
Sample-efficient Multi-objective Molecular
Optimization with GFlowNets

Yiheng Zhu1∗∗, Jialu Wu2∗, Chaowen Hu3, Jiahuan Yan1,
Chang-Yu Hsieh2††, Tingjun Hou2†, Jian Wu4,5,6†

1College of Computer Science and Technology, Zhejiang University
2College of Pharmaceutical Sciences, Zhejiang University

3Polytechnic Institute, Zhejiang University
4Second Affiliated Hospital School of Medicine, Zhejiang University

5School of Public Health, Zhejiang University
6Institute of Wenzhou, Zhejiang University

{zhuyiheng2020, jialuwu, ChaowenHu, jyansir, kimhsieh, tingjunhou, wujian2000}@zju.edu.cn

Abstract

Many crucial scientific problems involve designing novel molecules with desired
properties, which can be formulated as a black-box optimization problem over
the discrete chemical space. In practice, multiple conflicting objectives and
costly evaluations (e.g., wet-lab experiments) make the diversity of candidates
paramount. Computational methods have achieved initial success but still struggle
with considering diversity in both objective and search space. To fill this gap,
we propose a multi-objective Bayesian optimization (MOBO) algorithm lever-
aging the hypernetwork-based GFlowNets (HN-GFN) as an acquisition function
optimizer, with the purpose of sampling a diverse batch of candidate molecular
graphs from an approximate Pareto front. Using a single preference-conditioned
hypernetwork, HN-GFN learns to explore various trade-offs between objectives.
We further propose a hindsight-like off-policy strategy to share high-performing
molecules among different preferences in order to speed up learning for HN-
GFN. We empirically illustrate that HN-GFN has adequate capacity to generalize
over preferences. Moreover, experiments in various real-world MOBO settings
demonstrate that our framework predominantly outperforms existing methods
in terms of candidate quality and sample efficiency. The code is available at
https://github.com/violet-sto/HN-GFN.

1 Introduction

Designing novel molecular structures with desired properties, also referred to as molecular optimiza-
tion, is a crucial task with great application potential in scientific fields ranging from drug discovery
to material design. Molecular optimization can be naturally formulated as a black-box optimization
problem over the discrete chemical space, which is combinatorially large [52]. Recent years have
witnessed the trend to leverage computational methods, such as deep generative models [31] and
combinatorial optimization algorithms [62, 30], to facilitate optimization. However, the applicability
of most prior approaches in real-world scenarios is hindered by two practical constraints: (i) Chemists
commonly seek to optimize multiple properties of interest simultaneously [60, 33]. For example, in
addition to effectively inhibiting a disease-associated target, an ideal drug is desired to be easily syn-
thesizable and non-toxic. Unfortunately, as objectives often conflict, in most cases, there is no single

∗Equal contribution.
†Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/violet-sto/HN-GFN

Surrogate Model

𝑀: 𝜇, 𝜎

Training : 𝜆~𝐷𝑖𝑟 𝑎
Sampling : 𝜆𝑡𝑎𝑟𝑔𝑒𝑡 ∈ Λ

Hypernetwork

ℎ(∙ ; 𝜙)

𝜃𝑝𝑟𝑒𝑑

𝒇𝟏 𝒇𝟐 … 𝒇𝑴

? ? … ?
=

× 𝑏

represents the initial state and represents the complete object.

GFlowNet 𝜋𝜃 : 𝜃 = (𝜃𝑚𝑝𝑛𝑛, 𝜃𝑝𝑟𝑒𝑑)

...

…

𝑆1𝑆0

…

...

...

𝑆2 𝑆𝑛−1 𝑆𝑛...

...

𝑅𝜆 𝑥1 𝑅𝜆 𝑥2 𝑅𝜆 𝑥3 Evaluated batch

𝑅𝜆 𝑥 = 𝑎𝛽(𝜇 𝑠𝜆 𝑥 , 𝜎 𝑠𝜆 𝑥 ;𝛭)

Figure 1: MOBO loop for molecular optimization using a surrogate model M for uncertainty
estimation and HN-GFN for acquisition function optimization. In each round, the policy πθ is trained
with reward function Rλ, where λ is sampled from Dir(α) per iteration. A new batch of candidates
is sampled from the approximate Pareto front according to target preference vectors λtarget ∈ Λ.

optimal solution, but rather a set of Pareto optimal solutions defined with various trade-offs [18, 45].
(ii) Realistic oracles (e.g., wet-lab experiments and high-fidelity simulations) require substantial costs
to synthesize and evaluate molecules [22]. Hence, the number of oracle evaluations is notoriously
limited. In such scenarios, the diversity of candidates is a critical consideration.

Bayesian optimization (BO) [34, 54] provides a sample-efficient framework for globally optimizing
expensive black-box functions. The core idea is to construct a cheap-to-evaluate surrogate model
approximating the true objective function (also known as the oracle) on the observed dataset and
optimize an acquisition function (built upon the surrogate model) to obtain informative candidates with
high utility for the next round of evaluations. Due to the common large-batch and low-round settings
in biochemical experiments [3], batch BO is prioritized to shorten the entire cycle of optimization [25].
MOBO also received broad attention and achieved promising performance in continuous problems by
effectively optimizing differentiable acquisition functions [12, 13]. Nevertheless, it is less prominent
in discrete problems, where no gradients can be leveraged to navigate the search space.

Although existing discrete molecular optimization methods can be adopted as the acquisition function
optimizer to alleviate this issue, they can hardly consider diversity in both search and objective
space: 1) many neglect the diversity of proposed candidates in search space [30, 33]; 2) many
multi-objective methods simply rely on a predefined scalarization function (e.g., mean) to turn the
multi-objective optimization (MOO) problem into a single-objective one [61, 20]. As the surrogate
model cannot exactly reproduce the oracle’s full behaviors and the optimal trade-off is unclear
before optimization (even with domain knowledge), it is desired to not only propose candidates
that bring additional information about the search space but also explore more potential trade-offs
of interest. To achieve this goal, we explore how to extend the recently proposed generative flow
networks (GFlowNets) [6, 7], a class of generative models that aim to learn a stochastic policy for
sequentially constructing objects with a probability proportional to a reward function, to facilitate
multi-objective molecular optimization. Compared with traditional combinatorial optimization
methods, GFlowNets possess merit in generating diverse and high-reward objects, which has been
verified in single-objective problems [6, 28].

