
Accelerating Robotic Reinforcement Learning via
Parameterized Action Primitives

Anonymous Author(s)
Affiliation
Address
email

Abstract

Despite the potential of reinforcement learning (RL) for building general-purpose1

robotic systems, training RL agents to solve robotics tasks still remains challenging2

due to the difficulty of exploration in purely continuous action spaces. Addressing3

this problem is an active area of research with the majority of focus on improving4

RL methods via better optimization or more efficient exploration. An alternate but5

important component to consider improving is the interface of the RL algorithm6

with the robot. In this work, we manually specify a library of robot action primitives7

(RAPS), parameterized with arguments that are learned by an RL policy. These8

parameterized primitives are expressive, simple to implement, enable efficient9

exploration and can be transferred across robots, tasks and environments. We10

perform a thorough empirical study across challenging tasks in three distinct11

domains with image input and a sparse terminal reward. We find that our simple12

change to the action interface substantially improves both the learning efficiency13

and task performance irrespective of the underlying RL algorithm, significantly14

outperforming prior methods which learn skills from offline expert data.15

1 Introduction16

Meaningful exploration remains a challenge for robotic reinforcement learning systems. For example,17

in the manipulation tasks shown in Figure 1, useful exploration might correspond to picking up and18

placing objects in different configurations. However, random motions in the robot’s joint space will19

rarely, if ever, result in the robot touching the objects, let alone pick them up. Recent work, on the20

other hand, has demonstrated remarkable success in training RL agents to solve manipulation tasks21

[4, 24, 26] by sidestepping the exploration problem with careful engineering. Levine et al. [26] use22

densely shaped rewards estimated with AR tags, while Kalashnikov et al. [24] leverage a large scale23

robot infrastructure and Andrychowicz et al. [4] require training in simulation with engineered reward24

functions in order to transfer to the real world. In general, RL methods can be prohibitively data25

inefficient, require careful reward development to learn, and struggle to scale to more complex tasks26

without the aid of human demonstrations or carefully designed simulation setups.27

An alternative view on why RL is difficult for robotics is that it requires the agent to learn both28

what to do in order to achieve the task and how to control the robot to execute the desired motions.29

For example, in the kitchen environment featured at the bottom of Figure 1, the agent would have30

to learn how to accurately manipulate the arm to reach different locations as well as how to grasp31

different objects, while also ascertaining what object it has to grasp and where to move it. Considered32

independently, the problems of controlling a robot arm to execute particular motions and figuring out33

the desired task from scalar reward feedback, then achieving it, are non-trivial. Jointly learning to34

solve both problems makes the task significantly more difficult.35

In contrast to training RL agents on raw actions such as torques or delta positions, a common strategy36

is to decompose the agent action space into higher (i.e., what) and lower (i.e., how) level structures.37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



s*robot

Sample Primitive

Select Argument 
Parameters

Mean
Variance

Sample Arguments

Feedback Control Loop

srobot s′ robot

ek(s, s*)
Ck(e, s)

Primitives are re-used across robots, environments, and tasks

Kitchen Metaworld Robosuite

π

Grasp:
Lift: 

Push:
Twist:

Image Input 
Sparse Rewards

0 Hk.66Hk.33Hk

Figure 1: Visual depiction of RAPS, outlining the process of how a primitive is executed on a robot. Given
an input image, the policy outputs a distribution over primitives and a distribution over all the arguments of all
primitives, samples a primitive and selects its corresponding argument distribution parameters, indexed by which
primitive was chosen, samples an argument from that distribution and executes a controller in a feedback loop
on the robot for a fixed number of timesteps (Hk) to reach a new state.

A number of existing methods have focused on designing or learning this structure, from manually38

architecting and fine-tuning action hierarchies [14, 27, 32, 46], to organizing agent trajectories into39

distinct skills [3, 20, 40, 49] to more recent work on leveraging large offline datasets in order to learn40

skill libraries [29, 39]. While these methods have shown success in certain settings, many of them41

are either too sample inefficient, do not scale well to more complex domains, or lack generality due42

to dependence on task relevant data.43

In this work, we investigate the following question: instead of learning low-level primitives, what if we44

were to design primitives with minimal human effort, enable their expressiveness by parameterizing45

them with arguments and learn to control them with a high-level policy? Such primitives have46

been studied extensively in task and motion planning (TAMP) literature [22] and implemented as47

parameterized actions [19] in RL. We apply primitive robot motions to redefine the policy-robot48

interface in the context of robotic reinforcement learning. These primitives include manually defined49

behaviors such as lift, push, top-grasp, and many others. The behavior of these primitives is50

parameterized by arguments that are the learned outputs of a policy network. For instance, top-grasp51

is parameterized by four scalar values: grasp position (x,y), how much to move down (z) and the52

degree to which the gripper should close. We call this application of parameterized behaviors, Robot53

Action Primitives for RL (RAPS). A crucial point to note is that these parameterized actions are easy54

to design, need only be defined once and can be re-used without modification across tasks.55

