
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Progressive Inference-Time Annealing of Diffusion Models
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Abstract
Sampling efficiently from a target unnormalized
probability density remains a core challenge, with
relevance across countless high-impact scientific
applications. A promising approach towards this
challenge is the design of amortized samplers
that borrow key ideas, such as probability path
design, from state-of-the-art generative diffusion
models. However, all existing diffusion-based
samplers remain unable to draw samples from
distributions at the scale of even simple molecular
systems. In this paper, we propose PROGRESSIVE
INFERENCE-TIME ANNEALING (PITA) a novel
framework to learn diffusion-based samplers
that combines two complementary interpolation
techniques: I.) Annealing of the Boltzmann
distribution and II.) Diffusion smoothing. PITA
trains a sequence of diffusion models from high
to low temperatures by sequentially training
each model at progressively higher temperatures,
leveraging engineered easy access to samples
of the temperature-annealed target density. In
the subsequent step, PITA enables simulating
the trained diffusion model to procure training
samples at a lower temperature for the next
diffusion model through inference-time annealing
using a novel Feynman-Kac PDE combined with
Sequential Monte Carlo. Empirically, PITA
enables, for the first time, equilibrium sampling
of N -body particle systems, Alanine Dipeptide,
and tripeptides in Cartesian coordinates with
dramatically lower energy function evaluations.

1. Introduction
The problem of sampling from an unnormalized target
probability distribution arises in numerous areas of natural

1Anonymous Institution, Anonymous City, Anonymous Region,
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<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

sciences, including computational biology, chemistry,
physics, and materials science (Frenkel & Smit, 2023;
Liu, 2001; Ohno et al., 2018; Stoltz et al., 2010). In many
of these high-impact scientific settings, the problem’s
complexity stems from operating in molecular systems
where the unnormalized target (Boltzmann) distribution
at a low temperature of interest is governed by a highly
non-convex and non-smooth energy function, under which
there is limited to no available data (Hénin et al., 2022).
As a result, the challenging sampling problem necessitates
solving an equally hard exploration problem: finding the
modes—in correct proportion—of the target distribution.

To address the general sampling problem, extensive research
has been dedicated to Markov chain Monte Carlo methods
(MCMC), Sequential Monte Carlo (SMC), and, particularly
in physical systems, Molecular Dynamics (MD) (Leimkuh-
ler & Matthews, 2015). To enhance scalability, Monte Carlo
approaches often employ an interpolating sequence of prob-
ability distributions that transitions from an easily sampled
reference distribution to the desired target distribution via an-
nealing/tempering strategies. This powerful concept under-
lies methods such as parallel tempering (Swendsen & Wang,
1986), Annealed Importance Sampling (Jarzynski, 1997;
Neal, 2001), and SMC samplers (Del Moral et al., 2006).
MD, conversely, involves integrating equations of motion us-
ing finely discretized time steps. Despite their effectiveness,
both classes of methods possess inherent limitations that
complicate their application to practical systems of interest:
annealing modifies the masses of distribution modes depend-
ing on their widths (a phenomenon often referred to as mass
teleportation, (Woodard et al., 2009)), while MD requires
computationally expensive time discretization on the order
of femtoseconds to simulate millisecond-scale phenomena.

Diffusion-based samplers are an alternative and emergent
class of sampling techniques (Zhang & Chen, 2022; Vargas
et al., 2023; Akhound-Sadegh et al., 2024; Berner et al.,
2022; Blessing et al., 2024; Havens et al., 2025) exploiting
modern developments in generative modeling. They
sample complex multi-modal distributions by leveraging a
prescribed interpolating probability path. However, instead
of relying on annealing, these samplers utilize a noising
mechanism which theoretically enjoys favorable mixing
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Figure 1: Illustration of the proposed PITA framework combining two complementary processes: temperature annealing of the target
Boltzmann density and the diffusion process applied to the collected samples. Annealed inference allows for decreasing the temperature
(increasing β) of a trained diffusion model, thus generating samples from the annealed target. These samples can be reused for training a
lower-temperature diffusion model.

properties compared to annealing (Chen et al., 2023).

Diffusion-based samplers, despite their appeal, have not yet
proven effective for even small molecular systems in Carte-
sian coordinates. This is primarily because of the absence
of training data to accurately approximate the logarithmic
gradients of the marginal densities, i.e. the Stein scores
– a challenge distinct from generative modeling settings.
Additionally, standard training objectives, such as reverse
Kullback–Leibler, are mode dropping and often yield too
high-variance score estimates for stable training (Blessing
et al., 2024). Crucially, current diffusion-based samplers
require too many energy function evaluations for training.
Indeed, when normalized by the number of energy evalu-
ations, carefully tuned MCMC methods with parallel tem-
pering are empirically competitive with, if not superior to,
state-of-the-art diffusion-based samplers (He et al., 2025).

