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Abstract

Vision Transformers (ViTs) have emerged as the state-of-the-art architecture in rep-
resentation learning, leveraging self-attention mechanisms to excel in various tasks. ViTs
split images into fixed-size patches, constraining them to a predefined size and necessitating
pre-processing steps like resizing, padding, or cropping. This poses challenges in medical
imaging, particularly with irregularly shaped structures like tumors. A fixed bounding box
crop size produces input images with highly variable foreground-to-background ratios. Re-
sizing medical images can degrade information and introduce artefacts, impacting diagnosis.
Hence, tailoring variable-sized crops to regions of interest can enhance feature representa-
tion capabilities. Moreover, large images are computationally expensive, and smaller sizes
risk information loss, presenting a computation-accuracy tradeoff. We propose VariViT,
an improved ViT model crafted to handle variable image sizes while maintaining a con-
sistent patch size. VariViT employs a novel positional embedding resizing scheme for a
variable number of patches. We also implement a new batching strategy within VariViT
to reduce computational complexity, resulting in faster training and inference times. In our
evaluations on two 3D brain MRI datasets, VariViT surpasses vanilla ViTs and ResNet in
glioma genotype prediction and brain tumor classification. It achieves F1-scores of 75.5%
and 76.3%, respectively, learning more discriminative features. Our proposed batching
strategy reduces computation time by up to 30% compared to conventional architectures.
These findings underscore the efficacy of VariViT in image representation learning.

Keywords: Vision Transformers, Architecture, Representation, Tumor Classification

1. Introduction

Deep neural architectures, notably Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs), have emerged as effective architectures for image representation learn-
ing, consistently achieving state-of-the-art performance on real-world data across different
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Figure 1: Selecting the optimal input crop size is essential for maximizing the representation quality
(i.e., attention level) of ViTs. (a): 2D slice of the large tumor bounding box crop. (b): Attention
map of the vanillaViT model on the image, showing attention to background data rather than the
tumor. (c): The image resized to a large fixed size shifts focus to distortions arising from the
operation. (d): (Ours) Smaller image crop without resizing. In our method, attention is mainly
given to desired tumor regions.

domains. ResNet, a CNN-based variant (He et al., 2016), achieves its efficacy in represen-
tation learning by the use of residual connections. ViT (Dosovitskiy et al., 2020) captures
long-range dependencies by directly attending to global image information through self-
attention mechanisms. ViTs are increasingly attracting attention in medical image analysis
(He et al., 2021; Gao et al., 2021a; Chen et al., 2021; Shamshad et al., 2023; Gao et al.,
2021b; Jang and Hwang, 2022). Input images are typically resized to a fixed size before
being fed into a ViT model. These models perform well with evenly dispersed signals,
allowing operations like interpolation and cropping for fixed-size inputs. However, medical
images feature small, irregular regions of interest, where such methods can be detrimen-
tal. Fixed-size inputs result in varying foreground-to-background ratios, especially with
smaller pathologies, where more background (e.g., healthy brain) is included compared to
larger tumors. Moreover, medical images are particularly sensitive to distortions. Resiz-
ing them may introduce artificial features or modify existing ones, mimicking or obscuring
real abnormalities and interfering with diagnosis. Figure 1 illustrates the attention map
of a traditional ViT for tumor classification. Despite tumor regions, background areas are
heavily attended to, wasting computational resources. Smaller crops resized with interpo-
lation introduce distortions, causing unwanted focus shifts. These limitations might impair
efficient model training.

We propose VariViT to handle variable-size images, addressing the limitation of fixed-
size inputs. Our method recognizes the heterogeneous nature of real-world medical images
where foreground-to-background ratios vary significantly. VariViT retains the favorable
properties of ViTs while integrating the capability to handle diverse image sizes. Our
contributions are as follows:

1. We introduce a novel flexible positional embedding strategy tailored to different
image sizes.

2. We propose an alternate batching strategy to improve computational efficiency,
leveraging on the inclusion of smaller-sized images.