The main contribution of this work is to support the effectiveness of RAPS via a thorough empirical56

evaluation across several dimensions:57

• How do parameterized primitives compare to other forms of action parameterization?58

• How does RAPS compare to prior methods that learn skills from offline expert data?59

• Is RAPS agnostic to the underlying RL algorithm?60

• Can we stitch the primitives to perform multiple complex manipulation tasks in sequence?61

• Does RAPS accelerate exploration even in the absence of extrinsic rewards?62

We investigate these questions across complex manipulation environments including Kitchen Suite,63

Metaworld and Robosuite domains. We find that a simple parameterized action based approach64

outperforms prior state-of-the-art by a significant margin across most of these settings1.65

2 Related Work66

Higher Level Action and Policy Spaces in Robotics In robotics literature, decision making67

over primitive actions that execute well-defined behaviors has been explored in the context of68

1We will be releasing the code to reproduce our results.

2



task and motion planning [9, 22, 23, 42]. However, such methods are dependent on accurate state69

estimation pipelines to enable planning over the argument space of primitives. One advantage of using70

reinforcement learning methods instead is that a neural network policy can learn to adjust its implicit71

state estimates through trial and error experience. Dynamic Motion Primitive and ensuing policy72

search approaches [11, 21, 25, 35, 36] leverage dynamical systems to learn flexible, parameterized73

skills, but are sensitive to hyper-parameter tuning and often limited to the behavior cloning regime.74

Neural Dynamic Policies [6] incorporate dynamical structure into neural network policies for RL,75

but evaluate in the state based regime with dense rewards, while we show that simple, parameterized76

actions can enable RL agents to efficiently explore in sparse reward settings from image input.77

Hierarchical RL and Skill Learning Enabling RL agents to act effectively over temporally78

extended horizons is a longstanding research goal in the field of hierarchical RL. Prior work introduced79

the options framework [44], which outlines how to leverage lower level policies as actions for a80

higher level policy. In this framework, parameterized action primitives can be viewed as a particular81

type of fixed option with an initiation set that corresponds to the arguments of the primitive. Prior82

work on options has focused on discovering [1, 12, 40] or fine-tuning options [5, 14, 27] in addition83

to learning higher level policies. Many of these methods have not been extended beyond carefully84

engineered state based settings. More recently, research has focused on extracting useful skills from85

large offline datasets of interaction data ranging from unstructured interaction data [48], play [28, 29]86

to demonstration data [2, 34, 38, 39, 43, 45, 52]. While these methods have been shown to be87

successful on certain tasks, the learned skills are only relevant for the environment they are trained88

on. New demonstration data must be collected to use learned skills for a new robot, a new task, or89

even a new camera viewpoint. RAPS does not have the aforementioned limitations as our primitives90

are manually specified. They can re-use the same implementation details across robots, provided a91

low-level controller implementation, are defined independent of any task and are only a function of92

the robot state, not the world state or the observations.93

Parameterized Actions in RL The parameterized action Markov decision process (PAMDP)94

formalism was first introduced in Masson et al. [31], though there is a large body of earlier work in95

the area of hybrid discrete-continuous control, surveyed in [7, 8]. Most recent research on PAMDPs96

has focused on better aligning policy architectures and RL updates with the nature of parameterized97

actions and has largely been limited to state based domains [13, 50]. A number of papers in this area98

have focused on solving a simulated robot soccer domain modeled as either a single-agent [19, 31, 47]99

or multi-agent [15] problem. In this paper, we consider more realistic robotics tasks that involve the100

interaction with and manipulation of common household objects. Work on hybrid discrete-continuous101

control in the context of RL [33] has largely been limited to state based control with dense rewards,102

while we show that parameterized actions can enable an RL agent to learn challenging manipulation103

tasks from visual input without dense reward feedback. While prior work [41] has trained RL104

policies to select hand-designed behaviors for simultaneous execution, we instead train RL policies105

to leverage more expressive, parameterized behaviors to solve a wide variety of tasks. Most closely106

related to this work is Chitnis et al. [10], which develops a specific architecture for training policies107

over parameterized actions from state input and sparse rewards in the context of bi-manual robotic108

manipulation. Our work is orthogonal in that we demonstrate that a simple parameterization of the109

higher level policy is sufficient to solve a large suite of manipulation tasks from image input, but in110

principle policy architectures from prior work could be used as well.111

3 Robot Action Primitives in RL112

To address the challenge of exploration and behavior learning in continuous action spaces, we113

decompose a desired task into the what (high level task) and the how (control motion). The what is114

handled by the environment-centric RL policy while the how is handled by a fixed, manually defined115

set of agent-centric primitives parameterized by continuous arguments. This enables the high level116

policy to reason about the task at a high level by choosing primitives and their arguments while117

leaving the low-level control to the parameterized actions themselves.118

3.1 Background119

Let the Markov decision process (MDP) be defined as (S,A,R(s, a, s′), T (s′|s, a), p(s0), γ, ) in120

which S is the set of true states, A is the set of possible actions, R(s, a, s′) is the reward function,121

