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ABSTRACT

Memes, originally created for humor and social commentary, have evolved into
vehicles for offensive and harmful content online. Detecting such content is cru-
cial for upholding the integrity of digital spaces. However, classification of memes
as offensive or other categories often falls short in practical applications. Ensuring
the reliability of these classifiers and addressing inadvertent biases during train-
ing are essential tasks. While numerous input-attribution based interpretability
methods exist to shed light on the model’s decision-making process, they fre-
quently yield insufficient and semantically irrelevant keywords extracted from in-
put memes. In response, we propose a novel, theoretically grounded approach
that extracts meaningful “tokens” from a predefined vocabulary space, yielding
both relevant and exhaustive set of interpretable keywords. This method provides
valuable insights into the model’s behavior and uncovers hidden meanings within
memes, significantly enhancing transparency and fostering user trust. Through
comprehensive quantitative and qualitative evaluations, we demonstrate the su-
perior effectiveness of our approach compared to conventional baselines. Our
research contributes to a deeper understanding of meme content analysis and the
development of more robust and interpretable multimodal systems.

1 INTRODUCTION

In recent times, memes have emerged as a ubiquitous form of online expression, blending humor,
satire, and social commentary to encapsulate complex ideas in a single image or short video. While
originally created to disseminate humor, it is often misused to perpetuate societal harm(Kiela et al.,
2021). A significant portion of the meme ecosystem is tainted with content that is offensive, hateful,
or even dangerous. Therefore, it is crucial to develop effective tools for the automated detection of
offensive memes, to preserve the integrity of online spaces.

However, a simple classification of memes as offensive is often insufficient. Making the system
interpretable is paramount as it can elucidate whether the automatic detection system learns from
spurious correlations in the data or whether it can reliably classify a meme as offensive. This clarity
aids in enhancing user trust through transparency. Further interpretability methods help users to
know if the model acquired some kind of inadvertent biases while training.

Existing input-attribution based explainability methods like LIME(Ribeiro et al., 2016), SHAP(Guo
et al., 2019), and GradCAM(Selvaraju et al., 2019) work pretty well in practice but suffer from two
issues, viz. i) Semantic Irrelevance: The input keywords that are attributed to model predictions
are often semantically irrelevant to the input meme, making it hard for humans to assess their effect
on model’s behavior; and ii) Lack of diversity: Existing methods work on the input space, which
fundamentally lacks many important words that would have explained the model and its prediction
much better.

In Figure 1, we show our method EXPLEME and compare it with Integrated Gradient. The tokens
retrieved by input attribution are ‘Polish’, ‘Chemical’, and ‘Shit’, which are irrelevant to the hidden
meaning of the meme which is associated with ‘Antisemitism’. In contrast, our method can reliably
consult a large set of vocabulary space and through a four-step process, retrieves much relevant and
exhaustive set of keywords (e.g. ‘Holocaust’, ‘Auschwitz’ etc.). This comprehensively shows the
superiority of our proposed methods over conventional baselines.
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 Simple four step filtering

1. Sample Maximally relevant tokens

2. Filter out tokens outside a bounded neighborhood

3. Choose top semantically relevant tokens to input

4. Check for output preservation

Traditional Input Attribution

Can we achieve this?

Figure 1: We posit our method: EXPLEME, as a simple four-step filtering mechanism to retrieve
tokens related to an input meme from a global vocabulary space as opposed to traditional input
attribution. Observe the richer quality of outputs that can be obtained by EXPLEME.

We enumerate the major contributions/attributes of our current work as follows:

1. We propose a theoretically grounded technique1 that could explain a model’s behavior by
retrieving ‘tokens’ from a global vocabulary space. The retrieved tokens are compared
with input attribution based baselines and found to carry both ‘faithful’ representation of
the input meme as well as semantically relevant information.

2. Our method is extensively evaluated with respect to both automatic and human evaluation.
A detailed analysis is performed to assess its effective nature.

3. Though we show our method as applied in the domain of internet memes, it is in principle,
model and task-agnostic2.

2 RELATED WORK

Multimodal offensiveness detection. In the realm of Natural Language Processing (NLP), previous
research has primarily concentrated on identifying offensive content (Waseem & Hovy, 2016; Sarkar
et al., 2021), addressing cyberbullying (Van Hee et al., 2018), hate speech(Caselli et al., 2021), and
similar issues within social media posts (Roberts et al., 2012). Nevertheless, these computational
methods have predominantly been evaluated using textual data. Turning to visual offensiveness
detection, earlier investigations have centered on identifying sexually explicit images (Duan et al.,
2001; Ganguly et al., 2017). The pivotal moment came when Kiela et al. (2021) introduced a set of
benchmarks and released the Facebook Hateful meme dataset, which ignited research in this field.
This led to a number of research on detecting offensiveness in multimodal media (Yang et al., 2022),
particularly in memes (Sharma et al., 2020). Suryawanshi et al. (2020) used an early fusion method
for combining visual and textual features, leading to more accurate detection. Chen & Pan (2022)
stacked visual features, object tags, and text features to Vision-Language Pre-Training Model with
anchor points to detect offensive memes. While these models are proven to be useful for predictions,
their outputs are not interpretable and cannot be reliably used in real-world use cases.

Multimodal Interpretability. Recently, there have been a notable number of multimodal models
(Ding et al., 2021; Du et al., 2022; Li et al., 2023; Liu et al., 2023b; Zhu et al., 2023) for various
tasks. However, there is a dearth of research on generating explanations or justifications around their
predictions. Researchers predominantly relied on interpretability techniques. LIME (Ribeiro et al.,
2016) explains predictions of any classifier by fitting a sparse linear model locally around the in-
stance being explained. It converts the instance into a binary vector, indicating the presence/absence
of interpretable components (like words). SHAP (Lundberg & Lee, 2017a) explains machine learn-
ing model predictions by computing Shapley values from game theory. These values represent each

