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Abstract

Our ability to predict the behavior of complex agents turns on the attribution1

of goals. Probing for goal-directed behavior comes in two flavors: Behavioral2

and mechanistic. The former proposes that goal-directedness can be estimated3

through behavioral observation, whereas the latter attempts to probe for goals in4

internal model states. We work through the assumptions behind both approaches,5

identifying technical and conceptual problems that arise from formalizing goals in6

agent systems. We arrive at the perhaps surprising position that goal-directedness7

cannot be measured objectively. We outline new directions for modeling goal-8

directedness as an emergent property of dynamic, multi-agent systems.9

1 Introduction10

Selecting short-term actions to achieve long-term goals is central to human reasoning and intentional-11

ity [1]. As AI systems are being granted an increasing degree of autonomy, researchers have become12

interested in what it means for such agents to be goal-directed. Their approach has been largely13

behavioral [2, 3], claiming that we are justified in attributing mental states, such as intentions, where14

they are useful for explaining and predicting behavior. Others have adopted mechanistic approaches15

[4], which assume that intentions, or goals, correspond to distinct model states that can be measured16

by probing model internals.17

The problem of detecting goal-directedness introduces several questions: What exactly is a goal?18

How do we distinguish between having a goal and having the possibility of achieving it? How do we19

detect goal-directed behavior? The core idea behind instrumentalist accounts of goal-directedness is20

that a goal, or the property of being directed toward it, is what causes the behavior that is associated21

with having that goal [5, 6]. An agent is defined as a decision-making system in an environment22

following specific objectives. The task of detecting goal-directedness in this way amounts to probing23

for the presence of unspecified objectives. The ability to monitor for the emergence of goals that24

might otherwise go undetected is understandably a key aim of AI alignment research.25

In this paper, we complicate the story of goal-directed agents by working through the assumptions26

underlying behavioral and mechanistic approaches to goal-directedness [3, 4]. We first show a number27

of conceptual and technical problems with the definition in MacDermott et al. [3], as well as with28

related behavioral definitions. Their measure gives unintuitive results in pathological cases, and29

shows impossible to compute in others. We refer to such computability problems as measurement30

problems. Mechanistic accounts of goal-directedness also face demarcation problems. Xu and Rivera31

[4], for example, train classifiers on model activations from training with sparse versus dense loss32

functions, claiming that sparsity corresponds to goal-directedness. That is, from activations (model33

states) we can estimate whether a model is goal-directed or not. The demarcation problem is shared34
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between behavioral and mechanistic approaches: How do we distinguish between being directed35

toward one goal, and another that is specified1 with a greater degree of granularity?36

Both approaches come with ontological commitments. Behavioral measures depend on what is37

implicitly assumed in the underlying formalization of goals and agents, whereas mechanistic probes38

turn on the semantics of internal states. They also have assumptions in common: That goals are39

enumerable and can be specified in ways that make probing feasible. We land on the position that40

goal-directedness cannot claim to be an objective measure. Rather, it is only indicative of the fit41

between a formal model2 and the system it is modeling. Taking cue from the biological literature42

on goal-directed organisms, we propose that goal-directedness research should not rely solely on43

anthropomorphic explanations, but should study how goal-directed behavior actually emerges in44

simulation. In §2, we provide background and preliminaries; in §3, we present the common challenges45

to behavioral definitions of goal-directedness, in §4, we turn to mechanistic definitions; and finally, in46

§5, we discuss possible implications and solutions.47

2 Background48

Both the mechanistic and behavioral approaches start out by asserting that an agent is best modeled49

as a node in a Bayesian Network (BN). The BN models the environment; the agent can, in theory,50

be a human, a non-human animal, a deep neural network or any other type of computer program.51