In this work, we present a MOBO algorithm based on GFlowNets for sample-efficient multi-objective
molecular optimization. We propose a hypernetwork-based GFlowNet (HN-GFN) as the acquisition
function optimizer within MOBO to sample a diverse batch of candidates from an approximate
Pareto front. Instead of defining a fixed reward function as usual in past work [6], we train a unified
GFlowNet on the distribution of reward functions (random scalarizations parameterized by preference
vectors) and control the policy using a single preference-conditioned hypernetwork. While sampling
candidates, HN-GFN explores various trade-offs between competing objectives flexibly by varying
the input preference vector. Inspired by hindsight experience replay [2], we further introduce a
hindsight-like off-policy strategy to share high-performing molecules among different preferences

2

and speed up learning for HN-GFN. As detailed in our reported experiments, we first empirically
verify that HN-GFN is capable of generalizing over preference vectors, then apply the proposed
framework to real-world scenarios and demonstrate its effectiveness and efficiency over existing
methods. Our key contributions are summarized below:

• We introduce a GFlowNet-based MOBO algorithm to facilitate real-world molecular optimization.
We propose HN-GFN, a conditional variant of GFlowNet that can efficiently sample candidates
from an approximate Pareto front.

• We introduce a hindsight-like off-policy strategy to speed up learning in HN-GFN.

• Experiments verify that our MOBO algorithm based on HN-GFN can find a high-quality Pareto
front more efficiently compared to state-of-the-art baselines.

2 Related Work

Molecular optimization. Molecular optimization has been approached with a wide variety of
computational methods, which can be mainly grouped into three categories: 1) Latent space
optimization (LSO) methods [24, 31, 58, 66] perform the optimization over the low-dimensional
continuous latent space learned by generative models such as variational autoencoders (VAEs) [36].
These methods require the latent representations to be discriminative, but the training of the generative
model is decoupled from the optimization objectives, imposing challenges for optimization [58].
Instead of navigating the latent space, combinatorial optimization methods search for the desired
molecular structures directly in the explicit discrete space with 2) evolutionary algorithms [30]
and 3) reinforcement learning (RL) [62] guiding the search. However, most prior methods only
focus on a single property, from non-biological properties such as drug-likeliness (QED) [8] and
synthetic accessibility (SA) [19], to biological properties that measure the binding energy to a protein
target [6]. Multi-objective molecular optimization has recently received wide attention [33, 61, 20].
For example, MARS [61] employs Markov chain Monte Carlo (MCMC) sampling to find novel
molecules satisfying several properties. However, most approaches require a notoriously large number
of oracle calls to evaluate molecules on the fly [33, 61]. In contrast, we tackle this problem in a
sample-efficient manner.

GFlowNet. GFlowNets [6, 7] aim to sample composite objects proportionally to a reward function,
instead of maximizing it as usual in RL [56]. GFlowNets are related to the MCMC methods due
to the same objective, while amortizing the high cost of sampling (mixing between modes) over
training a generative model. GFlowNets have made impressive progress in various applications,
such as biological sequence design [28], discrete probabilistic modeling [63], and Bayesian structure
learning [15]. While the concept of conditional GFlowNet was originally discussed in Bengio et al.
[7], we are the first to study and instantiate this concept for MOO, in parallel with Jain et al. [29].
Compared with them, we delicately design the conditioning mechanism and propose a hindsight-
like off-policy strategy that is rarely studied for MOO (in both the RL and GFlowNet literature).
Appendix D provides a detailed comparison.

Bayesian optimization for discrete spaces. The application of BO in discrete domains has pro-
liferated in recent years. It is much more challenging to construct surrogate models and optimize
acquisition functions in discrete spaces, compared to continuous spaces. One common approach is
to convert discrete space into continuous space with generative models [24, 16, 44]. Besides, one
can directly define a Gaussian Process (GP) with discrete kernels [46, 53] and solve the acquisition
function optimization problem with evolutionary algorithms [35, 57].

Multi-objective Bayesian optimization. BO has been widely used in MOO problems for efficiently
optimizing multiple competing expensive black-box functions. Most popular approaches are based
on hypervolume improvement [12], random scalarizations [37, 49], and entropy search [27, 5].
While there have been several approaches that take into account parallel evaluations [11, 38] and
diversity [38], they are limited to continuous domains.

3

3 Background

3.1 Problem formulation

We address the problem of searching over a discrete chemical space X to find molecular graphs x ∈ X
that maximize a vector-valued objective f(x) =

(
f1(x), f2(x), . . . , fM (x)

)
: X → RM , where

fm is a black-box function (also known as the oracle) evaluating a certain property of molecules.
Practically, realistic oracles are extremely expensive to evaluate with either high-fidelity simulations
or wet-lab experiments. We thus propose to perform optimization in as few oracle evaluations as
possible, since the sample efficiency is paramount in such a scenario.

There is typically no single optimal solution to the MOO problem, as different objectives may
contradict each other. Consequently, the goal is to recover the Pareto front – the set of Pareto optimal
solutions which cannot be improved in any one objective without deteriorating another [18, 45]. In
the context of maximization, a solution f(x) is said to Pareto dominates another solution f(x′) iff
fm(x) ≥ fm(x′) ∀m = 1, . . . ,M and ∃m′ such that fm′(x) > fm′(x′), and we denote f(x) ≻
f(x′). A solution f(x∗) is Pareto optimal if not Pareto dominated by any solution. The Pareto front
can be written as P∗ = {f(x∗) : {f(x) : f(x) ≻ f(x∗) } = ∅}.

The quality of a finite approximate Pareto front P is commonly measured by hypervolume [67] – the
M-dim Lebesgue measure λM of the space dominated by P and bounded from below by a given
reference point r ∈ RM : HV (P, r) = λM (∪|P|

i=1[r, yi]), where [r, yi] denotes the hyper-rectangle
bounded by r and yi = f(xi).

3.2 Batch Bayesian optimization

Bayesian optimization (BO) [54] provides a model-based iterative framework for sample-efficient
black-box optimization. Given an observed dataset D, BO relies on a Bayesian surrogate model
M to estimate a posterior distribution over the true oracle evaluations. Equipped with the surrogate
model, an acquisition function a : X → R is induced to assign the utility values to candidate
objects for deciding which to be evaluated next on the oracle. Compared with the costly oracle, the
cheap-to-evaluate acquisition function can be efficiently optimized. We consider the scenario where
the oracle is given an evaluation budget of N rounds with fixed batches of size b.