T (s′|s, a) is the transition probability distribution, p(s0) defines the initial state distribution, and γ122

is the discount factor. The agent executes actions in the environment using a policy π(a|s) with a123

3



corresponding trajectory distribution p(τ = (s0, a0, ...at−1, sT )) = p(s0)Πtπ(at|st)T (st+1|st, at).124

The goal of the RL agent is to maximize the expected sum of rewards with respect to the policy:125

Es0,a0,...at−1,sT ,∼p(τ) [
∑
t γ

tR(st, at)]. In the case of vision-based RL, the setup is now a partially126

observed Markov decision process (POMDP); we have access to the true state via image observations.127

In this case, we include an observation space O which corresponds to the set of visual observations128

that the environment may emit, an observation model p(o|s) which defines the probability of emission129

and policy π(a|o) which operates over observations. In this work, we consider various modifications130

to the action space A while keeping all other components of the MDP or POMDP the same.131

3.2 Parameterized Action Primitives132

We now describe the specific nature of our parameterized primitives as well as how they can be133

integrated into existing RL algorithms (see Figure 1 for an end-to-end visualization of the method).134

In a library of K primitives, the k-th primitive is a function fk(s, args) that executes a controller135

Ck on a robot for a fixed horizon Hk, s is the robot state and args is the value of the arguments136

passed to fk. args is used to compute a target robot state s∗ and then Ck is used to drive s to s∗. A137

primitive dependent error metric ek(s, s∗) determines the trajectory Ck takes to reach s∗. Ck is a138

general purpose state reaching controller, e.g. an end-effector or joint position controller; we assume139

access to such a controller for each robot and it is straightforward to define and tune if not provided.140

Given a low-level controller implementation for the robot, the same exact primitive implementation141

can be re-used across any robot. In this setup, the choice of controller, error metric and method to142

compute s∗ define the behavior of the primitive motion, how it uniquely forms a movement in space.143

We refer to Procedure 1 for a general outline of a parameterized primitive.144

As an example, consider the “lifting“ primitive, which simply involves lifting the robot arm upward.145

For this action, args is the amount to lift the robot arm, e.g. by 20cm., the robot state for this146

primitive is the robot end-effector position, k is the index of the lifting primitive in the library, Ck is147

an end-effector controller, ek(s, s∗) = s∗− s, and Hk is the end-effector controller horizon, which in148

our setting ranges from 100-300. The target position s∗ is computed as s+ [0, 0, args]. f moves the149

robot arm for Hk steps, driving s towards s∗. The other primitives are defined in a similar manner;150

see the appendix for a precise description of each primitive we define.151

Procedure 1 Parameterized Action Primitive
Input: primitive dependent argument vector args, prim-

itive index k, robot state s
1: compute s∗(args, s)
2: for i = 1, ..., Hk low-level steps do
3: ei = ek(si, s

∗) . compute state error
4: ai = Ck(ei, si) . compute torques
5: execute ai on robot
6: end for

Robot action primitives are only a function of152

the robot state, not the world state. The primi-153

tives function only by reaching set points of the154

robot state as directed by the policy, hence they155

are agent-centric. This design makes primitives156

agnostic to camera view, visual distractors and157

even the underlying environment itself. The RL158

policy, on the other hand, is environment cen-159

tric: it chooses the primitive and appropriate160

arguments based on environment observations161

in order to best achieve the task. A key advantage of this decomposition is that the policy no longer162

has to learn how to move the robot and can focus directly on what it needs to do. Meanwhile, the163

low-level control need not be perfect because the policy can account for most discrepancies using164

the arguments. We note that one issue with using a fixed library of primitives is that it cannot define165

all possible robot motions. As a result, we include a dummy primitive that corresponds to the raw166

action space, specifically end-effector position control. This does not provide a complete solution to167

the problem as the dummy primitive operates on the high level horizon for Hk steps when called.168

Therefore, it cannot execute every trajectory that a lower level policy could, yet we find the primitive169

library as a whole performs well in practice.170

In order to integrate these parameterized actions into the RL setting, we modify the action space171

of a standard RL environment to involve two operations at each time step: (a) choose a primitive172

out of a fixed library (b) output its arguments. As in Chitnis et al. [10], the policy network outputs173

a distribution over one-hot vectors defining which primitive to use as well as a distribution over174

all of the arguments for all of the primitives, a design choice which enables the policy network to175

have a fixed output dimension. After the policy samples an action, the chosen parameterized action176

and its corresponding arguments are indexed from the action and passed to the environment. The177

environment then selects the appropriate primitive function f and executes the primitive on the robot178

with the appropriate arguments. After the primitive completes executing, the final observation and179

sum of intermediate rewards during the execution of the primitive are returned by the environment.180

4



Primitive: lift 
Confidence: 98% 
Argument: .934

Primitive: angled  
forward grasp 

Confidence: 87% 
Argument: -.53,-.3,1.4

Primitive: go to  
pose (delta) 

Confidence: 95% 
Argument: .515,-.991,0

Primitive: x-axis  
twist 

Confidence: 75% 
Argument: .99999

Primitive: shift right 
Confidence: 50% 
Argument: .0015

Figure 2: We visualize an execution of an RL agent trained to solve a cabinet opening task from sparse rewards
using robot action primitives. At each time-step, we display the primitive chosen, the policy’s confidence in the
action choice and the corresponding argument passed to the primitive in the bottom left corner.

