
Under review as a conference paper at ICLR 2022

HYPOTHESIS-TEST DRIVEN COORDINATE ASCENT
FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This work develops a novel black box optimization technique for learning policies
for stochastic environments. Through combining coordinate ascent with hypothe-
sis testing, Hypothesis-test Driven Coordinate Ascent (HDCA) optimizes without
computing or estimating gradients. The simplicity of this approach allows it to ex-
cel in a distributed setting; its implementation provides an interesting alternative to
many state-of-the-art methods for common reinforcement learning environments.
HDCA was evaluated on various problems from the MuJoCo physics simulator
and OpenAI Gym framework, achieving equivalent or superior results to standard
RL benchmarks.

1 INTRODUCTION

In recent years, Reinforcement Learning (RL) techniques have contributed to striking advancements
in artificial intelligence. From mastering complicated games like Go (Silver et al., 2017) to au-
tonomous helicopter flight (Ng et al., 2006), RL agents continue to make impressive strides. RL is
primarily concerned with discovering a policy that encodes a mapping from states to actions that
optimizes rewards within a given environment. This work proposes a method for learning policies
in stochastic environments where agent performance is evaluated via a black box function.

Much of RL focuses on Markov Decision Processes (MDPs), where an agent’s actions are chosen to
maximize the expected value of a reward function over time (Russell & Norvig, 2019). Due to the
inherent variability within real-world problem domains, the outcome of these actions depends on the
action taken and noise within the environment. MDPs treat time as a discrete quantity, where actions
are chosen at each time step based on a learned policy that leads the agent to a new state. Different
states correspond to specific rewards, which are used to refine the policy parameters. Typically,
parameter updates are taken in the direction that maximizes the expected reward and often involve
calculating (or approximating) gradients.

The function of interest is opaque for black box optimization (BBO); only point-wise evaluations
are possible and the true gradient is inaccessible. As a result, gradient-based techniques must ap-
proximate the true gradient through function sampling and calculating mean and variance estimates.
Calculating reliable estimates can be difficult in practice and is made especially challenging by the
stochastic nature of MDPs. While various gradient-based BBO methods have found success (Mania
et al., 2018; Salimans et al., 2017; Bibi et al., 2020), they may converge to local optima and can
be slow to converge for complex domains. As an alternative to gradient approximations, we pro-
pose Hypothesis-test Driven Coordinate Ascent (HDCA), which leverages the use of derivative-free
optimization (DFO) techniques operating on a black box function.

Our first major insight is to leverage coordinate ascent to decompose the large search space of the
original policy optimization problem into a sequence of sub-problems with smaller search spaces
(Wright, 2015). By considering simple enough sub-problems, we are able to optimize each iterate
using a basic random search with uniform sampling from a defined search range. This process in-
volves generating batches of candidate solutions at each iteration and updating the policy to the best
performing candidate. While there are numerous methods to explore the high-dimensional policy
space, other more informed search policies, such as Importance Sampling (Bibi et al., 2020), in-
volve significant computational overhead as well as additional reliance on approximated gradients.
Uniform sampling avoids these complications and allows us to take full advantage of modern ad-
vances in parallel and distributed computing. While sufficiently exploring the perturbation space

1



Under review as a conference paper at ICLR 2022

may require generating several candidate solutions, each model evaluation may be done entirely in
parallel of the other candidates. Therefore, with appropriate computational resources, our method
can converge in fewer iterations than other current methods.

Our second major insight is to account for the stochastic nature of our optimization problem. That
is, the cumulative reward is a stochastic quantity whose distribution depends on the stochastic policy
and environment. Thus, one must estimate the expected cumulative reward with finite samples of
rollouts. This leads to variance and uncertainty about true expectations of cumulative rewards for
candidate solutions. The stochastic nature (and finite sample estimation) of the cumulative reward
criterion has been largely ignored by previous BBO approaches, where the mean over rollouts is
(incorrectly) taken as the ground truth criterion. In practice this may result in updates that happen
to perform better by chance, rather than due to policy improvement. Here, we develop a principled
approach that accounts for stochasticity with one-sided, two-sample hypothesis tests to update policy
parameters based on statistical significance.