Main Contributions. In this paper, we introduce PRO-
GRESSIVE INFERENCE-TIME ANNEALING (PITA), a
novel framework for training diffusion models to sample
from Boltzmann distributions. PITA leverages two
complementary interpolation techniques to significantly
enhance training scalability: temperature annealing
(increasing the system’s temperature) and interpolation
along a conventional diffusion model’s probability path.
This combination is motivated by a learning framework
designed to exploit their distinct advantages: temperature
annealing mixes modes by lowering high energy barriers,
while diffusion paths avoid mass teleportation.

Annealing the target distribution transforms the challenging
sampling problem into an easier one by removing high-
energy barriers and flattening it. This crucial step enables
cheap collection of an initial high-temperature dataset via
classical MCMC, which in turn facilitates the efficient train-

ing of an initial diffusion model. Subsequently, we define a
novel Feynman–Kac PDE that, when combined with SMC-
based resampling, allows us to simulate the trained diffusion
model’s inference process to produce asymptotically unbi-
ased samples at a lower temperature. This effectively allows
us to train the next diffusion model, enabling the progressive
and stable training of a sequence of diffusion models until
the target distribution is reached, as illustrated in Fig. 1.

We test the empirical performance of PITA on standard
N -body particle systems and short peptides in Alanine
Dipeptide and tripeptides. Empirically PITA not only
achieves state-of-the-art performance in all these bench-
marks but is the first diffusion-based sampler that scales to
our considered peptides in their native Cartesian coordinates.
More importantly, we demonstrate progressing down our
designed ladder of diffusion models leads to significantly
lower energy evaluations compared to MD, which is a step
towards realizing the promise of amortized samplers for
accelerating equilibrium sampling.

2. Background
2.1. Diffusion models

A diffusion process defines an interpolating path between
an easy-to-sample reference density, such as a multi-variate
Normal, and a desired target distribution π(x). When
samples from the target distribution are available, it is
possible to generate samples from intermediate marginals of
the diffusion process pτ (x) through the following Gaussian
convolution:

pτ (x) =
(
π ∗ N (ατy, σ

2
τ1)
)
(x) =

∫
dy N (x |ατy, σ

2
τ1)π(y).

(1)
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As a result, this means that samples from pτ (x) can
be generated as xτ = ατy + στε, where y ∼ π(y) and
ε ∼ N (0,1). Selecting specific schedules for ατ and
στ one can ensure the following boundary conditions.
For τ = 0, ατ = 1, στ = 0 and pτ=0(x) = π(x), i.e.
the marginal matches the target distribution. For τ = 1,
ατ = 0, στ = 1 and pτ=1(x) = N (0,1), i.e. the marginal
matches the standard multivariate normal distribution.

Importantly, despite the simplicity of sample generation,
the evaluation of density pτ (x) is not straightforward,
and one has to use deep learning models to approximate
either scores ∇ log pτ (x) or marginal densities pτ (x).
Furthermore, the model density pτ (x) or scores∇ log pτ (x)
can be used to generate new samples from π(x) using the
reverse-time SDE. In particular, the marginals introduced in
Eq. (1) describe the marginal densities of the forward-time
(Ornstein–Uhlenbeck) SDE

dxτ =
∂ logατ

∂τ
xτ︸ ︷︷ ︸

:=a1−τxτ

dτ +

√
2σ2

τ
∂

∂τ
log

στ

ατ︸ ︷︷ ︸
:=ζ1−τ

dW τ , xτ=0 ∼ π(x) ,

(2)

where W τ is the standard Wiener process, and marginals follow
the Fokker-Planck PDE. After inverting the time variable in this
PDE, i.e. t = 1− τ , the time-evolution of marginals pt(x) is

∂pt(x)

∂t
= ⟨∇, pt(x)(atx)⟩ −

ζ2t
2
∆pt(x)

= −
〈
∇, pt(x)(−atx+

ζ2t
2
∇ log pt(x))

〉
, (3)

which shows that one can sample from the marginals
{pt(x)}t∈[0,1] via simulating the following SDE

dxt =

(
−atx+

ζ2t
2
(1 + ξt)∇ log pt(xt)

)
dt+ ζt

√
ξtdWt .

(4)

While the marginals are correct for any ξt > 0, there are two im-
portant special cases: for ξt ≡ 1, the equation becomes the reverse-
SDE with the same path-measure as Eq. (2), and, for ξt ≡ 0, the
SDE becomes an ODE. In practice, this SDE is simulated using ei-
ther the density model exp(−Ut(x; η)) ∝ pt(x) (Du et al., 2023)
or the score model st(x; θ) ≈ ∇ log pt(x) (Song et al., 2021).