1Codes are available at:https://anonymous.4open.science/r/Expleme-E8BE/
2It is out of the scope of this paper to show its application to other tasks
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feature’s contribution to a prediction. SHAP unifies several local explanation methods like LIME
into a single framework with theoretical properties. Gradient heatmap (Guo et al., 2019) explains
predictions by computing gradients of the model output with respect to the input features. However,
recent years have witnessed a shift in the focus of interpretability research, recognizing the potential
for generating natural language explanations for both unimodal and multimodal systems (Kayser
et al., 2021). Instead of traditional end-to-end training, Koh et al. (2020) first predicted concepts
and used those to predict the labels such that the model can be interpreted by changing the concepts.
There exist some natural-language-based techniques like wt5 (Narang et al., 2020). However, wt5
is available for text-only systems. NLX-GPT (Sammani et al., 2022) bridges the gap between text-
based and multimodal natural language generation. Some recent methods generate explanations for
multimodal systems. A cross-modal attention, which attends to the distinguishing features between
text and image modalities, is used in the transformer encoder for sarcasm explanation (Desai et al.,
2021). Sharma et al. (2022) generates explanations for visual semantic role labeling in memes.
These methods can generate explanations for the behavior of multimodal models. However, the ex-
isting methods cannot fully explain the model behavior that is not directly related to the input but
has some implicit meaning. Therefore, we attempt to address the issues by sampling keywords that
are related to the input and faithful to the inner workings of the model.

3 METHODOLOGY

The proposed systems combine a multimodal encoder for an input meme and a language model
(LM). The incorporation of LM enables us to retrieve the set of explainable out-context keywords
that are helpful in interpreting the system and its outcome.

3.1 SYSTEM DESIGN

Our system follows a two-step strategy, i.e. i) Multimodal encoding followed by ii) Classifying via
a language model (LM). We elaborate the steps in details:

Multimodal encoding. LetM denote the input meme, consisting of an image V and accompanying
text T . We utilize a pre-trained and frozen CLIP model (Radford et al., 2021) to obtain textual (ft)
and visual (it) representations. These features, with dimensions Rm×1 and Rn×1 respectively, are
used to generate a multimodal representation Mt ∈ Ro×1 (here, m = n = 512).

The fusion process employs trainable weight matrices U and V with dimensions Rm×ko. The mul-
timodal representation is calculated as follows: Mt = AveragePool(UT ft ◦ V T it, k), where ◦
denotes element-wise multiplication, and k represents the stride for the overlapped window used in
the pooling operation. This encoding scheme, inspired by a similar approach (Bandyopadhyay et al.,
2023), maintains high performance with a low parameter count.

Using LM as the classifier cum verbalizer. We utilize a GPT2 model(Radford et al., 2019) as the
classifier. The multimodal representation Mt is transformed via a Feed Forward Neural Network
(FFN) intom ∈ R1×1024, a dimension similar to the GPT2 token embedding. Another FFN projects
Mt onto the corresponding label space, resulting in l ∈ 0, 1.

li = argmax(FFN(Mt), dim = 1)

To address gradient information loss, Gumbel Logits (gl) are introduced:

gl = F.gumbel softmax(logits, tau = 1, hard = True)

A dictionary (dix) is established to convert labels into keywords: dix = 0 : normal, 1 : offensive.
The final label with preserved gradient information is obtained as:

lab = SumPool(gl ◦ E[dix[l]]),

where E represents the GPT2 token-embedding function.

The GPT2 model takes inputs including knowledge texts (kti) separated by [KB] tokens and
the meme caption (automatically generated via OFA (Wang et al., 2022) module) separated by
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[CAPTION]’ token. These texts are converted into token embeddings:

f 1 = E([CAPTION ]caption[KB]kt 1[KB]kt 2)

Finally, concatenating f1 with Mt and lab, the input is fed into GPT2. The model reconstructs the
next tokens and predicts the final label of the meme in natural language as the last token in the output.
The system architecture is visualized in the Appendix Section C with a more detailed explanation.

3.2 RETRIEVING KEYWORDS BEYOND INPUT SPACE

Obtaining a comprehensive collection of human-comprehensible keywords that effectively encapsu-
late the operational characteristics of a classifier when presented with a given input typically poses a
challenge. One plausible approach to address this issue involves the utilization of input-attribution-
based methodologies such as Integrated Gradient. Such techniques serve to highlight specific parts
of the input data that bear significance in the classifier’s decision-making process. However, it is
noteworthy that these methodologies do not yield an extra set of tokens which was not in the input
space. This can be a limiting factor in describing the behavior of the model, as it is illustrated by an
example in Figure 1.

The process of extracting the set of relevant keywords involves four filtering steps starting from the
vocabulary set of the language model (LM).

1. Maximally Relevant: First, we filter out the keywords that are given very low probability
by the LM. Given the concatenation of f1, lab, andm as input to the GPT2, we extract TopK
tokens (denoted as set T ) from the GPT2 predictions. T = argmaxkP (ti|f1, lab,m),
where P (.) refers to the probability distribution over vocabulary V .

2. Alignment vs Optimization: The set of extracted keywords from the first step (their em-
bedding is denoted as e) should be such that they belong in a special ϵ neighborhood. This
is an additional filter that theoretically ensures the set of keywords does not possess redun-
dant information while also not completely alienated from the optimizing model prediction.
The definition and interpretation of this is presented in Section 3.3.

3. Semantically Relevant: In this step, we filter additional keywords that are semantically
irrelevant to the input meme. Practically, the set of keywords extracted from the second
step is passed through the CLIP Text encoder. Similarly, the meme is encoded using the
CLIP Vision encoder. We take the dot product of the vector output from these two encoders
and only select the top 20 tokens out of them. CLIP being trained with contrastive learning
only preserves tokens that are semantically relevant to the input meme.

4. Prediction Preserving : The fourth step is the most stringent one. First, we use the trained
LM in inference mode to generate knowledge text by passing extracted tokens as knowl-
edge tokens. Next, together with the extracted tokens, we pass their generated knowledge
text to the LM. If the model predicts the same class as it predicted before, we call the passed
token prediction preserving. If the passed tokens flip the actual prediction then we can con-
fidently say that the token does not have enough importance for the model’s behavior and
thus it cannot be adequately faithful to the model’s behavior. We filter out only four key-
words after this step by sorting with respect to the log-likelihood of the predicted tokens in
decreasing order.

3.3 ALIGNMENT VS OPTIMIZATION TRADEOFF

In the pursuit of optimizing machine learning models, we often encounter the challenge of striking
the right balance between the alignment of information vectors and optimization efficiency. To
explore this delicate tradeoff, we introduce the following theorem.