3. We demonstrate the applicability of VariViT in (i) glioma genotype prediction and
(ii) brain tumor classification, two challenging tasks due to the highly variable tumor
sizes. Our extensive experiments on two brain MRI datasets highlight the superior
performance of VariViT over both vanilla ViT and ResNet architectures.
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2. Related Work

The traditional ViT model uses a fixed input size. It either initializes fixed positional
embeddings or learns them during training. These embeddings are linearly interpolated for
fine-tuning and evaluation at higher resolutions. The FlexiViT model (Beyer et al., 2023)
also adapts to variable image-to-patch size ratios and sequence lengths by resizing the
learnable 2D positional embedding grid with bilinear interpolation. While effective in 2D,
interpolating the 3D embedding grid for variable-sized images may result in information loss
and higher computational requirements due to more complex calculations. The SuperViT
model (Lin et al., 2023) patchifies an image at multiple scales and improves computational
cost by randomly dropping tokens. However, a random selection of tokens risks information
loss and degrades representation quality, particularly in medical images where the region of
interest may be small.

The Pix2Struct model (Lee et al., 2023), similar to ours, handles variable image sizes.
The vision encoder resizes the input images to extract fixed-size patches fitting a predefined
sequence length. Padding is applied to the sequence as needed, allowing it to reach the
desired fixed length. The model learns a large grid of 2D absolute positional embeddings,
enabling the identification of patch positions based on x and y coordinates. However,
this approach can be computationally expensive, especially for 3D images. In contrast,
our model efficiently manages size differences without resorting to such computationally
expensive operations. Moreover, scaling the images can introduce undesired artefacts.

The NaViT model (Dehghani et al., 2023) also addresses challenges on computational
complexity and variable image sizes. NaViT packs patches from different-sized images into
the same sequence. It maintains a fixed sequence length by randomly dropping tokens and
padding. The model employs masked attention and pooling to prevent interactions between
patches from different images. However, dropping tokens may lead to information loss, and
implementing masked attention and pooling introduces more complex architectural changes.
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Figure 2: The VariViT model addresses the problem of handling images with different sizes by intro-
ducing a novel positional embedding resizing mechanism and employing different batching strategies.
The model utilizes a fixed patch size, ensuring consistent patch embedding sizes across images while
simultaneously adapting to different sequence lengths using a center and select resizing strategy.
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3. Method

Overview. We focus on learning 3D image representation in this work. In the conventional
ViT framework, a 3D input image is divided into non-overlapping patches. These patches
are flattened and linearly projected to obtain a sequence of patch embeddings. The sequence
is fed into the transformer encoder after adding a CLS token. The enriched CLS token is
used for the final classification. However, the transformer model lacks intrinsic awareness of
the spatial arrangement of patches within the sequence. Therefore, positional embeddings
are added to the sequence to explicitly incorporate this information. Both relative and
absolute positional encoding can be employed (Vaswani et al., 2017; Wu et al., 2021). They
can either be fixed or learned during training. In its simplest form, absolute fixed sinusoidal
embeddings are used for this purpose.

Fixed positional embeddings are predefined vectors representing each patch’s absolute
coordinates within the input sequence, typically generated using sinusoidal functions. The
1D positional encoding for even and odd indices is formulated as (Vaswani et al., 2017):

PE(pos, 2i) = sin
(
pos/100002i/d

)
PE(pos, 2i + 1) = cos

(
pos/10000(2i+1)/d

) (1)

pos represents the position to be encoded. The parameter 1/100002i/d governs the wave-
length of the sinusoids. Here, d denotes the embedding dimension and i refers to each of
the individual dimensions of the embedding.

Positional embeddings can be adjusted for various image sizes through interpolation,
as suggested in the ViT paper (Dosovitskiy et al., 2020). However, interpolation increases
computational complexity and may introduce approximations, making it suboptimal for
resizing 3D embedding grids in variable-sized tumor crops. Pix2Struct suggests learning a
large grid of embeddings for a predefined sequence length (Lee et al., 2023). This, however,
can extend training time. Leveraging the consistent center alignment in tumor crops can
provide a reliable reference point for resizing positional embeddings without the need for
interpolation, thus preserving the original information.

Building upon this concept, the VariViT model (Figure 2) introduces the center and
select method for resizing positional embeddings. Our model adapts the vanillaViT archi-
tecture for various input image sizes, particularly tailored to heterogeneous tumor shapes,
while maintaining a fixed patch size. This is achieved by extracting 3D bounding box crops
categorized into three sizes by tumor volume. Additionally, we exploring batching methods
to manage diverse image sizes within batches. The architectural and training modifications
to the baseViT are explained in the following sections.

