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ABSTRACT

Molecule discovery is a pivotal research field, impacting everything from the
medicines we take to the materials we use. Recently, Large Language Models
(LLMs) have been widely adopted in molecule understanding and generation,
yet the alignments between molecules and their corresponding captions remain
a significant challenge. Previous endeavours often treat the molecule as a general
SMILES string or molecular graph, neglecting the fine-grained alignments be-
tween the molecular sub-structures and the descriptive textual phrases, which are
crucial for accurate and explainable predictions. In this case, we introduce Mol-
ReFlect, a novel teacher-student framework designed to contextually perform the
molecule-caption alignments in a fine-grained way. Our approach initially lever-
ages a larger teacher LLM to label the detailed alignments by directly extracting
critical phrases from molecule captions or SMILES strings and implying them to
corresponding sub-structures or characteristics. To refine these alignments, we
propose In-Context Selective Reflection, which retrieves previous extraction re-
sults as context examples for teacher LLM to reflect and lets a smaller student
LLM select from in-context reflection and previous extraction results. Finally,
we enhance the learning process of the student LLM through Chain-of-Thought
In-Context Molecule Tuning, integrating the fine-grained alignments and the rea-
soning processes within the Chain-of-Thought format. Our experimental results
demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly out-
perform the previous baselines, achieving SOTA performance on the ChEBI-20
dataset. This advancement not only enhances the generative capabilities of LLMs
in the molecule-caption translation task, but also contributes to a more explainable
framework.

1 INTRODUCTION

Molecules are the fundamental units of matter, which normally consist of atoms held together by
chemical bonds. In various chemical and biological processes, molecules play a critical role in
participating in reactions (Grozinger & Schreiber, 2002), transmitting signals (Raymo & Giordani,
2001), and maintaining the structure and function of living organisms (Konieczny et al., 2023). It is
important to study molecules and their properties, which could benefit a wide range of fields, includ-
ing Pharmacology (Keiser et al., 2010), Agriculture (Twyman et al., 2003; Basaran & Rodrı́guez-
Cerezo, 2008), Material science (Higuchi et al., 2023), and Environmental Ecology (Nguyen et al.,
2017; Valavanidis et al., 2006).

As molecules can be represented by textual systems like SMILES (Weininger, 1988) and SELFIES
(Krenn et al., 2020), it is natural to adopt Large Language Models (LLMs) in molecule-related
tasks (Zhang et al., 2024). Specifically, LLMs could predict the molecular properties based on
the SMILES or SELFIES representations and generate molecules with desired properties, making
them helpful assistants for chemists. Correspondingly, Edwards et al. (2022) propose the molecule-
caption translation task to bridge the gap between molecular and natural language space, which
includes molecule captioning (Mol2Cap) and text-based de novo molecule generation (Cap2Mol).
In addition to text, several multi-modal methods, like MoMu (Su et al., 2022) and MolCA (Liu et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC

Carboxyl

The molecule is an acyclic carboxylic anhydride resulting from the formal condensation of
the carboxy groups of two molecules of dodecanoic acid. It derives from a dodecanoic acid.
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Dodecanoyl Dodecanoate

Figure 1: An illustration of the alignments between the molecular space and the language space.
The sub-structure patterns are highlighted with colours, and their corresponding caption phrases
are also coloured with the same colours to signify the alignments. Here, the molecule Dodecanoyl
Dodecanoate (CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC) is the reaction production of two do-
decanoic acids. Thus, it has an anhydride group, and there are 12 carbon atoms on each side of the
central oxygen atom.

2023), have been explored by introducing extra information from different modalities to the LLMs.
However, challenges still exist in the alignments between molecules and texts.

Current methods typically require an extra modality alignment stage, which suffers from the lack
of high-quality molecule-caption pairs. Furthermore, these methods still treat the whole molecule
as a general textual string or molecular graph, neglecting the granularity of alignments and the ex-
plainability of their methods. Specifically, sub-structures in the molecule, such as functional groups,
exactly determine the characteristics of the molecule described in the molecule caption. Similarly,
the characteristics described in the molecule caption also directly refer to specific sub-structures of
the molecule. For example, as shown in Figure 1, the molecule Dodecanoyl Dodecanoate is the
reaction production of the formal condensation of two dodecanoic acids, which turns two carboxyls
(RC(=O)OH) into an anhydride (RC(=O)OC(=O)R). Thus, it has an anhydride group and there are 12
carbon atoms on each side of the central oxygen atom. If LLMs could notice these patterns, they are
more likely to make accurate predictions. In this case, it is crucial to pay attention to the fine-grained
alignments between molecules and texts by focusing on decisive sub-structures and caption phrases.
Nevertheless, few works have paid attention to refining the granularity of alignments between molec-
ular sub-structures and their corresponding descriptive texts, as such fine-grained alignments often
require domain experts for the labelling, which is both costly and time-consuming.

To resolve the above challenges, we propose MolReFlect, a teacher-student framework inspired by
reflection tuning (Li et al., 2024b), which enables a larger teacher LLM to collaborate with a smaller
student LLM for in-context fine-grained alignments in the molecule-caption translation task. The
detailed model structure is shown in Figure 3. Generally, MolReFlect includes three stages: Zero-
shot Alignment Extraction, In-Context Selective Reflection, and Chain-of-Thought In-Context
Molecule Tuning (CoT-ICMT). Initially, the larger teacher LLM generates zero-shot alignments by
extracting important phrases from the molecule SMILES representations or molecule captions and
implies them to corresponding characteristics or sub-structure patterns in a zero-shot manner. To
improve the quality of the alignments, we further introduce In-Context Selective Reflection, which
first retrieves similar samples and their corresponding zero-shot alignments as in-context few-shot
examples so that the teacher LLM can reflect on them and then refine its responses. Following
this, the student LLM selects between the zero-shot alignments and reflected alignments with lower
perplexities to ensure that they could understand the knowledge taught by the teacher LLM and
further relieve the noises in the alignments. Finally, to help the student LLM better learn from
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(a) Naive Supervised Fine-tuning (naive-SFT)

(b) Instruction Tuning

(c) In-Context Molecule Tuning (ICMT)

(d) Chain-of-Thought In-Context Molecule Tuning (CoT-ICMT)

Instruction        LLM

       LLM

Instruction ...        LLM

Instruction ...        LLM

Figure 2: Comparisons of four different fine-tuning paradigms, including (a) Naive Supervised
Fine-tuning (naive-SFT), (b) Instruction Tuning (Wei et al., 2021), (c) In-Context Molecule Tun-
ing (ICMT) (Li et al., 2024a), and (d) our proposed Chain-of-Thought In-Context Molecule Tuning
(CoT-ICMT).

the fine-grained alignments, we develop a new fine-tuning paradigm, Chain-of-Thought In-Context
Molecule Tuning (CoT-ICMT). By reformatting the context examples within a thought chain of
input → alignments → target, the reasoning capabilities of LLMs can be better utilized.

To verify the effectiveness of our method and study the mechanisms behind MolReFlect, we design
a series of experiments on the ChEBI-20 dataset (Edwards et al., 2022). Experimental results have
shown that our method achieves state-of-the-art (SOTA) performance against all the baseline meth-
ods in both the Mol2Cap and Cap2Mol tasks. Meanwhile, the ablation studies also demonstrate the
effectiveness and mechanism of different stages in MolReFlect. Furthermore, detailed case stud-
ies are provided in Appendix C to explain how the fine-grained alignments between molecules and
texts improve the overall performance on the molecule-caption translation task with real cases. To
summarize, our contributions mainly lie in:

• MolReFlect explores the fine-grained alignments between molecules and texts in a human-
free manner. Our method can work with general LLMs without domain-specific pre-
training, providing a new solution to relieve the data hunger in the biochemical field.

• By integrating fine-grained alignments into the fine-tuning process of LLMs in the
molecule-caption translation task, MolReFlect contributes to a more explainable frame-
work, helping LLMs better understand the translation process between molecules and texts.