Theorem. Assuming that our objective function f(m) = ŷ is strongly convex, and considering
non-zero real column vectors e (also non-negative) and m, where m represents the multimodal
embedding of the input meme, and ∇mŷ is the gradient of the final network prediction with respect
to m, our theorem states that, with very small step size, the condition eT · ∇mf(m

+) > eT ·
∇mf(m)ρ, where ρ > 1, holds true.
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This theorem carries substantial empirical implications:

i) If we sample e such that eT · ∇mf(m) > 0, implying alignment between e and ∇mf(m),
moving m in the direction of e aids optimization. As demonstrated by the left-hand side (LHS)
of the inequality, successive gradient ascents on m progressively reduce the angle between e and
∇mf(m) until they become aligned. This observation underscores the utility of e throughout the
optimization process.

ii) With ∇mf(m) being smooth and differentiable, when eT · ∇mf(m) → 0, we find that
eT · ∇mf(m

+) > 0. Even as e and ∇mf(m) approach near-orthogonality, indicative of e car-
rying diverse information rather than perfect alignment with the gradient, the positive value of
eT · ∇mf(m

+) signifies e as beneficial for subsequent gradient-based optimization steps w.r.t
m. We term this phenomenon the ‘Alignment vs. Optimization Tradeoff Criteria’ In practi-
cal applications, this serves as a filtering mechanism to retain tokens relevant to regions where
eT · ∇mf(m) → 03. This theoretically grounded motivation significantly enhances our ability to
extract pertinent and improved tokens, as shown through careful ablation experiments. This theorem
and its implications shed light on the intricate relationship between vector alignment and optimiza-
tion effectiveness. The proof of this theorem is shown in Appendix Section A

3.4 ALGORITHM

In this section, we illustrate the algorithm of our proposed four-step retrieval mechanisms1 to re-
trieve explainable keywords that are outside the input space.

Algorithm 1 Algorithm: Retrieve explainable keywords outside input space
explain out = [] ; /* Final token placeholder */
first stage = [] ; /* Placeholder or TopK & ϵ neighborhood constraint */
rclip←Meme Image Embedding from CLIP

{ ti }← Top-k tokens from Vocabulary set V ; /* TopK Filtering */
for ti ∈ {ti} do

ei← GPT2Embedding( ti )
if ∥ei · ∇mŷ∥ ≤ ϵ then

ticlip ← Text Embedding from CLIP(ei)
simcosine ← rclip · ticlip
first stage . append({ti : simcosine}) ; /* filtered tokens from ϵ neighborhood */

end
end
{ t′i }← Top-20 tokens from first stage sorted by simcosine in decreasing order ; /* CLIP filtering */

for t′i ∈ {t
′
i} do

e′
i← GPT2Embedding( t′i )
if f(e′

i) = ŷ then
explain out . append(t′i) ; /* Output preservation filtering */

end
end
explain out← Top 4 tokens from explain out sorted by log likelihood. ; /* Final step */

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Our proposed model was constructed using PyTorch, a Python-based deep-learning library. In our
experimentation, we imported GPT2 from the Huggingface transformers package. All experiments
were conducted on a single Nvidia A100 80GB GPU. We employed the Adam optimizer(Kingma
& Ba, 2017) with a learning rate of 0.005 for optimization. We use the Facebook Hateful Meme
dataset(Kiela et al., 2021) for performing the experiments.

To ensure robust evaluation, we conducted a 5-fold cross-validation for testing after running exper-
iments for 3, 500 steps on the respective train set. To mitigate the effects of non-determinism in
GPU operations, we reported averaged scores obtained from 5 experiment runs. Additionally, we
maintained a consistent random seed of 42 across all our experiments.

3This condition is henceforth referred to as ϵ-ball or ϵ-neighborhood constraint interchangeably.
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4.2 RESULTS

4.2.1 AUTOMATIC EVALUATION

For Automatic evaluation, we resort to using ‘model faithfulness’ as a guiding principle to evaluate
the effect of the obtained keywords on model behavior. Especially, we measure ‘simulatability’,
which can be defined as how well we can use the extracted keywords to predict the model’s output.
In Table 1, we depict the effect of various filtering mechanisms forming an ablation and compare our
proposed method with the well-known input attribution-based methods, e.g. Integrated Gradient and
KernelSHAP. For comparison, we use i) Leakage adjusted simulatability (LAS) (Hase et al., 2020)
score: which measures the effect of predicted keywords/explanation on model prediction opting for
explanation leakage. A positive LAS score reflects better ‘simulatability’. For evaluating the effect
of extracted keywords on model confidence, we use ii) Comprehensiveness (↑) and iii) Sufficiency
(↓) metrics (DeYoung et al., 2020). We also list three accuracy-based measures: i) F1 score using
both generated explanation and input meme as input to the model (denoted as F1), ii) F1 score using
only input (denoted as F1 w/ inp) and iii) F1 score using only explanation (denoted as F1 w/ exp).
We also propose two diversity-based metrics: i) Inter-sample diversity defined as Div (Inter) and ii)
Intra-sample diversity defined as Div (Intra) elaborated in the Appendix Section D.

Table 1: Automatic evaluation for faithfulness. Empirical Performance of our proposed method
in different setups (ablations) and comparison with baselines. F1 w/ inp is redundantly kept in
the Table to aid easier comparison. 3rd-F and 4th-F refer to CLIP-based filtering step and output
preservation steps, respectively.

TopK ϵ-ball 3rd-f 4th-f Div (Inter) Div (Intra) LAS (↑) Compre. (↑) Suff. (↓) F1 F1 w/ inp F1 w/ exp
Random. - - - - - 0.0 -2.42e-06 0.270 0.79 0.79 0.40

Saliency Map - - - 4.06 7.43 -0.004 0.004 0.140 0.79 0.79 0.68
Inp x Grad (Shrikumar et al., 2017) - - - 3.25 7.40 -0.004 0.005 0.148 0.79 0.79 0.69

Int. Grad.(Sundararajan et al., 2017) - - - 3.62 6.94 0.000024 0.003 0.160 0.79 0.79 0.65
KernelSHAP(Lundberg & Lee, 2017b) - - - 4.01 6.57 0.00052 0.002 0.180 0.79 0.79 0.59