Lastly, we perform several experiments and ablations to empirically study HDCA. When evaluated
on a sample of RL control problems, we found HDCA to consistently converge to a solution in
fewer iterations than other comparable methods. Given HDCA’s highly scalable nature, the reduced
number of iterations required to find a solution translates to quicker training time given adequate
computational resources.

2 METHODS

2.1 MARKOV DECISION PROCESS

An MDP describes an environment where an agent acts within a fully observable, stochastic domain
to maximize its expected cumulative discounted reward (Russell & Norvig, 2019). The environment
can be described as a set of states, S, along with a set of actions, A, that can be taken to transition
between states. The transition function p(s′|s, a) describes the probability that taking action a in
state s leads to state s′, and the reward function R(s, a) describes the reward received for taking
action a in state s.

A solution to an MDP is represented as a policy πθ, encoded by parameters θ, that maps states to
a distribution over actions in a way that maximizes accumulated rewards. This paper focuses on
environments where the reward function acts as a black box.

2.2 COORDINATE ASCENT

Our first insight is to use coordinate ascent to decompose the problem of optimizing the large policy
parameter space into a sequence of smaller, more feasible, sub-problems. Coordinate ascent max-
imizes a function f(θ) by successively maximizing sub-problems with respect to varying a single
coordinate at a time. Similarly, block coordinate ascent iterates through blocks of coordinates and
updates a subset of multiple coordinates sequentially (Tseng, 2001) (see Algorithm 1).

Choose θ0 ∈ Rd;
Set i← 0;
repeat

Given θi, choose a block of coordinates b in the set {1, ..., d} and compute new iterate θi+1

that satisfies;

θi+1
b ∈ arg max

θb

f(θp, θb) (1)

θi+1
p = θip,∀p /∈ b (2)

i← i+ 1;
until termination test satisfied;

Algorithm 1: Block Coordinate Ascent

We approximate coordinate ascent optimization to maximize policy parameters θ without gradients.
To do so, we numerically optimize the sub-problem for a block of coordinates, rather than analyt-

2



Under review as a conference paper at ICLR 2022

ically solving it. If the dimension of the block of coordinates being updated is small, even simple
numerical optimization techniques yield good estimates of optimal updates. We propose approxi-
mate block coordinate ascent (ABCA), which simply performs a random search over the coordinates
of the block that is being maximized (see Algorithm 2).

The primary benefit of utilizing ABCA is that optimization occurs without the use of gradient ap-
proximation, which can be challenging even for deterministic functions. When applied to rein-
forcement learning, the difficulties are exacerbated by the stochastic dynamics of many real-world
RL problems, which lead to noisy function evaluations and rough approximations of the gradient.
When combined with a potentially non-convex reward function, following an inaccurate gradient can
lead to sub-optimal solutions and slow convergence. ABCA permits us to avoid gradient estimation
altogether and instead make updates using simple global numerical techniques that are feasible for
the smaller sub-problems.

We can see from Algorithm 2 that the update rule simply takes the policy corresponding to the
highest empirical average cumulative reward within each batch of perturbed θ values for a block
of coordinates. This differs from typical gradient estimation, where the update rule is implemented
as a weighted sum across the batch of perturbed coordinates. For example, in the popular Evolu-
tionary Strategies approach discussed in Sec. 3, updates are computed via an average (Eq. 12)
over perturbations. Due to the concentration of empirical means, this results in diminishing returns
as one increases the number of perturbations per update (iteration). In contrast, ABCA considers
a maximum over perturbations, and thus is able to see greater returns as we increase the number
of perturbations considered per update. As one may compute trajectories, t(j)m , and cumulative re-
wards, R(t

(j)
m ), in parallel, the better utility of perturbations implies that ABCA is able to take better

advantage of the benefits of distributed computing compared to gradient estimation techniques.