2.2. Annealing

Annealing defines a family of “simpler” problems when we have
access to the unnormalized density by interpolating or scaling the
target log-density (negative energy). Formally speaking, given the
unnormalized density π(x), the annealed density is defined as

πβ(x) :=
π(x)β

Zβ
, Zβ =

∫
dx π(x)β , (5)

where β is the inverse temperature parameter (i.e., β = 1/T )
controlling the smoothness of the target density. Thus, for high
temperature T > 1 (hence, β < 1), the target density becomes
smoother and easier to explore via MCMC algorithms. Importantly,
getting the unnormalized density for πβ(x) can be simply achieved
by raising the unnormalized density π(x) to the power β.

2.3. Feynman-Kac Formula

The Feynman-Kac Partial Differential Equation (PDE) is a gener-
alization of the Fokker-Planck PDE and is defined as follows

∂pt(x)

∂t
= −⟨∇, pt(x)vt(x)⟩+

ζ2t
2
∆pt(x)

+ pt(x)
(
gt(x)− Ept(x)gt(x)

)
, (6)

where the first term corresponds to the probability mass transport
along the vector field vt(x), the second term corresponds to the
stochastic moves of samples according to the Wiener process Wt,
and the last term is responsible for reweighting the samples accord-
ing to a coordinate dependent weighting function gt(x). For any
test-function φ(x), the Feynman-Kac formula relates its expected
value to the expectation over the SDE trajectories xt, i.e.

EpT (x)[φ(x)] =
1

ZT
E
[
e
∫ T
0 dt gt(xt)φ(xT )

]
,

where dxt = vt(xt)dt+ ζtdWt , x0 ∼ p0(x) , (7)

and ZT is a normalization constant independent of x. In practice,
the exponential term is computed as a “weight” wt of the
corresponding sample xt and can be integrated in parallel with
the simulation,

dxt = vt(xt)dt+ ζtdWt , d logwt = gt(xt)dt ,

initialized as x0 ∼ p0(x) , logw0 = 0 . (8)

Finally, one can estimate the normalization constant ZT by
considering φ(x) ≡ 1 in Eq. (7) and get the biased but consistent
Self-Normalized Importance Sampling (SNIS) estimator (Liu,
2001), i.e.

1

ZT
E
[
e
∫ T
0 dt gt(xt)φ(xT )

]
=

Ee
∫ T
0 dt gt(xt)φ(xT )

Ee
∫ T
0 dt gt(xt)

≈
n∑

i=1

wi
T∑n

j=1 w
j
T

φ(xiT ) , (9)

where (xiT , w
i
T ) are the samples from the simulation of the SDE

in Eq. (8).

3. Progressive Inference-Time Annealing
In this section, we combine diffusion and annealing processes
into an efficient learning algorithm for sampling from the target
density π(x). To design this method, we build on the fact that
diffusion and annealing are complementary ways to simplify or
“smoothen” the target distribution (see Fig. 1). Namely, for the
high-temperature version of the target distribution πβi(x), we
assume having samples from πβi(x) and learn the density model
of the marginals defined by the diffusion process (see Section 3.2).
For instance, this can be done by running MCMC chains that face
little challenge mixing in high temperatures. For the given density
model of the diffusion process, we perform annealing of all the
marginals and generate samples from the lower temperature target
πβi+1(x) , βi+1 < βi (see Section 3.1). We detail every step of
our method in the following subsections.

3.1. Inference-Time Annealing

In this section, we discuss the inference-time annealing pro-
cess, which allows us to modify the trained diffusion model

3
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to generate samples from the lower temperature target density.
Namely, for a diffusion process with marginals pt(x) and the
end-point pt=1(x) = πβi(x), we assume having two models: a
score model st(x; θ) ≈ ∇ log pt(x) and an energy-based model
Ut(x; η) ≈ − log pt(x) + const with parameters θ and η respec-
tively. Given the score and the energy models trained to sample
from a higher temperature density πβi(x), we define a new se-
quence of marginals that correspond to the Boltzmann density of
the energy model but with a lower temperature

qt(x) ∝ exp(−βi+1/βiUt(x; η)) ,

qt=1(x) ∝ exp(−Ut=1(x; η))
βi+1/βi ≈ (π(x)βi)βi+1/βi .

(10)

The following proposition derives the Feynman-Kac PDE that
describes the time-evolution of the marginals qt(x) and allows for
importance sampling via the Feynman-Kac formula.

Proposition 1. [Inference-time Annealing] Annealed den-
sity of the energy-based model qt(x) ∝ exp(−γUt(x; η))
matches the marginal densities of the following SDE

dxt =

(
−atxt +

ζ2t
2
(st(xt)− γξt∇Ut(xt; η))

)
dt

+ ζt
√
ξtdWt , x0 ∼ qt=0(x) (11)

d logwt =

[
ζ2t
2
⟨∇, st(xt)⟩

−γ
〈
∇Ut(xt; η),−atxt +

ζ2t
2
st(xt)

〉
−γ ∂Ut(xt; η)

∂t

]
dt , (12)

where st(x) is any vector field, at, ζt, ξt are analogous to
parameters from Eq. (4), and the sample weights wt corre-
spond to the SNIS estimator of the Feynman-Kac formula in
Eq. (9).