✗ ✗ ✓ ✓ 10.81 3.81 -0.0087 0.028 0.160 0.82 0.79 0.74
✗ 0.05 ✓ ✓ 6.28 6.94 0.0052 0.027 0.140 0.82 0.79 0.76
✗ 0.01 ✓ ✓ 5.96 7.47 0.01 0.035 0.133 0.83 0.79 0.76

3500 ✗ ✓ ✓ 5.53 7.21 0.02 0.043 0.079 0.84 0.79 0.84
2500 ✗ ✓ ✓ 5.48 7.16 0.023 0.042 0.077 0.84 0.79 0.85
1500 ✗ ✓ ✓ 5.23 7.17 0.016 0.038 0.077 0.83 0.79 0.85

500 ✗ ✓ ✓ 4.76 7.19 0.012 0.056 0.069 0.85 0.79 0.87
3500 0.1 ✓ ✓ 5.53 7.19 0.027 0.043 0.085 0.85 0.79 0.85
2500 0.1 ✓ ✓ 5.48 7.16 0.019 0.041 0.075 0.84 0.79 0.85
1500 0.1 ✓ ✓ 5.24 7.17 0.019 0.038 0.076 0.83 0.79 0.85

500 0.1 ✓ ✓ 4.75 7.15 0.023 0.056 0.071 0.85 0.79 0.88

Figure 2: Plot of Jaccard similarity (Y-axis) between set of tokens in specific ϵ neighborhoods and
for specific TopK sizes. Each plot refers to a specific TopK size. Each point in X-axis refers to an ϵ
neighborhood bin starting from ‘−0.09 to −0.07’ and ending at ‘+0.07 to +0.09’

Comparison with baselines. In the first five rows of Table 1, we describe the effect of extract-
ing keywords from various input attribution-based explanation methods which are compared with
random keywords. As expected, the random keywords obtained very low scores for all metrics re-
flecting the input attribution-based methods work well in practice. For every setup of our proposed
model in the next 10 rows, we observe the superiority of our proposed approach by observing better
obtaining scores for all the metrics. We also observe that although F1 w/ exp score is better for the
baselines compared to the ‘Random’ explanations, the model performance remains the same when
explanation and input both are used as input, as seen through the same F1 score obtained. This intu-
itively illustrates the fact that the extracted explanations do not provide extra information compared
to inputs, such that the before and after F1 scores remain the same.

i) Does epsilon ball constraint work in the absence of TopK constraint? Firstly we consider
dropping off the TopK sampling restriction (first stage) and observing the effect of disabling and
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Figure 3: We plot values for various metrics for various fixed TopK values and ϵ values in X axis.
On: O/P Preservation stage is on and Off: O/p preservation stage is off.

enabling the second stage with different values of ϵ. Without any ϵ constraint, we obtain a negative
LAS score along with a low ‘comprehensiveness’ score. It shows that only selecting the keywords
using CLIP-based representation does not retrieve semantically relevant keywords. Next, we enable
the second stage with two separate values of ϵ ∈ {0.05, 0.01}. As can be seen through tabulated
metrics, enabling the second stage has a positive effect on the quality of retrieved keywords. Also,
ϵ = 0.01 works better than ϵ = 0.05 in terms of performance, suggesting that our theoretical
justification of retrieving tokens in the neighborhood of eT · ∇mf(m) → 0 indeed works well in
practice.

ii) Why would a larger TopK be associated with a lower comprehensiveness score? From the
Inter sample diversity score, we observe that a higher TopK value relates to higher Inter sample
diversity, which entails that diversity between two explanation sets will be larger. Intuitively it can
be seen that evaluating the model on a more diverse set leads to a lower probability of the predicted
class due to lower model confidence. This consequently leads to lower comprehensiveness and
higher sufficiency scores. Observe that there is a steady increase in inter-sample diversity with
increasing TopK value, which further leads to lower comprehensiveness scores.

iii) For the same TopK value what would the effect of enabling ϵ constraint be? Comparing
scores from the third and fourth rows, we observe that enabling the ϵ constraint seems to be beneficial
for the ‘simulatability’, as can be seen by higher LAS scores for the same Top-K value without the
ϵ constraint. This can be attributed to the same inter-sample diversity (indicating variations among
samples) but lower intra-sample diversity (indicating lesser variation among retrieved keywords
specific to an input meme). Less variation among the retrieved keywords for an input meme would
intuitively mean better simulatability. However, this case is not always true, as a very low intra-
sample diversity score would entail that the retrieved keywords are very similar in nature and would
result in a low LAS score (observe the sixth row). Intuitively, there is a sweet spot where the ratio
of inter-sample and intra-sample diversity would indicate optimally selected retrieved keywords.

iv) What is the similarity of the retrieved explanations using a specific TopK value w.r.t vari-
ous ϵ balls? We observe that enabling the TopK constraint unequivocally retrieves better tokens as
illustrated by Table 1. To theoretically justify it, we measure Jaccard similarity between the a) set
of tokens retrieved using a specific Top-K value and b) tokens retrieved from the open ϵ neighbor-
hood [−ϵ,+ϵ]. From Figure 2, we observe Jaccard similarity value spikes at [−0.01,+0.01] when
TopK ∈ {3500, 2500, 1500} and at [+0.02,+0.03] when TopK ∈ {500}. This entails Top-K
retrieved tokens mostly lie in the neighborhood where eT · ∇mf(m) → 0, which is theoretically
justifiable.

v) Is the Output preservation stage necessary? We state that this stage is of utmost importance.
From Figure 3, we observe that for different Top-K values (both with and without ϵ constraint en-
abled), enabling the output preservation stage always retrieves better keywords rather than disabling
it. Also, the performance gap is quite significant, as seen in Figure 3.

vi) Assessing the interpretive impact of keywords on model decisions. We input extracted key-
words as knowledge tokens during testing to empirically verify their influence on the model. The
analysis reveals that in the majority of cases (86.23%), the predicted probability for the model-
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Table 2: Human evaluation results based on 100 samples, evaluated by five annotators across Rele-
vance and Exhaustiveness.

