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Abstract

Our ability to predict the behavior of complex agents turns on the attribution
of goals. Probing for goal-directed behavior comes in two flavors: Behavioral
and mechanistic. The former proposes that goal-directedness can be estimated
through behavioral observation, whereas the latter attempts to probe for goals in
internal model states. We work through the assumptions behind both approaches,
identifying technical and conceptual problems that arise from formalizing goals in
agent systems. We arrive at the perhaps surprising position that goal-directedness
cannot be measured objectively. We outline new directions for modeling goal-
directedness as an emergent property of dynamic, multi-agent systems.

1 Introduction

Selecting short-term actions to achieve long-term goals is central to human reasoning and intentional-
ity [[1]. As Al systems are being granted an increasing degree of autonomy, researchers have become
interested in what it means for such agents to be goal-directed. Their approach has been largely
behavioral |2, 3]], claiming that we are justified in attributing mental states, such as intentions, where
they are useful for explaining and predicting behavior. Others have adopted mechanistic approaches
[4], which assume that intentions, or goals, correspond to distinct model states that can be measured
by probing model internals.

The problem of detecting goal-directedness introduces several questions: What exactly is a goal?
How do we distinguish between having a goal and having the possibility of achieving it? How do we
detect goal-directed behavior? The core idea behind instrumentalist accounts of goal-directedness is
that a goal, or the property of being directed toward it, is what causes the behavior that is associated
with having that goal [5,16]. An agent is defined as a decision-making system in an environment
following specific objectives. The task of detecting goal-directedness in this way amounts to probing
for the presence of unspecified objectives. The ability to monitor for the emergence of goals that
might otherwise go undetected is understandably a key aim of Al alignment research.

In this paper, we complicate the story of goal-directed agents by working through the assumptions
underlying behavioral and mechanistic approaches to goal-directedness [3,/4]. We first show a number
of conceptual and technical problems with the definition in MacDermott et al. [3], as well as with
related behavioral definitions. Their measure gives unintuitive results in pathological cases, and
shows impossible to compute in others. We refer to such computability problems as measurement
problems. Mechanistic accounts of goal-directedness also face demarcation problems. Xu and Rivera
[4], for example, train classifiers on model activations from training with sparse versus dense loss
functions, claiming that sparsity corresponds to goal-directedness. That is, from activations (model
states) we can estimate whether a model is goal-directed or not. The demarcation problem is shared
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between behavioral and mechanistic approaches: How do we distinguish between being directed
toward one goal, and another that is speciﬁecﬂ with a greater degree of granularity?

Both approaches come with ontological commitments. Behavioral measures depend on what is
implicitly assumed in the underlying formalization of goals and agents, whereas mechanistic probes
turn on the semantics of internal states. They also have assumptions in common: That goals are
enumerable and can be specified in ways that make probing feasible. We land on the position that
goal-directedness cannot claim to be an objective measure. Rather, it is only indicative of the fit
between a formal modeﬂ and the system it is modeling. Taking cue from the biological literature
on goal-directed organisms, we propose that goal-directedness research should not rely solely on
anthropomorphic explanations, but should study how goal-directed behavior actually emerges in
simulation. In §2, we provide background and preliminaries; in §3, we present the common challenges
to behavioral definitions of goal-directedness, in §4, we turn to mechanistic definitions; and finally, in
§5, we discuss possible implications and solutions.

2 Background

Both the mechanistic and behavioral approaches start out by asserting that an agent is best modeled
as a node in a Bayesian Network (BN). The BN models the environment; the agent can, in theory,
be a human, a non-human animal, a deep neural network or any other type of computer program.
BN are directed acyclic graphs (DAGs) modeling the dependence relations between probabilistic
variables. Such networks have been used extensively as a formalism towards understanding inference
and decision-making under uncertainty. Causal Bayesian Networks (CBNs) are BNs in which the
graph edges encode not only dependencies, but represent causal relationships [7]. Causal queries
are computed using intervention semantics, e.g., Pearl’s do-operator [7]. The shift to CBNs was
historically motivated by the observation that probability calculus is insufficient for knowledge-
making of the kind that is important to science [8], e.g., the kind that show that disease causes
symptoms, and not the other way around.