• MolReFlect achieves the SOTA performance in the molecule-caption translation task with-
out introducing extra modalities and intricate structures, further demonstrating the impor-
tance of in-context fine-grained alignments between molecules and texts.

2 PRELIMINARIES

Initially, we explain the differences between three previous fine-tuning paradigms illustrated in Fig-
ure 2 (a-c), including Naive-Supervised Fine-tuning, Instruction Tuning (Wei et al., 2021), and In-
context Molecule Tuning (Li et al., 2024a). Generally, given an LLM and its parameters θ, supposing
that the training set is D and (x, y) ∈ D denotes a molecule-caption pair from the training set, the
LLM ought to generate the response y ∼ pθ(.|x) based on the input text x. Notably, in this paper, x
refers to both the input molecule and input caption, while y refers to the corresponding target cap-
tion and target molecule. Naive supervised fine-tuning (naive-SFT) learns the mapping from input to
target x → y directly. Accordingly, the loss function of naive-SFT could be represented as follows:

Lnft(θ) =
∑

(x,y)∈D

[− log pθ(y|x)] . (1)

3
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* C1=CC=C(C=C1): This part
represents a benzene ring, which is a
six-membered ring with alternating
double bonds (aromatic ring).

* C1=CC=C(C=C1): This part represents a benzene ring, which is a six-membered
ring with alternating double bonds (aromatic ring).
* O: This represents a hydroxyl group (-OH) attached to the benzene ring.

The molecule is phenol, featuring a benzene ring with
a hydroxyl group (-OH) attached. It is weakly acidic,

forms hydrogen bonds, and is highly reactive in
electrophilic aromatic substitution due to the

activating effect of the hydroxyl group.

Retrieve Similar Examples Retrieve Similar Examples

Figure 3: The overall framework of MolReFlect.

Different from naive-SFT, Instruction Tuning (Wei et al., 2021) introduces instructions to guide the
generation of LLMs. Normally, instructions contain task-related information such as role identifica-
tion and additional knowledge. Formally, given the task instruction I , the loss function of Instruction
Tuning can be denoted as:

Lit(θ) =
∑

(x,y)∈D

[− log pθ(y|x, I)] . (2)

Inspired by In-Context Tuning (Chen et al., 2022), Li et al. (2024a) take a step further and propose
In-Context Molecule Tuning (ICMT) as a crucial stage of In-Context Molecule Adaptation (ICMA),
which introduces n similar molecule-caption examples {(xi, yi)}ni=1 ⊂ D. Therefore, the LLM
will make predictions based on the text content Cx→y = {P(xi, yi)}ni=1 and the mappings Fx→y =
{fi := xi → yi}ni=1 behind the context examples, where P denotes the prompt template. Thus, as
illustrated in Figure 2 (c), the loss function of ICMT can be written as:

Licmt(θ) =
∑

(x,y)∈D

[− log pθ(y|x, [Cx→y, Fx→y], I)] , (3)

3 MOLREFLECT

In this section, we introduce the MolReFlect framework. As depicted in Figure 3, MolReFlect
employs a teacher-student architecture, where an advanced (larger) language model serves as the
teacher, and a less sophisticated (smaller) language model acts as the student. The teacher LLM col-
laborates with the student LLM to fine-grain the in-context alignment between molecules and texts,
thereby enhancing the overall efficacy in the molecule-caption translation task. The MolReFlect
framework is organized into three principal stages: Zero-Shot Alignment Extraction, In-Context
Selective Reflection, and CoT-ICMT. We proceed to elaborate on each of these stages in sequence.

3.1 ZERO-SHOT ALIGNMENT EXTRACTION

Previously, the molecule-caption translation task treats a molecule as a general SMILES string m
and tries to let LLMs learn the direct mappings m ↔ c between the molecule SMILES string m and
the textual caption c. To refine the alignments, several multi-modal methods like MolCA (Liu et al.,
2023) have been proposed to incorporate molecule graph information gm and learn the direct map-
ping (m, gm) → c for the Mol2Cap task. Nevertheless, these methods still treat the molecule as a
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general SMILES sequence or molecular graph while ignoring the significance of detailed molecular
sub-structures.

Instead of directly learning the mappings from molecules to captions, MolReFlect aims to extract
fine-grained alignments K between the molecule SMILES strings and molecule captions, thereby
learning the mapping chains m → K → c and c → K → m. Typically, the fine-grained align-
ments should be labeled by professional chemists, which is not only challenging but also financially
prohibitive. As a result, LLMs have emerged as a viable alternative due to their advanced reasoning
capabilities and a certain degree of chemical knowledge. Within MolReFlect, we have developed
a zero-shot prompting strategy to empower the teacher LLM to engage in chain-of-thought (CoT)
reasoning (Wei et al., 2022). This allows the teacher LLM to distill critical fragments from the
molecule SMILES representations or captions, offering implications to their corresponding proper-
ties or sub-structure patterns. Formally, we have:

K0
c = pθT (.|c, I), K0

m = pθT (.|m, I), (4)

where θT represents the parameters of the larger teacher LLM, I is the CoT instruction, and K0
c and

K0
m signify the alignments extracted in a zero-shot manner from the molecule caption and SMILES

string, respectively.

3.2 IN-CONTEXT SELECTIVE REFLECTION

Despite the powerful capabilities of LLMs, they can still generate answers with hallucinations (Yao
et al., 2023). Their knowledge of chemistry is also limited due to the absence of domain pre-
training on chemical corpora, which can introduce noises into the zero-shot alignments. To mitigate
these potential noises and enhance the quality of zero-shot alignments, we propose a strategy that
allows the larger teacher LLM to self-reflect on the zero-shot extraction results through in-context
few-shot learning, where the previous zero-shot alignments are retrieved by similarity and serve
as context examples for reflection. From the perspective of the molecular similarity principle, we
do not calculate the similarity among the fine-grained alignments but follow the retrieval strategy
adopted in Li et al. (2024a). For caption-based retrieval, we calculate the caption similarities based
on the BM25 algorithm (Robertson et al., 2009) and retrieve top n similar captions {c1, c2, ..., cn}
ranked by the BM25 scores and their corresponding zero-shot alignments {K0

c1 ,K
0
c2 , ...,K

0
cn} for

the input caption c to form the context examples Cc:

Cc = {(c1,K0
c1), (c2,K

0
c2), ..., (cn,K

0
cn)} (5)

Similarly, for molecule retrieval, we employ a pre-trained Mole-BERT (Xia et al., 2022) as the graph
encoder and calculate the cosine similarities between the molecule graph embeddings. Top n similar
molecules {m1,m2, ...,mn} and their corresponding zero-shot alignments {K0

m1
,K0

m2
, ...,K0

mn
}

are retrieved for the input molecule m as the context examples Cm:

Cm = {(m1,K
0
m1

), (m2,K
0
m2

), ..., (mn,K
0
mn

)} (6)

Based on the input c or m, context examples Cc or Cm, and instruction I , we could obtain the in-
context reflected alignments K1

c or K1
m through the teacher LLM. Notably, the zero-shot alignments

of the current input are not wrapped into the context to prevent the LLM from directly repeating it,
and maintain consistent prompt formats across all instances:

K1
c = pθT (.|c, Cc, I), K

1
m = pθT (.|m,Cm, I), (7)

However, the context examples might also introduce noises that could misguide the reflection pro-
cess, potentially leading to a decline in the quality of the reflected alignments K1 compared to the
zero-shot alignments K0. Furthermore, the alignments generated by the teacher LLM can some-
times be too complex for the smaller student LLM to comprehend. Therefore, choosing the superior
one between K0 and K1 is essential. To avoid possible information leaks, an unsupervised metric is
required for selection. Specifically, we adopt the perplexity ppl as the metric from the information
theory perspective:

ppl(Kx, x) = log [−pθS (Kx|x)] , (8)

where x is the input, Kx denotes the corresponding alignments, and θS is the original parameters of
the smaller student LLM. Higher perplexity scores suggest the presence of information that conflicts
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with the existing knowledge of LLMs. Therefore, the student LLM used for perplexity calculation
is better to have some chemical knowledge like Galactiva-125M (Taylor et al., 2022) and can be
different from the student LLM used for CoT-ICMT. Between the zero-shot alignment and the in-
context reflected alignment, the one with lower perplexity will be selected:

Kc =

{
K0

c if ppl(K0
c , c) < ppl(K1

c , c),
K1

c elsewise, (9)

Km =

{
K0

m if ppl(K0
m,m) < ppl(K1

m,m),
K1

m elsewise, (10)

3.3 CHAIN-OF-THOUGHT IN-CONTEXT MOLECULE TUNING

While it is technically possible to leverage fine-grained alignments as contexts to allow the larger
teacher LLM to generate final predictions directly in a CoT manner, the teacher LLM still lacks
specialized pre-training on chemical corpora and is unfamiliar with the specific output distribution
of the dataset. Consequently, directly querying the larger teacher LLM for final generations usually
leads to unsatisfactory results. Furthermore, the cost of directly fine-tuning the larger teacher LLM
is prohibitively high, making it unaffordable for most institutions. Instead, we fine-tune the smaller
student LLM to learn from the fine-grained alignments provided by the larger teacher LLM. Notably,
in this phase, we prioritize the reasoning capabilities of the student LLM over their knowledge of
chemistry, so it can differ from the student LLM used to calculate perplexity.

In contrast to In-Context Molecule Tuning (Li et al., 2024a), CoT-ICMT organizes the fine-grained
alignments of both the input x and the context examples Cx into the CoT format. This CoT format
empowers LLMs to learn from the fine-grained alignments and the reasoning processes behind the
context examples, thereby facilitating more explainable training. During the process of CoT-ICMT,
top-n similar examples are retrieved via the same retrieval strategies mentioned in Section 3.2 and
then organized into the context with the CoT format to fine-tune the parameters of the smaller student
LLM. Formally, similar to Eq. 3, the loss function can be represented as follows:

Lcot−icmt(θ) =
∑

(x,y)∈D

[− log pθ(y|x,Kx, [Cx→Kx→y, Fx→Kx→y], I)] , (11)

where Kx denotes the fine-grained alignments of input x, Cx→Kx→y = {P(xi,Kxi , yi)}ni=1
represents the text content of context examples organized by the CoT format prompt P , and
Fx→Kx→y = {fi := xi → Kxi

→ yi}ni=1 denotes the mapping chains behind the context examples,
which map the original inputs to the fine-grained alignments and then further map the fine-grained
alignments to the final targets.

4 EXPERIMENTS

In this section, we first present our experiment setups and compare MolReFlect against existing
baselines. Then, we conduct a series of ablation experiments to validate our proposed framework,
focusing on the following specific research questions: (RQ1) Do fine-grained alignments improve
the performance in the molecule-caption translation task, and if so, how? (RQ2) Why is it necessary
to reflect and select between the zero-shot alignments and in-context reflected alignments? (RQ3)
What is the necessity of adopting a teacher-student framework?

4.1 EXPERIMENT SETUPS

Implementation Details. For the larger teacher LLM, we adopt the powerful Llama-3-70B-Instruct
model (Dubey et al., 2024), as its competitive performance against GPT-4 (Achiam et al., 2023)
makes it well-suited for the role of teacher. For the smaller student LLM, we mainly adopt Mistral-
7B-Instruct-v0.2 (Mistral-7B for short) (Jiang et al., 2023) for fair comparisons to ICMA (Li et al.,
2024a). In this work, we focus on the ChEBI-20 dataset (Edwards et al., 2022) and all the exper-
iments are conducted on Nvidia RTX A6000 and A100 GPUs. Appendix A provides more imple-
mentation details and hyper-parameter lists.
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Metrics. Regarding the evaluation metrics, we adopt the same settings as ICMA. We employ trans-
lation metrics for the Mol2Cap task, including BLEU-2,4 scores, ROUGE-1,2,L scores, and ME-
TEOR scores. Higher values in these metrics indicate that the generated molecule captions are more
aligned with the ground truth. For the Cap2Mol task, we employ a combination of translation and
molecule-specific metrics for evaluation, which includes BLEU, Exact Match, Levenshtein, three
Molecule Fingerprints scores, and a validity score. Except for the Levenshtein score, where a lower
value is preferable, higher scores across these metrics generally signify better model performance.

4.2 OVERALL PERFORMANCE COMPARISON

We compare our method with the baseline models across the two sub-tasks of the ChEBI-20 dataset.
Specifically, we select MolT5-large (Edwards et al., 2022), MolReGPT (Li et al., 2023a), MolCA
(for the Mol2Cap task only) (Liu et al., 2023), BioT5 (Pei et al., 2023), and ICMA (Li et al., 2024a)
as the baseline models. Notably, we adopt Mistral-7B as the smaller student LLM in the CoT-ICMT
stage of MolReFlect. The overall results are presented in Table 1 for the Mol2Cap task and in Table
2 for the Cap2Mol task. We will proceed to discuss the outcomes for each sub-task individually.

Table 1: Overall performance comparison for the Mol2Cap task on the ChEBI-20 dataset (Best,
Second Best). Except for MolReGPT, all the other methods involve fine-tuning LLMs on the ChEBI-
20 dataset.

Method BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
MolT5-large 0.594 0.508 0.654 0.510 0.594 0.614
MolReGPT 0.607 0.525 0.634 0.476 0.562 0.610

MolCA 0.639 0.555 0.697 0.558 0.636 0.669
BioT5 0.635 0.556 0.692 0.559 0.633 0.656
ICMA 0.651 0.581 0.686 0.550 0.625 0.661

MolReFlect 0.676 0.608 0.703 0.571 0.644 0.680

Mol2Cap Task. As indicated in Table 1, MolReFlect achieves the top scores across all evaluation
metrics. Significantly, with the same backbone model Mistral-7B, MolReFlect obtains a BLEU-2
score of 0.676 and a BLEU-4 score of 0.608, representing improvements of 3.8% and 4.6% over
ICMA, while maintaining superior ROUGE scores. In comparison to domain-specific pre-training
approaches such as BioT5 and multi-modal strategies like MolCA, MolReFlect still exhibits supe-
rior performance using a general-purpose LLM without any extra domain-pre-training or modality
alignment stages, thereby underscoring the importance of in-context fine-grained alignments be-
tween molecules and texts.

Table 2: Overall performance comparison for the Cap2Mol task on the ChEBI-20 dataset (Best,
Second Best). Except for MolReGPT, all the other methods involve fine-tuning LLMs on the ChEBI-
20 dataset.

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
MolT5-large 0.854 0.311 16.07 0.834 0.746 0.684 0.905
MolReGPT 0.857 0.280 17.14 0.903 0.805 0.739 0.899

BioT5 0.867 0.413 15.10 0.886 0.801 0.734 1.000
ICMA 0.855 0.460 18.73 0.916 0.837 0.789 0.958

MolReFlect 0.903 0.510 11.84 0.929 0.860 0.813 0.977

Cap2Mol Task. As evidenced in Table 2, MolReFlect also exhibits superior performance in the
Cap2Mol task. Compared to previous baselines such as ICMA, MolReFlect achieves a BLEU score
of 0.903 and generates a remarkable 51% exact matched molecules while obtaining a lower Leven-
shtein score. Moreover, MolReFlect achieves the highest molecule fingerprint scores, indicating that
the generations are more similar to the ground truths. Only the validity of generations is slightly be-
low the 100% validity of BioT5, as MolReFlect employs the SMILES representation of molecules.
However, using SMILES strings offers the advantage of requiring an extension of the tokenizer vo-
cabulary, which preserves the information from pre-training, and this limitation can be addressed
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through various sampling and string-filtering strategies. Given the size of the test set, the validity of
MolReFlect is quite satisfying, with only 60 incorrect SMILES out of 3300 generations.