We do so in order to ensure that if the task is achieved mid primitive execution, the action is still181

labelled successful. Using this policy architecture and primitive execution format, we train standard182

RL agents to solve manipulation tasks from sparse rewards. See Figure 2 for a visualization of a full183

trajectory of a policy solving a hinge cabinet opening task in the Kitchen Suite with RAPS.184

4 Experimental Setup185

In order to perform a robust evaluation of robot action primitives and prior work, we select a set of186

challenging robotic control tasks, define our environmental setup, propose appropriate metrics for187

evaluating different action spaces, and summarize our baselines for comparison.188

Tasks and Environments: We evaluate RAPS on three simulated domains: Metaworld [17],189

Kitchen [51] and Robosuite [53], containing 16 tasks with varying levels of difficulty, realism190

and task diversity (see the bottom half of Fig. 1). We use the Kitchen environment because it191

contains seven different subtasks within a single setting, contains human demonstration data useful192

for training learned skills and contains tasks that require chaining together up to four subtasks to193

solve. In particular, learning such temporally-extended behavior is challenging [2, 17, 34]. Next,194

we evaluate on the Metaworld benchmark suite due to its wide range of manipulation tasks and195

established presence in the RL community. We select a subset of tasks from Metaworld (see appendix)196

with different solution behaviors to robustly evaluate the impact of primitives on RL. Finally, one197

limitation of the two previous domains is that the underlying end-effector control is implemented198

via a simulation constraint as opposed to true position control by applying torques to the robot. In199

order to evaluate if primitives would scale to more realistic learning setups, we test on Robosuite,200

a benchmark of robotic manipulation tasks which emphasizes realistic simulation and control. We201

select the block lifting and door opening environments which have been demonstrated to be solvable202

in prior work [53]. We refer the reader to the appendix for a detailed description of each environment.203

Sparse Reward and Image Observations We modify each task to use the environment success204

metric as a sparse reward which returns 1 when the task is achieved, and 0 otherwise. We do so205

in order to establish a more realistic and difficult exploration setting than dense rewards which206

require significant engineering effort and true state information to compute. Additionally, we plot all207

results against the mean task success rate since it is a directly interpretable measure of the agent’s208

performance. We run each method using visual input as we wish to bring our evaluation setting closer209

to real world setups. The higher level policy, primitives and baseline methods are not provided access210

to the world state, only camera observations and robot state depending on the action.211

Evaluation Metrics One challenge when evaluating hierarchical action spaces such as RAPS212

alongside a variety of different learned skills and action parameterizations, is that of defining a fair213

and meaningful definition of sample efficiency. We could define one sample to be a forward pass214

through the RL policy. For low-level actions this is exactly the sample efficiency, for higher level215

actions this only measures how often the policy network makes decisions, which favors actions216

with a large number of low-level actions without regard for controller run-time cost, which can be217

significant. Alternatively, we could define one sample to be a single low-level action output by a218

low-level controller. This metric would accurately determine how often the robot itself acts in the219

world, but it can make high level actions appear deceptively inefficient. Higher level actions execute220

far fewer forward passes of the policy in each episode which can result in faster execution on a robot221

when operating over visual observations, a key point low-level sample efficiency fails to account for.222

5



0 10 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Kettle

0 10 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0 10 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Light Switch

0 10 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Top Left Burner

0 10 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Hinge Cabinet

0 10 20 30 40
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Drawer Close

0 10 20 30 40
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Peg Unplug Side

0 10 20 30 40
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Sweep Into

0 10 20 30 40
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Disassemble

0 10 20 30 40
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Assembly

0 10 20 30 40 50
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Door

0 10 20 30 40 50
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Lift

RAPS (Ours) Raw Actions EE Raw Actions EE (Dense) VICES VICES (Dense)

Figure 3: Comparison of various action parameterizations and RAPS across all three environment suites2using
Dreamer as the underlying RL algorithm. RAPS (green), with sparse rewards, is able to significantly outperform
all baselines, particularly on the more challenging tasks, even when they are augmented with dense reward. See
the appendix for remaining plots on the slide-cabinet and soccer-v2 tasks.