Input: Initial policy parameters θ0 ∈ Rd;
Hyperparameters: Search range s, number of noise samples n, Number of coordinates per

block c, number of rollouts in mean calculation M ;
Set i← 0;
repeat

Let coordinate block b consist of c randomly selected coordinates from the set {1, ..., d};
Sample εj,k ∼U(s) for j = 1, ..., n, and k ∈ b;
Let θ̂(j) be the jth candidate optimizer (perturbation) over block b with values:

∀q ∈ {1, . . . , d} \ b, θ̂(j)q ← θiq, ∀k ∈ b, θ̂(j)k ← θik + εj,k (3)

Using the policy samples ai ∼ πθ̂(j)(si) and environment samples si+1 ∼ p(si+1 | si, ai),
generate M rollouts t(j)m , and compute respective cumulative rewards R(t

(j)
m ),

∀m ∈ {1, . . . ,M}:

t(j)m ←
{

(s
(j)
m,0, a

(j)
m,0), (s

(j)
m,1, a

(j)
m,1), . . .

}
R(t(j)m ) =

∑
(s,a)∈t(j)m

R(s, a) (4)

Update θ based on the empirical average cumulative rewards
R̄(θ̂(j))← 1

M

∑M
m=1 R(t

(j)
m ):

j← arg max
j

R̄(θ̂(j)), θi+1 ← θ̂(j) (5)

i← i+ 1;
until termination test satisfied;

Algorithm 2: Approximate Block Coordinate Ascent (ABCA)

2.3 HYPOTHESIS TESTING

Our second insight is to note that, unlike deterministic optimization, the stochastic nature of our
optimization problem (through the environment dynamics and stochastic policy) requires a careful
consideration of variance over expected rewards when comparing different perturbations in ABCA

3



Under review as a conference paper at ICLR 2022

iterates. That is, as we are enumerating random policies, it may be due to chance, rather than
an improvement in parameters, that the average reward for a candidate optimizer perturbation is
greater. Below we propose to account for the stochasticity of expected reward approximations using
hypothesis testing.

Given the variance in the sequence of states encountered during policy rollouts, the cumulative
reward can be highly variable, and thus selecting the policy corresponding to the empirical maximum
reward may not lead to improved overall performance. To generate a more accurate assessment of a
given model’s expected reward, we make multiple function evaluations for each perturbed θ̂(j) (see
Eq. 4) and compute corresponding mean and variance estimates from the set of policy rollouts:

R̄(θ̂(j))← 1

M

M∑
m=1

R(t(j)m ), σ2
R(θ̂(j))

← 1

M

M∑
m=1

(R(t(j)m )− R̄(θ̂(j)))2. (6)

We are ultimately interested in determining if there is a perturbed model that is statistically demon-
strated to yield a higher expected reward than our current model, thus a one-sided, two-sample t-test
is best suited for this task (NIST/SEMATECH, 2003). Since our policy perturbations at any given
iteration are selected from a uniform distribution, it is likely that some of the perturbed models will
lead to worse overall performance. Additionally, since function evaluations represent independent
environment rollouts, the data in our two-sample t-test is unpaired. Operating under the likelihood
that the variances of the two samples are not equivalent, the test statistic, T , for the two-sample
t-test is calculated as: T = (µ1 − µ2)/

√
σ2
1/N1 + σ2

2/N2 where µi, σi, and Ni correspond to the
ith sample’s mean, standard deviation, and sample size, respectively (Cressie & Whitford, 1986).

In our method, we seek to compare the rewards of candidate policy parameters θ̂(j) to the rewards
of the current iterate θi; thus, test statistics are derived from the respective means and variances for
reward:

Tj =
R̄(θ̂(j))− R̄(θi)√

σ2
R(θ̂(j))

/M + σ2
R(θi)/M

(7)

The null hypothesis H0 for this test is that the expected performance of the current policy is greater
than or equal to the perturbed policy that is being compared. Since we are only interested in models
with higher expected rewards, we reject the null hypothesis if

Tj > t1−α,νj , (8)

where t corresponds to the critical value of the t distribution with significance threshold α and νj
degrees of freedom, calculated as

νj =

(
σ2
R(θ̂(j))

/M + σ2
R(θi)/M

)2
(σ2

R(θ̂(j))
/M)2/(M − 1) + (σ2

R(θi)/M)2/(M − 1)
. (9)

Finally, the update step concludes by updating the model to the perturbed θ̂ with the highest degree
of statistical evidence to outperform the previous iteration’s model, if such a model is found (or
passes through the previous iterate, otherwise). Thus, HDCA considers a test-based update, which
replaces the update in ABCA (Eq. 5) with:

j← arg max
j

Tj − t1−α,νj , θi+1 ← θ̂(j) if Tj − t1−α,νj > 0, else θi. (10)