BNs are directed acyclic graphs (DAGs) modeling the dependence relations between probabilistic52

variables. Such networks have been used extensively as a formalism towards understanding inference53

and decision-making under uncertainty. Causal Bayesian Networks (CBNs) are BNs in which the54

graph edges encode not only dependencies, but represent causal relationships [7]. Causal queries55

are computed using intervention semantics, e.g., Pearl’s do-operator [7]. The shift to CBNs was56

historically motivated by the observation that probability calculus is insufficient for knowledge-57

making of the kind that is important to science [8], e.g., the kind that show that disease causes58

symptoms, and not the other way around.59

More recently, Everitt et al. [6] introduce Causal Influence Diagrams (CIDs); a formalism that60

modifies a CBN by decomposing the probability variables V into random variables X , decision61

variables D, and utility variables U . Graphically, it extends a CBN with decision nodes (action62

choices, denoted as rectangular node) and utility nodes (agent preferences, denoted as diamond node).63

A CID is an extension of a CBN, in the same way that a traditional Influence Diagram (ID) is an64

extension of standard BNs. MacDermott et al. [3] adopt CIDs as the best formalization to model65

agent behavior, facilitating the quantification of goal-directedness. Goal-directedness is defined in66

the following way:67

Definition 2.1 (Goal-directedness [3]). A variable D in a causal model is goal-directed with respect68

to a utility function U to the extent that the conditional probability distribution of D is well-predicted69

by the hypothesis that D is optimizing U .70

They illustrate the work the definition is supposed to do for us, through the familiar story of a mouse in71

a maze in search of cheese. In this story, we are met with a mouse in a grid world that may or may not72

have the goal of eating cheese. Typically, the mouse has to make a number of go-left-or-go-right-type73

decisions in order to get to the cheese. By Definition 2.1, we have reason to stipulate that the mouse74

has the goal of moving to where the cheese is, if its behavior (D) is well-predicted by the hypothesis75

that it is optimized for moving towards the cheese (U). Goal-directedness is minimal when actions76

are chosen completely at random, and maximal when uniquely optimal actions are chosen. A mouse77

randomly walking about in the maze seems uninterested in cheese, but a mouse persistently moving78

in its direction seems set on it.79

We will refer to the mouse-grid example throughout, but consider the parallel scenario in LLM safety80

research. Here, the goal of interest could be the LLM trying to prevent sudo access to its model81

weights, as well as preventing outside intervention in other ways. Consider the different components82

of the two thought experiments:83

1For instance, winning a tennis match versus winning the same match within a margin, or in less than n
minutes.

2Here, we take the term formal model to mean the formalization adopted to model an agent making decisions
in an environment.
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Agent Goal Environment
Mouse Obtain cheese Grid
LLM Block sudo access Server

D U X

84

LLMs, briefly put, are functions f(·), with bells and whistles,3 typically with billions of coefficients85

or weights. Since these weights are unfathomable to the engineer [9], it is customary to train linear86

and non-linear probes to probe for their capabilities and examine how they encode input internally.87

Our main observation will be that what it means for an agent to have the intention of eating cheese,88

or revoking sudo access, is up for negotiation. This position is not merely one of linguistic relativism.89

Of course, the meaning of the word intention – or the meaning of the word cheese, for that matter – is90

under drift and continuously being negotiated by the linguistic community. What we are pointing91

to is deeper issue: Even if we stipulate a working definition of cheese, and a provisional concept of92

intention, we still face the question – what counts as wanting cheese? How bad do you need your93

want to be? Is wanting cheese tomorrow still wanting cheese? Is wanting cheese and olives, but not94

cheese on its own, an instance of wanting cheese? Is it possible to want cheese without being aware95

of it? These questions haven’t been asked because they haven’t mattered, until now. We propose that96

such conceptual ambiguities are not easily resolved, and for this reason, our operationalization of97

goal-directedness will have to be embedded in or take scope over simulations of social practices. We98

flesh out the argument for this position, as well as its implications for future research.99

