 17.01 37.04 20.75 41.00 | 20.18  39.6

OSrCIR 3283 52,06 2975 5191 3631 5824 | 3296 54.07

SEIZE 2938 4797 2537 46.84 3207 5478 | 2894 4935

STT(Ours) 2522 4416 1859 40.16 2597 47.61 | 2326 4398

Pic2Word v 2620 43.60 20.00 40.20 2790 4740 | 2470 43.70

SEARLE v 26.89 4558 2048 43.13 2932 4997 | 2556 4623

VIT-L/14 LinCIR v 29.10 46.81 2092 4244 2881 50.18 | 26.28  46.49
Context-12W v 29.70  48.60 23.10 4530 30.60 52.90 | 27.80 48.90

CIReVL 26.01 4476 2479 4476 3136 53.65 | 27.39 47.72

CIReVL* 2434 4028 14.68 32.62 2341 4197 | 20.81 38.29

CIReVLY 28.85 4578 22.16 4135 3085 51.25 | 2729 46.12

OSrCIR 33.17 52.03 2970 51.81 3692 59.27 | 33.26 5437

OSrCIR* 27.58 4431 18.69 39.02 2580 46.00 | 24.02 43.11

OSrCIRY 3376 51.86 28.11 4943 3570 57.32 | 3252 52.87

SEIZE 33.04 5322 3093 50.76 3557 58.64 | 33.18 5421

STT(Ours) 2995 48.66 2021 4295 31.70 53.21 | 27.28 48.27

Pic2Word v 33.17 5039 2543 47.65 3524 57.62 | 31.28 51.89

VIT-G/14 SEARLE v 3646 5535 28.16 5032 39.83 6145 | 3481 5571
LinCIR v 46.76  65.11 38.08 60.88 5048 71.09 | 4511 65.69

CIReVL 2985 51.07 27.07 49.53 3580 56.14 | 32.19 5236

CIReVL* 31.65 49.07 2390 43.13 3253 53.19 | 29.36 4846

CIReVLY 32.63 50.05 25.09 4512 3442 5512 | 30.71 50.10

OSrCIR 38.65 5471 33.02 5478 41.04 61.83 | 37.57 57.11

OSrCIR* 36.56 5545 30.69 5325 40.13 61.30 | 35.79 56.67

OSrCIRT 37.39 5692 3059 5350 39.72  61.04 | 35.79 57.15

SEIZE 43.60 6542 39.61 61.02 4594 71.12 | 43.05 65.85

STT(Ours) 39.48 56.59 3504 5674 4286 6495 | 39.12 5943

Table 8: Performance comparison on GeneCIS datasets. Both ViT-B and ViT-L are loaded from
openai official weights, while ViT-G is loaded from openclip.

GeneCIS — Focus Attribute Change Attribute Focus Object Change Object Average
Arch Method Train | R@] R@2 R@3 R@] R@2 R@3 R@] R@2 R@3 R@I R@2 R@3 R@I
SEARLE v 189 306 412 130 238 337 122 230 333 136 238 333 14.4
CIReVL 179 294 404 148 258 358 146 243 333 161 278 376 15.9
ViT-B/32 OSrCIR 194 327 428 164 277 381 157 257 358 182 30.1 394 17.4
STT(Ours) 211 350 455 179 299 404 164 285 389 183 30.1 395 18.4
SEARLE v 17.1 296 407 163 252 342 120 222 309 120 241 339 14.4
LinCIR v 169 300 415 162 280 368 83 174 262 74 157 250 12.2
Context-2W v 172 305 417 164 283 371 8.7 179 269 7.7 16.0 254 12.7
ViT-L/14 CIReVL 195 31.8 420 144 260 352 123 218 305 172 289 376 15.9
OSrCIR 209 331 445 172 285 379 150 236 342 184 30.6 383 17.9
SEIZE 205 334 450 176 289 385 154 256 362 187 309 398 18.1
STT(Ours) 203 346 464 183 298 416 168 285 384 188 31.0 403 18.6
LinCIR v 19.1 330 423 176 302 381 10.1 19.1 28.1 7.9 163 257 13.7
CIReVL 20.5 340 445 161 286 394 147 252 330 181 312 410 17.4
ViT-G/14 OSrCIR 22,7 364 470 179 308 420 169 284 367 21.0 334 442 19.6
SEIZE 229 362 473 186 314 427 182 288 37.6 196 33.0 435 19.8
STT(Ours) 219 364 479 196 319 428 202 303 39.6 197 332 434 20.4

A.3 IMPACTS OF DIFFERENT MLLMS

Like previous works that employ MLLMs to analyze multimodal inputs and generate target descrip-
tions, we specify Qwen2-VL-7B as the MLLM in earlier experiments. Here, we further explore the
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Table 9: Performance comparison on CIRCO and CIRR datasets with various MLLMs.