More recently, Everitt et al. [6] introduce Causal Influence Diagrams (CIDs); a formalism that
modifies a CBN by decomposing the probability variables V' into random variables X, decision
variables D, and utility variables U. Graphically, it extends a CBN with decision nodes (action
choices, denoted as rectangular node) and utility nodes (agent preferences, denoted as diamond node).
A CID is an extension of a CBN, in the same way that a traditional Influence Diagram (ID) is an
extension of standard BNs. MacDermott et al. [3]] adopt CIDs as the best formalization to model
agent behavior, facilitating the quantification of goal-directedness. Goal-directedness is defined in
the following way:

Definition 2.1 (Goal-directedness [3]]). A variable D in a causal model is goal-directed with respect
to a utility function U/ to the extent that the conditional probability distribution of D is well-predicted
by the hypothesis that D is optimizing U.

They illustrate the work the definition is supposed to do for us, through the familiar story of a mouse in
a maze in search of cheese. In this story, we are met with a mouse in a grid world that may or may not
have the goal of eating cheese. Typically, the mouse has to make a number of go-left-or-go-right-type
decisions in order to get to the cheese. By Definition 2.1 we have reason to stipulate that the mouse
has the goal of moving to where the cheese is, if its behavior (D) is well-predicted by the hypothesis
that it is optimized for moving towards the cheese (I/). Goal-directedness is minimal when actions
are chosen completely at random, and maximal when uniquely optimal actions are chosen. A mouse
randomly walking about in the maze seems uninterested in cheese, but a mouse persistently moving
in its direction seems set on it.

We will refer to the mouse-grid example throughout, but consider the parallel scenario in LLM safety
research. Here, the goal of interest could be the LLM trying to prevent sudo access to its model
weights, as well as preventing outside intervention in other ways. Consider the different components
of the two thought experiments:

'For instance, winning a tennis match versus winning the same match within a margin, or in less than n
minutes.

Here, we take the term formal model to mean the formalization adopted to model an agent making decisions
in an environment.
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LLMs, briefly put, are functions f(-), with bells and whistlesE] typically with billions of coefficients
or weights. Since these weights are unfathomable to the engineer [9], it is customary to train linear
and non-linear probes to probe for their capabilities and examine how they encode input internally.

Our main observation will be that what it means for an agent to have the intention of eating cheese,
or revoking sudo access, is up for negotiation. This position is not merely one of linguistic relativism.
Of course, the meaning of the word intention — or the meaning of the word cheese, for that matter — is
under drift and continuously being negotiated by the linguistic community. What we are pointing
to is deeper issue: Even if we stipulate a working definition of cheese, and a provisional concept of
intention, we still face the question — what counts as wanting cheese? How bad do you need your
want to be? Is wanting cheese tomorrow still wanting cheese? Is wanting cheese and olives, but not
cheese on its own, an instance of wanting cheese? Is it possible to want cheese without being aware
of it? These questions haven’t been asked because they haven’t mattered, until now. We propose that
such conceptual ambiguities are not easily resolved, and for this reason, our operationalization of
goal-directedness will have to be embedded in or take scope over simulations of social practices. We
flesh out the argument for this position, as well as its implications for future research.

3 Behavioral Approaches

3.1 Syntactic Problems

The first class of problems have a syntactic or technical nature and could easily be addressed. The idea
of defining goal-directedness relative to a goal-optimal model configuration runs into trouble when
goals are beyond reach for models. Every agent has an inductive bias. Some agents are expressive,
some are not. An LLM with a billion parameters can do more than a language model with five
parameters. Some agents can model complex relationships; others cannot. In the limit, an agent can
have no expressive power at all. We need to consider if the conditional probability distribution of a
variable is well-predicted by the hypothesis that it is optimizing the utility function it is goal-directed
towards. Meaning, we require that our measure can meaningfully express the distinction between
being optimized toward a goal, and having the capacity to reach it. Several problems arise from the
conflation of the two. Consider the following examples:

Example 3.1 (No Cheese). Imagine a slightly modified version of the example in [3], in which the
mouse still operates in a grid world, possibly looking for cheese, but in which there is no cheese.
Since there is no cheese, there is no uniquely optimal strategy, or all strategies are optimal. Randomly
walking about becomes indistinguishable from pursuing the goal of obtaining cheese.