Therefore, across both the Mol2Cap and Cap2Mol tasks, MolReFlect consistently demonstrates
state-of-the-art or comparable performance, affirming the effectiveness of our approach.

4.3 ABLATION STUDY & DISCUSSION

To enable a better understanding of MolReFlect, we conduct a series of ablation studies to resolve
the research questions that have been raised for discussion.

RQ1: Do fine-grained alignments improve the performance in the molecule-caption transla-
tion task, and if so, how?

For this question, we conduct an ablation study on MolReFlect by removing context examples and
fine-grained alignments, downgrading MolReFlect to Instruction Tuning and ICMT, respectively.
Meanwhile, we also provide the naive-SFT performance of Mistral-7B. The results are presented
in Table 3 and Table 4. It is evident that the naive-SFT results are actually unsatisfying as Mistral-
7B lacks specific pre-training on chemical corpora. Meanwhile, when only the context examples
are removed, the performances drop slightly but attain a BLEU-4 score of 0.539 on the Mol2Cap
task and a BLEU score of 0.886 on the Cap2Mol task, demonstrating a significant performance
improvement compared to naive-SFT. Notably, in the Cap2Mol task, the exact match score nearly
doubles compared to naive-SFT, indicating that the fine-grained alignments indeed convey much
molecular structure information to the student LLM. Furthermore, when fine-grained alignments
are removed during the fine-tuning phase, the performances drop in both Mol2Cap and Cap2Mol
tasks. This suggests that the LLMs are able to learn molecule-text alignments more effectively from
the fine-grained alignments in the context examples, leading to better final generations.

We also include several cases in Appendix C and conduct a series of extensive experiments in Ap-
pendix B for better explanation. As depicted in Figure 5, the larger teacher LLM can generate
preliminary indications towards the final target and even directly figure out the molecular structure
in fine-grained alignments. However, some of these indications might be inaccurate. With CoT-
ICMT, the smaller student LLM could learn from the input distribution, identify these errors, and
correct them in the final generation process. In this case, as illustrated in Figure 4, the output distri-
bution generated by MolReFlect aligns better with the ground truth. Conversely, MolT5 and ICMA
fail to achieve this owing to the lack of fine-grained alignments.

Table 3: Ablation analysis of MolReFlect for the Mol2Cap task performance (Mistral-7B-Instruct-
v0.2 as backbone). Above: Mistral-7B(naive-SFT) and MolReFlect; Middle: Ablating Context
Examples and Fine-grained Alignments; Below: Ablating In-Context Reflection and Selection.

Method BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
Mistral-7B(naive-SFT) 0.566 0.478 0.614 0.449 0.547 0.572

MolReFlect 0.676 0.608 0.703 0.571 0.644 0.680
w/o Context Examples 0.617 0.539 0.657 0.510 0.593 0.623

w/o Fine-grained Alignments 0.651 0.581 0.686 0.550 0.625 0.661

w/o In-Context Reflection 0.648 0.580 0.700(8) 0.568(3) 0.640(7) 0.678
w/o Selection 0.672 0.604 0.701(1) 0.568(1) 0.640(9) 0.677

RQ2: Why is it necessary to reflect and select between the zero-shot alignments and in-context
reflected alignments?

To resolve this question, we ablate MolReFlect by removing the in-context reflection and the se-
lection processes, which is equivalent to replacing the fine-grained alignments with zero-shot align-
ments and in-context reflected alignments, respectively. The details are shown in the last two rows
of Table 3 (for the Mol2Cap task) and Table 4 (for the Cap2Mol task). From Table 3, we can observe
that the results without in-context reflection lead to sub-optimal performance as the teacher LLM
could make mistakes or yield hallucinations, underscoring the necessity of in-context reflection.
However, the in-context reflected alignments are not necessarily better than zero-shot alignments, as
evidenced by Table 4. Sometimes, the zero-shot alignments of similar molecules/captions may con-
tain more noises, like hallucinations and factual errors, than helpful information and inadvertently
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become part of the context in the in-context reflection phase. The inaccuracies could then carry over
to the in-context reflected alignments, potentially harming the final performance. In this case, the
zero-shot alignments can be more helpful as the context examples do not pollute them. Therefore,
choosing between zero-shot alignments and in-context reflection alignments is imperative to ensure
the quality of fine-grained alignments.

From the information theory perspective, our objective is to provide LLMs with more helpful in-
formation and less noise while rigorously preventing any disclosure of information about the target.
Therefore, perplexity, an unsupervised metric, is an ideal criterion for the selection process. Higher
perplexity scores suggest the presence of information that conflicts with the existing knowledge
of LLMs, making it a reliable indicator for discerning the quality of the generated alignments. In
this work, we utilize the Galactica-125M as the student model to calculate perplexity, which is
particularly adept at chemical tasks and offers rapid computation. The alignments with the lower
perplexity scores are selected as the fine-grained alignments. According to Table 3 and 4, across
both the Cap2Mol and Mol2Cap tasks, MolReFlect consistently demonstrates superior performance
compared to those without in-context reflection or selection, thereby substantiating the effectiveness
of In-Context Selective Reflection and Selection.

Table 4: Ablation analysis of MolReFlect for the Cap2Mol task performance (Mistral-7B-Instruct-
v0.2 as backbone). Above: Mistral-7B(naive-SFT) and MolReFlect; Middle: Ablating Context
Examples and Fine-grained Alignments; Below: Ablating In-Context Reflection and Selection.

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
Mistral-7B(naive-SFT) 0.767 0.234 27.39 0.852 0.718 0.649 0.918

MolReFlect 0.903 0.510 11.84 0.929 0.860 0.813 0.977

w/o Context Examples 0.886 0.430 13.99 0.916 0.828 0.775 0.981
w/o Fine-grained Alignments 0.855 0.460 18.73 0.916 0.837 0.789 0.958

w/o In-Context Reflection 0.900(3) 0.502 11.94 0.926 0.855 0.807 0.979
w/o Selection 0.900(1) 0.496 12.86 0.927 0.858 0.808 0.980

RQ3: What is the necessity of adopting a teacher-student framework?

In this part, we address the last research question by removing the student model and completing the
tasks using only the teacher LLM (i.e., Llama-3-70B). Since the cost of fine-tuning the teacher LLM
is unaffordable for most institutions, we only test the performance of teacher LLM with prompt engi-
neering to avoid modifications of their parameters. Various prompting strategies are implemented to
enable the teacher LLM to undertake the molecule-caption translation tasks independently, including
direct prompting, chain-of-thought prompting, few-shot prompting, and few-shot chain-of-thought
prompting. Notably, in the chain-of-thought and few-shot chain-of-thought prompting, we utilize
the fine-grained alignments produced by the teacher LLM itself as context information. The results
of these experiments are detailed in Table 5 and 6.

It can be observed that while Llama-3-70B is a powerful LLM, its performance under direct prompt-
ing is notably weak, as it is not trained on the ChEBI-20 or a lot of chemical corpora, ensuring that
the information of the ChEBI-20 dataset is not leaked in its pre-training stage. In the Mol2Cap
task, the chain-of-thought strategy enhances the performance by introducing fine-grained align-
ments. However, in the Cap2Mol task, the performance declines by 1.05%, indicating that the
teacher LLM struggles to filter out the noise inherent in the fine-grained alignments without ex-
plicit supervisory signals. Similarly, in the few-shot setting, the fine-grained alignments also do not
contribute to a significant performance boost for the teacher LLM. In contrast, the student LLM
proves to be indispensable and could benefit from the CoT-ICMT process by enabling a better un-
derstanding of molecule-text alignments and identifying the noises behind fine-grained alignments.
As shown in Table 3 and 4, the Instruction Tuning (i.e., w/o Context Examples) performance in-
creases by 9.94% and 14.22% in the Mol2Cap and Cap2Mol tasks, respectively, compared to the
naive-SFT. This further underscores the necessity of discerning and mitigating noise within the fine-
grained alignments, suggesting that LLMs must engage in fine-tuning to learn from the fine-grained
alignments effectively. Thus, the teacher-student framework proves to be indispensable. It enables
the smaller student LLM to learn from the input distribution, discern noise in the content generated
by the teacher, and absorb valuable information to inform the final generation process.
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Table 5: Performance comparison of prompting strategies for the teacher LLM (Llama-3-70B-
Instruct) to perform the Mol2Cap task independently.