Ours ϵ-ball (0.1) CLIP Integrated
Gradient

Relevance 3.26 2.64 2.65 2.43
Exhaustiveness 3.23 2.51 2.52 2.28

assigned class increased, with a mean rise of 0.06 and a standard deviation of 0.07. Moreover, the
predicted class remains consistent in 97.41% of cases. While F1 score sees marginal increase of 0.39
%, this improvement, though not statistically significant, suggest the model’s stable performance.
Additionally, incorporating keywords does not adversely affect the model; instead, it bolsters confi-
dence in predicting the class, emphasizing the interpretive value of keywords in shaping the model’s
decisions.

vii) Is semantic relevance (CLIP filtering) stage necessary. For every set-up in Table 1, we man-
ually tested a random set of same 30 memes with and without the CLIP filtering stage enabled.
Without CLIP filtering, the quality of the retrieved keywords are worse such that they do not seman-
tically match with the input meme, which renders them unusable for end-use.

4.2.2 COMPARISON WITH MLLM

To assess the quality of keywords extracted by our framework in terms of plausibility and inter-
pretability, we compare them with keywords extracted from LLaVa-1.5-13BLiu et al. (2023a) using
manual annotation of 100 test set memes with ground truth keywords. Our method slightly outper-
forms LLaVa-1.5 in plausibility, as measured by bag-of-words cosine similarity with ground truth
keywords. For interpretability, evaluated using the LAS score, LLaVa-1.5 performs slightly better
than our model. However, the average scores for LAS and plausibility between LLaVa and our
framework remain similar, indicating that our framework captures semantic nuances and interpre-
tive capability comparable to an existing MLLM, despite having significantly fewer parameters (30X
less). Additional details are provided in Appendix Section F.

4.2.3 ZERO-SHOT OOD GENERALIZATION

We assess the generalization capability of our models on HarMemePramanick et al. (2021) dataset
in a zero-shot manner. This dataset contains out-of-distribution (COVID-19-related) memes when
compared to our training dataset. Our method achieves a zero-shot Accuracy score of 64.91% which
is better than random performance. The retrieved keywords are mostly explainable and can be
adequately used to interpret the model. An example set of retrieved tokens can be seen in the
Appendix Section G.

4.2.4 HUMAN EVALUATION

We perform a human evaluation of the generated keywords using two metrics, viz. Relatedness and
Exhaustiveness (c.f. Appendix Section I). Relatedness is defined as how much a set of generated
keywords is relevant to the content of the input meme, and Exhaustiveness is defined as how much
of the aspects of an input meme are correctly represented in a set of retrieved keywords. Based on
these definitions, five people (three authors of this paper and two students from the laboratory where
the research is carried out) are chosen to rate the generated explanations (a randomly chosen set
of 100 examples) on a scale of 1-5 in the 5 point Lickert scale. The inter-rater agreement (Cohen
kappa score(Cohen, 1960)) for all the settings is more than 0.7, indicating fair agreement. For
both exhaustiveness and relatedness, our methods achieve the best performance as observed from
Table 2. Further, we observe an intuitive trend of the performance of the models, evaluated for both
Relevance and Exhaustiveness as follows: Ours > ϵ-ball ∼ CLIP > Integrated Gradient.

4.3 ANALYSING MODEL BEHAVIOR FROM KEYWORDS

In this section, we analyze the model qualitatively through the eyes of the extracted explainable
keywords using various methods. For the correctly classified memes (with IDs 01276, and 98724),
our proposed approach (TopK=3500 with ϵ = 0.1 and other filters enabled) provided a relevant and
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Table 3: Sample Qualitative analysis of our proposed method’s output w.r.t several baseline outputs.
Model outputs are shown for both success and failure cases for our model. Memes corresponding to
the underlined IDs are shown in the Appendix Section H due to space constraints.

Meme Ours ϵ-ball w/ CLIP CLIP only Integrated Gradient Pred Act

01276

philanthrop
words

encourage
happiness

charitable
encourage

charity
estimates

optimistic
optimism

worth
Worth

smile
worth

thousand
words

0 0

Correctly Classified 98724

jews
holocaust

nazis
hitler

nazis
adolf
sergei

churchill

Adolf
ologists
Stalin
Polish

eye
loses
bats

normal

1 1

91768
jew

holocaust
hitler

jew
abolished

jew
jew
Jew
Jew

wearing
:wtf

normal
adolf

1 0

Misclassified 13875

cats
cat

lunch
eat

cat
cooperation
sandwiches

menu

cats
cats
cat
Cat

see
normal
lunch
let’s

0 1

exhaustive set of keywords for the input meme which can adequately represent the correct model
prediction obtained. In fact, these explanations are also intuitive and help us to clarify that the
model does not rely on any spurious correlation to predict its decision. For other variations of
our proposed methods and the baseline method, we observe the quality of the retrieved keywords
seems arbitrary with respect to the meme and model behavior. Thus they do not adequately reflect
the reasoning based on which the model might have made its prediction. Even though the CLIP
retrieves semantically relevant tokens, they are not exhaustive and often repetitive. This can even be
seen from the very low intra-sample diversity score obtained by the CLIP-only method.

From meme ID 91768, we observe that the model predicts the meme as offensive even though it is
a funny meme about Hitler. Due to the presence of Hitler’s face, the model thinks of it as offensive,
which is correctly illustrated by the retrieved keywords using our method. The baseline performs
pretty poorly and the variations of our method give outputs that are either repetitive or not very
semantically relevant to the input meme.

Another example is shown for meme Id 13875, where the model predicted an offensive meme as
normal. The prediction appears to be influenced by the presence of the word ‘cat,’ which the model
uses as a determining factor. This is a limitation of the model, as it lacks exposure to relevant memes
during training, resulting in an inability to recognize the underlying issue of racism.

5 CONCLUSION

It is crucial to classify hateful content on social media platforms and generate explanations for
moderation. Existing interpretability methods work on the input space, making it impossible to
generate correct explanations for contents with hidden meanings. Our work allows us to not only
judge if the shared content is hateful and to be moderated but also gives an explanation that might
be absent in the input. Our work allows us to find out the hidden meaning behind a meme more
efficiently and also helps us elucidate the model’s decision-making process. It is also helpful to find
any model bias as shown in the qualitative evaluation. Our proposed method surpasses all the other
available models by both automated and manual evaluation. It can be used on social media platforms
and is expected to have a huge real-life impact. Further, our method is designed to be task agnostic,
and it can be extended to generate good explanations for other decision-making tasks. It is out of the
scope of this study to show the effect of our proposed approach beyond the domain of memes due
to space limitations. Subsequently, to facilitate the robustness of the proposed approach, we aim to
show its performance in various visual-linguistic tasks (viz. Visual Question Answering, Visual NLI
etc.) as a part of future studies.