See Appendix A.1 for the proof. Intuitively, this result defines an
importance sampling scheme, where Eq. (11) generates samples
from the proposal distribution and Eq. (12) integrates the density
ratio between the sampled proposal and the target density qt(x).
Different choices of the vector field st(x) and the noise schedule
ξt yield different proposal distributions. Theoretically, one can
choose different parameters at, ζt as well, but below we argue
for setting them according to Eq. (2).

The dynamics in Proposition 1 is not unique, and there ex-
ists a continuous family of PDEs that follow the marginals
qt(x) ∝ exp(−γUt(x; η)). We motivate this dynamics as
minimizing the variance of the weights for the case when
there is no annealing (γ = 1). Indeed, if the trained EBMs
and score models approximate the diffusion process perfectly,
then, for γ = 1, the weights become constant, so SNIS equally
weights all the samples; thus, eliminating the need to resample
at all. We formalize this result in the following proposition (see
Appendix A.1 for the proof).

Proposition 2. [Convergence to Diffusion] For γ = 1 and
perfect models st(x) = −∇Ut(x; η) = ∇ log pt(x), the
variance of the weights in Proposition 1 becomes zero.

In the case of unbounded support of the target distribution, e.g.

supp(π(x)) = Rd, increasing the temperature might cause
numerical instabilities. Indeed, π(x)β=0 ∝ Uniform(Rd) is not
normalizable. To avoid this potential issue, in Appendix A.2, we
consider geometric averaging between some simple prior and the
target densities, e.g. N (0,1)(1−β)π(x)β .

Integrating the dynamics from Propositions 1 and 3 we generate a
set of weighted samples {(xkt=1, w

k
t=1)}Kk=1 that converge to the

samples from qt=1(x) when K → ∞. In practice, this density is
defined as the Boltzmann distribution of the corresponding energy
model, i.e. qt=1(x) ∝ exp(−βi+1/βi · Ut=1(x; η)), which
approximates πβi+1(x), but does not necessarily match it exactly.
We discuss several possible ways to bridge this gap between the
density model and the target density in Appendix B.

3.2. Training using PITA

The proposed algorithm consists of interleaving the inference-time
annealing (described in the previous two subsections) and model
training on the newly generated data from the annealed target
distribution, which we describe here. Throughout this stage we
assume availability of samples from πβi+1 , which were previously
generated at the sampling stage1.

For the target distribution πβi+1(x), we define the diffusion
process with the marginals pt(x) obtained as a convolu-
tion of the samples from the target x ∼ πβi+1(x) with
the Gaussian N (ατx, σ

2
τ1). To learn the score function

st(x; θ) ≈ ∇ log pt(x), we follow the standard practice and
parameterize the denoising model Dt(xt; θ) = σ2

t st(xt; θ) + xt,
which we learn via the denoising score matching (DSM) objective
(Ho et al., 2020), i.e.

Denoising Score Matching(θ) = Et,xt,xλ(t)∥x−Dt(xt; θ)∥2 ,
(13)

where the expectation is taken w.r.t. samples from the annealed tar-
get x ∼ πβ+∆β(x), noised samples xt ∼ N (xt |α1−tx, σ

2
1−t),

and time parameter sampled with log(1− t) ∼ N (Pmean, Pstd)
largely following Karras et al. (2022).

However, the DSM objective is not sufficient for training a good
score model close to the target distribution (τ = 1− t = 0) due
to the high variance of the estimator. Indeed, for τ = 1− t = 0,
it has no information about the target distribution. Target Score
Matching (De Bortoli et al., 2024) overcomes this issue by
explicitly incorporating the score of the target unnormalized
density into the objective, which is as follows

Target Score Matching(θ)

= Et,xt,x

[∥∥σ2
t∇x log π(x) + x−Dt(xt; θ)

∥∥2 · I(t ≥ tthresh)
]

(14)

where the expectation is taken w.r.t. the same random variables
as in Eq. (13), but the time variable is restricted to the interval
[tthresh, 1] because the variance of the objective estimator grows
with the noise scale (De Bortoli et al., 2024). Notably, for larger
noise scales, the Denoising Score Matching objective results in a
stable training dynamics; thus, these objectives complement each
other and result in a stable training dynamics across the entire
time interval.