Center and Select. Similar to the vanilla ViT, the patch embedding size remains constant
in VariViT regardless of the image size. However, with a fixed patch size, variations in image
size can lead to a difference in the number of patches or the sequence length. Consequently,
positional embeddings must be dynamically resized to accommodate these variations. In
tumor classification tasks, 3D crops are often employed to isolate the tumor region by
identifying tumor boundaries using segmentation masks. The center coordinates of the 3D
crop are aligned with the center of mass of the tumor. Despite variations in size, tumors
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Figure 3: (a): Tumor bounding boxes of two sizes are displayed, with the tumor center of mass
aligned. (b): Our proposed center and select method for resizing position embeddings initializes
fixed sinusoidal embeddings for the largest image size. Embeddings for other sizes are selected from
the center of this grid. (c): We present two batching strategies: Custom Batch Sampler (CBS) with
the same image sizes and Gradient Accumulation (GA) with varying image sizes within a batch.

positioned at the centers of the 3D crops will have coinciding centers of mass, establishing
a consistent reference point (Figure 3 - (a)). Leveraging this, we introduce the center and
select method, resizing positional embeddings by centering them in 3D space.

The implementation involves initializing a fixed positional embedding for the largest
image size. We utilize sinusoidal encoding as described by Equation 1 extended to 3D
coordinates. This results in positional embeddings of dimension [N, d], excluding the CLS
token. Here, N is the number of patches and d is the embedding dimension. The embedding
can be viewed as a 3D grid for the l, h, and w dimensions with a size of Gl ×Gh×Gw = N

(Figure 3 - (b)). The center of the grid (Cl, Ch, Cw), determined as
(⌊

Gl
2

⌋
,
⌊
Gh
2

⌋
,
⌊
Gw
2

⌋)
,

serves as the reference point for selecting a subset of positions based on the current input
image size. We dynamically compute the new positional embedding size [N ′, d] when the
image dimensions differ from the largest size, resulting in a new grid size G′

l × G′
h × G′

w.
To adjust the positional embedding for a different image size, we select a subset around the
center from the initialized positional embedding. The position range [start, end) for each

dimension is determined by start = Ck −
⌊
G′

k
2

⌋
and end = start + G′

k, where k = l, h, w.

Thus, the original positional information is extracted at a lower computational cost.

Batching Methods. Training models with different input dimensions poses challenges due
to the variability of bounding box sizes in the dataset. Existing Python frameworks lack
seamless solutions to address this issue. To address this challenge, we opt for two specific
strategies, namely a custom batch sampler and gradient accumulation.

1. Custom Batch Sampler (CBS) - This strategy involves grouping images of the
same size into a batch, as shown in Figure 3 (c) while allowing the image size to
vary randomly from batch to batch. This maintains consistency within each batch.
Including batches with smaller image sizes contributes to significantly faster training.

2. Gradient Accumulation (GA) - In this method, the weight update is performed
after accumulating gradients over several mini-batches, resulting in batches with vary-
ing image sizes (Figure 3 - (c)). The effective batch size is given by: Batch Size =
Mini-Batch Size × Update Interval. Here, we adjust the mini-batch size to 1 and set
the update interval to the desired batch size.

We make our codes for VariViT and the batching schemes publicly available at https:

//github.com/Aswathi-Varma/varivit.
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4. Experimental Setup

Datasets. To highlight the effectiveness of VariViT, we perform experiments on two dis-
tinct 3D brain MRI datasets (Appendix A): The glioma dataset comprising 1856 MRI scans
sourced from various studies (van der Voort et al., 2021; Sayah et al., 2022; Calabrese et al.,
2022; Bakas et al., 2022, 2017); and the brain tumor dataset containing 1699 MRIs from
publicly available datasets (Baid et al., 2021; Suter et al., 2022; Moawad et al., 2023). Both
datasets contain FLAIR, T2w, T1w, and T1w+contrast MR images, all registered to the
SRI24 atlas and resampled to a uniform voxel size of 1x1x1 mm³, forming a four-channel
multi-modal input for our experiments. These datasets are chosen to evaluate the model’s
performance on two binary classification tasks: (i) identifying the isocitrate dehydrogenase
(IDH) mutation status, a key biomarker that separates two adult-type diffuse gliomas groups
(Louis et al., 2021). (ii) distinguishing between primary brain tumors (gliomas) and sec-
ondary brain tumors (metastases). We use the glioma dataset for multi-class classification
task, targeting three glioma subtypes: glioblastoma, astrocytoma, and oligodendroglioma.