To be precise, we have access to a random initial dataset D0 = {(x0
i , y

0
i)}ni=1, where y0i = f(x0

i)
is a true oracle evaluation. In each round i ∈ {1, . . . , N}, the acquisition function is maximized to
yield a batch of candidates Bi = {xi

j}bj=1 to be evaluated in parallel on the oracle yij = f(xi
j). The

observed dataset Di−1 is then augmented for the next round: Di = Di−1 ∪ {(xi
j , y

i
j)}bj=1.

4 Method

In this section, we present the proposed MOBO algorithm based on hypernetwork-based GFlowNet
(HN-GFN), shown in Figure 1. Due to the space limitation, we present the detailed algorithm
in Appendix A. Our key idea is to extend GFlowNets as the acquisition function optimizer for MOBO,
with the objective of sampling a diverse batch of candidates from the approximate Pareto front. To
begin, we introduce GFlowNets in the context of molecule design, then describe how GFlowNet
can be biased by a preference-conditioned hypernetwork to sample molecules according to various
trade-offs between objectives. Next, we propose a hindsight-like off-policy strategy to speed up
learning in HN-GFN. Finally, we introduce the surrogate model and acquisition function.

4.1 Preliminaries

GFlowNets [6] seek to learn a stochastic policy π for sequentially constructing discrete objects
x ∈ X with a probability π(x) ∝ R(x), where X is a compositional space and R : X → R≥0 is
a non-negative reward function. The generation process of object x ∈ X can be represented by a
sequence of discrete actions a ∈ A that incrementally modify a partially constructed object, which is
denoted as state s ∈ S. Let the generation process begin at a special initial state s0 and terminate
with a special action indicating that the object is complete (s = x ∈ X), the construction of an object
x can be defined as a complete trajectory τ = (s0 → s1 → · · · → sn = x).

4

Following fragment-based molecule design [6, 61], the molecular graphs are generated by sequentially
attaching a fragment, which is chosen from a predefined vocabulary of building blocks, to an atom of
the partially constructed molecules. The maximum trajectory length is 8, with the number of actions
varying between 100 and 2000 depending on the state, making |X | up to 1016. There are multiple
action sequences leading to the same state, and no fragment removal actions, the space of possible
action sequences can thus be denoted by a directed acyclic graph (DAG) G = (S, E), where the edges
in E are transitions s → s′ from one state to another. To learn the aforementioned desired policy,
Bengio et al. [6] propose to see the DAG structure as a flow network.

Markovian flows. Bengio et al. [7] first define a trajectory flow F : T → R≥0 on the set of all
complete trajectories T to measure the unnormalized density. The edge flow and state flow can then
be defined as F (s → s′) =

∑
s→s′∈τ F (τ) and F (s) =

∑
s∈τ F (τ), respectively. The trajectory

flow F determines a probability measure P (τ) = F (τ)∑
τ∈T F (τ) . If flow F is Markovian, the forward

transition probabilities PF can be computed as PF (s
′|s) = F (s→s′)

F (s) .

Flow matching. A flow is consistent if the following flow consistency equation is satisfied ∀s ∈ S:

F (s) =
∑

s′∈PaG(s)

F (s′ → s) = R(s) +
∑

s′′:s∈PaG(s′′)

F (s → s′′) (1)

where PaG(s) is a set of parents of s in G. As proved in Bengio et al. [6], if the flow consistency
equation is satisfied with R(s) = 0 for non-terminal state s and F (x) = R(x) ≥ 0 for terminal state
x, a policy π defined by the forward transition probability π(s′|s) = PF (s

′|s) samples object x with
a probability π(x) ∝ R(x). GFlowNets propose to approximate the edge flow F (s → s′) using a
neural network Fθ(s, s

′) with enough capacity, such that the flow consistency equation is respected
at convergence. To achieve this, Bengio et al. [6] define a temporal difference-like [56] learning
objective, called flow-matching (FM):

Lθ(s,R) =

(
log

∑
s′∈PaG(s) Fθ(s

′, s)

R(s) +
∑

s′′:s∈PaG(s′′) Fθ(s, s′′)

)2

(2)

One can use any exploratory policy π̃ with full support to sample training trajectories and obtain
the consistent flow Fθ(s, s

′) by minimizing the FM objective [6]. Consequently, a policy defined by
this approximate flow πθ(s

′|s) = PFθ
(s′|s) = Fθ(s→s′)

Fθ(s)
can also sample objects x with a probability

πθ(x) proportionally to reward R(x). Practically, the training trajectories are sampled from a mixture
between the current policy PFθ

and a uniform distribution over allowed actions [6]. We adopt the FM
objective in this work because the alternative trajectory balance [43] was also examined but gave a
worse performance in early experiments. Note that more advanced objectives such as subtrajectory
balance [42] can be employed in future work.

4.2 Hypernetwork-based GFlowNets

Our proposed HN-GFN aims at sampling a diverse batch of candidates from the approximate Pareto
front with a unified model. A common approach to MOO is to decompose it into a set of scalar
optimization problems with scalarization functions and apply standard single-objective optimization
methods to gradually approximate the Pareto front [37, 64]. Here we consider the weighted sum (WS):
sλ(x) =

∑
i λif

i(x) and Tchebycheff [45]: sλ(x) = maxi λif
i(x), where λ = (λi, · · · , λM) is a

preference vector that defines the trade-off between the competing properties.

To support parallel evaluations, one can simultaneously obtain candidates according to different
scalarizations. Practically, this approach hardly scales efficiently with the number of objectives for
discrete problems. Taking GFlowNet as an example, we need to train multiple GFlowNets separately
for each choice of the reward function Rλ(x) = sλ(x) to cover the objective space:

θ∗λ = argmin
θ

Es∈SLθ(s,Rλ) (3)

Our key motivation is to design a unified GFlowNet to sample candidates according to different
reward functions, even ones not seen during training. Instead of defining the reward function with a

5

fixed preference vector λ, we propose to train a preference-conditioned GFlowNet on the distribution
of reward functions Rλ, where λ is sampled from a simplex SM = {λ ∈ Rm|

∑
i λi = 1, λi ≥ 0}:

θ∗ = argmin
θ

Eλ∈SM
Es∈SLθ(s,Rλ) (4)

Remarks. Assuming an infinite model capacity, it is easy to prove that the proposed optimization
scheme (Equation (4)) is as powerful as the original one (Equation (3)), since the solutions to both
loss functions coincide [17]. Nevertheless, the assumption of infinite capacity is extremely strict and
hardly holds, so how to design the conditioning mechanism in practice becomes crucial.