CIRCO + CIRR — CIRCO CIRR
Metric mAP@k Recall@k Recallgypset @k
Method \ k=5 k=10 k=25 k=50 H k=1 k=5 k=10 \ k=1 k=2 k=3
Qwen-2B 2249 23.64 2590 26.95 || 26.05 53.28 65.59 | 64.53 8246 91.25
Qwen-7B 2555 26.27 2881 29.99 || 28.87 5797 69.90 | 65.22 84.10 92.37
LLaVA-Next (Mistral-7B) | 24.17 2473 27.03 28.11 || 26.97 55.10 6692 | 65.01 82.75 91.40
GPT-40(mini) 25.68 26.50 29.16 30.30 || 28.59 58.13 69.99 | 66.15 8498 92.86

Table 10: Ablation results on the transition and transportation modules. All results are conducted on CIRCO
datasets with GPT-4o(mini).

CIRCO + CIRR — CIRCO
Strategy mAP@k
Transition  Transportation | k=5 k=10 k=25 k=50
X X 3549 37.05 40.02 41.28
X 37.50 39.10 4224 43.50
X 36.61 38.10 41.11 42.38

38.93 40.14 43.18 44.46

performance of STT with different MLLMs. Specifically, we report the results on Qwen2-VL-2B,
Qwen2-VL-7B, LLaVA-Next-7B, and GPT-4o(mini) in Tab. 9. The results show that our STT can be
applied to MLLMs with different architectures and that the performance improves as the number of
MLLM'’s parameters increases. This demonstrates the potential of STT in flexibility and scalability,
as it serves as a plug-and-play pipeline that can seamlessly integrate with various MLLMs. Indeed,
we observe that different MLLMs can lead to variations in the generated captions and thus impact
retrieval results. This observation further supports our core motivation: rather than re-training or
fine-tuning the large models, we aim to design a framework that maximizes retrieval effectiveness
given any off-the-shelf MLLM.

In addition to Tab.4 that ablates each module on Qwen-7B, we also report the results with another
MLLM GPT-40(mini) in Tab.10. The ablations on two MLLMs can show the real efficiency of STT’s
modules: (1) Strategic Synergy Over Raw MLLM Power: The highest mAP @k values (e.g., 38.93
@k=5, 44.46 @k=50) occur when both Transition and Transportation are enabled. This indicates
that STT’s strength lies in its systematic orchestration of strategies rather than relying solely on
MLLM capabilities. Even with the same MLLM (e.g., GPT-40(mini)), disabling either strategy
reduces performance (e.g., Transportation only yields 36.61 @k=5; Transition only yields 37.50
@k=5), confirming that STT actively improves task-specific reasoning. (2) Modular Adaptability:
The results implies STT’s strategies are architecture-agnostic. While the choice of MLLM impacts
absolute performance, the framework’s relative gains from Transition+Transportation synergy remain
consistent.

A.4 ADDITIONAL ABLATION EXPERIMENTS
A.4.1 IMPACTS OF THE BIDIRECTIONAL DISTANCE.

To conduct a more comprehensive analysis of the impacts of The bidirectional distance, we sup-
plemented experiments with STT under different backbones using CT distance and OT distance as
alignment strategy in Tab. 11 and Tab. 12. The results show that CT outperforms OT, highlighting
the advantages of bidirectional fine-grained alignment.

A.4.2 IMPACTS OF CAPTION NUMBER AND AUGMENTATION VIEWS.

Moreover, for clarity, we have provided the specific values corresponding to Fig. 3 in the main text
and supplemented the results of ablation experiments under different architectures, which can be
found in Tab. 13. It is evident that compared to a single caption (k=1), multiple captions can provide
richer multi-modal knowledge to better understand the implicit input, leading to more accurate
descriptions.
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Table 11: Ablation on CIRCO and CIRR datasets.