We extract the largest tumor in each patient for our baseline models by cropping a
96×96×96 mm³ bounding box guided by segmentation masks provided in the datasets. To
address different tumor sizes in VariViT, we categorize the datasets into three size bins with
equal sample distribution (Appendix B). These bins correspond to crop sizes of 64×64×64
mm³, 80×80×80 mm³, and 96×96×96 mm³ for the largest tumors. Additionally, we rescale
all image intensities to the range [0, 1].

Training and Evaluation. In our training configuration, we opt for the 3DViT model
(Prabhakar et al., 2023). We employ the ViT -S/16 configuration with a patch size of 16.
This setup consists of 12 encoder blocks, each having an embedding dimension of 384 and 6
attention heads. A linear layer is used as the classification head. For both the VariViT -S/16
models (GA and CBS), we use the same vanilla ViT base, differing only in the positional
embedding. The model comprises approximately 28 million trainable parameters. We utilize
ResNet-18, a CNN with 33 million parameters to compare our results with a convolutional
model of roughly the same number of parameters. To benchmark against recent state-
of-the-art variable image size models, we incorporate the Pix2Struct vision encoder into
a 3D framework. This model serves as one of our baselines, with 34.8 million trainable
parameters.We fix the sequence length of Pix2Struct at 216, corresponding to our dataset’s
maximum image size. For all the models, we utilize absolute positional encoding. We
explore relative positional embedding with our batching methods in Appendix C but do
not observe any significant advantage over the absolute approach.

All models undergo training for 100 epochs, utilizing the AdamW optimizer (Loshchilov
and Hutter, 2017) with a weight decay of 0.05. The base learning rate is set to 1e-3, and
cosine decay (Loshchilov and Hutter, 2016) is applied for learning rate decay. A batch size
of 8 is used, and the experiments are conducted on Nvidia RTX A6000. A warm-up schedule
(Goyal et al., 2017) of 40 epochs is applied. Data augmentations such as random affine,
random noise, random gamma, random blur, and random flips are incorporated during
training. Cross-entropy loss with class weights is employed to mitigate class imbalance
in the dataset. For the evaluation metrics, we utilize the Area Under the Curve (AUC),
F1-score, and Matthews Correlation Coefficient (MCC) score.
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Figure 4: t-SNE visualization of embedding layer output for IDH status classification. (a): Vanilla
ViT, (b): Pix2Struct and (c): VariViT-GA, all with an embedding dimension of 384. Notice the
clearer separation of clusters in our model’s plot.

5. Results

IDH Mutation Status. We train our proposed model on the glioma dataset for IDH
status classification task. Then, we compare its performance against three baseline models:
fixed-size 3D ResNet-18, 3D vanilla ViT, and variable-size 3D Pix2Struct. We employ a
k-fold cross-validation strategy with k=5 for all the models and report the mean metrics
and standard deviation obtained from the test sets. The VariViT-GA model consistently
outperforms the baseline models in terms of AUC, F1-score, and MCC (Table 1). Our model
also exhibits notably faster training times compared to its counterparts. VariViT-CBS not
only outperforms ResNet-18 and vanilla ViT on various performance metrics, including
AUC, but also further reduces the training time. The t-SNE plot (Van der Maaten and
Hinton, 2008) in Figure 4 illustrates the improved cluster separation achieved by our model.

Method AUC F1-Score MCC Training Time

Fixed 3D ResNet-18 0.928± 0.042 0.716± 0.058 0.654± 0.071
3D Vanilla-ViT 0.927± 0.027 0.744± 0.059 0.679± 0.076

Variable 3D Pix2Struct 0.940± 0.012 0.742± 0.040 0.686± 0.056
VariViT-CBS 0.937± 0.009 0.718± 0.027 0.653± 0.028
VariViT-GA 0.942± 0.011 0.755± 0.059 0.709± 0.069

Table 1: Comparison of VariViT with baseline models for the IDH mutation status prediction
task. Average training times visualized on the right (hours).