Method BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑ AVG IMP

Direct Prompting 0.071 0.038 0.220 0.093 0.192 0.139 -
Chain-of-Thought 0.149 0.075 0.249 0.089 0.204 0.179 41.80%

Few-shot Prompting 0.457 0.389 0.556 0.399 0.492 0.481 -
Few-shot Chain-of-Thought 0.474 0.382 0.523 0.349 0.449 0.476 -4.41%

Table 6: Performance comparison of prompting strategies for the teacher LLM (Llama-3-70B-
Instruct) to perform the Cap2Mol task independently.

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑ AVG IMP

Direct Prompting 0.417 0.032 46.91 0.711 0.474 0.411 0.666 -
Chain-of-Thought 0.380 0.033 47.46 0.708 0.476 0.407 0.683 -1.05%

Few-shot Prompting 0.773 0.134 22.53 0.869 0.748 0.679 0.751 -
Few-shot Chain-of-Thought 0.759 0.129 23.13 0.872 0.752 0.679 0.766 0.74%

5 RELATED WORK

LLMs have demonstrated great potential in Molecule Discovery, including molecule understand-
ing (Qian et al., 2023), optimization (Ye et al., 2023), and generation (Irwin et al., 2022). To align
molecule representation with natural language texts, the MolT5 study first proposed the molecule-
caption translation task, introducing a new dataset, ChEBI-20, with pairs of molecule SMILES
representations and their textual captions that describe the structural patterns and chemical proper-
ties (Edwards et al., 2021). Subsequent research has intensified the focus on this task, branching out
in two primary directions.

On one trajectory, the research leverages the in-context learning capability of LLMs and the simi-
larity principle of molecules to help LLMs learn the molecule-text alignment in context (Li et al.,
2023a). Advancing this approach, ICMA has developed In-Context Molecule Tuning (ICMT), sig-
nificantly enhancing the capabilities of LLMs in the molecule-caption translation task and reducing
the reliance on domain-specific pre-training (Li et al., 2024a). Concurrently, the other works involve
incorporating additional information from different modalities into LLMs. For instance, MoMu (Su
et al., 2022) adopts contrastive learning to align the output distribution of the text encoder with the
graph encoder, while the CLIP structure (Radford et al., 2021) is not good at generative tasks. In
this case, MolCA (Liu et al., 2023) introduce the 2D molecular graph with a Q-Former structure (Li
et al., 2023b) to enhance the performance of LLMs in the molecule captioning task. However, the 2D
molecular graphs do not actually bring extra information. as the conversion between the molecule
SMILES representation and its molecule graph is lossless. Meanwhile, 3D-MoLM (Li et al., 2024c)
adopts the similar Q-Former structure, but introduces 3D molecule information to LLMs. However,
the 3D information generated by RDKit (Landrum, 2013) is not accurate enough and is not closely
related to the molecule properties described in molecule captions.

6 CONCLUSION

In this study, we present MolReFlect, a novel teacher-student framework designed to refine the
in-context alignments between molecular sub-structures and their corresponding textual descrip-
tions. MolReFlect comprises three stages: Zero-shot Alignment Extraction, In-Context Selective
Reflection, and Chain-of-Thought In-Context Molecule Tuning. Fine-tuned with the fine-grained
alignments taught by the teacher LLM, the student LLM could benefit from the detailed alignments
between molecules and texts, enhancing the overall performance and contributing to a more explain-
able framework. Our experimental results reveal that MolReFlect outperforms all existing baselines.
Additionally, we also substantiate the superior explainability via comprehensive case studies. We
believe this work could inspire future works to focus on the granularity of molecule-text alignments
in this promising field.
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A DETAILED EXPERIMENT SETUP

Completions. For the larger teacher LLM, we adopt the vllm1 framework to deploy the int4 quan-
tized llama-3-70B-Instruct on the local devices as OpenAI compatible server2. On the other hand,
for the smaller student LLM, we utilize the huggingface transformers3 and Lora adapters (Hu et al.,
2021) for the fine-tuning process.

Table 7: Hyper-parameters for the larger teacher LLM.

Item Value

int4 True
temperature 0.75

top p 0.85
top k 40

num return sequences 1
max new tokens 512

number-of-examples 2

Table 8: Hyper-parameters for the smaller student LLM.

Item Value

macro batch size 32
micro batch size 1

steps 8000
warm-up steps 1000
cutoff length 4096

number-of-examples 2
learning rate 2e-4

lora r 32
lora alpha 64

lora dropout 0.1
int8 True
fp16 True

temperature 0.75
top p 0.85
top k 40

num return sequences 1
max new tokens 512

Hyper-parameters. For reproduction, we list all the hyper-parameters used in our framework,
including Table 7 for the prompting of the teacher LLM and Table 8 for the fine-tuning and testing
of the student LLM. Notably, we incorporate n = 2 examples in both in-context selective reflection
and Chain-of-Thought In-Context Molecule Tuning. Furthermore, the Llama-3-70B-Instruct is int4
quantized to allow inference on a single NVIDIA A6000 GPU for data-parallel acceleration, while
the Mistral-7B-Instruct-v0.2 is int8 and fp16 quantized during the fine-tuning process. We keep
similar generation parameters for both the teacher LLM and the student LLM.

1https://github.com/vllm-project/vllm
2https://platform.openai.com/docs/guides/chat-completions
3https://huggingface.co

14

https://github.com/vllm-project/vllm
https://platform.openai.com/docs/guides/chat-completions
https://huggingface.co


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXTENSIVE EXPERIMENTS

B.1 STATISTICS OF FINE-GRAINED ALIGNMENTS

We evaluate the quality of fine-grained alignments with perplexity and an additional metric, seman-
tic similarity, calculated by sentencebert (Reimers & Gurevych, 2019). As shown in Table 9 and 10,
as we select the fine-grained alignments by perplexity, the fine-grained alignments naturally inherit
the lowest perplexity score. However, it is interesting to see that for the Mol2Cap task, the lower
perplexity even indicates better semantic similarity to some extent, which is crucial for the gener-
ation of captions. Meanwhile, in the Cap2Mol task, selecting by lower perplexity also relieves the
decreased semantic similarity of the in-context reflected alignments, further justifying our design.

Table 9: Average semantic similarity and perplexity scores of different alignments and the original
molecules in the training set for the Mol2Cap task.

Item semantic similarity perplexity

molecules 0.2483 2.246
zero-shot alignments 0.4983 2.066

in-context reflected alignments 0.4985 2.070
fine-grained alignments 0.5029 1.995

Table 10: Average semantic similarity and perplexity scores of different alignments and the original
molecule captions in the training set for the Cap2Mol task.

Item semantic similarity perplexity

captions 0.2483 2.758
zero-shot alignments 0.2721 2.426

in-context reflected alignments 0.2377 2.351
fine-grained alignments 0.2524 2.230

B.2 POTENTIAL IN MOLECULE PROPERTY PREDICTION

Although our work is mainly focused on the molecule-caption translation task, we find its potential
in molecule property prediction tasks. Here, we evaluate the MolReFlect performance on the BACE
and BBBP tasks (Wu et al., 2018). The results are listed in Table 11. Here, we select Mistral-7B,
ICMA(Mistral-7B), and MolReFlect (Mistral-7B) to ensure a fair comparison.

Table 11: ROC-AUC (%) scores of MolReFlect on the BACE and BBBP task from the MoleculeNet
dataset (Wu et al., 2018) (Best, Second Best).