That is, HDCA implements ABCA with an update that is based on statistical significance for better
policy updates (see appendix for full statement of HDCA algorithm). It is important to note that the
two-sample t-test has a parameter for the significance level α that is likely to be problem specific.
In the realm of hypothesis testing, this parameter controls whether or not the null hypothesis gets
rejected. When applied to our optimization scheme, this parameter determines if a policy demon-
strates enough statistical evidence to be considered a more optimal policy than the previous iteration.
Therefore, this parameter can be used to control the degree of policy exploration, with a larger α
indicating a higher affinity to update the policy to a perturbed value.

4



Under review as a conference paper at ICLR 2022

3 RELATED WORK

BLACK BOX OPTIMIZATION

This work uses the term “black box” as a qualifier for objective functions in which only point-wise
evaluations are possible, producing a single scalar output for each input. To maximize this objective
function, the problem can be written as maxθ∈Rd = F (θ), where θ represents the d-dimensional
input parameters (Choromanski et al., 2020). Since the internal mechanisms governing the objective
are hidden, this form of optimization is derivative-free. Therefore, typical solutions are iterative in
nature, where perturbations to θ occur at the beginning of each round of training. Such solutions
are known as parameter-perturbation methods (Stulp & Sigaud, 2012). Within RL, these parameters
encode a policy that maps states to actions. The function evaluation corresponds to the total reward
for a policy rollout, or trajectory, so information about the specific states encountered during the
rollout is not available to the agent.

BBO algorithms have demonstrated success in common RL benchmarks, such as the gradient-
estimation techniques ES (Salimans et al., 2017) and Augmented Random Search (ARS) (Mania
et al., 2018) as well as gradient-free techniques like GradientLess Descent (GLD) (Golovin et al.,
2019). HDCA separates itself from these comparable techniques by sampling multiple trajectories
per perturbed policy, and thus is able to integrate the variance in the estimated expected cumulative
reward when making policy updates to optimize in a gradient-free manner.

Evolutionary Strategies. In the ES approach proposed by Salimans et al. (2017), an objective
function F acts on candidate solutions defined by parameters θ, where θ is distributed according
to some distribution pψ . ES, then, is concerned with maximizing Eθ∼pψF (θ). Letting pψ be a
multivariate Gaussian distribution with mean ψ and variance σ2I , this optimization problem can
be written as Eθ∼pψF (θ) = Eε∼N(0,I)F (θ + σε). In order to optimize this expected value, ES
implements stochastic gradient ascent, with gradient steps taken based on the estimation:

∇Eε∼N(0,I)F (θ + σε) =
1

σ
Eε∼N(0,I)F (θ + σε)ε. (11)

For each candidate solution within a given iteration t, Fn = F (θt + σεn) is evaluated and the
parameter update step is defined as:

θt+1 = θt + α
1

Nσ

N∑
n=1

Fnεn, (12)

where α is the learning rate and N is the population size.

MEAN-VARIANCE OPTIMIZATION

Several proposed RL methods incorporate mean-variance estimates to train risk-sensitive agents.
Xie et al. (2018) explore this concept in their Mean-Variance Policy Gradient (MVP) implementa-
tion. Rather than simply maximizing the expected cumulative reward, MVP aims to learn the best
performing policy that keeps the variance in the estimated cumulative reward below some threshold
value. MVP reformulates the mean-variance trade-off function as its Legendre-Fenchel dual, and
subsequently uses cyclic block coordinate ascent to maximize this objective. While MVP shares
similar inspiration with HDCA, MVP is not a black-box optimization technique, nor is it gradient-
free. Further, despite both methods incorporating the variance in the expected return to guide policy
updates, MVP uses this variance as an upper-bound, while HDCA uses the variance in its hypothesis
testing framework for performance comparison across policy perturbations.