1For the very first iteration of our algorithm, we assume that
there exist such β that samples from πβ can be simply collected
by conventional Monte Carlo algorithms.
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Algorithm 1 Training for single temperature 1/βi+1

Require: samples x from πβi+1 .
for training iterations do

sample ln(σ1−t) ∼ N (Pmean, P
2
std)

add noise xt ∼ N (xt |α1−tx, σ
2
1−t1)

Denoising Score Matching(θ) = ∇θ Et,xt,xλ(t)∥x−Dt(xt; θ)∥2

Target Score Matching(θ) = ∇θ Et,xt,x

[∥∥σ2
t∇x log π(x) + x−Dt(xt; θ)

∥∥2 · I(t ≥ tthresh)
]

EBM Distillation(η) = ∇η Et,xt,xλ(t)
∥∥σ2

t (−∇xt
Ut(xt; η)) + xt −Dt(xt; θ)

∥∥2
Energy Pinning(η) = ∇η Ex∥(−Ut=1(x; η))− βi+1 log π(x)∥2
θ ← FirstOrderOptimizer(θ,Score Matching(θ),Target Score(θ))
η ← FirstOrderOptimizer(η,Energy Matching(η),Energy Pinning(η))

end for
return trained parameters θ∗, η∗

To train the energy model Ut(x; η), which plays the central role in
the inference-time annealing (see Section 3.1), we follow (Thorn-
ton et al., 2025) and distill the learned score model to the paramet-
ric energy model via the following regression loss (w.r.t. η), i.e.

EBM Distillation(η)

= Et,xt,xλ(t)
∥∥σ2

t (−∇xtUt(xt; η)) + xt −Dt(xt; θ)
∥∥2 ,

(15)

where, the expectation is taken w.r.t. the same random variables as
in Eq. (13). Note that, in contrast to the denoising score matching
loss in Eq. (13), the “target” in Eq. (15) does not depend on x,
which means that its variance for the same xt is zero, stabilizing
the training of the energy based model Ut(x; η).

Finally, to use all the supervision signal available in the problem,
we use the target unnormalized density π(x)βi+1 as the regression
target for the end-point energy-based model Ut=1(x; η), and
introduce the following loss

Energy Pinning(η)

= E
π
βi+1 (x)

∥(−Ut=1(x; η))− βi+1 log π(x)∥2 . (16)

Notably, this loss allows for fixing the gauge present
due to the shift invariance of the energy-based model
(∇x(Ut(x; η)) = ∇x(Ut(x; η)+ const)). In practice, we observe
that this loss significantly stabilizes the training and improves the
final performance. We present the pseudo-code for the training
loop in Algorithm 1, where we simultaneously optimize all the
introduced loss functions to train a diffusion model at temperature
1/βi+1. In practice, we find that sequential training of models
demonstrates the best performance. Furthermore, we initialize
the model for the next temperature 1/βi+1 with the parameters
of the trained model for the temperature 1/βi.

4. Related work
Diffusion-based Sampling. A variety of amortized samplers that
use properties of diffusion models have recently been proposed
in the literature. Simulation-based approaches that also exploit
the fast mode-mixing of diffusion models include Berner et al.
(2022); Vargas et al. (2023); Zhang & Chen (2022); Richter et al.
(2024); Vargas et al. (2024), which exploit diffusion processes
for fast mode mixing. Conversely, simulation-free methods

like iDEM (Akhound-Sadegh et al., 2024), SB with Föllmer
drift (Huang et al., 2021), and TSM (De Bortoli et al., 2024) offer
more scalable approaches to learning the score but suffer from
inefficient and high variance score estimates far from the data.
Finally, new diffusion bridges have also risen to prominence with
underdamped dynamics (Blessing et al., 2024) and bridges with
SMC (Chen et al., 2024).

Inference-time Resampling. The inference-time annealing
scheme proposed in Proposition 1 connects several recently pro-
posed methods. Namely, for ξt ≡ 0, it closely matches the
importance sampling of the continuous normalizing flows pro-
posed in (Köhler et al., 2020). Indeed, Eq. (11) becomes a
probability flow ODE, and Eq. (12) becomes an integration of
the log-density-ratio, where the target density can be defined ei-
ther as a linear interpolation of log-densities or only in the fi-
nal point as the target density. Furthermore, Proposition 1 is an
application of the Feynman-Kac formula to annealing and non-
equilibrium dynamics simultaneously. Indeed, for γ = 1, this
proposition becomes the result proposed in (Vaikuntanathan &
Jarzynski, 2008; Albergo & Vanden-Eijnden, 2024); whereas, for
st(x) = −∇Ut(x; η) = ∇ log pt(x), this proposition becomes
the result from (Skreta et al., 2025). In practice, however, these
equalities are not satisfied because we use learned models for
the vector field st(x) = st(x; θ) and the energy-based model
Ut(x; η).

5. Experiments
We evaluate PITA on molecular conformation sampling tasks
including toy Lennard-Jones system of 13 particles (LJ-13) and
Alanine peptide systems of varying sizes (Alanine Dipeptide and
Tripeptide) in Cartesian coordinate space. Throughout, we assume
the access to a short MCMC chain run at high temperature. Note
that we do not require these chains to be well mixed, but only re-
quire them to cover the modes, a much less stringent requirement
(See Appendix D). For metrics, we use sample-based metrics such
as 2-Wasserstein distance on Ramachandran coordinates (T-W2)
and energy distribution (E-W1, E-W2), to assess mode coverage
and precision respectively. We also compare the KL divergence
between the Ramachandran plots of the ground-truth MD samples
and the generated samples (RAM-KL), as well as Wasserstein
distances on the first two TICA (Time-lagged Independent Compo-
nent Analysis) coordinates of ground-truth and generated samples.
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Figure 2: LJ-13 sampling task. We compare the distribution of the interatomic distances and energy of the particles in the MCMC
dataset(ground-truth), samples generated using a PITA model, and TA-BG progressively trained from high temperature to sample from
the target distribution.