To ensure fair comparison across methods, we instead propose to perform evaluations with respect223

to two metrics, namely, (a) Wall-clock Time: the amount of total time it takes to train the agent to224

solve the task, both interaction time and time spent updating the agent, and (b) Training Steps: the225

number of gradient steps taken with a fixed batch size. Wall clock time is not inherently tied to the226

action space and provides an interpretable number for how long it takes for the agent to learn the227

task. To ensure consistency, we evaluate all methods on a single RTX 2080 GPU with 10 CPUs and228

50GB of memory. However, this metric is not sufficient since there are several possible factors that229

can influence wall clock time which can be difficult to disambiguate, such as the effect of external230

processes, low-level controller execution speed, and implementation dependent details. As a result,231

we additionally compare methods based on the number of training steps, a proxy for data efficiency.232

The number of network updates is only a function of the data; it is independent of the action space,233

machine and simulator, making it a non-transient metric for evaluation. The combination of the two234

metrics provides a holistic method of comparing the performance of different action spaces and skills235

operating on varying frequencies and horizons.236

Baselines The simplest baseline we consider is the default action space of the environment, which237

we denote as Raw Actions. One way to improve upon the raw action space is to train a policy238

to output the parameters of the underlying controller alongside the actual input commands. This239

baseline, VICES [30], enables the agent to tune the controller automatically depending on the task.240

Alternatively, one can use unsupervised skill extraction to generate higher level actions which can be241

leveraged by downstream RL. We evaluate one such method, Dyn-E [48], which trains an observation242

and action representation from random policy data such that the subsequent state is predictable from243

the embeddings of the previous observation and action. A more data-driven approach to learning skills244

involves organizing demonstration data into a latent skill space. Since the dataset is guaranteed to245

contain meaningful behaviors, it is more likely that the extracted skills will be useful for downstream246

tasks. We compare against SPIRL [34], a method that ingests a demonstration dataset to train a247

fixed length skill VAE z = e(a1:H), a1:H = d(z) and prior over skills p(z|s), which is used to guide248

downstream RL. Additionally, we compare against PARROT [43], which trains an observation249

conditioned flow model on an offline dataset to map from the raw action space to a latent action space.250

2In all of our results, each plot shows a 95% confidence interval of the mean performance across three seeds.

6



0 10 20 30
Wall Clock Time (hrs)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Kitchen Kettle

0 10 20 30
Wall Clock Time (hrs)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Kitchen Microwave

0 10 20 30
Wall Clock Time (hrs)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Kitchen Slide Cabinet

0 10 20 30
Wall Clock Time (hrs)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Kitchen Light Switch

0 10 20 30
Wall Clock Time (hrs)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Kitchen Top Left Burner

0 10 20 30
Wall Clock Time (hrs)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Kitchen Hinge Cabinet

RAPS (Ours) SPIRL Dyn-E PARROT Dreamer PARROT

Figure 4: Comparison of RAPS and skill learning methods on the Kitchen domain using SAC as the underlying
RL algorithm. While SPIRL and PARROT are competitive or even improve upon RAPS’s performance on easier
tasks, only RAPS (green) is able to solve top-left-burner and hinge-cabinet.

RL Algorithm
Kettle Slide Cabinet Light Switch Microwave Top Burner Hinge Cabinet

Raw RAPS Raw RAPS Raw RAPS Raw RAPS Raw RAPS Raw RAPS

Dreamer 0.8 .93 1.0 1.0 1.0 1.0 .53 0.8 .93 1.0 0.0 1.0
SAC .33 0.8 .67 1.0 .86 .67 .33 1.0 .33 1.0 0.0 1.0
PPO .33 1.0 .66 1.0 .27 1.0 0.0 .66 .27 1.0 0.0 1.0

Table 1: Evaluation of RAPS across RL algorithms (Dreamer, PPO, SAC) on Kitchen. We report the final
success rate of each method on five evaluation trials trained over three seeds from sparse rewards. While raw
action performance (left entry) varies significantly across RL algorithms, RAPS (right entry) is able to achieve
high success rates on every task with every RL algorithm.

In the next section, we demonstrate the performance of our RAPS against these methods across a251

diverse set of sparse reward manipulation tasks.252

5 Experimental Evaluation of RAPS253

We evaluate the efficacy of RAPS on three different settings: single task reinforcement learning across254

Kitchen, Metaworld and Robosuite, as well as hierarchical control and unsupervised exploration in255

the Kitchen environment. We observe across all evaluated settings, RAPS is robust, efficient and256

performant, in direct contrast to a wide variety of learned skills and action parameterizations.257

5.1 Accelerating Single Task RL using RAPS258

In this section, we evaluate the performance of RAPS against fixed and variable transformations of the259

lower-level action space as well as state of the art unsupervised skill extraction from demonstrations.260

Due to space constraints, we show performance against the number of training steps in the appendix.261

Action Parameterizations We compare RAPS against Raw Actions and VICES using262

Dreamer [18] as the underlying algorithm across all three environment suites in Figure 3. Since263

we observe weak performance on the default action space of Kitchen, joint velocity control, we264

instead modify the suite to use 6DOF end-effector control for both raw actions and VICES. We find265