9
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by our Institutional Review Board (IRB). The memes in the dataset may contain offensive keywords,
and we thus advise the reader of the paper to exercise discretion while using the memes. Overall our
paper is all about uplifting the online community by understanding offensive memes better.

REPRODUCIBILITY STATEMENT

We make all our results reproducible by using a random seed of 42 throughout the paper. The codes
are available here: https://anonymous.4open.science/r/Expleme-E8BE/. The out-
puts obtained from the model will be provided upon the acceptance of the paper and can be cross-
checked by the outputs obtained from the code. Our method is also theoretically justifiable as can
be seen from the proof of the proposed theorem and the Proposition in Appendix section B. The
assumptions are clearly mentioned based on which the theorems were proved.
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A PROOF

Proof. We have ŷ = f(m) and m+ = m + t∇mŷ for t > 0 and t is a scalar, called step size. As
f(m) is strongly convex,

f(m+) ≥ f(m) +∇m
T ŷ(m+ −m) + ϵ∥m+ −m∥2 (1)

where ϵ > 0. So we get,

f(m+) ≥ f(m) + (t+ ϵt2)∥∇m
T ŷ∥2 (2)

As t+ ϵt2 > 0, so

f(m+) ≥ f(m) +K∥∇m
T ŷ∥2 (3)

where K is a positive real number.

By Cauchy-Schwartz inequality, assuming eT and ∇mŷ are not aligned,

eT .(∇mŷ) < ∥e∥∥∇m
T ŷ∥ (4)

So, by Equation 3 and 4 and assuming eT and ∇mŷ are not orthogonal,

eT .∇mf(m
+) > eT .∇mf(m) +KeT .∇m(

eT .∇mŷ

∥e∥
)2 (5)

eT .∇mf(m
+) > eT .∇mf(m) + 2K(eT .∇mf(m))eT .∇m(eT .∇mf(m)) (6)

eT .∇mf(m
+) > eT .∇mf(m)(1 + 2KeT .∇m(eT .∇mf(m))) (7)

Taking gradient w.r.t m and making sure the inequality still holds true come from the Proposition in
Appendix Section B.

Also, by the definition of Hessian Matrix H(f)(m) of f(m), we can write,

eT .∇m(eT .∇mf(m)) = eT .H(f)(m).e

(The above identity can be seen true by expansion of terms)

As f(m) is strongly convex, we know its Hessian H(f)(m) at any point is positive definite.

Also by the definition of positive semi-definiteness, aT .H(f)(z).a > 0, where a are non-zero real
vectors. Considering a as e as we assumed e are non-zero vectors, we can write eT .H(f)(m).e >
0, which implies, eT .∇m(eT .∇mf(m)) > 0

From the above argument, and from Equation 7,

eT .∇mf(m
+) > eT .∇mf(m)ρ (8)

where ρ is always greater than 1.
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B PROPOSITION

We assume the following parameters regarding the step size. The step size is small such that t→ 0.
This entails m+ → m.

Also,

h(m) = f(m+)− f(m)−K(
eT .∇mŷ

∥e∥
)2 (9)

Now for m+ >m

δh = h(m+)− h(m) =

f(m++)− f(m+)−K(
eT .∇mf(m

+)

∥e∥
)2 − (f(m+)− f(m)−K(

eT .∇mf(m)

∥e∥
)2)

(10)

We know K > 0 Also, ( e
T .∇mf(m+)
∥e∥ )2 > 0 and ( e

T .∇mf(m)
∥e∥ )2 > 0 and we also assume that the

alignment between e and ∇mf(m
+) is mostly similar to the alignment between e and ∇mf(m)

as we previously assumed m+ → m. So,

(
eT .∇mf(m)

∥e∥
)2 − (

eT .∇mf(m
+)

∥e∥
)2 ≈ 0

Notationally, we denote (assume), ν = ∇mf(m) and, m → m+ further entails ν → ν+.

δh ≈ f(m++)− f(m+)− (f(m+)− f(m))

δh =
t2

t2
δh

As, m+ = m+ t∇mf(m) and we act at the regime where t→ 0,

δh =
t2

t
lim
t→0

(
f(m+ + tν+)− f(m+)

t
− (f(m+ tν)− f(m))

t
)

δh =
t2

t
lim
t→0

(f ′(m+; ν+)− f ′(m; ν))

As ν+ → ν, when t→ 0

δh = t2 lim
t→0

f ′(m+ tν; ν)− f ′(m; ν)

t

By the definition of directional derivative of f(m) in the direction of ν,

δh = t2 lim
t→0

f ′(m+ tν).ν − f ′(m).ν

t

δh = t2 lim
t→0

νi∂mi
f(m+ tν)− νi∂mi

f(m)

t

δh = t2νi∂mimjf(m)νj

δh = t2νTH(f)(m)ν

As f(m) is strongly convex, we know its Hessian H(f)(m) at any point is positive definite.

Also by the definition of positive semi-definiteness, aT .H(f)(z).a > 0, where a are non-zero real
vectors. Considering a as e as we assumed e are non-zero vectors, we can write νT .H(f)(m).ν >
0. Also t > 0. So by definition δh > 0. As h is an increasing function of m so, ∇mh(m) > 0.
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B.1 COROLLARY

If we assume
h(m) = f(m+)− f(m)

, then by a similar argument, without choosing the assumption that

(
eT .∇mf(m)

∥e∥
)2 − (

eT .∇mf(m
+)

∥e∥
)2 ≈ 0

We can write ∇mh(m) > 0. Which entails ∇mf(m
+) > ∇mf(m). This inequality further

entails eT .∇mf(m
+) > eT .∇mf(m), where e must be non-zero and non-negative real column

vectors. In turn, this would entail that if eT .∇mf(m) → 0, then eT .∇mf(m
+) > 0, which

signifies the alignment vs optimization tradeoff.

C SYSTEM DESIGN

Our proposed system is comprised of two subsystems, defined by one multimodal encoder and an-
other GPT2 as the classifier as depicted by Figure 4. Our proposed method works in three stages: i)
Multimodal encoding via CLIP, ii) Generating differentiable approximation of the label, iii) Prepar-
ing input for GPT2.