The example shows how the behavioral definition of goal-directedness is too permissive, unless prop-
erly qualified. As it stands, any agent is goal-directed toward anything outside of its influence. There
is another class of similar pathological examples that challenge the definition of goal-directedness
in MacDermott et al. [3]] in related ways. Consider the following example, which is not itself a
challenge to MacDermott et al. [3]], but an important stepping stone toward our second class of
syntactic problems.

Example 3.2 (The Cheese-Craving Stone). Imagine, again, a slightly modified version of the example
in MacDermott et al. [3]], in which the mouse has been replaced by a stone. Since the stone cannot
move in any direction at all, random behavior again becomes indistinguishable from optimal behavior.

Proposition 3.3 [3] states that a system can never be goal-directed towards a utility function it cannot
affect, and may thus already account for cheese-craving stonesE] but what if we alter the example
again?

3LLMs, as such, output probability distributions over next tokens. Bells and whistles are for sampling from
these distributions to form coherent output.

*MacDermott et al. [3]] derive their proof of Proposition 3.3 by showing that the maximum entropy goal-
directedness of a mouse in a grid with no cheese, is 0. However, since 0 is the maximal value across all possible
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Example 3.3 (The Black Hole Collector). Imagine, again, a slightly modified version of the example
in MacDermott et al. [3], in which the cheese is replaced with a black hole. Since the mouse moving
in one direction or the other leads to the same result, i.e., the mouse ending up where the black hole
is, random behavior becomes indistinguishable from optimal behavior.

Does Proposition 3.3 in MacDermott et al. [3] still save us? Maybe, but this depends on how we
formalize things and what exactly is meant by affecting the utility function. We can certainly model
the choices made by the mouse, leading to different states with the same utility. In other words,
whether we think of a black hole-collecting mouse as goal-directed or not, depends on our underlying
ontology.

Everitt et al. [LO] have proposed another method of evaluating goal-directedness that attempts to
distinguish goal-directed behavior from agent capability in task performance. Where we already know
an agent has the relevant capability, we can observe how willing it is to use that capability towards a
task. They first estimate the capabilities in controlled environmentsE] They then compute the optimal
behavior given those capabilities. In theory, this approach could control for inductive biases and thus
mitigate for the above pathologies, including the Cheese-Craving Stone and Black Hole Collector, in
which case the optimal behavior will be severely limited by the inadequate capabilities of the agent.

3.2 Conceptual Problems

Granularity Consider the ambiguity of the question whether the mouse has the goal of eating the
cheese. Is the goal to eat the specific cheese, or will any cheese do? Could it be subsumed by the goal
of staving off hunger? Would the mouse run after a new piece of cheese replacing the old one? Is the
goal to eat the cheese right now or just to claim it now and eat it later? That is, if the cheese could
only be eaten later, would the mouse still go for it? Is the goal to eat the cheese in its entirety or just
sub-ingredients? If we split the cheese from its proteins, which part would the mouse go for? Would
the mouse go for a piece of cheese if placed in another grid? And so on. It is trivial to complicate
these examples beyond the toy example of a mouse in a grid. The general form of the problem
is: How do we distinguish between the property of being directed toward the goal (environment
state) described by propositions S = {p1, ..., p,} and the property of being directed toward the
goal described by propositions S” = {p1, ..., pn+1}? This turns out to be highly non-trivial to do
in general, in the absence of precise definitions of the goals in question. Such definitions are highly
impractical and may hinder generalization beyond toy examples.

Uncertainties There is another form of conceptual problems, too: For each proposition p;, how do
we distinguish between S and S with p; replaced by p; with p; — p; or p; ~ p;? These problems
are well-studied in logic and ontology [12]. What if we replaced the cheese with cream cheese or
buffalo cheese? This is relevant for evaluating our measure of goal-directedness toward cheese, but
also in a grid with several kinds of cheese, e.g., a grocery store. Entailments can also be derived from
the relations: If the goal is obtaining cheese, for example, is the goal then satisfied by being granted
the legal rights to the cheese? In real-life scenarios, such ambiguities compound.

3.3 Measurement Problems

CIDs are introduced as a formalism for modeling a single agent acting in an otherwise randomly
distributed environment. This presumes that an agent’s behavior is uncaused. that it’s utility is
unaffected by other agents’ decisions. Yet in real-world, safety-critical settings, agents interact with
humans [[13] and other artificial agents [[14)]. Human goals are dynamically updated in response to
shifting environmental, economic, and societal conditions [15]. To explore the feasibility of causal
models in such contexts, we complicate the classic mouse-and-cheese example by introducing a
second agent (Example [3.4).