Raw Actions and VICES are able to make progress on a number of tasks across all three domains,266

but struggle to execute the fine-grained manipulation required to solve more difficult environments267

such as hinge-cabinet, assembly-v2 and disassembly-v2. The latter two environments are268

not solved by Raw Actions or VICES even when they are provided dense rewards. In contrast, RAPS269

is able to quickly solve every task from sparse rewards.270

On the kitchen environment, from sparse rewards, no prior method makes progress on the hardest271

manipulation task: grasping the hinge cabinet and pulling it open to 90 degrees, while RAPS is able272

to quickly learn to solve the task. In the Metaworld domain, peg-unplug-side-v2, assembly-v2273

and disassembly-v2 are difficult environments which present a challenge to even dense reward274

7



state based RL [51]. However, RAPS is able to solve all three tasks with sparse rewards directly275

from image input. We additionally include a comparison of RAPS against Raw Actions on all 50276

Metaworld tasks with final performance in the appendix. RAPS is able to learn to solve or make277

progress on 43 out of 50 tasks purely from sparse rewards. Finally, in the Robosuite domain, by278

leveraging robot action primitives, we are able to learn to solve the tasks more rapidly than raw279

actions or VICES, with respect to wall-clock time and number of training steps, demonstrating that280

RAPS scales to more realistic robotic controllers.281

Offline Learned Skills An alternative point of comparison is to leverage offline data to learn skills282

and run downstream RL. We train SPIRL and PARROT from images using the kitchen demonstration283

datasets in D4RL [16], and Dyn-E with random interaction data. We run all agents with SAC as the284

underlying RL algorithm and extract learned skills using joint velocity control, the type of action285

present in the demonstrations. See Figure 4 for the comparison of RAPS against learned skills. Dyn-E286

is unable to make progress across any of the domains due to the difficulty of extracting useful skills287

from highly unstructured interaction data. In contrast, SPIRL and PARROT manage to leverage288

demonstration data to extract useful skills; they are competitive or even improve upon RAPS on the289

easier tasks such as microwave and kettle, but struggle to make progress on the more difficult290

tasks in the suite. PARROT, in particular, exhibits a great deal of variance across tasks, especially291

with SAC, so we include results using Dreamer as well. We note that both SPIRL and PARROT are292

limited by the tasks which are present in the demonstration dataset and unable to generalize their293

extracted skills to other tasks in the same environment or other domains. In contrast, parameterized294

primitives are able to solve all the kitchen tasks and are re-used across domains as shown in Figure 3.295

Generalization to different RL algorithms A general set of skills maintains performance re-296

gardless of which RL method leverages them. In this section, we evaluate the performance of RAPS297

against Raw Actions on three types of RL algorithms: model based (Dreamer), off-policy model free298

(SAC) and on-policy model free (PPO) on the Kitchen tasks. We use the end-effector version of raw299

actions as a strong point of comparison on these tasks. As seen in Table 1, unlike raw actions, RAPS300

is agnostic to the underlying RL algorithm and maintains similarly high final performance across301

Dreamer, SAC and PPO. These experiments show that parameterized primitive policies generally302

improve the performance of RL. This result, along with the cross-domain results in Figure 3 suggests303

it may be feasible to directly apply RAPS to new environments and RL methods.304

5.2 Enabling Hierarchical Control via RAPS305

We next apply RAPS to a more complex setting: sequential RL, in which the agent must learn306

to solve multiple subtasks within a single episode, as opposed to one task. We evaluate on the307

Kitchen Multi-Task environments and plot performance across SAC, Dreamer, and PPO in Figure 5.308

Raw Actions prove to be a strong baseline, eventually solving close to three subtasks on average,309

while requiring significantly more wall-clock time and training steps. SPIRL initially shows strong310

performance but after solving one to two subtasks it then plateaus and fails to improve. PARROT is311

less efficient than SPIRL but also able to make progress on up to two subtasks, though it exhibits a312

great deal of sensitivity to the underlying RL algorithm. For both of the offline skill learning methods,313

they struggle to solve any of the subtasks outside of kettle, microwave, and slide-cabinet314

which are encompassed in the demonstration dataset. Meanwhile, with RAPS, across all three base315

RL algorithms, we observe that the agents are able to leverage the primitive library to rapidly solve316

three out of four subtasks and continue to improve. This result demonstrates that RAPS can elicit317

significant gains in hierarchical RL performance through its improved exploratory behavior.318

5.3 Leveraging RAPS to enable efficient unsupervised exploration319

In many realistic settings, even sparse rewards themselves can be hard to come by. Ideally, we320

would be able to train robot without train time task rewards for large periods of time and fine-tune321

to solve new tasks with only a few supervised labels. We use the kitchen environment to test the322

efficacy of primitives on the task of unsupervised exploration. We run an unsupervised exploration323

algorithm, Plan2explore [37], for a fixed number of steps to learn a world model, and then fine-tune324

the model and train a policy using Dreamer to solve specific tasks. We plot the results in Figure 6 on325

the top-left-burner and hinge-cabinet tasks. Primitives enable the agent to learn an effective326

world model that results in rapid learning of both tasks, requiring only 1 hour of fine-tuning to solve327

the hinge-cabinet task. Meanwhile, the world model learned by exploring with raw actions is328

unable to quickly finetune as quickly. We draw two conclusions from these results, a) primitives329