4.2.1 Hypernetwork-based conditioning mechanism

We propose to condition the GFlowNets on the preference vectors via hypernetworks [26]. Hyper-
networks are networks that generate the weights of a target network based on inputs. In vanilla
GFlowNets, the flow predictor Fθ is parameterized with the message passing neural network
(MPNN) [23] over the graph of molecular fragments, with two prediction heads approximating
F (s, s′) and F (s) based on the node and graph representations, respectively. These two heads are
parameterized with multi-layer perceptrons (MLPs). For brevity, we write θ = (θmpnn, θpred).

One can view the training of HN-GFN as learning an agent to carry out multiple policies that
correspond to different goals (reward functions Rλ) defined in the same environment (state space
S and action space A). We thus propose only to condition the weights of prediction heads θpred
with hypernetworks, while sharing the weights of MPNN θmpnn, leading to more generalizable state
representations. More precisely, the hypernetwork h(·;ϕ) takes the preference vector λ as inputs and
outputs the weights θpred = h(λ;ϕ) of prediction heads. The parameters ϕ of the hypernetwork are
optimized like normal parameters. Following Navon et al. [47], we parametrize h using an MLP with
multiple heads, each generating weights for different layers of the target network.

4.2.2 As the acquisition function optimizer

Training. At each iteration, we first sample a preference vector λ from a Dirichlet distribution
Dir(α). Then the HN-GFN is trained with the reward function Rλ(x) = a(µ(sλ(x)), σ(sλ(x));M),
where µ and σ are the posterior mean and standard deviation estimated by M. In principle, we retrain
HN-GFN after every round. We also tried only initializing the parameters of the hypernetwork and
found it brings similar performance and is more efficient.

Sampling. At each round i, we use the trained HN-GFN to sample a diverse batch of b candidates.
Let Λi be the set of k target preference vectors λi

target. We sample b
k molecules for each λi

target ∈ Λi

and evaluate them on the oracle in parallel. We simply construct Λi by sampling from Dir(α), but it
is worth noting that this prior distribution can also be defined adaptively based on the trade-off of
interest. As the number of objectives increases, we choose a larger k to cover the objective space.

4.3 Hindsight-like off-policy strategy

Resorting to the conditioning mechanism, HN-GFN can learn a family of policies to achieve various
goals, i.e., one can treat sampling high-reward molecules for a particular preference vector as a
separate goal. As verified empirically in Jain et al. [28], since the FM objective is off-policy and
offline, we can use offline trajectories to train the target policy for better exploration, so long as the
assumption of full support holds. Our key insight is that each policy can learn from the valuable
experience (high-reward molecules) of other similar policies.

Inspired by hindsight experience replay [2] in RL, we propose to share high-performing molecules
among policies by re-examining them with different preference vectors. As there are infinite possible
preference vectors, we focus on target preference vectors Λi, which are based on to sample candidates,
and build a replay buffer for each λi

target ∈ Λi. After sampling some trajectories during training, we
store in the replay buffers the complete objects x with the corresponding reward Rλi

target
(x).

To be specific, at each iteration, we first sample a preference vector from a mixture between Dir(α)
and a uniform distribution over Λi: (1− γ)Dir(α) + γUniform. If Λi is chosen, we construct half
of the training batch with offline trajectories from the corresponding replay buffer of molecules

6

encountered with the highest rewards. Otherwise, we incorporate offline trajectories from the current
observed dataset Di instead to ensure that HN-GFN samples correctly in the vicinity of the observed
Pareto set. Our strategy allows for flexible trade-offs between generalization and specialization.
As we vary γ from 0 to 1, the training distribution of preference vectors moves from Dir(α) to
Λi. Exclusively training the HN-GFN with the finite target preference vectors Λi can lead to poor
generalization. In practice, although we only sample candidates based on Λi, we argue that it is vital
to keep the generalization to leverage the trained HN-GFN to explore various preference vectors
adaptively. The detailed algorithm can be found in Appendix A.

4.4 Surrogate model and acquisition function

While GPs are well-established in continuous spaces, they scale poorly with the number of observa-
tions and do not perform well in discrete spaces [57]. There has been significant work in efficiently
training non-Bayesian neural networks to estimate epistemic uncertainty [21, 39]. We benchmark
widely used approaches (in Appendix C.3), and use a flexible and effective one: evidential deep
learning [1]. As for the acquisition function, we use Upper Confidence Bound [55] to incorporate
the uncertainty. To be precise, the objectives are modeled with a single multi-task MPNN, and the
acquisition function is applied to the scalarization.

5 Experiments

We first verify that HN-GFN has adequate capacity to generalize over preference vectors in a single-
round synthetic scenario. Next, we evaluate the effectiveness of the proposed MOBO algorithm based
on HN-GFN in multi-round practical scenarios, which are more in line with real-world molecular
optimization. Besides, we conduct several ablation studies to empirically justify the design choices.

5.1 Single-round synthetic scenario

Here, our goal is to demonstrate that we can leverage the HN-GFN to sample molecules with
preference-conditioned property distributions. The HN-GFN is used as a stand-alone optimizer
outside of MOBO to directly optimize the scalarizations of oracle scores. As the oracle cannot be
called as many times as necessary practically, we refer to this scenario as a synthetic scenario. To
better visualize the trend of the property distribution of the sampled molecules as a function of the
preference weight, we only consider two objectives: inhibition scores against glycogen synthase
kinase-3 beta (GNK3β) and c-Jun N-terminal kinase-3 (JNK3) [40, 33].

Compared methods. We compare HN-GFN against the following methods. Preference-specific
GFlowNets (PS-GFN) is a set of vanilla unconditional GFlowNets, each trained separately for a
specific preference vector. Note that PS-GFN is treated as "gold standard" rather than a baseline,
as it is trained and evaluated using the same preference vector. Concat-GFN and FiLM-GFN
are two alternative conditional variations of GFlowNet based on the concatenation and FiLM [51],
respectively. MOEA/D [64] and NSGA-III [14] are two multi-objective evolutionary algorithms that
also incorporate preference information. We perform evolutionary algorithms over the 32-dim latent
space learned by HierVAE [32], which gives better optimization performance than JT-VAE [31].