CIRCO + CIRR — CIRCO CIRR

Metric mAP@k Recall@k Recallgypse; @k
Arch | Method | k=5 k=10 k=25 k=50 || k=l k=5 k=10 | k=l k=2 k=3
VITB/32 (OpenaD) STT [ 2026 2101 2301 2404 | 2583 55.18 6822 | 6564 8360 0280
P STTw/OT | 19.81 2048 2233 2331 || 2472 5366 6677 | 6523 83.64 9246
. STT [ 2821 2899 3131 3253 || 3256 6210 73.86 | 70.00 86.60 9487
VIT-B-32 (OpenCLIP) ‘ STT w/OT ‘ 2394 2479 2701 28.09 H 3137 6097 72.92 ‘ 69.54 8576 9427
: STT | 2555 2627 2881 29.99 || 2887 57.97 6990 | 6522 8410 9237
VIT-L/14 (OpenAl) ‘ STT w/OT ‘ 2476 2585 28.52 29.67 H 2805 57.01 69.64 ‘ 6571 8374 92.17
: STT | 3231 3333 3632 3749 || 3504 6557 7641 | 7152 88.00 9465
VIT-L-14 (OpenCLIP) ‘ STT w/OT ‘ 3023 3122 3413 352 H 3439 6448 7617 ‘ 7198 8834 94.68

Table 12: Performance on GeneCIS datasets.

GeneCIS — Focus Attribute Change Attribute Focus Object Change Object Average
Arch Method | R@1 R@2 R@3 R@] R@2 R@3 R@I R@2 R@3 R@]! R@2 R@3 R@1
VIT-B/32 (OpenAl) STT 21.1 350 455 179 299 404 164 285 389 183 30.1 395 18.4
STTw/OT | 205 341 449 175 302 401 163 280 383 183 299 394 18.2

STTw/OT | 202 334 438 17.1 294 390 17.0 297 399 200 334 438 18.6

STT 203 346 464 183 298 416 168 285 384 188 31.0 403 18.6
STTw/OT | 206 345 458 180 292 403 168 279 382 188 302 40. 18.5

STT ‘20.5 33.8 442 181 290 402 185 294 391 199 329 42.8‘ 19.3

ViT—B—32(OpenCLIP)‘ STT ‘2048 336 442 176 294 397 174 307 404 196 336 44.2‘ 18.9

ViT-L/14 (OpenAl) ‘

ViT-L-14 (OpenCLIP) ‘

STTw/OT | 203 334 444 176 288 399 179 286 38.1 19.6 331 423 18.9
Instruction - e A Instricton Moified Descrption

Alarge wooden door with Alarge, open wooden door with | | A wooden door with a curvec A Adelicious-looking pizza ona || Alarge, appetizing pzza vith a | A wooden table coverd vith

Door s ihite i, integrating intothe | | intricate carving, integratingnto | | arch, integrating into the rustic Pizza wooden table, integrating into the | | 901den-brovin crust and various avariety of pizzas, each
interior design of a living room. | | the grand and elegantinterior | interior design of te living room. outdoor dining scene. The pizza | |OPPINGS, placed on a wooden table | it cif The

Reference Image ‘The door, with its elegant design of the room. The door, “The door, with its intricae Reference Image s @ golcen cruct and is (opped | | i1 &N outdoor setting. The pizza is pizzas a dina

wrchway, provides a beautiful adorned with ornate details, | | detailing and warm wood tones B A var et of inredionte. | surrounded by other food items and | seri-cir m,
entrance to the space, serves as a focal point. serves as a beautiful focal point, . £ people enjoying their meal. some closer to the edges.

Visualization Before Transition y Visualization Before Transition

Visualization After Transition Visualization After Transition

Figure 6: Visualization of the GeneCIS dataset on the *Focus Object’ task. Heatmaps before and after the
transition on target image are shown. Captions generated by MLLMs often contain irrelevant visual noise (blue
text), while the STT model effectively suppresses such noise and highlights the correct focus object (red text).

A.4.3 HYPER-PARAMETERS STUDY

We report a sensitivity analysis of « in Tab.14. The results show that STT exhibits moderate
sensitivity to o, with performance being non-monotonic. Specifically, values in the range of 0.3 —
0.5 yield optimal results, while overly small or large values degrade performance. This confirms
the effectiveness of treating modification as a transition vector, as it helps mitigate biases between
MLLM-generated captions and images. For practical use, in accuracy-critical tasks (e.g., CIRCO),
we suggest o < 0.5 to avoid over-modification; In recall-critical tasks (e.g., CIRR), starting with
a = 0.4 is reasonable. For new datasets, a grid search within [0.3, 0.5] could be conducted, selecting
the optimal « based on validation performance tailored to the application’s specific needs.