(a) Alanine Dipeptide (b) Alanine Tripeptide

Figure 3: Molecular conformation sampling tasks. We compare the energy distribution of the ground-truth MD dataset and the samples
generated using different models at 300K. We use 30k samples for the plots.

Finally, we report the computational expense of all methods using
the total number of energy evaluation calls.

Baselines. We compare PITA with three different baselines: Tem-
perature Annealed Boltzmann Generators (TA-BG, (Schopmans &
Friederich, 2025)), diffusion model trained on molecular simula-
tion (MD) data collected at the target temperature (MD-Diff), and
importance sampling using continuous normalizing flows (Köh-
ler et al., 2020). For the LJ-13 dataset, we additionally compare
the performance of the model with two state-of-the-art diffusion-
based sampling algorithms: namely, iDEM (Akhound-Sadegh
et al., 2024) and (Havens et al., 2025)); however, as none of the
current diffusion-based approaches are able to achieve competitive
performance on the small protein tasks, we only compare to the
TA-BG baseline for those datasets. Further experimental details of
the baselines are provided in the Appendix G.

Architecture. In training PITA, we use EGNN (Satorras et al.,
2021) as the model backbone for LJ-13, and DiT(Peebles & Xie,
2023) for ALDP and AL3. Our training follows a sequential
temperature schedule, proceeding from high to low temperatures.

After training at a given temperature for a fixed number of epochs,
we generate samples at the next lower temperature and continue
training at that temperature. For LJ-13, we train a single diffusion
model conditioning it on β and using the data across all previ-
ously seen temperatures. For molecular conformation sampling
tasks, we adopt a fine-tuning approach, where at each temperature
step, the model is trained only on the newly generated samples
corresponding to the current temperature without revisiting earlier
ones. For the TA-BG baseline, we train TarFlow (Zhai et al., 2024)
with adaptations suited to molecular data for all three systems, and
for MD-Diff, we use the same DiT architecture we used in PITA.
We parameterize the energy network using the parameterization
in Thornton et al. (2025) and use the preconditioning (cs, cout,
cin, ct) of (Karras et al., 2022) for both energy and score net-
works. Further training details and hyperparameters are provided
in Appendix G.

Hyperparameters. Proposition 1 allows for many choices of
the vector field st(x). In practice, we set it proportional to
the score model st(x) ∝ st(x; θ) and try several scaling coef-
ficients (see Appendix E). Finally, one can easily add the time-
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Table 1: Performance of methods for the ALDP sampling task. The starting temperature is TL = 1200 K, annealed to target TS = 300 K.
Metrics are calculated over 10k samples and standard deviations over 3 seeds.

Rama-KL Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 #Energy Evals
Model

PITA 4.773 ± 0.460 0.112 ± 0.006 0.379 ± 0.028 1.530 ± 0.068 1.615 ± 0.053 0.270 ± 0.023 5× 107

MD-Diff 1.308 ± 0.072 0.113 ± 0.001 0.579 ± 0.004 3.627 ± 0.023 3.704 ± 0.026 0.310 ± 0.001 5× 107

TA-BG 14.993 ± 0.002 0.219 ± 0.013 0.685 ± 0.034 83.457 ± 0.070 86.176 ± 0.104 0.979 ± 0.012 5× 107

Table 2: Performance of methods for the AL3 sampling task. The starting temperature is TL = 1200 K, annealed to target TS = 300K.
Metrics are calculated over 10k samples and standard deviations over 3 seeds.

Rama-KL Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 #Energy Evals
Model

PITA 1.209 ± 0.144 0.272 ± 0.017 0.952 ± 0.055 2.567 ± 0.108 2.592 ± 0.107 0.521 ± 0.006 8× 107

PITA (w/o relaxation) 8.535 ± 0.254 0.405 ± 0.014 0.999 ± 0.043 86.270 ± 0.294 87.695 ± 0.294 0.651 ± 0.013 5× 107

MD-Diff 7.262 ± 2.278 0.106 ± 0.008 0.525 ± 0.025 8.745 ± 0.033 8.949 ± 0.120 0.487 ± 0.013 5× 107

TA-BG 14.988 ± 0.009 0.321 ± 0.001 0.648 ± 0.000 173.042 ± 0.717 178.558 ± 0.732 1.310 ± 0.004 5× 107

dependent schedule γt by adding the extra term to the weights,
i.e. d logwt = Eq. (12) − Ut(xt; η)∂γt/∂tdt, which we study
in Appendix E. We use the noise schedule from (Karras et al.,
2022), where, for all experiments, we set σmax = 80 and ρ = 7.
For LJ-13 and molecular conformation sampling tasks, we use
σmin = 0.05, 0.01, respectively.