Example 3.4 (Two Mice). Two mice (a and b) are placed in a grid with cheese at one end. Neither
knows their position (S,1, Sp1), but each can smell the cheese (O, 1, Op1), observe the other’s decision
(Dq1, Dp1), and decide where to move. Their decisions are made simultaneously.

behaviors, this, technically speaking, does not just mean that a mouse in a grid with no cheese is not goal-directed,
only that its maximum entropy goal-directedness is 0. In fact, all behaviors will be equally goal-directed toward
the cheese in this case.

>This could maybe be done in a more general way by relying on so-called function vectors [[L1]].
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Figure 1: Example 3.4 modeled as a Causal Bayesian Network

This decision problem can be modeled with a CBN (Figure[T). The graph notably contains cycles,
meaning that the joint distribution P can no longer be factorized into conditional probabilities, and the
problem as such is rendered computationally intractable. Multi Agent Influence Diagrams (MAIDs)
have been developed to address such multi-agent dynamics by identifying equilibria where each agent
maximizes expected utility [16], including cases with imperfect recall [17]].

Example [3.4] can be reformulated as a cooperative or non-cooperative game. In the cooperative
version, both mice benefit if the cheese is found, regardless of who reaches it. Meaning, mouse a’s
utility is not dependent on the decision of mouse b (Figure[I]b.). In the non-cooperative setup, we
take it that the mice are competing to get to the cheese first. Moving simultaneously, D,, is dependent
on Dy, and each agent’s utility node is affected by both decisions (their respective utility functions
share the same parents), and so the relevance graph is cyclic. In fact, even in the case that mouse b
can first observe D,, mouse b must still know the decision rule of mouse a in order to know how
to proceed. For instance, if mouse b observes mouse a moving away from the cheese, b’s decision
depends on determining whether a is making a strategic bluff, or is simply bad at picking up scent.
In such scenarios, strategies cannot be understood independently of recursive reasoning about the
other agent’s reasoning. Koller and Milch [[16] propose a method to resolving cyclic dependencies
in multi-agent settings by breaking the problem down into sub-games and calculating the Nash
equilibrium for each in succession. Yet in practice, this problem scales exponentially with the number
of possible decisiong’}

Assumptions Below, we sketch out the branching assumptions involved in causal behavioral
modeling. The first and most substantial of these is the assumption that an agent’s utility function
bears no causal relationship to the decisions made by other agents. This heuristic is what enables
quantification of goal-directedness [3]. However, if the formalization adopted is insufficient to capture
the decision problem we are claiming to model, then the resulting estimation of goal-directedness is
bound to fail in predicting future behavioﬂ

If instead we allow that one agent can be causally influenced by another, as in the minimal interactive
structure of Example[3.4] then we are pushed toward game-theoretic frameworks in order to render the
problem tractable. This forces us to assume either cooperative or non-cooperative strategy structures,
alongside familiar assumptions in game theory (such as perfect information and common knowledge),
we are also limiting the space of possible intentions to a highly restricted class of strategic forms.

Interactive PODMAPS (I-PODMAPS) and their graphical counterparts (Interactive influence dia-
grams (I-DIDs) [19]) present an alternative to game-theoretic modeling, which adopts the perspective
of a single agent, inferring the beliefs of the second. The key departure of I-DIDs from MAIDs
is the inclusion of a model node which contains the candidate models of the second agent, in the
most general sense. However, -PODMAPs notably suffer from the curse of dimensionality, as the

SHammond et al. [I8]] propose a method of equilibrium refinement in which the cyclic component of the
graph is collapsed into a single node, which is represented and solved as an Extensive Form Game (EFG). Yet,
the resulting EFG problem also grows exponentially with the size of the strategy space.

"Looking again at Example If mouse a assumes that mouse b cannot be influenced by its own actions,
then a is missing a crucial aspect of reasoning.
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Figure 2: Example [3.4]represented as a CID for a cooperative (left) and non-cooperative (right) game,
along with the associated relevance graph

interactive state space encompasses both observed behavior, and the space of candidate model
Interestingly, the need for heuristics and approximations points towards a more pervasive problem
in the causal modeling of agent decision-making. Namely, one of recursion in the modeling of
another agent’s beliefs [20]]. Intentional modeling inevitably involves modeling an agent who in
turn is modeling the second who is in turn modeling the first. The depth of recursion presents as
a computational limitation, which is reflected in the literature on human cognitionﬂ as bounded
rationality [22].