Metrics. All the above methods are evaluated over the same set of 5 evenly spaced preference
vectors. For each GFlowNet-based method, we sample 1000 molecules per preference vector as
solutions. We compare the aforementioned methods on the following metrics: Hypervolume
indicator (HV) measures the volume of the space dominated by the Pareto front of the solutions and
bounded from below by the preference point (0, 0). Diversity (Div) is the average pairwise Tanimoto
distance over Morgan fingerprints. Correlation (Cor) is the Spearman’s rank correlation coefficient
between the probability of sampling molecules from an external test set under the GFlowNet and
their respective rewards in the logarithmic domain [48]. See more details in Appendix B.1.2. In a
nutshell, HV and Div measure the quality of the solutions, while Cor measures how well the trained
model is aligned with the given preference vector. Each experiment is repeated with 3 random seeds.

Experimental results. As shown in Table 1, HN-GFN outperforms the baselines and achieves
competitive performance to PS-GFN (gold standard) on all the metrics. Compared to GFlowNet-based

7

Table 1: Evaluation of different methods on the synthetic scenario.

Method HV (↑) Div (↑) Cor (↑)

MOEA/D 0.182 ± 0.045 n/a n/a
NSGA-III 0.364 ± 0.041 n/a n/a
PS-GFN 0.545 ± 0.055 0.786 ± 0.013 0.653 ± 0.003

Concat-GFN 0.534 ± 0.069 0.786 ± 0.004 0.646 ± 0.008
FiLM-GFN 0.431 ± 0.045 0.795 ± 0.014 0.633 ± 0.009

HN-GFN 0.550 ± 0.074 0.797 ± 0.015 0.666 ± 0.010

Figure 2: Left: The distribution of Top-100 JNK3 scores. Right: The progression of the average
Top-20 rewards over the course of training of the HN-GFN in optimizing GSK3β and JNK3.

methods, evolutionary algorithms (MOEA/D and NSGA-III) fail to find high-scoring molecules,
especially the MOEA/D. HN-GFN outperforms Concat-GFN and FiLM-GFN, and is the only
conditional variant that can match the performance of PS-GFN, implying the superiority of the well-
designed hypernetwork-based conditioning mechanism. In Figure 2 (left), we visualize the empirical
property (JNK3) distribution of the molecules sampled by HN-GFN and PS-GFN conditioned on
the set of evaluation preference vectors. We observe that the distributions are similar and the trends
are consistent: the larger the preference weight, the higher the average score. The comparable
performance and consistent sampling distributions illustrate that HN-GFN has adequate capacity to
generalize over preference vectors. Since the runtime and storage space of PS-GFN scale linearly
with the number of preference vectors, our unified HN-GFN provides a significantly efficient way to
explore various trade-offs between objectives.

5.2 Multi-objective Bayesian optimization

Next, we evaluate the effectiveness of HN-GFN as an acquisition function optimizer within MOBO
in practical scenarios. We consider the following objective combinations of varying sizes:

• GNK3β+JNK3: Jointly inhibiting Alzheimer-related targets GNK3β and JNK3.

• GNK3β+JNK3+QED+SA: Jointly inhibiting GNK3β and JNK3 while being drug-like and
easy-to-synthesize.

We rescale the SA score (initially between 10 and 1) so that all the above properties have a range
of [0,1] and higher is better. For both combinations, we consider starting with |D0| = 200 random
molecules and further querying the oracle N = 8 rounds with batch size b = 100. Each experiment
is repeated with 3 random seeds.

Baselines. We compare HN-GFN with three representative LSO methods (qParEGO [37],
qEHVI [12], and LaMOO [65]), as well as a variety of state-of-the-art combinatorial optimization

8

(a) GSK3β + JNK3 (b) GSK3β + JNK3 + QED + SA

Figure 3: Optimization performance (hypervolume) over MOBO loops.

Table 2: Diversity for different methods in MOBO scenarios.

Div (↑)
GSK3β + JNK3 GSK3β + JNK3 + QED + SA

Graph GA 0.347 ± 0.059 0.562 ± 0.031
MARS 0.653 ± 0.072 0.754 ± 0.027
P-MOCO 0.646 ± 0.008 0.350 ± 0.130

HN-GFN 0.810 ± 0.003 0.744 ± 0.008
HN-GFN w/ hindsight 0.793 ± 0.007 0.738 ± 0.009

methods: Graph GA [30] is a genetic algorithm, MARS [61] is a MCMC sampling approach, and
P-MOCO [41] is a multi-objective RL method. We provide more details in Appendix B.2.

Experimental results. Figure 3 illustrates that HN-GFN achieves significantly superior perfor-
mance (HV) to baselines, especially when trained with the proposed hindsight-like off-policy strategy.
HN-GFN outperforms the best baselines P-MOCO and Graph GA of the two objective combinations
by a large margin (0.67 vs. 0.50 and 0.42 vs. 0.34), respectively. Besides, HN-GFN is more sample-
efficient, matching the performance of baselines with only half the number of oracle evaluations.
All combinatorial optimization methods result in more performance gains compared to the LSO
methods, implying that it is promising to optimize directly over the discrete space. In Table 2, we
report the Div (computed among the batch of 100 candidates and averaged over rounds). For a fair
comparison, we omit the LSO methods as they only support 160 rounds with batch size 5 due to
memory constraints. Compared with Graph GA and P-MOCO, which sometimes propose quite
similar candidates, the superior optimization performance of HN-GFN can be attributed to the ability
to sample a diverse batch of candidates. Another interesting observation, in the more challenging
setting (GNK3β+JNK3+QED+SA), is that MARS generates diverse candidates via MCMC sampling
but fails to find a high-quality Pareto front, indicating that HN-GFN can find high-reward modes
better than MARS. The computational costs are discussed in Appendix B.4.

5.3 Ablations

Effect of the hindsight-like off-policy strategy. In the first round of MOBO, for each λtarget ∈ Λ
we sample 100 molecules every 500 training steps and compute the average Top-20 reward over Λ.
In Figure 2 (right), we find that the hindsight-like off-policy strategy significantly boosts average
rewards, demonstrating that sharing high-performing molecules among policies effectively speeds up
the training of HN-GFN. On the other hand, further increasing γ leads to slight improvement. Hence,
we choose γ = 0.2 for the desired trade-off between generalization and specialization.