A.5 MORE VISUALIZATION

For a more comprehensive qualitative analysis, we present the visualization results of GeneCIS
datasets about the task of focus in Fig. 6. It illustrated that the original generated descriptions
indeed introduce visual noise while our STT often focus on the correct object, leading to higher CIR
performance.
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Table 13: Ablation study on CIRCO and CIRR datasets with different number of image augmentation
on CLIP-B/32 and fix the number of description to 5.

CIRCO + CIRR — CIRCO CIRR
Metrics mAP@k Recall@k Recallgypset @k
Num \ =5 k=10 k=25 k=50 H k=1 k=5 k=10 \ k=1 k=2 k=3

1 19.73  19.89 21.68 22.63 || 25.16 53.59 66.46 | 63.88 82.87 92.19
5 20.19 20.84 2270 23.73 || 25.25 54.00 67.40 | 64.46 83.61 92.39
10 20.26 21.01 23.01 24.04 || 25.83 5525 68.22 | 65.64 83.60 92.80
25 20.60 21.37 2355 2455 || 25.64 5545 68.87 | 65.71 84.41 9246
50 21.01 21.62 2374 2479 || 26,15 55.78 69.16 | 66.17 84.74 93.06
100 21.96 22.51 24.60 25.62 || 25.67 55.69 69.08 | 6545 8436 93.08

Table 14: Sensitivity analysis of o on Qwen2-VL-7B and ViT-B/32 on CIRCO and CIRR datasets
(default & = 0.45 in our main manuscript).

CIRCO + CIRR — CIRCO CIRR

Metrics mAP@k Recall@k Recallgypset @k

« value k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2
0.1 18.37 19.09 20.77 21.76 || 23.28 4998 62.36 | 64.05 83.21
0.2 19.74 2049 2234 2332 || 24.63 5246 6545 | 64.89 83.40
0.3 2171 2236 2433 2526 || 2535 54.12 6728 | 6549 83.74
0.4 20.73 21.37 23.33 2437 || 25.81 55.37 6834 | 6523 83.67
0.45 20.26 21.01 23.01 24.04 || 25.83 55.25 6822 | 65.64 83.60
0.5 21.47 2247 2446 2546 || 26.02 5545 68.58 | 64.82 83.49
0.6 19.77 2045 2255 2348 || 25.62 5540 68.22 | 63.64 83.13
0.7 19.05 20.18 22.11 23.20 || 25.11 54.65 6822 | 63.62 82.68

A.6 STT IN-CONTEXT LEARNING DETAILS

We utilize an in-context learning method in Fig. 7. To achieve ZS-CIR, each sample uses the same
placeholder “<image_url>" instead of an actual reference image URL. By providing several
example outputs, the model is able to understand the required reasoning process without an actual
reference image. This approach ensures efficient reasoning in a zero-sample setting. Each text
requires the model to focus on a specific object and provide a detailed description. This helps the
model understand the key elements in the image and how they relate to each other. We use uniform
placeholders <image_url> and <reference_image_url> to ensure that the input and output
formats are consistent for easy model processing.

A.7 FURTHER COMPARISON WITH SEIZE

We observe that both SEIZE Yang et al. (2024a) and our STT generate multiple captions and apply
the semantic transition process. However, these two models are different from each other in terms
of caption generation, semantic editing strategy, and retrieval score calculation: (1) Two-Stage
Generation vs. One-Stage Generation: SEIZE first generates [V captions for the reference image
using a captioner and then modifies them according to the input modification text via an LLM.
In contrast, our STT directly employs an MLLM to generate IV captions for the composed input,
eliminating information loss from two-stage approaches. Moreover, the efficiency comparison in Tab.
5 shows that two-stage generation methods are time-consuming, which may limit their applicability
in real-time scenarios. (2) Point-to-Point vs. Set-to-Set: SEIZE represents the final global caption
feature by employing the average pooling on captions, and then measures similarity with candidates
via cosine similarity. Our STT, however, models the captions as a discrete distribution and then
develops a transportation-aware set-to-set metric to calculate the distances. (3) Similarity Space vs.
Embedding Space: SEIZE refines the final retrieval score by directly changing the cosine score. Our
STT aims to refine the generated captions in the CLIP embedding space.
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b Example 1