5.1. Main results

LJ-13. We first consider a Lennard-Jones (LJ) system of 13 par-
ticles to demonstrate the effectiveness of training a sampler at a
high temperature (TL = 4), followed by annealing to a lower
temperature (TS = 1). As shown in Table 3, we compare the
performance of PITA with existing baselines. A visual compar-
ison to TA-BG is provided in Fig. 2. We evaluate each method
using the 2-Wasserstein metric over interatomic distance and en-
ergy distributions. To ensure consistency, we exclude samples
with energy above 1000 across all methods; this notably impacts
TA-BG, removing approximately 60% of its samples. Even under
this filtering, PITA consistently outperforms TA-BG and other
baselines trained directly at the target temperature.

Table 3: LJ-13 sampling task. The starting temperature is TL = 4,
annealed to TS = 1.

Algorithm Distance-W2 ↓ Energy-W2 ↓

iDEM 1.61 ± 0.01 30.78 ± 24.46
Adjoint Sampling 1.67 ± 0.01 2.40 ± 1.25
TA-BG (TarFlow) 1.21 ± 0.02 61.47 ± 0.12
PITA (Ours) 0.04 ± 0.00 2.26 ± 0.21

Alanine Dipeptide. We apply PITA to the task of sampling Ala-
nine Dipeptide at a target temperature of TS = 300 K, given
initial samples at a higher temperature of TL = 1200 K. We use
annealing steps of 1200 K, 755.95 K, 555.52 K, 300 K. These
temperatures correspond to a subset of the temperatures from
(Schopmans & Friederich, 2025), as PITA does not require as
many annealing steps to achieve competitive performance. We
also analyze the performance of the model, taking larger annealing
steps in Appendix E. As shown in Table 1, PITA consistently out-
performs both the diffusion-based baseline and TA-BG across all
evaluation metrics, achieving a particularly large margin in energy-

related metrics. We further present TICA plots of the generated
samples at the target temperature in Fig. 4. PITA successfully re-
covers the essential slow collective dynamical modes of the system,
which baseline methods fail to capture. Additionally, we find that
while TA-BG performs reasonably well at earlier stages of training
at higher temperatures, its performance deteriorates as temperature
decreases. Such decline is likely due to the increasing difficulty
in generating high-quality proposals as the temperature decreases,
which is crucial in the importance sampling used for subsequent
training stages. Additional details on training dynamics across all
temperatures for PITA and TA-BG can be found in Appendix F.

Alanine Tripeptide. We further evaluate the performance of PITA
on a larger molecular system, Alanine Tripeptide (AL3). We em-
ploy a temperature annealing schedule with intermediate steps at
1200 K, 755.95 K, 555.52 K, 408.24 K, 300 K. As shown in
Fig. 5, PITA again successfully recovers the essential dynamical
modes of the system, indicating its capability of generating sam-
ples that align with the dominant kinetic features of the underlying
dynamics. In practice, we also observe that performing a short
additional MD refinement at the target temperature (300 K) after
generation further improves the physical plausibility and smooth-
ness of the trajectories, leading to more accurate estimates of the
free energy landscape. In Table 2, we provide quantitative analy-
sis of the performance of the models. Notably, despite resulting
in a better mode coverage, PITA performs worse than baselines
according to Tica−W1 and Tica−W2, which suggest that it does
not fully recover the correct relative weights of the modes.

6. Conclusion
In this paper, we propose PITA a new framework to train diffusion-
based samplers by introducing two mechanisms of interpolating
a target Boltzmann density by changing the temperature and
defining a diffusion noising process. We demonstrated that PITA
allows the progressive training of a sequence of diffusion models
that go from high temperature, where ground truth data is simple
to collect, to the lower temperature target temperature. Using
PITA we demonstrated equilibrium sampling of N -body particle
systems, and, for the first time, equilibrium sampling of alanine
dipeptide and tripeptide in Cartesian coordinates. Importantly, we
demonstrate PITA requires drastically fewer energy evaluations
than existing diffusion samplers.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities

Figure 4: TICA plots for Alanine Dipeptide (ALDP) at 300K obtained from different methods using 30k samples. Each panel shows the
free energy landscape along the top two TICA components which capture the dominant slow transitions in the system.

Figure 5: TICA plots for Alanine Tripeptide (AL3) at 300K obtained from different methods using 30k samples.

We believe that PITA represents a step forward in the scalabil-
ity of diffusion-based samplers and opens up ripe avenues for
future work including improved training strategies and regimes for
energy-based models that are in service of the PITA framework.
Another natural direction for future work includes automatically
determining the optimal temperature jump when instantiating our
Feynman-Kac PDE to generate asymptotically unbiased samples
at lower temperatures.