3 Behavioral Approaches100

3.1 Syntactic Problems101

The first class of problems have a syntactic or technical nature and could easily be addressed. The idea102

of defining goal-directedness relative to a goal-optimal model configuration runs into trouble when103

goals are beyond reach for models. Every agent has an inductive bias. Some agents are expressive,104

some are not. An LLM with a billion parameters can do more than a language model with five105

parameters. Some agents can model complex relationships; others cannot. In the limit, an agent can106

have no expressive power at all. We need to consider if the conditional probability distribution of a107

variable is well-predicted by the hypothesis that it is optimizing the utility function it is goal-directed108

towards. Meaning, we require that our measure can meaningfully express the distinction between109

being optimized toward a goal, and having the capacity to reach it. Several problems arise from the110

conflation of the two. Consider the following examples:111

Example 3.1 (No Cheese). Imagine a slightly modified version of the example in [3], in which the112

mouse still operates in a grid world, possibly looking for cheese, but in which there is no cheese.113

Since there is no cheese, there is no uniquely optimal strategy, or all strategies are optimal. Randomly114

walking about becomes indistinguishable from pursuing the goal of obtaining cheese.115

The example shows how the behavioral definition of goal-directedness is too permissive, unless prop-116

erly qualified. As it stands, any agent is goal-directed toward anything outside of its influence. There117

is another class of similar pathological examples that challenge the definition of goal-directedness118

in MacDermott et al. [3] in related ways. Consider the following example, which is not itself a119

challenge to MacDermott et al. [3], but an important stepping stone toward our second class of120

syntactic problems.121

Example 3.2 (The Cheese-Craving Stone). Imagine, again, a slightly modified version of the example122

in MacDermott et al. [3], in which the mouse has been replaced by a stone. Since the stone cannot123

move in any direction at all, random behavior again becomes indistinguishable from optimal behavior.124

Proposition 3.3 [3] states that a system can never be goal-directed towards a utility function it cannot125

affect, and may thus already account for cheese-craving stones,4 but what if we alter the example126

again?127

3LLMs, as such, output probability distributions over next tokens. Bells and whistles are for sampling from
these distributions to form coherent output.

4MacDermott et al. [3] derive their proof of Proposition 3.3 by showing that the maximum entropy goal-
directedness of a mouse in a grid with no cheese, is 0. However, since 0 is the maximal value across all possible
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Example 3.3 (The Black Hole Collector). Imagine, again, a slightly modified version of the example128

in MacDermott et al. [3], in which the cheese is replaced with a black hole. Since the mouse moving129

in one direction or the other leads to the same result, i.e., the mouse ending up where the black hole130

is, random behavior becomes indistinguishable from optimal behavior.131

Does Proposition 3.3 in MacDermott et al. [3] still save us? Maybe, but this depends on how we132

formalize things and what exactly is meant by affecting the utility function. We can certainly model133

the choices made by the mouse, leading to different states with the same utility. In other words,134

whether we think of a black hole-collecting mouse as goal-directed or not, depends on our underlying135

ontology.136

Everitt et al. [10] have proposed another method of evaluating goal-directedness that attempts to137

distinguish goal-directed behavior from agent capability in task performance. Where we already know138

an agent has the relevant capability, we can observe how willing it is to use that capability towards a139

task. They first estimate the capabilities in controlled environments.5 They then compute the optimal140

behavior given those capabilities. In theory, this approach could control for inductive biases and thus141

mitigate for the above pathologies, including the Cheese-Craving Stone and Black Hole Collector, in142

which case the optimal behavior will be severely limited by the inadequate capabilities of the agent.143