8



SA
C

0 10 20 30 40
Wall Clock Time (hrs)

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 1

0 10 20 30 40
Wall Clock Time (hrs)

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 2

0K 100K 200K 300K 400K 500K
Number of Updates

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 1

0K 100K 200K 300K 400K 500K
Number of Updates

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 2

D
re

am
er

0 5 10 15 20 25 30 35
Wall Clock Time (hrs)

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 1

0 5 10 15 20 25 30 35
Wall Clock Time (hrs)

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 2

0K 50K 100K 150K 200K
Number of Updates

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 1

0K 50K 100K 150K 200K
Number of Updates

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 2

PP
O

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Wall Clock Time (hrs)

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Wall Clock Time (hrs)

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 2

0K 20K 40K 60K 80K 100K
Number of Updates

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 1

0K 20K 40K 60K 80K 100K
Number of Updates

0

1

2

3

4

# 
Su

bt
as

ks
 S

ol
ve

d

Kitchen Sequential Multi-Task 2

RAPS (Ours) Raw Actions EE SPIRL Dyn-E PARROT
Figure 5: Learning performance of RAPS on sequential multi-task RL. Each row plots a different base RL
algorithm (SAC, Dreamer, PPO) while the first two columns plot the two multi-task environment results against
wall-clock time and the next two columns plot against number of updates, i.e. training steps. RAPS consistently
solves at least three out of four subtasks while prior methods generally fail to make progress beyond one or two.

0 5 10 15 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Top Left Burner

0 5 10 15 20
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Hinge Cabinet

0K 20K 40K 60K 80K 100K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Top Left Burner

0K 20K 40K 60K 80K 100K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Hinge Cabinet

RAPS (Ours) Raw Actions EE

Figure 6: RAPS significantly outperforms raw actions in terms of total wall clock time and number of updates
when fine-tuning initialized from reward free exploration.

enable more efficient exploration than raw actions, b) primitives facilitate efficient model fitting,330

resulting in rapid fine-tuning.331

6 Discussion332

In this work we present an extensive evaluation of RAPS, which leverages parameterized actions333

to learn high level policies that can quickly solve robotics tasks across three different environment334

suites. We show that standard methods of re-parameterizing the action space and learning skills from335

demonstrations are environment and domain dependent. In many cases, prior methods are unable336

to match the performance of robot action primitives. While primitives are not a general solution to337

every task, their success across a wide range of environments illustrates the utility of incorporating an338

agent-centric structure into the robot action space. Given the effectiveness of simple parameterized339

action primitives, a promising direction to further investigate would be how to best incorporate340

agent-centric structure into both learned and manually defined skills and attempt to get the best of341

both worlds in order to improve the interface of RL algorithms with robots.342

9



References343

[1] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Variational option discovery algorithms.344

arXiv preprint arXiv:1807.10299, 2018. 3345

[2] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery346

for accelerating offline reinforcement learning, 2021. 3, 5347

[3] A. Allshire, R. Martín-Martín, C. Lin, S. Manuel, S. Savarese, and A. Garg. Laser: Learning a348

latent action space for efficient reinforcement learning. arXiv preprint arXiv:2103.15793, 2021.349

2350

[4] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,351

M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-352

tional Journal of Robotics Research, 39(1):3–20, 2020. 1353

[5] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI354

Conference on Artificial Intelligence, volume 31, 2017. 3355

[6] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end356

sensorimotor learning, 2020. 3357

[7] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints.358

Automatica, 35(3):407–427, 1999. 3359

[8] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid control: Model360

and optimal control theory. IEEE transactions on automatic control, 43(1):31–45, 1998. 3361

[9] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion, manipulation and362

task planning. The International Journal of Robotics Research, 28(1):104–126, 2009. 3363

[10] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned364

task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),365

pages 1149–1155. IEEE, 2020. 3, 4366

[11] C. Daniel, G. Neumann, O. Kroemer, J. Peters, et al. Hierarchical relative entropy policy search.367

Journal of Machine Learning Research, 17:1–50, 2016. 3368

[12] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills369

without a reward function. arXiv preprint arXiv:1802.06070, 2018. 3370

[13] Z. Fan, R. Su, W. Zhang, and Y. Yu. Hybrid actor-critic reinforcement learning in parameterized371

action space. arXiv preprint arXiv:1903.01344, 2019. 3372

[14] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies. arXiv373

preprint arXiv:1710.09767, 2017. 2, 3374

[15] H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, and C. Fan. Deep multi-agent reinforcement learning375

with discrete-continuous hybrid action spaces. arXiv preprint arXiv:1903.04959, 2019. 3376

[16] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven377

reinforcement learning, 2021. 8378

[17] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving379

long-horizon tasks via imitation and reinforcement learning, 2019. 5380

[18] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent381

imagination, 2020. 7382

[19] M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space. arXiv383

preprint arXiv:1511.04143, 2015. 2, 3384

[20] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embedding385

space for transferable robot skills. In International Conference on Learning Representations,386