Tasks BACE BBBP

Mistral7B 0.4926 0.4829
ICMA 0.7995 0.6775

MolReFlect 0.8795 0.8925

The results show that MolReFlect achieves the best performance on the two molecule property
prediction tasks, showing the potential in generalizing to molecule property prediction tasks.
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B.3 PUBCHEM PERFORMANCE

To illustrate the generalization performance of MolReFlect, we conduct extensive experiments on
the PubChem dataset (Liu et al., 2023). The results are shown in Table 12 and Table 13.

Table 12: Mol2Cap Performance of MolReFlect on the PubChem dataset (Best, Second Best). Here,
Mistral-7B serves as the backbone LLM.

Method BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
Mistral-7B 0.361 0.288 0.471 0.325 0.419 0.421

MolReFlect w/o CoT-ICMT 0.369 0.297 0.482 0.342 0.433 0.431
MolReFlect 0.414 0.343 0.511 0.374 0.458 0.470

Table 13: Cap2Mol Performance of MolReFlect on the PubChem dataset (Best, Second Best). Here,
Mistral-7B serves as the backbone LLM.

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
Mistral-7B 43.84 8.2 74.16 73.08 57.72 47.19 86.6

MolReFlect w/o CoT-ICMT 74.39 14.45 30.23 79.87 66.24 56.02 95.5
MolReFlect 76.32 17.15 27.69 80.6 67.76 57.65 96.2

On both Mol2Cap and Cap2Mol tasks, MolReFlect demonstrates the best performance, significantly
boosting the generation quality. Meanwhile, the results also show a similar pattern to the ChEBI-20
dataset, which proves the generalization of MolReFlect.

B.4 MODEL AGNOSTICISM

To verify the model agnosticism of MolReFlect, we also conduct experiments on a different stu-
dent LLM, Llama-3-8B-Instruct. We also remove the context examples and fine-grained align-
ments for ablation purposes. The results are shown in Table 14 and 15. We could observe similar
patterns in Llama-3-8B-Instruct compared to Mistral-7B: MolReFlect still achieves the best per-
formance, and when removing context examples and fine-grained alignments, the performance all
drops. Meanwhile, MolReFlect also empowers Llama-3-8B-Instruct to achieve SOTA performance
on the ChEBI-20 dataset, further demonstrating the model agnosticism of our method.

Table 14: Mol2Cap Performance of MolReFlect when Llama-3-8B-Instruct serves as the student
LLM (Best, Second Best). We also compare the performance by removing the context examples
and fine-grained alignments for ablation purposes.

Method BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑
MolReFlect 0.672 0.605 0.703 0.571 0.644 0.678

w/o Context Examples 0.617 0.540 0.661 0.515 0.598 0.622
w/o Fine-grained Alignments 0.665 0.595 0.693 0.559 0.633 0.669

B.5 OUTPUT DISTRIBUTION

We also visualize the output distributions of different methods and the ground truth via sentence-
bert embeddings (Reimers & Gurevych, 2019), which are shown in Figure 4. It is evident that the
output distributions of MolT5 and ICMA are quite different: the caption distribution of MolT5 is
more dense, while the caption distribution of ICMA is more sparse. However, MolReFlect gener-
ates a similar output distribution compared to the ground truth, better comprehending the mappings
between molecules and texts.

B.6 STUDY OF MODEL ROBUSTNESS

To verify the robustness of MolReFlect, we perform the probing test, following the work of Ganeeva
et al. by transforming molecular SMILES into equivalent variants. Specifically, four different rules
are applied:
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Table 15: Cap2Mol Performance of MolReFlect when Llama-3-8B-Instruct serves as the student
LLM (Best, Second Best). We also compare the performance by removing the context examples
and fine-grained alignments for ablation purposes.

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
MolReFlect 0.896 0.472 13.33 0.925 0.846 0.797 0.979

w/o Context Examples 0.864 0.395 16.13 0.904 0.815 0.754 0.964
w/o Fine-grained Alignments 0.851 0.445 19.27 0.915 0.836 0.785 0.958

Caption
Distribution

Molecule
Distribution

MolT5 ICMA MolReFlect Ground Truth

Figure 4: Embedding distributions of molecules and captions.

• canonicalization: Transforming a SMILES string into the RDKIT canonical SMILES
string.

• hydrogen: Adding explicit hydrogen atoms into the SMILES string.
• kekulization: Transforming a SMILES string into the kekulized SMILES string.
• cycles: Randomly replacing cycle numerical identifiers with other random numbers.

Here, we compare MolReFlect with the following baselines: MolT5-base, MolT5-large Edwards
et al. (2022), Text+Chem T5-base, and Text+Chem T5-augm (Christofidellis et al., 2023). The
results are shown in Table 16.

Table 16: Results of robustness probing test. The performance on the original test set is labelled as
“original”. The best performance is bold and the second-best performance is underlined.

Probing Test MolT5-base Text+Chem T5-base MolT5-large Text+Chem T5-augm MolReFlect
ROUGE-2 METEOR ROUGE-2 METEOR ROUGE-2 METEOR ROUGE-2 METEOR ROUGE-2 METEOR

original 0.481 0.583 0.498 0.604 0.510 0.614 0.543 0.648 0.571 0.680
canonical 0.315 0.450 0.381 0.515 0.390 0.532 0.377 0.514 0.416 0.543
hydrogen 0.199 0.329 0.187 0.314 0.174 0.318 0.201 0.336 0.305 0.435

kekulization 0.333 0.475 0.413 0.574 0.405 0.546 0.410 0.546 0.443 0.569
cycles 0.417 0.540 0.483 0.600 0.566 0.603 0.4575 0.581 0.545 0.658

The results show that although Text+Chem T5-augm achieves better original performance than
MolT5-large, the augmentation makes it unrobust to the variance of molecule SMILES. However,
MolReFlect not only achieves the highest score on the original test set but also shows the best ro-
bustness across the four SMILES variants, further proving the superiority of our MolReFlect.
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C CASE STUDIES

C.1 FINE-GRAINED ALIGNMENT CASES

Caption Molecule

Molecule Caption

The molecule is an optically active
form of alpha-aminobutyric acid

having L-configuration. It has a role
as a human metabolite. It is an

alpha-aminobutyric acid and a non-
proteinogenic L-alpha-amino acid. It

is a conjugate acid of a L-2-
aminobutyrate. It is an enantiomer

of a D-alpha-aminobutyric acid. It is
a tautomer of a L-alpha-

aminobutyrate zwitterion.

Fine-grained Alignments (in Mol2Cap Task)

Fine-grained Alignments (in Cap2Mol Task)

The molecule is an aldimine and
a one-carbon compound. It

derives from a formaldehyde.
It derives from a hydride of a

methane.

SMILES:
CC[C@@H](C(=O)O)N

SMILES: C=N

(a) A case of fine-grained alignments mapping from captions to molecules

(b) A case of fine-grained alignments mapping from molecules to captions

Here are the key points extracted from the molecule caption: 
* Functional group: The molecule is an aldimine, which means it contains
a carbon-nitrogen double bond (C=N) with a hydrogen atom attached to
the nitrogen.
* Carbon content: The molecule is a one-carbon compound, indicating
that it contains only one carbon atom in its structure.
* Origin: The molecule derives from formaldehyde, which suggests that
it may have a similar structure or can be synthesized from
formaldehyde.
* Hydride of methane: The molecule derives from a hydride of
methane, implying that it may have a methane-like structure with a
hydrogen atom replaced by a different functional group or atom.