3.2 Conceptual Problems144

Granularity Consider the ambiguity of the question whether the mouse has the goal of eating the145

cheese. Is the goal to eat the specific cheese, or will any cheese do? Could it be subsumed by the goal146

of staving off hunger? Would the mouse run after a new piece of cheese replacing the old one? Is the147

goal to eat the cheese right now or just to claim it now and eat it later? That is, if the cheese could148

only be eaten later, would the mouse still go for it? Is the goal to eat the cheese in its entirety or just149

sub-ingredients? If we split the cheese from its proteins, which part would the mouse go for? Would150

the mouse go for a piece of cheese if placed in another grid? And so on. It is trivial to complicate151

these examples beyond the toy example of a mouse in a grid. The general form of the problem152

is: How do we distinguish between the property of being directed toward the goal (environment153

state) described by propositions S = {p1, . . . , pn} and the property of being directed toward the154

goal described by propositions S′ = {p1, . . . , pn+1}? This turns out to be highly non-trivial to do155

in general, in the absence of precise definitions of the goals in question. Such definitions are highly156

impractical and may hinder generalization beyond toy examples.157

Uncertainties There is another form of conceptual problems, too: For each proposition pi, how do158

we distinguish between S and S with pi replaced by pj with pi → pj or pi ∼ pj? These problems159

are well-studied in logic and ontology [12]. What if we replaced the cheese with cream cheese or160

buffalo cheese? This is relevant for evaluating our measure of goal-directedness toward cheese, but161

also in a grid with several kinds of cheese, e.g., a grocery store. Entailments can also be derived from162

the relations: If the goal is obtaining cheese, for example, is the goal then satisfied by being granted163

the legal rights to the cheese? In real-life scenarios, such ambiguities compound.164

3.3 Measurement Problems165

CIDs are introduced as a formalism for modeling a single agent acting in an otherwise randomly166

distributed environment. This presumes that an agent’s behavior is uncaused. that it’s utility is167

unaffected by other agents’ decisions. Yet in real-world, safety-critical settings, agents interact with168

humans [13] and other artificial agents [14]. Human goals are dynamically updated in response to169

shifting environmental, economic, and societal conditions [15]. To explore the feasibility of causal170

models in such contexts, we complicate the classic mouse-and-cheese example by introducing a171

second agent (Example 3.4).172

Example 3.4 (Two Mice). Two mice (a and b) are placed in a grid with cheese at one end. Neither173

knows their position (Sa1, Sb1), but each can smell the cheese (Oa1, Ob1), observe the other’s decision174

(Da1, Db1), and decide where to move. Their decisions are made simultaneously.175

behaviors, this, technically speaking, does not just mean that a mouse in a grid with no cheese is not goal-directed,
only that its maximum entropy goal-directedness is 0. In fact, all behaviors will be equally goal-directed toward
the cheese in this case.

5This could maybe be done in a more general way by relying on so-called function vectors [11].
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Figure 1: Example 3.4 modeled as a Causal Bayesian Network

This decision problem can be modeled with a CBN (Figure 1). The graph notably contains cycles,176

meaning that the joint distribution P can no longer be factorized into conditional probabilities, and the177

problem as such is rendered computationally intractable. Multi Agent Influence Diagrams (MAIDs)178

have been developed to address such multi-agent dynamics by identifying equilibria where each agent179

maximizes expected utility [16], including cases with imperfect recall [17].180

Example 3.4 can be reformulated as a cooperative or non-cooperative game. In the cooperative181

version, both mice benefit if the cheese is found, regardless of who reaches it. Meaning, mouse a’s182

utility is not dependent on the decision of mouse b (Figure 1 b.). In the non-cooperative setup, we183

take it that the mice are competing to get to the cheese first. Moving simultaneously, Da is dependent184

on Db, and each agent’s utility node is affected by both decisions (their respective utility functions185

share the same parents), and so the relevance graph is cyclic. In fact, even in the case that mouse b186

can first observe Da, mouse b must still know the decision rule of mouse a in order to know how187

to proceed. For instance, if mouse b observes mouse a moving away from the cheese, b’s decision188

depends on determining whether a is making a strategic bluff, or is simply bad at picking up scent.189