Brain Tumor Type. To further highlight the effectiveness of our proposed model, we
apply it to the brain tumor dataset for the classification of primary versus metastatic
tumors. Comparing the VariViT-GA model with the baselines, it distinctly outperforms
Pix2Struct and ResNet-18. Our model shows superior performance in MCC and F1-scores
compared to VanillaViT (Table 2). The VariViT-CBS surpasses Pix2Struct in performance
and achieves similar results to ResNet-18, with faster training times. This underscores its
efficiency and suitability for practical applications.

Ablation Study - Positional Embedding. Here, we compare the effectiveness of dif-
ferent positional embedding methods within the VariViT-GA architecture. We analyze
three position-embedding strategies alongside the center and select method: (i) Indepen-
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Method AUC F1-Score MCC Training Time

Fixed 3D ResNet-18 0.948± 0.013 0.745± 0.035 0.694± 0.051
3D Vanilla-ViT 0.957± 0.011 0.752± 0.067 0.696± 0.081

Variable 3D Pix2Struct 0.945± 0.020 0.720± 0.058 0.663± 0.073
VariViT-CBS 0.947± 0.013 0.746± 0.035 0.686± 0.045
VariViT-GA 0.954± 0.007 0.763± 0.036 0.706± 0.046

Table 2: Comparison of VariViT with baseline models for the primary vs. secondary brain tumor
classification. Average training times are visualized on the right (hours).

dent, Fixed (Indep Fixed) - initializes separate fixed sinusoidal positional embeddings for
each image size category. (ii) Interpolated, Fixed (Interp Fixed) - initializes fixed sinusoidal
embedding for the largest image size and employs trilinear interpolation for smaller image
sizes. (iii) Interpolated, Learned (Interp Learned) - uses the positional embedding learned
from the largest image size to create embeddings for smaller images through trilinear in-
terpolation. All methods perform effectively (Table 3), but the center and select approach
produces better results for the IDH status classification task.

Ablation Study - Multi-Class Classification. We extend the glioma dataset to classify
three glioma subtypes, thereby evaluating the model’s performance in this more complex
task. Our model achieves comparable MCC scores to both ResNet-18 and Pix2Struct (Table
4), while demonstrating faster training times. This study underscores the effectiveness of our
model across diverse classification tasks, especially in scenarios involving multiple classes.

Method AUC F1-Score MCC

Indep Fixed 0.938± 0.011 0.742± 0.076 0.701± 0.074
Interp Fixed 0.929± 0.007 0.720± 0.065 0.677± 0.048
Interp Learned 0.940± 0.008 0.750± 0.025 0.690± 0.034
Center & Select 0.942± 0.011 0.755± 0.059 0.709± 0.069

Table 3: Comparison of positional embedding strategies
using the VariViT-GA model.

Method MCC

3D ResNet-18 0.548± 0.04
3D Vanilla ViT 0.519± 0.07
3D Pix2Struct 0.543± 0.02
VariViT-GA 0.544± 0.06

Table 4: Comparison of models for
multi-class classification.

6. Discussion and Conclusion

ViTs excel at image feature learning, but limitations exist in medical image analysis due to
computational burden and anatomical variability. We address this with VariViT, a method
that efficiently scales to various 3D image sizes while effectively learning for improved classi-
fication. Our approach centers around maintaining focus on the region of interest, a strategy
that demonstrably improves feature learning. By adapting to variable image sizes, VariViT
concentrates on critical areas despite inherent anatomical and/or pathological variability.
This targeted approach, however, necessitates an initial bounding box or segmentation.
While we tested our framework on brain MRIs, its versatility allows for adaptation to other
modalities and regions, and we encourage to adapt our method to individual needs. A sig-
nificant avenue for future research is the exploration of our batching strategy and positional
embedding technique in the context of extremely large datasets or high-resolution images.
In such scenarios, we anticipate that the efficiency gains of our method will be particularly
advantageous when compared to traditional ViT implementations.
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Appendix A. Datasets