Alternatively, Thomas et al. (2015) propose High Confidence Policy Improvement as a framework
for generating new policies with probabilistic guarantees. This approach asks the user to supply
a performance floor ρ− and confidence level δ, and the algorithm will return a policy that has a
lower expected cumulative return than ρ− with probability at most δ. The interpretation of δ is
closely related to α used in HDCA’s hypothesis tests, with both being dependent on how much risk
is reasonable for the given task. High Confidence Policy Improvement, however, is designed as a
framework for ensuring policy safety and is not concerned with how proposed policies are trained
and generated. It is therefore not a black-box optimization technique, unlike HDCA.

5



Under review as a conference paper at ICLR 2022

4 EVALUATION

Experiments were conducted on multiple RL environments to analyze the training performance of
HDCA as compared to other blackbox optimization methods: ARS (Mania et al., 2018), ES (Sali-
mans et al., 2017), and GLD (Golovin et al., 2019). We compare performance based on the number
of parameter updates (iterations), which are the bottleneck when training with simulated environ-
ments and parallel computing. Sec. 4.1 analyzes performance on the LunarLanderContinuous-v2
environment, where HDCA and ES train a neural network and ARS trains a linear model. Sec. 4.2
explores the performance of HDCA, ARS, and GLD on various MuJoCo locomotion tasks, where
every approach trains identically structured linear policies.

Implementation details. Our implementation of HDCA is provided in the supplemental mate-
rial. We use the Pathos multiprocessing Python framework (McKerns et al., 2012) to implement
a parallel version of Algorithm 3. Since the majority of HDCA’s computational overhead derives
from evaluating the reward function, we created a pool of workers to compute episode rollouts in
parallel. We evaluated HDCA on various MuJoCo locomotion tasks (Todorov et al., 2012) and
the LunarLanderContinuous-v2 environment simulated through the OpenAI Gym (Brockman et al.,
2016). The OpenAI Gym provides benchmark reward functions for all simulated environments. For
each environment, experiments were run until a threshold performance level was reached averaged
over 100 trials.

4.1 LUNARLANDERCONTINUOUS-V2

In this section, we compare the training performance of HDCA, ES, and ARS for the
LunarLanderContinous-v2 control task from the Box2d simulator within OpenAI Gym. The pri-
mary goal of this task is to navigate a lander to its landing pad, with the environment being consid-
ered solved at a total reward of 200. For this environment, HDCA and ES trained identical policies
represented by a neural network with a hidden layer consisting of 100 neurons, using tanh activation,
with 1,000 total parameters. ARS trained a linear policy to stay consistent with the work produced
by Mania et al. (2018), requiring 16 parameters to be optimized.

Effect of sub-problem dimensionality. This section aims to explore how HDCA’s training per-
formance varies with respect to the block size b of perturbed coordinates. Figure 1 shows the total
expected reward as a function of the training iteration across five independent trials. In each trial,
5,000 directions were sampled per iteration, corresponding to 5,000 perturbed policies to evaluate.
The generated plots demonstrate the maximum, minimum, and average expected reward for all three
methods. The subfigures of Figure 1 represent training results for varying coordinate block sizes for
HDCA. For example, Figure 1c shows the training performance of HDCA when a block of 50 coor-
dinates is chosen to be perturbed at each iteration. Since ES and ARS perturb all policy parameters
when sampling new directions, the number of coordinates perturbed in each subplot of Figure 1 only
applies to HDCA.

Table 1: Average number of training iterations before solving LunarLanderContinuous-v2

Method Average Training Iterations

HDCA-3 14.8 ± 10.5
HDCA-10 4.4 ± 0.80
HDCA-50 4.6 ± 2.33

HDCA-100 5.2 ± 2.99
HDCA (Average) 7.25 ± 4.37

The results from Figure 1 for HDCA are summarized in Table 1 and demonstrate how HDCA can
quickly converge to a solution. On average, it took ES 18.4 iterations, ARS 20.8 iterations, and
HDCA 7.25 iterations to converge. The number of training iterations was chosen as a primary
metric for analysis due to HDCA’s scalability with the number of cores. Depending on how HDCA
is implemented and the total number of available processors, all function evaluations for a given
iteration can be performed in parallel. Thus, looking at how these methods perform relative to the

6



Under review as a conference paper at ICLR 2022

(a) 3 Coordinates (b) 10 Coordinates

(c) 50 Coordinates (d) 100 Coordinates

Figure 1: Training performance for HDCA compared to ARS and ES for the
LunarLanderContinuous-v2 environment. The estimated expected cumulative reward is plot-
ted against the training iteration, where training continued until the expected reward minus its
standard deviation exceeded the threshold of 200. HDCA and ES were trained on a neural network
with one hidden layer consisting of 100 neurons, while ARS trained a linear policy. 5,000 directions
were evaluated at each training iteration for all three methods, and the number of coordinates
perturbed in each subplot refers to the block size b for HDCA.

number of training episodes gives insight into HDCA’s viability as an optimization technique as
large-scale computing clusters become more accessible.