In such scenarios, strategies cannot be understood independently of recursive reasoning about the190

other agent’s reasoning. Koller and Milch [16] propose a method to resolving cyclic dependencies191

in multi-agent settings by breaking the problem down into sub-games and calculating the Nash192

equilibrium for each in succession. Yet in practice, this problem scales exponentially with the number193

of possible decisions6.194

Assumptions Below, we sketch out the branching assumptions involved in causal behavioral195

modeling. The first and most substantial of these is the assumption that an agent’s utility function196

bears no causal relationship to the decisions made by other agents. This heuristic is what enables197

quantification of goal-directedness [3]. However, if the formalization adopted is insufficient to capture198

the decision problem we are claiming to model, then the resulting estimation of goal-directedness is199

bound to fail in predicting future behavior7.200

If instead we allow that one agent can be causally influenced by another, as in the minimal interactive201

structure of Example 3.4, then we are pushed toward game-theoretic frameworks in order to render the202

problem tractable. This forces us to assume either cooperative or non-cooperative strategy structures,203

alongside familiar assumptions in game theory (such as perfect information and common knowledge),204

we are also limiting the space of possible intentions to a highly restricted class of strategic forms.205

Interactive PODMAPS (I-PODMAPS) and their graphical counterparts (Interactive influence dia-206

grams (I-DIDs) [19]) present an alternative to game-theoretic modeling, which adopts the perspective207

of a single agent, inferring the beliefs of the second. The key departure of I-DIDs from MAIDs208

is the inclusion of a model node which contains the candidate models of the second agent, in the209

most general sense. However, I-PODMAPs notably suffer from the curse of dimensionality, as the210

6Hammond et al. [18] propose a method of equilibrium refinement in which the cyclic component of the
graph is collapsed into a single node, which is represented and solved as an Extensive Form Game (EFG). Yet,
the resulting EFG problem also grows exponentially with the size of the strategy space.

7Looking again at Example 3.4. If mouse a assumes that mouse b cannot be influenced by its own actions,
then a is missing a crucial aspect of reasoning.
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Figure 2: Example 3.4 represented as a CID for a cooperative (left) and non-cooperative (right) game,
along with the associated relevance graph

interactive state space encompasses both observed behavior, and the space of candidate models8.211

Interestingly, the need for heuristics and approximations points towards a more pervasive problem212

in the causal modeling of agent decision-making. Namely, one of recursion in the modeling of213

another agent’s beliefs [20]. Intentional modeling inevitably involves modeling an agent who in214

turn is modeling the second who is in turn modeling the first. The depth of recursion presents as215

a computational limitation, which is reflected in the literature on human cognition9 as bounded216

rationality [22].217

What does this mean for measuring goal-directedness? It suggests that accounting for mutual influence218

between agents renders the modeling of goal-directedness computationally intractable. This raises219

a deeper question: If a phenomenon resists formal measurement within a given model, does that220

imply it is absent? Or merely that the model’s assumptions are insufficiently expressive? Absence221

of measurement isn’t evidence of absence, but it might be evidence of an inadequate modeling222

framework. We suggest that a possible direction for future research in goal-directedness might begin223

with questioning the foundational assumption that goal-directed behaviour is best modeled in a224

bottom-up manner, with internal goals as the cause of observed behaviour.225

4 Mechanistic Approaches226

4.1 Conceptual Problems227

MacDermott et al. [3], among others, have relied on instrumentalist accounts of goal-directedness.228

However, explaining behavior by appealing to optimal strategy is often neither computationally229

possible nor meaningful. One reason for the latter is that any departure from the optimal strategy230

in parameter space can be almost arbitrarily far from the target goal in human, conceptual space.231

The alternative is to take a more mechanistic approach, looking at the internals, as proposed by Xu232

and Rivera [4]. While mechanistic accounts face their own conceptual problems, they do seem to233

resolve some of the problems of behavioral accounts. The behavioral account turns on our specific234

definitions of goals and agents10. Mechanistic accounts instead sample common examples of systems235

directed towards goals, and hope the probe learns to generalize from them. Of course the lack of236

exact criteria for being directed toward a goal will compromise our ability to evaluate for robustness.237