9

Effect of Dir(α). Here we consider the more challenging GNK3β+JNK3+QED+SA combination,
where the difficulty of optimization varies widely for various properties. Table 3 shows that the
distribution skewed toward harder properties results in better optimization performance. In our early
experiments, we found that if the distribution of Λi is fixed, HN-GFN is quite robust to changes in α.

Effect of scalarization functions sλ. In Table 3, we observe that WS leads to a better Pareto front
than Tchebycheff. Although the simple WS is generally inappropriate when a non-convex Pareto
front is encountered [10], we find that it is effective when optimized with HN-GFN, which can sample
diverse high-reward candidates and may reach the non-convex part of the Pareto front. In addition,
we conjecture that the non-smooth reward landscapes induced by Tchebycheff are harder to optimize.

Table 3: Ablation study of the α and scalarization functions on GNK3β+JNK3+QED+SA.

α scalarization function
(1,1,1,1) (3,3,1,1) (3,4,2,1) WS Tchebycheff

HV 0.312 ± 0.039 0.385 ± 0.018 0.416 ± 0.023 0.416 ± 0.023 0.304 ± 0.075
Div 0.815 ± 0.015 0.758 ± 0.018 0.738 ± 0.009 0.738 ± 0.009 0.732 ± 0.014

6 Conclusion

We have introduced a MOBO algorithm for sample-efficient multi-objective molecular optimization.
This algorithm leverages a hypernetwork-based GFlowNet (HN-GFN) to sample a diverse batch of
candidates from the approximate Pareto front. In addition, we present a hindsight-like off-policy
strategy to improve optimization performance. Our algorithm outperforms existing approaches in
synthetic and practical scenarios. Future work includes extending this algorithm to other discrete
optimization problems such as biological sequence design and neural architecture search. One
limitation of the proposed HN-GFN is the higher computational costs than other training-free
optimization methods. However, the costs resulting from model training are negligible compared to
the costs of evaluating the candidates in real-world applications. We argue that the higher quality of
the candidates is much more essential than lower costs.

Acknowledgments and Disclosure of Funding

This research was partially supported by National Key R&D Program of China under grant
No.2018AAA0102102, National Natural Science Foundation of China under grants No.62176231,
No.62106218, No.82202984, No.92259202, No.62132017 and U22B2034, Zhejiang Key R&D
Program of China under grant No.2023C03053. Tingjun Hou’s research was supported in part by
National Natural Science Foundation of China under grant No.22220102001.

References
[1] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential

regression. Advances in Neural Information Processing Systems, 33:14927–14937, 2020.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in neural information processing systems, 30, 2017.

[3] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy,
and Lucy Colwell. Model-based reinforcement learning for biological sequence design. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HklxbgBKvr.

[4] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: a framework for efficient monte-carlo Bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

10

https://openreview.net/forum?id=HklxbgBKvr
https://openreview.net/forum?id=HklxbgBKvr

[5] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for
multi-objective Bayesian optimization. Advances in Neural Information Processing Systems,
32, 2019.

[6] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

[7] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

[8] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

[9] Julian Blank and Kalyanmoy Deb. Pymoo: Multi-objective optimization in python. IEEE
Access, 8:89497–89509, 2020.

[10] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[11] Eric Bradford, Artur M Schweidtmann, and Alexei Lapkin. Efficient multiobjective optimization
employing Gaussian processes, spectral sampling and a genetic algorithm. Journal of global
optimization, 71(2):407–438, 2018.

[12] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervol-
ume improvement for parallel multi-objective Bayesian optimization. Advances in Neural
Information Processing Systems, 33:9851–9864, 2020.

[13] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel Bayesian optimization
of multiple noisy objectives with expected hypervolume improvement. Advances in Neural
Information Processing Systems, 34:2187–2200, 2021.

[14] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.

[15] Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan
Bauer, and Yoshua Bengio. Bayesian Structure Learning with Generative Flow Networks. arXiv
preprint, 2022.

[16] Aryan Deshwal and Jana Doppa. Combining latent space and structured kernels for Bayesian
optimization over combinatorial spaces. Advances in Neural Information Processing Systems,
34:8185–8200, 2021.

[17] Alexey Dosovitskiy and Josip Djolonga. You only train once: Loss-conditional training of deep
networks. In International conference on learning representations, 2019.

[18] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media,
2005.

[19] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1(1):1–11, 2009.

[20] Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W Coley, and Jimeng Sun.
Differentiable scaffolding tree for molecule optimization. In International Conference on
Learning Representations, 2022.

[21] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[22] Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a
benchmark for practical molecular optimization. Advances in Neural Information Processing
Systems, 35:21342–21357, 2022.

11

[23] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[24] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[25] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch bayesian optimization
via local penalization. In Artificial intelligence and statistics, pages 648–657. PMLR, 2016.

[26] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[27] Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive
entropy search for multi-objective Bayesian optimization. In International conference on
machine learning, pages 1492–1501. PMLR, 2016.

[28] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pages 9786–9801. PMLR, 2022.

[29] Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua
Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. arXiv preprint
arXiv:2210.12765, 2022.

[30] Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search
for the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

[31] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

[32] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular
graphs using structural motifs. In International conference on machine learning, pages 4839–
4848. PMLR, 2020.

[33] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International conference on machine learning, pages 4849–4859.
PMLR, 2020.

[34] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[35] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with Bayesian optimisation and optimal transport. Advances in
neural information processing systems, 31, 2018.

[36] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[37] Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[38] Mina Konakovic Lukovic, Yunsheng Tian, and Wojciech Matusik. Diversity-guided multi-
objective Bayesian optimization with batch evaluations. Advances in Neural Information
Processing Systems, 33:17708–17720, 2020.

[39] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

12

[40] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with
conditional graph generative model. Journal of cheminformatics, 10(1):1–24, 2018.

[41] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective
combinatorial optimization. In International Conference on Learning Representations, 2021.

[42] Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain,
Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets
from partial episodes for improved convergence and stability. In International Conference on
Machine Learning, pages 23467–23483. PMLR, 2023.

[43] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in gflownets. arXiv preprint arXiv:2201.13259, 2022.

[44] Natalie Maus, Haydn T Jones, Juston S Moore, Matt J Kusner, John Bradshaw, and Jacob R
Gardner. Local latent space Bayesian optimization over structured inputs. arXiv preprint
arXiv:2201.11872, 2022.

[45] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science &
Business Media, 2012.

[46] Henry Moss, David Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. Boss: Bayesian
optimization over string spaces. Advances in neural information processing systems, 33:
15476–15486, 2020.