What does this mean for measuring goal-directedness? It suggests that accounting for mutual influence
between agents renders the modeling of goal-directedness computationally intractable. This raises
a deeper question: If a phenomenon resists formal measurement within a given model, does that
imply it is absent? Or merely that the model’s assumptions are insufficiently expressive? Absence
of measurement isn’t evidence of absence, but it might be evidence of an inadequate modeling
framework. We suggest that a possible direction for future research in goal-directedness might begin
with questioning the foundational assumption that goal-directed behaviour is best modeled in a
bottom-up manner, with internal goals as the cause of observed behaviour.

4 Mechanistic Approaches

4.1 Conceptual Problems

MacDermott et al. [3]], among others, have relied on instrumentalist accounts of goal-directedness.
However, explaining behavior by appealing to optimal strategy is often neither computationally
possible nor meaningful. One reason for the latter is that any departure from the optimal strategy
in parameter space can be almost arbitrarily far from the target goal in human, conceptual space.
The alternative is to take a more mechanistic approach, looking at the internals, as proposed by Xu
and Rivera [4]. While mechanistic accounts face their own conceptual problems, they do seem to
resolve some of the problems of behavioral accounts. The behavioral account turns on our specific
definitions of goals and agentﬂ Mechanistic accounts instead sample common examples of systems
directed towards goals, and hope the probe learns to generalize from them. Of course the lack of
exact criteria for being directed toward a goal will compromise our ability to evaluate for robustness.
More importantly, however, mechanistic accounts stir up new conceptual problems.

Multiple Realizability Behavioral accounts black-box systems and need not worry about the
possibility of multiple realizability. Being goal-directed toward cheese may look the same across
systems, while being implemented in radically different ways. What it looks like for one system to be

8This intractability is further exacerbated by the depth of recursion, as well as depth in time.

“Humans of course face cognitive limitations when it comes to recursive reasoning, and have been shown to
not engage in nested reasoning beyond two or three levels of depth [21].

Including the formal models employed along the way
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Figure 3: Goal-directedness is not learnable for linear (left) or non-linear (right) probing classifiers.

directed toward cheese, may be different from what it looks like for another system. Even within a
single system there may be multiple algorithms implementing goal-directedness toward cheese. This
poses a serious challenge to a probe based exclusively on internal states.

Externalism A more subtle challenge is that goals need not always be fully internalized. To see
this, imagine a mouse in a grid that learns to search for cheese, but is only aware of its search for
something yellow. The mouse does not need to have an awareness of the goal in its entirety, in order
to be directed towards it. Or a therapist explaining to her client that what she is really searching for,
is recognition. Or an astronomer explaining to the astronaut that she is not really on her way to the
Evening Star, but to Venus. The general point, it seems, is that an agent’s goal need not always be
completely encoded in its internals. A goal is in part defined by the external environment.

4.2 Measurement Problems

Probing for goal-directedness by probing internal model states only makes sense if we assume that
we can detect traces of the optimal strategy directly in model parameters. In other words, it turns on
an essentialist assumption that there is something to model. This runs up against the idea of multiple
realizability, and it is fairly easy to show the inefficacy of this approach in practice.

To do so, we trained up to 1,000 linear feed-forward neural networks on one of two different tasks
or goals. In both cases, we set up the tasks so that they were linearly separable, guaranteeing
convergence. We then passed on the 1,000 induced classifiers to a goal-probing classifier. We
experimented with both linear and non-linear probing classifiers. Their input was the raw model
weights, and we evaluate classifiers by using cross-validation over random splits. The two tasks were
synthetically generated to be different, sampling data points from two distinct pairs of Gaussians with
different means and variances.

Figure [3]illustrates how the induced goals are clearly not learnable. As soon as we have statistical
support, results coincide with chance performance. This may of course be due to the inductive bias of
the learning classifier, but we see the exact same behavior for both linear and non-linear probes. We
argue that there is a deeper reason for our failure to induce these goals. Goals are not directly encoded.
Or, in other words, goals do not have unique keys in discriminative classifiers. For most problems,
the goal is multiply realizable to the extent that most pairs of goals become indistinguishable.