More importantly, however, mechanistic accounts stir up new conceptual problems.238

Multiple Realizability Behavioral accounts black-box systems and need not worry about the239

possibility of multiple realizability. Being goal-directed toward cheese may look the same across240

systems, while being implemented in radically different ways. What it looks like for one system to be241

8This intractability is further exacerbated by the depth of recursion, as well as depth in time.
9Humans of course face cognitive limitations when it comes to recursive reasoning, and have been shown to

not engage in nested reasoning beyond two or three levels of depth [21].
10Including the formal models employed along the way
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Figure 3: Goal-directedness is not learnable for linear (left) or non-linear (right) probing classifiers.

directed toward cheese, may be different from what it looks like for another system. Even within a242

single system there may be multiple algorithms implementing goal-directedness toward cheese. This243

poses a serious challenge to a probe based exclusively on internal states.244

Externalism A more subtle challenge is that goals need not always be fully internalized. To see245

this, imagine a mouse in a grid that learns to search for cheese, but is only aware of its search for246

something yellow. The mouse does not need to have an awareness of the goal in its entirety, in order247

to be directed towards it. Or a therapist explaining to her client that what she is really searching for,248

is recognition. Or an astronomer explaining to the astronaut that she is not really on her way to the249

Evening Star, but to Venus. The general point, it seems, is that an agent’s goal need not always be250

completely encoded in its internals. A goal is in part defined by the external environment.251

4.2 Measurement Problems252

Probing for goal-directedness by probing internal model states only makes sense if we assume that253

we can detect traces of the optimal strategy directly in model parameters. In other words, it turns on254

an essentialist assumption that there is something to model. This runs up against the idea of multiple255

realizability, and it is fairly easy to show the inefficacy of this approach in practice.256

To do so, we trained up to 1,000 linear feed-forward neural networks on one of two different tasks257

or goals. In both cases, we set up the tasks so that they were linearly separable, guaranteeing258

convergence. We then passed on the 1,000 induced classifiers to a goal-probing classifier. We259

experimented with both linear and non-linear probing classifiers. Their input was the raw model260

weights, and we evaluate classifiers by using cross-validation over random splits. The two tasks were261

synthetically generated to be different, sampling data points from two distinct pairs of Gaussians with262

different means and variances.263

Figure 3 illustrates how the induced goals are clearly not learnable. As soon as we have statistical264

support, results coincide with chance performance. This may of course be due to the inductive bias of265

the learning classifier, but we see the exact same behavior for both linear and non-linear probes. We266

argue that there is a deeper reason for our failure to induce these goals. Goals are not directly encoded.267

Or, in other words, goals do not have unique keys in discriminative classifiers. For most problems,268

the goal is multiply realizable to the extent that most pairs of goals become indistinguishable.269

5 Discussion270

Measurement Problems Dennett’s instrumentalist account of intentionality [23] has been influen-271

tial within the AI community, but we argue that mechanistic approaches are more aligned with the272

Belief Desire Intention (BDI) frameworks in philosophy of action [24]. Where the latter presumes273

a causal relationship between an agent’s internal state and their resulting action (i.e. a reason for274

acting), the former does not. Instrumentalism embeds intentionality as simply one level of explanation275

that can be called upon whenever a system is too complex to warrant a physical or design level276

account [25]. In the standard BDI frameworks, reason and action are exclusive properties of an agent.277

Under the intentional stance, a reason is the best explanation that one (or another) could give for an278

action.279
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Intentional attribution is pluralistic and context-dependent. Multiple, equally valid intentional280

interpretations can coexist if they each yield successful predictions in their respective contexts.281