<Input>
{
"Reference Image 1": <image_url>,
"Text modification 1": "Instruction: Focus cardboard and its arrangement with other objects in the image. Describe cardboard with details. Edited Description:
A flattened piece of cardboard placed at the base of a disorganized pile. The cardboard, with its worn and creased surface, shows frayed edges and slight
tears, indicating frequent use or exposure to the elements. It serves as a foundation for the objects stacked above, including bright blue garbage bags, a
broken white plastic chair, and parts of a large appliance.”
"Reference Image 2": <image_url>,
"Text modification 2": "Instruction: Focus wood floor and its arrangement with other objects in the image. Describe wood floor with details. Edited Description:
A polished wood floor with a warm, rich tone that adds to the cozy ambiance of the room. The floor's natural grain is partially covered by a soft, beige area
rug placed in the center, creating a harmonious balance between texture and color. Surrounding the rug, the floor extends under the dark brown sofa and
armchair, complementing their earthy tones. The floor seamlessly integrates with the room's arrangement, supporting the furniture and decor, such as the
side tables and potted plants, enhancing the overall inviting atmosphere.”
"Reference Image 3": <reference_image_url_1>,
"Text modification 3": " Instruction: Focus <relative_caption> and its arrangement with other objects in the image. Describe <relative_caption> with details.

Edited Description: "
}
‘ <Response>
1
: "Target Image Description": "A large wooden door with a white trim, integrating into the interior design of a living room. The door, with its elegant archway,
1 provides a beautiful entrance to the space."
)
N o o e e
25 1
] Example 2 I
! ]
<Input> 1
Nl |
" " 7 !
! ‘Reference Image 1": <image_url>, |
: "Text modification 1": "Instruction: Focus cardboard and its arrangement with other objects in the image. Describe cardboard with details. Edited Description: :
} A flattened piece of cardboard placed at the base of a disorganized pile. The cardboard, with its worn and creased surface, shows frayed edges and slight
1 tears, indicating frequent use or exposure to the elements. It serves as a foundation for the objects stacked above, including bright blue garbage bags, a }
: broken white plastic chair, and parts of a large appliance.” 1
) ]
: "Reference Image 2": <image_url>, .
| "Text modification 2": "Instruction: Focus wood floor and its arrangement with other objects in the image. Describe wood floor with details. Edited Description: :
} A polished wood floor with a warm, rich tone that adds to the cozy ambiance of the room. The floor's natural grain is partially covered by a soft, beige area
1 rug placed in the center, creating a harmonious balance between texture and color. Surrounding the rug, the floor extends under the dark brown sofa and }
: armchair, complementing their earthy tones. The floor seamlessly integrates with the room's arrangement, supporting the furniture and decor, such as the :
: side tables and potted plants, enhancing the overall inviting atmosphere.” 1
1 "Reference Image 4": <reference_image_url>, :
} "Text modification 4": " Instruction: Focus <relative_caption> and its arrangement with other objects in the image. Describe <relative_caption> with details. 1
] Edited Description: " 1
]
i} !
: <Response> 1
1 { :
: "Target Image Description": "A delicious-looking pizza on a wooden table, integrating into the outdoor dining scene. The pizza has a golden crust and is topped 1
1 with a variety of ingredients." 1
1
i} I
U

Figure 7: Examples of our in-context learning on GeneCIS dataset. Each sample uses the same placeholder
“<image_url>" instead of an actual reference image URL.

A.8 LIMITATIONS AND FUTURE WORK

Although our method achieves strong performance, there remain several directions for future ex-
ploration. First, when the query image depicts a complex scene involving multiple objects or
relationships, and the accompanying modification text provides insufficient detail, our STT may
focus on the wrong or ambiguous object, leading to unexpected captions. This limitation is consistent
with issues observed in prior CIReVL Karthik et al. (2023) and OSrCIR Tang et al. (2024a) models.
Moreover, current benchmarks suffer from a false-negative problem. As noted in Liu et al. (2021),
each (reference image, modification) pair in FashionIQ can correspond to multiple valid target images,
yet only one is annotated as ground truth. Consequently, semantically correct retrieval results may
be unfairly penalized under existing evaluation protocols. We leave these challenges as promising
directions for future research.

A.9 THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) were used exclusively for language polishing and
spelling correction.

19



	Introduction
	Related Work
	Composed Image Retrieval
	Alignment via Transport Distance

	Method
	Preliminaries
	Semantic Transition and Transportation

	Experiments
	Experimental Setup
	Results Analysis
	Further Analysis

	Conclusion
	Appendix
	Additional Comparative Results.
	Algorithm of STT Process
	Impacts of Different MLLMs
	Additional Ablation Experiments
	Impacts of the bidirectional distance. 
	Impacts of caption number and augmentation views.
	Hyper-parameters Study

	More Visualization
	STT In-Context Learning Details
	Further Comparison with SEIZE
	Limitations and Future Work
	The Use of Large Language Models