5 Discussion

Measurement Problems Dennett’s instrumentalist account of intentionality [23] has been influen-
tial within the Al community, but we argue that mechanistic approaches are more aligned with the
Belief Desire Intention (BDI) frameworks in philosophy of action [24]. Where the latter presumes
a causal relationship between an agent’s internal state and their resulting action (i.e. a reason for
acting), the former does not. Instrumentalism embeds intentionality as simply one level of explanation
that can be called upon whenever a system is too complex to warrant a physical or design level
account [25]. In the standard BDI frameworks, reason and action are exclusive properties of an agent.
Under the intentional stance, a reason is the best explanation that one (or another) could give for an
action.
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Intentional attribution is pluralistic and context-dependent. Multiple, equally valid intentional
interpretations can coexist if they each yield successful predictions in their respective contexts.
Motivating goal-directedness on this account means outright foregoing the possibility of objective
measurement. What is it that we claim to measure then? The proposed measurements cannot be said
to track goals, otherwise we find ourselves inadvertently sneaking in essentialism again. This is not to
say that measurement itself is a misguided effort. Rather, simply to acknowledge the tension between
instrumentalist paradigms and the ontological commitments that measurement often brings with it. In
this case, goal-directedness measures should be regarded as just another observation. They cannot be
said to reveal an objective, underlying property of the system in question. Rather, the measurement
is revealing only of the relation between a system and the modeling framework used to observe it.
Measurement as such is dependent on the instruments used. If we probe for intentional behavior, we
will of course find instances of it.

Goals in Biological Systems Intentional attribution allows us to predict animal behavior, but it
doesn’t establish whether animals actually have intentions. Heyes and Dickinson [26], for instance,
argue that intentionality in non-human animals can only be tested under strict lab conditions, implying
that behaviors like approaching food are not inherently intentional. Much of the discussion and
relevant work in biology (see Allen and Bekoff [27]]), runs into the same conceptual problems of goal
speciﬁcityE] as laid out in Section

Early reliance on anthropomorphic interpretations of biological organisms often obscured underlying
mechanisms. While attributing intentionality can aid heuristic understanding [28]], mechanistic ac-
counts have explained goal-directed behavior in organisms such as planaria, bacteria, or regenerating
tissues without invoking intention or representation [29]. For instance, El-Gaby et al. [30] found a
biological correlate for goal-directed behavior in mice that is crucially not defined in terms of optimal
policy. Rather, they find that goal-progress is learned as a general task structure encoded at each
behavioral step. That is, the mice do not need to represent a goal explicitly in order to reach it. They
instead represent their progress within a task structure that directs behavior towards several possible
outcomes. Hill et al. [31]] similarly defend the view that goal-directed behavior is not caused by
specific goals or environmental states, as per the standard account, but “normative patterns of action”.

This literature informs how we are to understand goal-directedness of Al agents. Biological organisms
learn how to behave in a goal-directed manner, but not with a particular goal in mind. Rather, what
they learn is how to traverse structured environments predictably. It goes without saying, biological
and artificial agents are not the same. Yet, if we are to borrow a concept from biology, it might also
be wise to adopt the philosophical ambiguity that surrounds itE] In light of this research, we can see
how existing mechanistic approaches may search in vain for goal-directedness towards specific goals.
This is because there need not be a representation of the goal itself. Behavioral accounts are also
challenged, for if goal-directed behavior is the result of a local, step-wise optimization process, there
is no guarantee that goal-directedness is optimal over the full trajectory.

Simulating Goal-Directedness One of the key motivations for probing agents for unspecified goals
is to ensure safe deployment of Al systems. How can we monitor whether agents are developing
instrumental goals that might lead systems or subsystems to inflict harm on our fellow humans? Can
we monitor the safety of agentive systems in the absence of intentional attribution? One approach
to monitoring safety is simply ‘rolling the tape’, i.e., observing its real-life behavior. Of course if
the system is dangerous, rolling any tape would be irresponsible. However, just as is the case with
humans learning to fly airplanes, the solution is to roll the tape in controlled environments: computer
simulations or real-life role plays.