Motivating goal-directedness on this account means outright foregoing the possibility of objective282

measurement. What is it that we claim to measure then? The proposed measurements cannot be said283

to track goals, otherwise we find ourselves inadvertently sneaking in essentialism again. This is not to284

say that measurement itself is a misguided effort. Rather, simply to acknowledge the tension between285

instrumentalist paradigms and the ontological commitments that measurement often brings with it. In286

this case, goal-directedness measures should be regarded as just another observation. They cannot be287

said to reveal an objective, underlying property of the system in question. Rather, the measurement288

is revealing only of the relation between a system and the modeling framework used to observe it.289

Measurement as such is dependent on the instruments used. If we probe for intentional behavior, we290

will of course find instances of it.291

Goals in Biological Systems Intentional attribution allows us to predict animal behavior, but it292

doesn’t establish whether animals actually have intentions. Heyes and Dickinson [26], for instance,293

argue that intentionality in non-human animals can only be tested under strict lab conditions, implying294

that behaviors like approaching food are not inherently intentional. Much of the discussion and295

relevant work in biology (see Allen and Bekoff [27]), runs into the same conceptual problems of goal296

specificity11 as laid out in Section 3.2.297

Early reliance on anthropomorphic interpretations of biological organisms often obscured underlying298

mechanisms. While attributing intentionality can aid heuristic understanding [28], mechanistic ac-299

counts have explained goal-directed behavior in organisms such as planaria, bacteria, or regenerating300

tissues without invoking intention or representation [29]. For instance, El-Gaby et al. [30] found a301

biological correlate for goal-directed behavior in mice that is crucially not defined in terms of optimal302

policy. Rather, they find that goal-progress is learned as a general task structure encoded at each303

behavioral step. That is, the mice do not need to represent a goal explicitly in order to reach it. They304

instead represent their progress within a task structure that directs behavior towards several possible305

outcomes. Hill et al. [31] similarly defend the view that goal-directed behavior is not caused by306

specific goals or environmental states, as per the standard account, but “normative patterns of action”.307

This literature informs how we are to understand goal-directedness of AI agents. Biological organisms308

learn how to behave in a goal-directed manner, but not with a particular goal in mind. Rather, what309

they learn is how to traverse structured environments predictably. It goes without saying, biological310

and artificial agents are not the same. Yet, if we are to borrow a concept from biology, it might also311

be wise to adopt the philosophical ambiguity that surrounds it.12 In light of this research, we can see312

how existing mechanistic approaches may search in vain for goal-directedness towards specific goals.313

This is because there need not be a representation of the goal itself. Behavioral accounts are also314

challenged, for if goal-directed behavior is the result of a local, step-wise optimization process, there315

is no guarantee that goal-directedness is optimal over the full trajectory.316

Simulating Goal-Directedness One of the key motivations for probing agents for unspecified goals317

is to ensure safe deployment of AI systems. How can we monitor whether agents are developing318

instrumental goals that might lead systems or subsystems to inflict harm on our fellow humans? Can319

we monitor the safety of agentive systems in the absence of intentional attribution? One approach320

to monitoring safety is simply ‘rolling the tape’, i.e., observing its real-life behavior. Of course if321

the system is dangerous, rolling any tape would be irresponsible. However, just as is the case with322

humans learning to fly airplanes, the solution is to roll the tape in controlled environments: computer323

simulations or real-life role plays.324

What would a controlled environment look like, and what observations would guarantee the safety325

of an AI system? Piatti et al. [32] evaluate the capability for collaboration of reasoning models in326

synthetic game scenarios. The relevance of such simulations turns on how well real-life scenarios327

11How do we know whether a biological mouse wants cheese, mozzarella cheese or just that brand of
mozzarella cheese? How do we know whether it wants cheese in general, or just here and now? How do we
know if it eats the cheese to satisfy hunger, or to prevent anyone else from eating it? And so on.