2018. 2387

10



[21] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor388

primitives. Technical report, 2002. 3389

[22] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In 2011390

IEEE International Conference on Robotics and Automation, pages 1470–1477. IEEE, 2011. 2,391

3392

[23] L. P. Kaelbling and T. Lozano-Pérez. Learning composable models of parameterized skills.393

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 886–893.394

IEEE, 2017. 3395

[24] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-396

ishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-based397

robotic manipulation. arXiv preprint arXiv:1806.10293, 2018. 1398

[25] J. Kober and J. Peters. Learning motor primitives for robotics. In 2009 IEEE International399

Conference on Robotics and Automation, pages 2112–2118. IEEE, 2009. 3400

[26] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.401

The Journal of Machine Learning Research, 17(1):1334–1373, 2016. 1402

[27] A. C. Li, C. Florensa, I. Clavera, and P. Abbeel. Sub-policy adaptation for hierarchical403

reinforcement learning. arXiv preprint arXiv:1906.05862, 2019. 2, 3404

[28] C. Lynch and P. Sermanet. Grounding language in play. arXiv preprint arXiv:2005.07648, 2020.405

3406

[29] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning407

latent plans from play. In Conference on Robot Learning, pages 1113–1132. PMLR, 2020. 2, 3408

[30] R. Martín-Martín, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance409

control in end-effector space: An action space for reinforcement learning in contact-rich tasks,410

2019. 6411

[31] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parameterized actions.412

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016. 3413

[32] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.414

arXiv preprint arXiv:1805.08296, 2018. 2415

[33] M. Neunert, A. Abdolmaleki, M. Wulfmeier, T. Lampe, T. Springenberg, R. Hafner, F. Romano,416

J. Buchli, N. Heess, and M. Riedmiller. Continuous-discrete reinforcement learning for hybrid417

control in robotics. In Conference on Robot Learning, pages 735–751. PMLR, 2020. 3418

[34] K. Pertsch, Y. Lee, and J. J. Lim. Accelerating reinforcement learning with learned skill priors,419

2020. 3, 5, 6420

[35] J. Peters, K. Mulling, and Y. Altun. Relative entropy policy search. In Proceedings of the AAAI421

Conference on Artificial Intelligence, volume 24, 2010. 3422

[36] S. Schaal. Dynamic movement primitives-a framework for motor control in humans and423

humanoid robotics. In Adaptive motion of animals and machines, pages 261–280. Springer,424

2006. 3425

[37] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore426

via self-supervised world models, 2020. 8427

[38] T. Shankar and A. Gupta. Learning robot skills with temporal variational inference. In428

International Conference on Machine Learning, pages 8624–8633. PMLR, 2020. 3429

[39] T. Shankar, S. Tulsiani, L. Pinto, and A. Gupta. Discovering motor programs by recomposing430

demonstrations. In International Conference on Learning Representations, 2019. 2, 3431

[40] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised432

discovery of skills. arXiv preprint arXiv:1907.01657, 2019. 2, 3433

11



[41] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer. Learning to compose hierarchical434

object-centric controllers for robotic manipulation. arXiv preprint arXiv:2011.04627, 2020. 3435

[42] A. Simeonov, Y. Du, B. Kim, F. R. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. A436

long horizon planning framework for manipulating rigid pointcloud objects. arXiv preprint437

arXiv:2011.08177, 2020. 3438

[43] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine. Parrot: Data-driven behavioral439

priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020. 3, 6440

[44] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal441

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999. 3442

[45] D. Tanneberg, K. Ploeger, E. Rueckert, and J. Peters. Skid raw: Skill discovery from raw443

trajectories. IEEE Robotics and Automation Letters, 6(3):4696–4703, 2021. 3444

[46] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.445

Feudal networks for hierarchical reinforcement learning. In International Conference on446

Machine Learning, pages 3540–3549. PMLR, 2017. 2447

[47] E. Wei, D. Wicke, and S. Luke. Hierarchical approaches for reinforcement learning in parame-448

terized action space. arXiv preprint arXiv:1810.09656, 2018. 3449

[48] W. Whitney, R. Agarwal, K. Cho, and A. Gupta. Dynamics-aware embeddings, 2020. 3, 6450

[49] K. Xie, H. Bharadhwaj, D. Hafner, A. Garg, and F. Shkurti. Latent skill planning for exploration451

and transfer. In International Conference on Learning Representations, 2020. 2452

[50] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu, and H. Liu.453

Parametrized deep q-networks learning: Reinforcement learning with discrete-continuous hybrid454

action space. arXiv preprint arXiv:1810.06394, 2018. 3455

[51] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A456

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on457

Robot Learning, pages 1094–1100. PMLR, 2020. 5, 8458

[52] W. Zhou, S. Bajracharya, and D. Held. Plas: Latent action space for offline reinforcement459

learning. arXiv preprint arXiv:2011.07213, 2020. 3460

[53] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín. robosuite: A modular simulation461

framework and benchmark for robot learning, 2020. 5462

12