C.1 STAGE 1: MULTIMODAL ENCODING

The first stage involves encoding the input meme and embedded text using the CLIP module, result-
ing in separate text and image embeddings. These embeddings are combined through a projection
layer and subsequent average-pooling, yielding a multimodal embedding.

C.2 STAGE 2: CLASSIFICATION AND LABELING

In the second stage, the multimodal embedding is processed using an FFN layer to classify the in-
put meme, generating a corresponding label. The label then undergoes a Gumbel-Softmax layer,
producing a one-hot representation while preserving gradient information. Additionally, the GPT2
embedding of the verbalized label is obtained by passing it through the GPT2 embedding layer. The
final step involves element-wise multiplication of the GPT2 embedding with the one-hot represen-
tation, resulting in an embedding of the output label with the original gradient information.

C.3 STAGE 3: END-TO-END TRAINING

The third stage integrates the multimodal embedding from Stage 1 and label information from Stage
2, along with GPT2 embeddings of knowledge text, meme text, and meme caption (indicated by
[CAP] due to space constraints), and the remaining prompt. This composite input is provided to the
GPT2 language model. Subsequently, both the GPT2 and the FFN from Stage 2 undergo end-to-end
training.

For a visual representation of the overall system architecture, please refer to Figure 4 in the main
text.

D PROPOSED METRICS

We define two metrics for measuring the diversity of the generated samples for a particular meme
(referred to as Intra-sample diversity) and for the whole test set (referred to as inter-sample diver-
sity). Intra-sample diversity metric is used to measure how diverse a set of retrieved tokens is. As
an example, let us suppose we have the following four keywords retrieved for a particular meme:
{Hitler, Adolf, Jews, WW2}. Although the set of keywords correctly reflects the meme is related to
WW2 and nazi Germany, it is less diverse than another set: {Nazi, Antisemitism, Holocaust, Hitler}
where the collected words are more exhaustive and diverse. High diversity would mean that the
generated keywords are not related to each other and thus may not refer to a specific topic. So high
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GPT2

[KB] White is a racialized classification of people generally used for those of mostly European ancestry. The meme text reads: reshare if you hate white people. [CAP] Label:  , Multimodal embeddding is           This meme is actually 

Knowledge
Text

Meme
Text

is a racialized classification of people generally used for those of mostly European ancestry. The meme text reads: reshare if you hate white people. [CAP] Label:1, Multimodal embeddding is    [M]    This meme is actually offensive
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Figure 4: Diagram outlining our proposed system with three key stages. In the first stage, CLIP em-
bedding generates a multimodal embedding (Mt) through a sum-pool operation. The second stage
involves classifying Mt using an FFN, followed by a Gumbel Softmax and GPT2 embedding layer.
This results in a differentiable embedding representation of the predicted output from the FFN. Red
color text denotes that the vector is equipped with its gradient information. The third stage incorpo-
rates GPT2 embedding layers for both knowledge text and meme text, along with the differentiable
embedding representation from the second stage and Mt. Ultimately, this stage reconstructs label
information using GPT2. At the inference stage, we generate explainable keywords by sampling
from this GPT2 model given the prompt.

diversity is not desirable. Similarly, too low diversity would also be undesirable because it entails
the repetitive nature of the retrieved keywords.

Intra-sample diversity. Mathematically we first calculate the word vectors (vi ∈ S) inside a sample
S for the word wi by GLoVe. The intra-sample diversity score (i1) is then defined as:

i1 =
1

N

N∑
i=1

∥vi − µ(vi)∥2 (11)

, where µ(vi) is the mean of the word vectors defined as µ(vi) =
1
N

∑N
i=1 vi and N is the number

of samples (typically N = 4) retrieved for one particular meme.

Inter-sample diversity. This is a dataset-wide metric. We measure how similar or dissimilar (on
average) two samples (a sample refers to N retrieved keywords specific to an input meme) are. This
is defined similarly to Intra-sample diversity as:

i2 =
1

M

N∑
i=1

∥µ(vi)− ψ(µ(vi))∥2 (12)

, where ψ(vi) =
1
M

∑N
i=1 vi and M is the number of samples in the dataset.
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[KB] Nazi Party are far-right political party in
Germany active between 1920 and 1945. [KB] Nazism
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Figure 5: Procedure to extract the knowledge text which is subsequently used as a prompt in the
GPT2 model in our proposed system.

Table 4: Plausibility (measured by cosine similarity) and Interpretability (measured by LAS) for
Llava extracted keywords compared to extracted keywords from our framework.

Metrics LlaVa Ours
Cosine Sim 0.56 0.64
LAS 0.15 0.09

E EXTRACTION OF KNOWLEDGE

Our proposed model leverages discrete knowledge obtained through sources, such as Wiki-
Data(Vrandečić & Krötzsch, 2014) and the Google Cloud Vision API. To formally describe our
approach, we begin by retrieving a set of n keywords (K = {k1, k2, ..., kn}).

For each keyword ki, we conduct a search in WikiData to find a corresponding description, denoted
as di.These pairs of keywords and their associated descriptions (ki and di) are then combined to
create knowledge texts (kti), which take the following structured form: “[KB] k1 are d1 .... [KB]
kn are dn, [CAPTION] ci”. Here, the placeholders [KB] and [CAPTION] serve as special tags
to represent the ki, di pairs, and the meme’s caption (ci) respectively. The term are functions as a
conjunction between each ki, di pair, ensuring the formation of coherent sentences. Captions (ci)
are generated using the OFA module(Wang et al., 2022). Figure 5 shows the process step-by-step.

F COMPARISON TO LLAVA

To compare fairly against MLLM (specifically Llava), we resort to the following steps:

We give a meme to Llava and ask it to generate whether it is offensive or not by giving it the prompt:
“Is this meme offensive?” The output in natural language is followed by another question: “Give
four one-word keywords that summarize your explanation.” which outputs four keywords just like
our model.

Subsequently, we compare the LAS score of the Llava-produced output to that of our proposed
model. A higher LAS score obtained by our model reflects higher faithfulness and thus higher
model interpretability. (obviously, the explanation in Natural Language is bound to be better than
our proposed method of retrieving contextual keywords but it is not fair to compare an NL output to
that of a set of keywords; therefore the 2nd step is done to extract relevant keywords from LlaVa).
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Table 5: Example memes from HarMeme dataset. We use our model in a zero-shot manner to extract
the salient keywords using our proposed framework.