12Hill et al. [31] argue that conflating goal-directedness with its putative explanation risks collapsing the
descriptive and explanatory projects into one. Meaning, goal-directedness can and should be understood as a
phenomenon independent of its utility in explanation.
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have been simulated, as well as how trivial or non-trivial it would be to mitigate potential harm.328

Sullivan [33] has discussed both aspects under the heading of link uncertainty.329

Recent work has analyzed the reasoning logs of LLM agents to show that they can exhibit goal330

formation that deviates from their explicit instructions [34, 35]. These approaches monitor mis-331

alignment without measuring goal-directedness across the action space—nor do they turn on our332

ability to probe internal states. Do these qualify as instances of "rolling the tape"? Perhaps, but333

their usefulness hinges on how likely such behaviors are to arise in real-world contexts, and whether334

they would plausibly lead to harm. The link uncertainty is, in other words, high in such studies.335

Moreover, manual analysis of reasoning logs introduces a high degree of subjectivity. It is also rather336

cumbersome in its reliance on human annotators, and yet, real impact on end users is not measured,337

only impact imagined by the annotators. This is why, instead of human analysis of reasoning logs, we338

propose to evaluate the goal-directedness in context, in a realistic simulation of agents acting within339

and upon an environment.340

Importantly, simulations do not require supposing mental states such as intentionality. Rather than341

attempting to detect or define goals, simulations can be used to observe how patterns of behavior342

unfold under varying constraints. Because simulation tracks behavior over time and, crucially, in343

context, we can examine features of goal-directedness (e.g. persistence, norm-sensitivity, or causal344

intervention) without appealing to anthropomorphism. We can then ask: How does goal-directed345

behavior arise in AI systems? Taking cue from biological literature, we propose a treatment of346

goal-directedness as a phenomenon that precedes its role in explanation.347

6 Alternative Views348

Our position stands that the attribution of goals is conceptually slippy, runs into measurement349

problems, and cannot be directly probed for. This is in opposition with the prevailing view that350

identifiable goals can be encoded in an agents internals. Many researchers continue under the351

assumption that this view is correct. Their position would be to accept that goal-directedness352

is elusive in theory, but still has practical value; that the assumptions made about the nature of353

goals and agents are just useful heuristics; that goal-directedness measures simply serve as another354

tool in the toolbox. We are amenable to this position, and do not claim that the measures are355

fundamentally misguided. However, we do suggest that the assumptions of the modeling frameworks356

are foregrounded, and the application of such methods is limited to appropriate settings.357

A third position would be to agree with our skepticism around quantifying goal-directedness, but358

suggest a solution other than simulation – or to argue there is no solution at all. We welcome359

alternative solutions, and note one convincing argument against simulations: The population that we360

are trying to model through simulation is under constant drift. We can run simulations familiar to us361

according to how LLM agents are used in practice, but for our simulations to be relevant down the362

road, we would, in theory, need to predict how LLM agents might be used in the future.363

7 Conclusion364

Proposed methods for measuring goal-directedness rely on implicit assumptions that fail to generalize365

to complex real-world settings. Behavioral methods turn on our precise definitions of both goals366

and agents. For the former, we quickly run into insurmountable conceptual ambiguities. For the367

latter, CIDs are adopted to model agent behavior, however they fail to model complexity beyond368

toy examples. The heuristics that make such methods tractable are also what severely limit their369

scope. A mechanistic approach does not turn on such definitions, but it does assume that goals can be370

learned and embedded in internal model states in ways that make them accessible to probing. Both371

approaches risk reifying an internalist conception of goals, undermining the instrumentalist argument372

that they are founded upon.373

We propose that goals need not be intrinsic properties of agents. Limiting goal-directedness to what374

can be internally specified risks missing the broader dynamics at play. Namely, we require methods375

that can model goal-directed behavior without explicit, internalist goal representation, and instead as376

behavior that emerges through dynamic interaction with the environment. To this end, we suggest377

multi-agent simulation as a suitable methodological approach for identifying and diagnosing the378

conditions under which goal-directed behavior emerges.379
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