Molecule Analysis  
* Functional Groups:
  + Carboxyl group (-COOH): present in the molecule, indicating it's an organic acid 
  + Amino group (-NH2): present in the molecule, indicating it's an amino acid
* Number of Carbon Atoms:
  + The molecule contains 4 carbon atoms
* Configuration:  
  + The molecule has a chiral center at the third carbon atom (C[C@@H]), indicating it's
an optically active compound
* Group/Family:  
  + The molecule is an amino acid, specifically a non-essential amino acid 
  + It belongs to the family of alpha-amino acids
* Derivatives:
  + This molecule is a derivative of alanine, with a modified side chain
* Other Features:
  + The molecule has a branched side chain, which may affect its chemical properties
and biological activity 
  + The presence of the carboxyl and amino groups makes it a zwitterion, which can
affect its solubility and reactivity

Figure 5: Cases of Fine-grained Alignments. We could observe that the molecule structure and
characteristics have already been mentioned and aligned by the fine-grained alignments, which will
surely benefit the final generations.

C.2 CUSTOMIZED CASES

Captions MolT5 MolReFlectICMA

1

2

The molecule contains five
benzene rings and a couple of

hydrophobic groups. The
molecule can make hard

materials. The main function
of the molecule is to

strengthen the wings of the
areo planes.

The molecule contains two
benzene rings and a few

hydrophilic groups. The main
function of the molecule is to

cure cold.

Invalid

Invalid

Figure 6: Cases of Customized Examples for the Cap2Mol task. We follow the customized exam-
ples in Li et al. (2023a). Obviously, MolReFlect generates correct molecules in general, matching
the requirements mentioned in the customized cases, while MolT5 and ICMA fail to meet the re-
quirements.
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C.3 MOL2CAP CASES

Molecules MolT5-large Ground TruthICMA
(Mistral-7B)

1

2

3

4

5

6

MolReFlect
(Mistral-7B)

The molecule is an alicyclic
ketone that is cyclohexanone in
which the pro-S hydrogens at

positions 2, 3, and 4 are
substituted by methoxy, (2E)-6-
methylhept-2-en-2-yl, and acetyl

groups, respectively. It has a
role as an angiogenesis inhibitor.
It derives from a fumagalone.

The molecule is one of three
isomeric monoterpenes differing

in the positions of their two
double bonds (beta- and gamma-
terpinene being the others). In

alpha-terpinene the double bonds
are at the 1- and 3-positions of
the p-menthane skeleton. It has
a role as a volatile oil component

and a plant metabolite. It is a
monoterpene and a

cyclohexadiene.

The molecule is a cyclic ketone
and a ketone body. It has a role

as a human metabolite and an
angiogenesis inhibitor. It derives

from a cyclohexanone and a
fumagalone.

The molecule is an alicyclic
ketone that is cyclohexanone in
which the pro-S hydrogens at

positions 2, 3, and 4 are
substituted by methoxy, (2E)-6-
methylhept-2-en-2-yl, and acetyl

groups, respectively. It has a
role as an angiogenesis inhibitor.
It derives from a fumagalone.

The molecule is an amino
tetrasaccharide in which an

alpha-L-fucosyl residue is linked
(1->2) to the middle galactosyl

residue of an N-acetyl-alpha-D-
galactosaminyl-(1->4)-beta-D-

galactosyl-(1->4)-N-acetyl-beta-
D-glucosamine trisaccharide. It
has a role as an epitope. It is a

galactosamine oligosaccharide, a
glucosamine oligosaccharide and

an amino tetrasaccharide.

The molecule is an
indolylmethylglucosinolate that is

the conjugate base of 4-
methoxyglucobrassicin. It is a

conjugate base of a 4-
methoxyglucobrassicin.

The molecule is an
indolylmethylglucosinolate that is

the conjugate base of 4-
methoxyglucobrassicin, obtained

by deprotonation of the sulfo
group. It is a conjugate base of a

4-methoxyglucobrassicin.

The molecule is an
indolylmethylglucosinolate that is

the conjugate base of 4-
methoxyglucobrassicin, obtained

by deprotonation of the sulfo
group. It is a conjugate base of a

4-methoxyglucobrassicin.

The molecule is a branched amino
tetrasaccharide comprising N-
acetyl-D-galactosamine at the
reducing end with an alpha-D-

galactosyl-(1->3)-[alpha-L-
fucosyl-(1->2)]-beta-D-galactosyl

moiety attached at the 3-
position. It is an amino
tetrasaccharide and a

galactosamine oligosaccharide.

The molecule is the dihydrate of
the sodium salt of loxoprofen. A
prodrug that is rapidly converted

to its active trans-alcohol
metabolite following oral

administration. It has a role as a
non-steroidal anti-inflammatory
drug, a non-narcotic analgesic, an

antipyretic, an EC 1.14.99.1
(prostaglandin-endoperoxide

synthase) inhibitor and a
prodrug. It contains a loxoprofen

sodium. It derives from a
loxoprofen.

The molecule is a hydrate that is
the dihydrate form of

loxoprofen sodium. A prodrug
that is rapidly converted to its
active trans-alcohol metabolite
following oral administration. It
has a role as an antipyretic, a
non-narcotic analgesic, a non-

steroidal anti-inflammatory drug
and an EC 1.14.99.1

(prostaglandin-endoperoxide
synthase) inhibitor. It contains a

loxoprofen sodium.

The molecule is a hydrate that is
the dihydrate form of

loxoprofen sodium. The parent
acid, loxoprofen, is a prodrug

that is rapidly converted into its
active trans-alcohol metabolite
following oral administration. It

has a role as a non-steroidal anti-
inflammatory drug, a non-

narcotic analgesic, an EC 1.14.99.1
(prostaglandin-endoperoxide

synthase) inhibitor and an
antipyretic. It contains a

loxoprofen sodium.

The molecule is a tricyclic
triterpenoid isolated from Poria
cocos. It has a role as a fungal
metabolite. It is a dicarboxylic
acid, a secondary alcohol and a

tricyclic triterpenoid.

The molecule is a member of the
class of formamides that is

formamide in which one of the
amino hydrogens has been
replaced by a butyl group.

The molecule is a member of the
class of caprolactams that is

epsilon-caprolactam which has
been formally dehydrogenated to
give the corresponding aldehyde.
It has a role as a metabolite. It
is an aldehyde and a member of

caprolactams. It derives from an
epsilon-caprolactam.

The molecule is a member of the
class of formamides that is

formamide substituted by a butyl
group at the N atom. It has a
role as a human metabolite. It

derives from a formamide.

The molecule is an arabinaric
acid. It is a conjugate acid of a

L-arabinarate(1-). It is an
enantiomer of a D-arabinaric

acid.

The molecule is the (S)-
enantiomer of 3-sulfolactic acid.
It is a conjugate acid of a (S)-3-

sulfonatolactate(2-). It is an
enantiomer of a (R)-3-sulfolactic

acid.

The molecule is the (R)-
enantiomer of 3-sulfolactic acid.
It is a conjugate acid of a (R)-3-

sulfonatolactate(2-). It is an
enantiomer of a (S)-3-sulfolactic

acid.

The molecule is the (R)-
enantiomer of 3-sulfolactic acid.
It is a conjugate acid of a (R)-3-
sulfolactate. It is an enantiomer

of a (S)-3-sulfolactic acid.

The molecule is an optically active
form of tyrosine having L-

configuration. It has a role as an EC
1.3.1.43 (arogenate dehydrogenase)

inhibitor, a nutraceutical, a
micronutrient and a fundamental
metabolite. It is an erythrose 4-
phosphate/phosphoenolpyruvate

family amino acid, a proteinogenic
amino acid, a tyrosine and a L-alpha-

amino acid. It derives from a L-
tyrosinal. It is a conjugate base of a
L-tyrosinium. It is a conjugate acid

of a L-tyrosinate(1-). It is an
enantiomer of a D-tyrosine. It is a

tautomer of a L-tyrosine zwitterion.

The molecule is an amino
trisaccharide that is 2-
acetamido-2-deoxy-D-

glucopyranose in which the
hydroxy groups at positions 3

and 4 have been converted into
the corresponding beta-D-

galactopyranosyl and alpha-L-
fucopyranosyl derivatives,
respectively. It is an amino

trisaccharide and a member of
acetamides. It derives from an
alpha-L-Fucp-(1->4)-D-GlcpNAc.