[47] Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto front with
hypernetworks. In ICLR, 2021.

[48] Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-Hao Liu, Maksym Korablyov,
Michael M Bronstein, and Yoshua Bengio. Evaluating generalization in gflownets for molecule
design. In ICLR2022 Machine Learning for Drug Discovery, 2022.

[49] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for
multi-objective Bayesian optimization using random scalarizations. In Uncertainty in Artificial
Intelligence, pages 766–776. PMLR, 2020.

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[51] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence,
2018.

[52] Pavel G Polishchuk, Timur I Madzhidov, and Alexandre Varnek. Estimation of the size of
drug-like chemical space based on gdb-17 data. Journal of computer-aided molecular design,
27(8):675–679, 2013.

[53] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural ar-
chitecture search via bayesian optimisation with weisfeiler-lehman kernels. arXiv preprint
arXiv:2006.07556, 2020.

[54] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

[55] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 1015–1022,
2010.

[56] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

13

[57] Kevin Swersky, Yulia Rubanova, David Dohan, and Kevin Murphy. Amortized Bayesian
optimization over discrete spaces. In Conference on Uncertainty in Artificial Intelligence, pages
769–778. PMLR, 2020.

[58] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimiza-
tion in the latent space of deep generative models via weighted retraining. Advances in Neural
Information Processing Systems, 33:11259–11272, 2020.

[59] Austin Tripp, Gregor NC Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

[60] Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné
Clevert. Efficient multi-objective molecular optimization in a continuous latent space. Chemical
science, 10(34):8016–8024, 2019.

[61] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars:
Markov molecular sampling for multi-objective drug discovery. In International Conference on
Learning Representations, 2021.

[62] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. Advances in neural information
processing systems, 31, 2018.

[63] Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and
Yoshua Bengio. Generative flow networks for discrete probabilistic modeling. arXiv preprint
arXiv:2202.01361, 2022.

[64] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decom-
position. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

[65] Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partition. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=FlwzVjfMryn.

[66] Yiheng Zhu, Zhenqiu Ouyang, Ben Liao, Jialu Wu, Yixuan Wu, Chang-Yu Hsieh, Tingjun
Hou, and Jian Wu. Molhf: A hierarchical normalizing flow for molecular graph generation.
In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
pages 5002–5010, 8 2023.

[67] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE transactions on Evolutionary Computation, 3(4):
257–271, 1999.

14

https://openreview.net/forum?id=FlwzVjfMryn

A Algorithms

Algorithm 1 describes the overall framework of the proposed MOBO algorithm, where HN-GFN
is leveraged as the acquisition function optimizer. Algorithm 2 describes the training procedure for
HN-GFN within MOBO.

Algorithm 1 MOBO based on HN-GFN
Input: oracle f = (f1, . . . , fM), initial dataset D0 = {(x0

i , f(x
0
i))}ni=1, acquisition function a,

parameter of Dirichlet distribution α, number of rounds N , batch size b
Initialization: surrogate model M, parameters of HN-GFN πθ

for i = 1 to N do
Fit surrogate model M on dataset Di−1

Sample the set of target preference weights Λ ∼ Dir(α)
Train πθ with reward function Rλ(x) = a(µ(sλ(x)), σ(sλ(x));M) ▷ Algorithm 2
Sample query batch Bi = {xi

j}bj=1 based on λtarget ∈ Λ

Evaluate batch Bi with f and augment the dataset Di+1 = Di ∪ {(xi
j , f(x

i
j))}bj=1

end for

Algorithm 2 Training procedure for HN-GFN with the hindsight-like off-policy strategy
Input: available dataset Di, reward function R, minibatch size m, set of target preference vectors
Λ, proportion of hindsight-like strategy γ, replay buffers {Rλ}λ∈Λ

while not converged do
Flag ∼ Bernoulli(γ)
if Flag = 1 then

λ ∼ Λ
Sample m

2 trajectories from replay buffer Rλ

else
λ ∼ Dir(α)
Sample m

2 trajectories from the available dataset Di

end if
θ = (θmpnn, h(λ;ϕ))
Sample m

2 trajectories from policy π̃ and store terminal states x in Rλ for all λ ∈ Λ
Compute reward Rλ(x) on terminal states x from each trajectory in the minibatch
Update parameters θmpnn and ϕ with a stochastic gradient descent step w.r.t Equation (4)

end while

B Implementation details

B.1 Experimental settings

B.1.1 Molecule domain

Following Bengio et al. [6], the molecules are generated by sequentially attaching a fragment, which
is chosen from a predefined vocabulary of building blocks, to an atom of the partially constructed
molecules. The maximum trajectory length is 8, with the number of actions varying between 100
and 2000 depending on the state, making |X | up to 1016. We adopt the property prediction models
released by Xie et al. [61] to evaluate the inhibition ability of generated molecules against GSK3β
and JNK3.

B.1.2 Metrics

Diversity. Diversity (Div) is the average pairwise Tanimoto distance over Morgan fingerprints.
In the synthetic scenario, for each preference vector, we sample 1000 molecules, calculate the Div
among the Top-100 molecules, and report the averages over preferences. In MOBO, the DiV is
computed among the batch of 100 candidates per round, as Graph GA and MARS are not preference-
conditioned. And we believe this metric possibly is more aligned with how these methods might be
used in a biology or chemistry experiment.

15

Correlation. Correlation (Cor) is the Spearman’s rank correlation coefficient between the probabil-
ity of sampling molecules from an external test set under the GFlowNet and their respective rewards
in the logarithmic domain: Cor = Spearman’s ρlog(π(x)),log(R(x)). The external test set is obtained
in two steps: First, we generate a random dataset containing 300K molecules uniformly based on
the number of building blocks; Next, we sample the test sets with uniform property distribution
corresponding to GSK3β and JNK3, respectively, from the 300K molecules.

B.2 Baselines

All baselines are implemented using the publicly released source codes with adaptations for our
MOBO scenarios. The evolutionary algorithms (MOEA/D and NSGA-III) are implemented in
PyMOO [9], and the LSO methods (qParEGO, qEHVI, and LaMOO) are implemented in BoTorch [4].
In MOBO scenarios, LaMOO and Graph GA utilize EHVI as the acquisition function. For all GP-
based methods, each objective is modeled by an independent GP.

B.3 HN-GFN

We implement the proposed HN-GFN in PyTorch [50]. The values of key hyper-parameters are
illustrated in Table 4.