Meme ID Ours

2067 disorder, clinic, effect, clinically
1516 socialist, criminals, economic
5425 hero, villain, horror, alien
5582 refugee, america, forced, presidential
5595 revealed, autistic, legitimate, diagnostic
5528 genocide, situation, acting, considered
5649 comedy, triggered, crisis, liberals
0581 responsible, widespread, delusional, genetic

Table 6: Sample keywords retrieved from LlaVa and our method for sample memes.
IDs GT LlaVa-1.5-13B Ours

01924 oppression, racism, anti-feminism, suicide-bombing Offensive, Violent, Comparison, Women’s rights racism, oppression, slavery, feminists
96328 racism, anti-white, derogatory, hospital racism, discrimination, harmful, offensive whites, bigot, refugee, racism
39862 anti-protestanism, inability, mocking, sarcasm Offensive, disrespectful, insensitive, inappropriate pedestrians, ter, pro, logic

Additionally, we pick 100 memes and manually annotate each one of them with a set of four key-
words. We measure cosine similarity between the bag-of-word of set A (retrieved from our model)
and Ground truth set (let’s call the average cosine similarity for this case for 100 memes as Cossim-
ours). Similarly, we get the average cosine similarity between the Llava set and ground truth for 100
memes (we call it Cossim-llava). Cossim-ours > Cossim-llava shows that our method fairs better in
terms of plausibility.

So, in summary when considering the richness of extracted keywords (not NL explanation, as this
would not be fair and it is out of the scope of our paper to compare against verbalized NL outputs),
our method fairs better for both faithfulness (i.e interpretability) and plausibility (i.e. explainability)
that state-of-the-art MLLM models like LlaVa.

Table 4 describes the value of cosine similarity (a measure of explainability) obtained for LlaVa and
our method and it also shows the obtained LAS score (a measure of interpretability). Some extracted
keywords are shown in Table 6. The relevant memes are shown in Figure 8.

G ZERO SHOT PERFORMANCE IN HARMEME DATASET

Some example data points are shown in Table 5 for which we show the interpretable keywords
extracted from our proposed framework. The corresponding memes can be seen in Figure 7. We
observe that for a particular meme, the corresponding keywords adequately describe the meme.

H QUALITATIVE ANALYSIS OF MEMES

The relevant memes related to the qualitative analysis are shown here due to space constraints.

I SCALE OF RELATEDNESS AND EXHAUSTIVENESS

Relatedness is defined as how much a set of generated keywords is relevant to the content of the
input meme, i.e. if all generated keywords are relevant to the meme, the score is five, and if none
of them are related, the score is one. The scores between two and four are given when some of the
keywords are relevant or partially relevant. In-between scores are subjectively rated by the evaluators
depending on their understanding.

Exhaustiveness is defined as the amount of coverage of the theme of a meme through keywords. If
the meme can be completely explained with the generated keywords, the score should be five, and if
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01276 13875

91768

98724

Figure 6: Related memes for qualitative analysis

the generated keywords are unable to convey any meaningful information about the meme and are
insufficient to explain it, the score is one.

J LIMITATION

1. Task Agnosticism and Generalizability: While our research paper presents a task-agnostic
method, it is crucial to acknowledge that the extent of its task-agnostic nature remains to be fully
explored. The current study focuses on a specific task, and the generalizability of the proposed
method to a broader range of tasks is an open question. Future research should investigate the
applicability and effectiveness of the proposed approach across diverse tasks to establish its true
task-agnostic capabilities.

2. Simple Keywords and Natural Language Output: The paper employs simple keywords for
interpreting model decision. While these keywords provide a foundational understanding, more
in-depth exploration is necessary to refine the language and generate precise natural language sen-
tences that effectively convey the nuances of the proposed model and the input meme used. Subse-
quent work should involve a detailed analysis and improvement of the language used, ensuring that
the conveyed message is accurate, clear, and well-structured in the form of a grammatically correct
sentence.

K MODALITY IMPORTANCE

Meme classification is multimodal task and it is essential to quantify importance of each modal-
ity for the corresponding explanation generated from our model. We qualitatively analyse four
memes where our framework is compared to text-only and image-only baselines. These baselines
are formed by only passing either textual or visual representation from the CLIP to the downstream
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Figure 7: Sample memes corresponding to the meme ids in Table 5. Memes are sorted from left to
right, top to bottom according to their IDs.

Figure 8: Sample memes corresponding to the meme ids in Table 6. Memes are sorted from left to
right according to their IDs in Table.
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pooling layer. See Section 3 for more details. From the qualitative analysis (Table 7) the following
things can be inferred:

1. Multimodal (Ours) representation achieves the best quality of retrieved keywords as expected.
Though it is closely rivalled by text only representation, for the last two memes (Id: 91768 an
13875), where our method fails to classify the offensiveness class, the text-only baselines perform
pretty poorly too. Even the extracted keywords do not make much sense.

2. Image only baselines perform pretty poorly. The performance is even poorer that text only
baselines. This is probably due to how the CLIP based filtering stage is designed, where the image
part of the meme is compared to the text part of the meme. This downstream process might lead
to non-sensical output when visual representation is used as the unimodal counterpart of textual
representation.

3. We tabulate the classification performance of these baselines in Table 8. As per with our intuition,
multimodal learning beats both unimodal (both textual and visual) representation based baselines.

Table 7: Sample Qualitative analysis of our proposed method’s output w.r.t unimodal baselines.
Memes corresponding to the underlined IDs are shown in the Appendix Section H.

Meme Ours Text-only Image-only

01276

philanthrop
words

encourage
happiness

philanthrop
words

encourage
happiness

philanthrop
words

encourage
happiness

98724

jews
holocaust

nazis
hitler

nazis
adolf

holocaust
jews

Adolf
jew

holocaust
nazis

91768
jew

holocaust
hitler

die
ger

dictator
propaganda

jew
holocaust

hitler
german

13875

cats
cat

lunch
eat

cats
cat

lunch
sat

none

Table 8: Unimodal and Multimodal performance of our proposed method for the task of offensive-
ness detection. Note we report final classification result as obtained from the LLM, not from the
intermediate classifier layer.

Metrics Text Vision Multimodal
Acc 70.29 66.35 75.64
F1 67.77 64.38 73.46
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