Following (Salimans et al., 2017), examining the number of training iterations is more meaningful
for BBO techniques than sampling efficiency since better parallelization in policy optimizers shall
lead to faster training. Furthermore, given that BBO techniques are primarily applied to simulated
environments, policy rollouts are much less expensive than in real-world experiments. The primary
bottleneck to training is therefore the wall-clock training time. Since every rollout can be executed
in parallel for HDCA, this is directly proportional to the number of training iterations assuming
adequate resources are available.

All variants of HDCA outperformed ARS and ES in terms of the expected number of iterations until
solved besides HDCA-3, which performed consistently with the other methods. The decreased per-
formance of HDCA-3 is likely due to the small overall percentage of network parameters that are
perturbed at each iteration. Perturbing just .3% of the total parameters at each iteration, HDCA-3
required more training iterations than the other variants to optimize enough of the model to converge
to a solution. Conversely, HDCA-100 required the second most training iterations out of the HDCA
variants evaluated. This method perturbed 100 coordinates at each iteration, corresponding to 10%
of the total model parameters. However, searching in this high-dimensional space is a much harder
task than sub-problems of lower dimensionality, thus performance was observed to be less consis-

7



Under review as a conference paper at ICLR 2022

tent. To improve training as the sub-problem complexity increases, more samples must be taken at
each iteration. Hence, we see a trade-off when increasing block size and find that ‘middle-ground’
configurations work best. Overall, HDCA proves robust to the choice of block size and demonstrates
flexibility and efficient convergence for this task.

Effect of perturbations per iteration. Figure 2 demonstrates the relationship between the num-
ber of perturbations sampled per iteration and the expected number of iterations until a solution is
found. HDCA-10 was chosen for demonstration purposes based on the findings in Table 1. For
HDCA, the number of perturbations per iteration represents how extensively the parameter space
is explored. In a break from the common paradigm, HDCA does not use its perturbations in a
weighted sum but performs a maximum-based update from perturbations, which potentially yields
much better updates as we increase the number of perturbations. In contrast, ARS and ES base
their policy updates on averages across perturbed policy performance, thus the contribution from
each perturbation decreases as the sample size increases, and we get diminishing returns due to the
concentration of empirical means. This is the primary explanation for why HDCA greatly reduces
the number of training iterations with a larger perturbation sample size, while ARS and ES see more
similar performance. These results show that HDCA makes better use of increased computational
resources.

(a) 250 Perturbed Policies per Iteration (b) 5000 Perturbed Policies per Iteration

Figure 2: Training performance for HDCA-10 compared to ARS and ES for the
LunarLanderContinuous-v2 environment. The estimated expected cumulative reward is plotted
against the training iteration, where training continued until the expected reward minus its stan-
dard deviation exceeded the threshold of 200. The left figure shows the expected number of training
iterations when 250 samples are taken at each iteration, and the right shows the same relationship
for 5000 samples.

4.2 MUJOCO

Next, HDCA was evaluated against a subset of the MuJoCo locomotion tasks, where its training
performance was compared to ARS and GLD. All three methods trained identical linear policies.
The documented success of linear models (Mania et al., 2018) in the MuJoCo control tasks is a
compelling indication that deep neural networks with many parameters may not be necessary for
complex RL problems.

The results presented in Table 2 reflect similar trends as those discussed in Sec. 4.1. Swimmer-v2
is regarded as the simplest of the three evaluated MuJoCo environments, and HDCA is rapidly able
to converge to an optimal solution. GLD demonstrates similar performance, while ARS is slower to
converge. This difference in behavior is likely due to HDCA and GLD’s independence of gradient
estimates in their policy update steps.