The molecule is an amino
trisaccharide consisting of N-

acetylglucosamine having a
fucosyl residue attached at the
4-position via a beta-linkage and
a galactosyl residue attached at

the 3-position via an alpha-
linkage. It has a role as an

epitope. It is an amino
trisaccharide and a glucosamine

oligosaccharide.

The molecule is an amino
trisaccharide consisting of N-

acetylglucosamine having a
fucosyl residue attached at the
4-position via an alpha-linkage

and a galactosyl residue attached
at the 3-position via a beta-
linkage. It has a role as an

epitope and an antigen. It is an
amino trisaccharide and a

glucosamine oligosaccharide.

Figure 7: Cases for the Mol2Cap task.
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C.4 CAP2MOL CASES

Captions MolT5 Ground TruthMolReFlect
(Mistral-7B)

1

2

3

4

5

6

ICMA
(Mistral-7B)

The molecule is a
monocarboxylic acid comprising
uracil having a carboxymethyl
substituent at the 6-position.
It derives from a uracil and an

acetic acid.

The molecule is a non-proteinogenc
L-alpha-amino acid that is L-alpha-
aminobutyric acid in which one of

the hydrogens of the terminal
methyl group has been replaced by a

dihydroxy(oxido)-lambda(5)-
phosphanyl group. It is a potent and
selective agonist for the group III
metabotropic glutamate receptors
(mGluR4/6/7/8). It has a role as a
metabotropic glutamate receptor

agonist. It is a non-proteinogenic L-
alpha-amino acid and a member of

phosphonic acids.

The molecule is an organoiodine
compound that is tetradecane

substituted by an iodo group at
position 1. It has a role as a

metabolite.

The molecule is an L-cysteine
thioether that is S-(2E,6E)-
farnesyl-L-cysteine bearing a
hydroxy substituent on the

pro-Z-methyl group at the 12-
position. It derives from a S-

farnesyl-L-cysteine.

The molecule is a member of the
class of biindoles that is indirubin

substituted at position 6 by a bromo
group and in which the keto group at

position 3' has undergone
condensation with hydroxylamine to
form the corresponding oxime. It
has a role as an EC 2.7.11.1 (non-
specific serine/threonine protein

kinase) inhibitor and an EC 2.7.11.26
(tau-protein kinase) inhibitor. It is a

ketoxime, an organobromine
compound, a member of oxindoles

and a biindole.

The molecule is a 2-chloro-N-(2,4-
dimethylthiophen-3-yl)-N-[(2R)-1-

methoxypropan-2-yl]acetamide that
has R configuration. It is the

inactive enantiomer; its (active)
enantiomer is the herbicide known as
dimethenamid-P; the racemate is the

herbicide dimethenamid. It is an
enantiomer of a dimethenamid-P.

Figure 8: Cases for the Cap2Mol task.
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D PROMPT TEMPLATES

We list all the prompt templates applied in our work here. Figure 9 is the prompt template for Zero-
shot Alignment Extraction, while Figure 10 shows the prompt templates for In-Context Selective
Reflection. Additionally, Figure 11 shows the templates for MolReFlect without context examples,
and Figure 12 illustrates the prompt templates for CoT-ICMT. All the templates are designed to fit
the chat template of LLMs with roles including system, user, and assistant.

<User>: Here is a molecule caption that describes the properties of the molecule:
```
{caption}
```
Please help extract fine-grained alignments from the molecule caption. The fine-grained
alignments should describe the structure and chemical features of the molecule. Your
answer should follow the markdown format, using '*' to organize your answer into several
points.

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

<User>: Here is a molecule represented by SMILES strings:
```
{molecule}
```
Please help extract fine-grained alignments from the molecule structure. The fine-grained
alignments should indicate the structure patterns, such as important functional groups,
number of carbon atoms, configuration, group/family, derivatives, and anything that may
affect the chemical features of the molecule. Your answer should follow the markdown
format, using '*' to organize your answer into several points.

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

(a) Mol2Cap

(b) Cap2Mol

(a) Mol2Cap

Figure 9: Prompt templates for Zero-shot Alignment Extraction.
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<User>: Example {n}:
```
Molecule: {molecule_n}
Molecule fine-grained alignments: {alignments_n}
```

Based on above examples, now, here is a molecule represented by SMILES strings:
```
{molecule}
```
Please help extract fine-grained alignments from the molecule structure. The fine-grained
alignments should indicate the structure patterns, such as important functional groups,
number of carbon atoms, configuration, group/family, derivatives, and anything that may
affect the chemical features of the molecule. You could gain insight from the similar
examples, but the examples are not necessarily correct. You could first analyse the
examples then give your final answer. Notably, your answer should follow the markdown
format, using '*' to organize your answer into several points.

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

<User>: Example {n}:
```
Molecule Caption: {caption_n}
Caption fine-grained alignments: {alignments_n}
```

Based on above examples, now, here is a molecule caption that describes the properties of
the molecule:
```
{caption}
```
Please help extract fine-grained alignments from the molecule caption. The fine-grained
alignments should describe the structure and chemical features of the molecule. You could
gain insight from the similar examples, but the examples are not necessarily correct. You
could first analyse the examples then give your final answer. Notably, your answer should
follow the markdown format, using '*' to organize your answer into several points.

(b) Cap2Mol

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

(a) Mol2Cap

Figure 10: Prompt templates for In-Context Selective Reflection.
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<User>: Now please generate the SMILES representation of the molecule. You answer
should be concluded to the JSON format, such as {'molecule': 'MOLECULE SMILES'}.

<User>: Now please generate the molecule caption. You answer should be concluded to the
JSON format, such as {'caption': The molecule is 'MOLECULE CAPTION CONTENT'}.

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

<User>: Here is a molecule caption that describes the properties of the molecule:
```
{caption}
```
Please help extract fine-grained alignments from the molecule caption. The fine-grained
alignments should describe the structure and chemical features of the molecule.

<Assistant>: {alignments}

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

<User>: Here is a molecule represented by SMILES strings:
```
{molecule}
```
Please help extract fine-grained alignments from the molecule structure. The fine-grained
alignments should indicate the structure patterns, such as important functional groups,
number of carbon atoms, configuration, group/family, derivatives, and anything that may
affect the chemical features of the molecule.

<Assistant>: {alignments}

(a) Mol2Cap

(b) Cap2Mol

Figure 11: Prompt templates for MolReFlect (w/o Fine-grained Alignments).
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<User>: Example {n}:
```
Molecule Caption: {caption_n}
Caption fine-grained alignments: {alignments_n}
Molecule: {molecule_n}
```

Based on above examples, now, here is a molecule caption that describes the properties of
the molecule:
```
{caption}
```
Please help extract fine-grained alignments from the molecule caption. The fine-grained
alignments should describe the structure and chemical features of the molecule. 

<User>: Example {n}:
```
Molecule: {molecule_n}
Molecule fine-grained alignments: {alignments_n}
Molecule Caption: {caption_n}
```

Based on above examples, now, here is a molecule represented by SMILES strings:
```
{molecule}
```
Please help extract fine-grained alignments from the molecule structure. The fine-grained
alignments should indicate the structure patterns, such as important functional groups,
number of carbon atoms, configuration, group/family, derivatives, and anything that may
affect the chemical features of the molecule. 

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

<User>: Now please generate the molecule caption. You could gain insight from the similar
examples, but the examples are not necessarily correct.

<Assistant>: {alignments}

<User>: Now please generate the SMILES representation of the molecule. You could gain
insight from the similar examples, but the examples are not necessarily correct.

<Assistant>: {alignments}

<System>: You are an assitant of a chemist user. Please follow the instruction of the
chemist and complete the chemistry tasks.

(a) Mol2Cap

(b) Cap2Mol

Figure 12: Prompt templates for Chain-of-Thought In-Context Molecule Tuning (CoT-ICMT).
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