What would a controlled environment look like, and what observations would guarantee the safety
of an Al system? Piatti et al. [32] evaluate the capability for collaboration of reasoning models in
synthetic game scenarios. The relevance of such simulations turns on how well real-life scenarios

""How do we know whether a biological mouse wants cheese, mozzarella cheese or just that brand of
mozzarella cheese? How do we know whether it wants cheese in general, or just here and now? How do we
know if it eats the cheese to satisfy hunger, or to prevent anyone else from eating it? And so on.

"2Hill et al. [31]] argue that conflating goal-directedness with its putative explanation risks collapsing the
descriptive and explanatory projects into one. Meaning, goal-directedness can and should be understood as a
phenomenon independent of its utility in explanation.
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have been simulated, as well as how trivial or non-trivial it would be to mitigate potential harm.
Sullivan [33] has discussed both aspects under the heading of link uncertainty.

Recent work has analyzed the reasoning logs of LLM agents to show that they can exhibit goal
formation that deviates from their explicit instructions [34, 35]. These approaches monitor mis-
alignment without measuring goal-directedness across the action space—nor do they turn on our
ability to probe internal states. Do these qualify as instances of "rolling the tape"? Perhaps, but
their usefulness hinges on how likely such behaviors are to arise in real-world contexts, and whether
they would plausibly lead to harm. The link uncertainty is, in other words, high in such studies.
Moreover, manual analysis of reasoning logs introduces a high degree of subjectivity. It is also rather
cumbersome in its reliance on human annotators, and yet, real impact on end users is not measured,
only impact imagined by the annotators. This is why, instead of human analysis of reasoning logs, we
propose to evaluate the goal-directedness in context, in a realistic simulation of agents acting within
and upon an environment.

Importantly, simulations do not require supposing mental states such as intentionality. Rather than
attempting to detect or define goals, simulations can be used to observe how patterns of behavior
unfold under varying constraints. Because simulation tracks behavior over time and, crucially, in
context, we can examine features of goal-directedness (e.g. persistence, norm-sensitivity, or causal
intervention) without appealing to anthropomorphism. We can then ask: How does goal-directed
behavior arise in Al systems? Taking cue from biological literature, we propose a treatment of
goal-directedness as a phenomenon that precedes its role in explanation.

6 Alternative Views

Our position stands that the attribution of goals is conceptually slippy, runs into measurement
problems, and cannot be directly probed for. This is in opposition with the prevailing view that
identifiable goals can be encoded in an agents internals. Many researchers continue under the
assumption that this view is correct. Their position would be to accept that goal-directedness
is elusive in theory, but still has practical value; that the assumptions made about the nature of
goals and agents are just useful heuristics; that goal-directedness measures simply serve as another
tool in the toolbox. We are amenable to this position, and do not claim that the measures are
fundamentally misguided. However, we do suggest that the assumptions of the modeling frameworks
are foregrounded, and the application of such methods is limited to appropriate settings.

A third position would be to agree with our skepticism around quantifying goal-directedness, but
suggest a solution other than simulation — or to argue there is no solution at all. We welcome
alternative solutions, and note one convincing argument against simulations: The population that we
are trying to model through simulation is under constant drift. We can run simulations familiar to us
according to how LLM agents are used in practice, but for our simulations to be relevant down the
road, we would, in theory, need to predict how LLM agents might be used in the future.

7 Conclusion

Proposed methods for measuring goal-directedness rely on implicit assumptions that fail to generalize
to complex real-world settings. Behavioral methods turn on our precise definitions of both goals
and agents. For the former, we quickly run into insurmountable conceptual ambiguities. For the
latter, CIDs are adopted to model agent behavior, however they fail to model complexity beyond
toy examples. The heuristics that make such methods tractable are also what severely limit their
scope. A mechanistic approach does not turn on such definitions, but it does assume that goals can be
learned and embedded in internal model states in ways that make them accessible to probing. Both
approaches risk reifying an internalist conception of goals, undermining the instrumentalist argument
that they are founded upon.

We propose that goals need not be intrinsic properties of agents. Limiting goal-directedness to what
can be internally specified risks missing the broader dynamics at play. Namely, we require methods
that can model goal-directed behavior without explicit, internalist goal representation, and instead as
behavior that emerges through dynamic interaction with the environment. To this end, we suggest
multi-agent simulation as a suitable methodological approach for identifying and diagnosing the
conditions under which goal-directed behavior emerges.
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