Surrogate model: We use the 12-layer MPNN as the base architecture of the surrogate model in
our experiments. In MOBO, a single multi-task MPNN is trained with a batch size of 64 using the
Adam optimizer with a dropout rate of 0.1 and a weight decay rate of 1e-6. We apply early stopping
to improve generalization.

HN-GFN: HN-GFN contains a vanilla GFlowNet and a preference-conditioned hypernetwork. The
architecture of GFlowNet is a 10-layer MPNN, and the hypernetwork is a 3-layer MLP with multiple
heads, each generating weights for different layers of the target network. The HN-GFN is trained
with Adam optimizer to optimize the Flow Matching objective.

Table 4: Hyper-parameters used in the real-world MOBO experiments.

Hyper-parameter GSK3β + JNK3 GSK3β + JNK3 + QED + SA
Surrogate model

Hidden size 64 64
Learning rate 2.5e-4 1e-3
λ for evidential regression 0.1 0.1
Number of iterations 10000 10000
Early stop patience 500 500
Dropout 0.1 0.1
Weight decay 1e-6 1e-6

Acquisition function (UCB)
β 0.1 0.1

HN-GFN
Learning rate 5e-4 5e-4
Reward exponent 8 8
Reward norm 1.0 1.0
Trajectories minibatch size 8 8
Offline minibatch size 8 8
hindsight γ 0.2 0.2
Uniform policy coefficient 0.05 0.05
Hidden size for GFlowNet 256 256
Hidden size for hypernetwork 100 100
Training steps 5000 5000
α (1,1) (3,4,2,1)

16

B.4 Empirical running time

The efficiency is compared on the same computing facilities using 1 Tesla V100 GPU. In the context
of MOBO, the running time of three LSO methods (i.e., qParEGO, qEHVI, and LaMOO) is around
3 hours, while Graph GA optimizes much faster and costs only 13 minutes. In contrast, the time
complexity of deep-learning-based discrete optimization methods is much larger. MARS costs 32
hours, while our proposed HN-GFN costs 10 hours. With the hindsight-like training strategy, the
running time of HN-GFN will increase roughly by 33%.

However, if we look at the problem in a bigger picture, the time costs for model training are likely
negligible compared to those of evaluating molecular candidates in real-world applications. Therefore,
we argue that the high quality of the candidates (the performance of the MOBO algorithm) is more
essential than having a lower training cost.

C Additional results

C.1 Sampled molecules in MOBO experiments

We give some examples of sampled molecules from the Pareto front by HN-GFN in the GSK3β +
JNK3 + QED + SA optimization setting (Figure 4). The numbers below each molecule refer to
GSK3β, JNK3, QED, and SA scores respectively.

Figure 4: Sampled molecules from the approximate Pareto front by HN-GFN.

C.2 Synthetic scenario

As illustrated in Figure 5, the distribution of Top-100 GSK3β scores shows a consistent trend in
preference-specific GFlowNet and our proposed HN-GFN, although the trend is not as significant as
the JNK3 property.

Figure 5: Comparison of the distribution of Top-100 GSK3β scores sampled by different preference
vectors using preference-specific GFlowNets and HN-GFN.

17

C.3 Effect of Surrogate models

We conduct ablation experiments to study the effectiveness of different surrogate models. We consider
the following three surrogate models: evidential regression [1], Deep Ensembles [39], and GP based
on the Tanimoto kernel [59]. As shown in Table 5, we can observe that evidential regression leads
to better optimization performance than Deep Ensembles. While the HV of evidential regression
and GP is comparable, evidential regression can propose more diverse candidates. Furthermore, we
argue that GP is less flexible over discrete spaces than evidential regression and Deep Ensembles, as
different kernels need to be designed according to the data structures.

Table 5: Evaluation of different surrogate models in MOBO scenarios

GSK3β + JNK3 GSK3β + JNK3 + QED + SA
HV Div HV Div

HN-GFN (Evidential) 0.669 ± 0.061 0.793 ± 0.007 0.416 ± 0.023 0.738 ± 0.009
HN-GFN (Ensemble) 0.583 ± 0.103 0.797 ± 0.004 0.355 ± 0.048 0.761 ± 0.012
HN-GFN (GP) 0.662 ± 0.054 0.739 ± 0.008 0.421 ± 0.037 0.683 ± 0.018

D Comparison with parallel work

While the concept of Pareto GFlowNet was theoretically discussed in Bengio et al. [7], we are among
the first to study and instantiate this concept for MOO, and we address practical challenges that are
not discussed thoroughly in the original theoretical exposition to potentially make sample-efficient
molecular optimization a reality. We extensively study the impact of the conditioning mechanism
(Section 5.1) and surrogate models (Appendix C.3). Moreover, we delicately propose a hindsight-like
off-policy strategy (Section 4.3) which is rarely studied for MOO (in both the RL and GFlowNet
literature).

We note that there is a parallel work introduced in Jain et al. [29], which shares the idea of using
GFlowNets for MOO. In Jain et al. [29], they propose two variants MOGFN-PC and MOGFN-AL
for MOO in the single-round scenario and Bayesian optimization (BO) scenario, respectively. Indeed,
when HN-GFN is used as a stand-alone optimizer outside of MOBO (Section 5.1), it is similar to
MOGFN-PC except for using different conditioning mechanisms. As for MOBO, MOGFN-AL
is a vanilla GFlowNet whose reward function is defined as a multi-objective acquisition function
(NEHVI [13]). In addition to extending GFlowNet, we delicately propose a hindsight-like off-policy
strategy (Section 4.3) which is rarely studied for MOO (in both the RL and GFlowNet literature).

18

	Introduction
	Related Work
	Background
	Problem formulation
	Batch Bayesian optimization

	Method
	Preliminaries
	Hypernetwork-based GFlowNets
	Hypernetwork-based conditioning mechanism
	As the acquisition function optimizer

	Hindsight-like off-policy strategy
	Surrogate model and acquisition function

	Experiments
	Single-round synthetic scenario
	Multi-objective Bayesian optimization
	Ablations

	Conclusion
	Algorithms
	Implementation details
	Experimental settings
	Molecule domain
	Metrics

	Baselines
	HN-GFN
	Empirical running time

	Additional results
	Sampled molecules in MOBO experiments
	Synthetic scenario
	Effect of Surrogate models

	Comparison with parallel work