The glioma dataset comprises MRIs from various studies, including the Erasmus Glioma
Database (EGD) (van der Voort et al., 2021), the REMBRANDT MRI dataset collection
(Sayah et al., 2022), the University of California San Francisco Preoperative Diffuse Glioma
MRI Dataset (UCSF-PDGM) dataset (Calabrese et al., 2022), the University of Pennsylva-
nia Glioblastoma Imaging, Genomics, and Radiomics (UPenn-GBM) dataset (Bakas et al.,
2022), The Cancer Genome Atlas (TCGA) (Bakas et al., 2017), and a private MRI dataset.
In the brain tumor dataset, we collect data from the BraTS 21 (Baid et al., 2021) and
LUMIERE (Suter et al., 2022) datasets for primary tumors. For metastases, we utilize the
BraTS-Mets 2023 (Moawad et al., 2023) dataset.

Appendix B. Bounding Box Distribution

To simulate various image sizes, we categorize both datasets into three bins, each containing
approximately equal numbers of samples, based on the dimension of the largest tumor.
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(a) (b)

Figure 5: 3D Bounding Box Distribution of Glioma (a) and Brain Tumor (b) datasets. The x-axis
represents the size of the 3D bounding box along the three dimensions, while the y-axis denotes the
frequency of samples. The distribution of samples is divided into three equal bins based on the size
of the bounding boxes.

We establish two threshold values to ensure an equal distribution of samples across these
bins. Subsequently, a fixed bounding box crop size is assigned for each bin: 64x64x64
mm³ for cases where the threshold is less than 67, 80x80x80 mm³ for threshold values
between 67 and 87 (inclusive), and 96x96x96 mm³ for the largest size. This is depicted
in Figure 5 showcasing the tumor size distribution for the glioma (left) and brain tumor
(right) datasets. In the brain tumor dataset, metastatic samples with tumor bounding box
sizes smaller than 40x40x40 mm³ are excluded to ensure adequately sized tumors, thereby
enhancing the complexity of the classification task.

Appendix C. Absolute v/s Relative Position Embedding

Absolute positional encoding techniques allocate distinct encoding vectors to every position
within the input sequence, thereby allowing the model to capture the absolute positions
up to the maximum sequence length. These methods employ either fixed or learnable
encodings. In contrast, relative position methods encode the relative distance between
input patches and learn the pairwise relationship between them (Shaw et al., 2018; Wu et al.,
2021). Typically, this is computed through a look-up table with learnable parameters that
interact with queries and keys within self-attention modules during the training process. We

Batching Coordinates AUC F1-Score MCC

CBS Absolute 0.933± 0.013 0.712± 0.032 0.646± 0.036
Relative 0.933± 0.009 0.697± 0.013 0.622± 0.019

GA Absolute 0.945± 0.007 0.744± 0.036 0.684± 0.034
Relative 0.931± 0.016 0.718± 0.033 0.666± 0.031

Table 5: Comparison of absolute and relative position embeddings for both the batching methods
on the glioma dataset. Note that the embeddings are learned, and resizing is done by interpolation.

experiment with both relative and absolute positional embeddings using our two proposed
batching strategies for variable image sizes on the glioma dataset. For both methods, we
initialize the positional embedding with the dimensions of the largest image size. We employ
interpolation to adjust its size when dealing with varying image dimensions. CBS and GA
batching with absolute positional embedding demonstrate superiority over their relative
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counterparts. Hence, relative positional embedding doesn’t offer a significant advantage
over absolute for our batching methods.

Appendix D. Cosine Similarity

G
G G

G

G

Figure 6: 2D view of the cosine similarity visualization of VariViT ’s positional embedding for each
of the three image sizes.

Cosine similarity quantifies the similarity between two vectors in a d-dimensional space,
determined by the cosine of the angle between them. Values range from 0 to 1, where 1
signifies perfect similarity. In Figure 6, each cube depicts similarity between one position’s
embedding and the remaining N − 1 positions, where N = G × G × G denotes the total
elements in the position embedding grid.

Appendix E. t-SNE Plots

Figure 7: t-SNE Plots depicting VariViT CBS on the left and GA on the right, showcasing evalua-
tions based on the highest scores across k-folds for Glioma (top) and Brain tumor (bottom) datasets.
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