Despite demonstrating similar performance in the Swimmer-v2 environment, HDCA was able to
converge to an optimal solution much more quickly than GLD for Hopper-v2. A likely explanation
to this divergence is in how the two methods handle stochasticity within the environment. By esti-

8



Under review as a conference paper at ICLR 2022

mating the numerical mean and variance of policy rewards, HDCA can leverage hypothesis testing
to effectively guide its policy updates. Taking a simple maximum of policy rewards ignores how
cumulative rewards are a stochastic quantity, which may lead to the slower convergence observed in
GLD in more complex domains.

The results for HalfCheetah-v2 highlight the importance of the number of perturbations per iteration.
Here we see that HDCA remains competitive with ARS. While HDCA and ARS were able train
policies for HalfCheetah-v2 using 500 perturbed policies per iteration, GLD was unable to converge
to an optimal solution unless approximately 10x more policy perturbations were generated.

Table 2: Average number of training iterations before solving various MuJoCo locomotion tasks

Task (Threshold) Method Average Training Iterations

Swimmer-v2 (325)
HDCA 2.2 ± 0.75
ARS 25.6 ± 2.65
GLD 2.2 ± .4

Hopper-v2 (3120)
HDCA 80.8 ± 30.9
ARS 121 ± 34.9
GLD 393 ± 245

HalfCheetah-v2 (3430)
HDCA 116 ± 72.8
ARS 93.6 ± 11.3
GLD *

5 CONCLUSION

This work develops a gradient-free, black box optimization technique that can match or outperform
similar state-of-the-art methods. Its independence from gradients makes it highly scalable and com-
petitive in parallel architectures. Furthermore, its intuitive hyperparameters and simple structure
lead to a straightforward implementation that can be easily adapted to other RL environments.

We develop HDCA off of two major insights. Our first insight is to frame policy optimization via
coordinate ascent. Coordinate ascent naturally decomposes the problem of optimizing the large
policy parameter space into a sequence of smaller, more feasible sub-problems. Although we do
not have access to analytical solutions of the sub-problems (as is typical in coordinate ascent), we
note that if sub-problems are of a low enough dimension, then any simple numerical optimization
strategy shall approximate solutions well. Our second insight is to note that the cumulative rewards,
the expectation of which is our optimization criterion, is a stochastic quantity. Thus, the expecta-
tion is estimated with finite samples of rollouts, which leads to variance and uncertainty about true
expectations of cumulative rewards for candidate perturbations. The stochastic nature (and finite
sample estimation) of the cumulative reward criterion has been largely ignored by previous BBO
approaches. Here, we develop a principled approach that accounts for this with one-sided, two-
sample hypothesis tests to update policy parameters based on statistical significance. The resulting
algorithm is easy to implement, easy to parallelize, and highly effective.

Future work shall explore extensions to HDCA for applications in large network-based policies.
Although recent work (Mania et al., 2018) has shown that simple policies are competitive even
for complicated tasks, it would be beneficial to leverage larger capacity networks when necessary.
(Salimans et al., 2017) showed that using virtual batch normalization (Salimans et al., 2016) allowed
for better optimization of larger networks. Thus, we shall explore similar strategies as well as
network pre-training schemes for better leveraging of the coordinate ascent block updates when
parameters are large.

9



Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

While all experiments conducted in this work were simulated through software for demonstration
purposes, there are many physical problems that can lead to significant consequences if proper safety
measures are not considered, such as when developing autonomous vehicles. Therefore, it is imper-
ative to properly define reward functions for environments that could have societal impact. It is
equally important to verify that deployed policies accurately reflect this definition. To mitigate the
risk of adverse consequences, trained policies should undergo significant testing before deployment.

REPRODUCIBILITY STATEMENT

Our implementation of HDCA is provided in the supplementary material within the ”HDCA” direc-
tory. Please refer to the README file for execution instructions.

10



Under review as a conference paper at ICLR 2022

REFERENCES

Adel Bibi, El Houcine Bergou, Ozan Sener, Bernard Ghanem, and Peter Richtarik. A stochastic
derivative-free optimization method with importance sampling: Theory and learning to control.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3275–3282,
2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Deepali Jain, Yuxiang
Yang, Atil Iscen, Jasmine Hsu, and Vikas Sindhwani. Provably robust blackbox optimization for
reinforcement learning. In Conference on Robot Learning, pp. 683–696. PMLR, 2020.

NAC Cressie and HJ Whitford. How to use the two sample t-test. Biometrical Journal, 28(2):
131–148, 1986.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gra-
dientless descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317,
2019.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 1805–1814, 2018.

Michael M McKerns, Leif Strand, Tim Sullivan, Alta Fang, and Michael AG Aivazis. Building a
framework for predictive science. arXiv preprint arXiv:1202.1056, 2012.

Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger, and
Eric Liang. Autonomous inverted helicopter flight via reinforcement learning. In Experimental
robotics IX, pp. 363–372. Springer, 2006.

NIST/SEMATECH. Two-sample t-test for equal means, 2003. URL https://www.itl.nist.
gov/div898/handbook/eda/section3/eda353.htm.

Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson Education,
2019.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29:
2234–2242, 2016.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Freek Stulp and Olivier Sigaud. Policy improvement methods: Between black-box optimization and
episodic reinforcement learning. 2012.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, pp. 2380–2388. PMLR, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109(3):475–494, 2001.

Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

Tengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu, and
Daesub Yoon. A block coordinate ascent algorithm for mean-variance optimization. Advances in
Neural Information Processing Systems, 31, 2018.

11

https://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm


Under review as a conference paper at ICLR 2022

A APPENDIX

Hypothesis-test Driven Coordinate Ascent (HDCA) combines the insights from sections 2.2 and 2.3,
and is presented in Algorithm 3.

Input: Initial policy parameters θ0 ∈ Rd;
Hyperparameters: Search range s, number of noise samples n, Number of coordinates per

block c, number of rollouts in mean calculation M , hypothesis test parameters (α,N );
Set i← 0;
repeat

Let R̄(θ(i)), σR(θ(i)) be the empirical average, standard deviation of the current policy
cumulative reward;

Let coordinate block b consist of c randomly selected coordinates from the set {1, ..., d};
Sample εj,k ∼U(s) for j = 1, ..., n, k ∈ b;
Let θ̂(j) be the jth candidate optimizer over block b with values:

∀q ∈ bc, θ̂(j)q ← θiq, ∀k ∈ b, θ̂(j)k ← θik + εj,k

Using the policy samples ai ∼ πθ̂(j)(si) and environment samples si+1 ∼ p(si+1 | si, ai),
sample M rollouts t(j)m , and compute respective cumulative rewards R(t

(j)
m ),

∀m ∈ {1, . . . ,M}:

t(j)m ←
{

(s
(j)
m,0, a

(j)
m,0), (s

(j)
m,1, a

(j)
m,1), . . .

}
R(t(j)m ) =

∑
(s,a)∈t(j)m

R(s, a) (13)

Estimate empirical average cumulative rewards R̄(θ̂(j)) and corresponding standard
deviation σR(θ̂(j)) as:

R̄(θ̂(j))← 1

M

M∑
m=1

R(t(j)m ), σR(θ̂(j)) ←
1

M

M∑
m=1

(R(t(j)m )− R̄(θ̂(j)))2 (14)

Compute test-statistics Tj for two-sample t-Test to compare each cumulative reward with
the previous empirical average;

Tj =
R̄(θ̂(j))− R̄(θ(i))√

σ2
R(θ̂(j))

/M + σ2
R(θi)/M

(15)

Determine critical value for two-sample t-Test t(j,1−α,ν) where ν is calculated as in Eq. 9 ;
Determine which policy corresponds to the most statistically significant cumulative reward:

j← arg max
j

Tj − t(1−α,νj), diff← Tj − t(1−α,νj) (16)

if diff ¿ 0 then
θi+1 ← θ̂(j)

else
θi+1 ← θi

end
i← i+ 1;

until termination test satisfied;
Algorithm 3: Hypothesis-test Driven Coordinate Ascent

12


	Introduction
	Methods
	Markov decision process
	Coordinate ascent
	Hypothesis testing

	Related work
	 Evaluation
	 LunarLanderContinuous-v2
	 MuJoCo

	Conclusion
	Appendix