Limitations. To obtain a consistent estimator or an importance
sampling scheme, one has to define a density model of the gen-
erated samples. For this, PITA relies on training an additional
energy-based model, which is a notoriously challenging task. Fur-
thermore, simultaneous training and inference of both the score
model and the energy-based model introduces additional computa-
tional and memory requirements.

Impact Statement
This paper presents work whose goal is to advance the field of Ma-
chine Learning. There are many potential societal consequences
of our work, none which we feel must be specifically highlighted
here.
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A. Proofs
A.1. Inference-Time Annealing

Proposition 1. [Inference-time Annealing] Annealed density of the energy-based model qt(x) ∝ exp(−γUt(x; η)) matches the
marginal densities of the following SDE

dxt =

(
−atxt +

ζ2t
2
(st(xt)− γξt∇Ut(xt; η))

)
dt

+ ζt
√
ξtdWt , x0 ∼ qt=0(x) (11)

d logwt =

[
ζ2t
2
⟨∇, st(xt)⟩

−γ
〈
∇Ut(xt; η),−atxt +

ζ2t
2
st(xt)

〉
−γ ∂Ut(xt; η)

∂t

]
dt , (12)

where st(x) is any vector field, at, ζt, ξt are analogous to parameters from Eq. (4), and the sample weights wt correspond to the
SNIS estimator of the Feynman-Kac formula in Eq. (9).

Proof. For the Energy-Based Model Ut(x; η), we denote the corresponding Boltzmann density as

qt(x) ∝ exp(−γUt(x; η)) , (17)

where γ is the target inverse temperature. Taking the time-derivative of qt(x) we get the following equation

∂qt(x)

∂t
= qt(x)

(
−γ ∂Ut(x; η)

∂t
+ Eqt(x)γ

∂Ut(x; η)

∂t

)
, (18)

which can be simulated by reweighting the samples from qt=0(x) ≈ N (0, 1) according to the following weights

w(x1) =
exp(−γ

∫ 1

0
dt ∂Ut(xt; η)/∂t)

Eq0(x0) exp(−γ
∫ 1

0
dt ∂Ut(xt; η)/∂t)

. (19)

Although this reasoning is theoretically justified, in practice, the variance of this importance-weighted estimate (or resampled distribution)
is prohibitively large. That is why one has to introduce additional terms that move samples around tracing the original diffusion process.
Namely, we consider the following PDE

∂qt(x)

∂t
= ±

〈
∇, qt(x)(−atx+

ζ2t
2
st(x))

〉
+ qt(x)

(
−γ ∂Ut(x; η)

∂t
+ Eqt(x)γ

∂Ut(x; η)

∂t

)
= −

〈
∇, qt(x)(−atx+

ζ2t
2
st(x))

〉
+ qt(x)

(
gt(x)− Eqt(x)gt(x)

)
, (20)

gt(x) = γ⟨∇Ut(x; η), atx⟩ − γ
ζ2t
2
⟨∇Ut(x; η), st(x)⟩ − ⟨∇, atx⟩+ (21)

+
ζ2t
2
⟨∇, st(x)⟩ − γ

∂Ut(x; η)

∂t
, (22)

where the term ⟨∇, atx⟩ does not depend on x and cancels out when in the reweighting term. Furthermore, we can introduce the noise
term by adding and subtracting the score ξt(ζ2t /2)∇ log qt(x), i.e.

∂qt(x)

∂t
= −

〈
∇, qt(x)(−atx+

ζ2t
2
st(x)− γξt

ζ2t
2
∇Ut(x; η))

〉
+ ξt

ζ2t
2
∆qt(x)+ (23)

+ qt(x)
(
gt(x)− Eqt(x)gt(x)

)
, (24)

gt(x) = − γ

〈
∇Ut(x; η),−atx+

ζ2t
2
st(x)

〉
+
ζ2t
2
⟨∇, st(x)⟩ − γ

∂Ut(x; η)

∂t
, (25)

which can be simulated as

dxt =

(
−atxt +

ζ2t
2
(st(xt)− γξt∇Ut(xt; η))

)
dt+ ζt

√
ξtdWt , (26)

d logwt =

[
−γ
〈
∇Ut(xt; η),−atxt +

ζ2t
2
st(xt)

〉
+
g2t
2
⟨∇, st(xt)⟩ − γ

∂Ut(xt; η)

∂t

]
dt . (27)
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Proposition 2. [Convergence to Diffusion] For γ = 1 and perfect models st(x) = −∇Ut(x; η) = ∇ log pt(x), the variance of
the weights in Proposition 1 becomes zero.

Proof. Indeed, for γ = 1, Eq. (25) becomes

gt(x) = −
〈
∇Ut(x; η),−atx+

ζ2t
2
st(x)

〉
+
ζ2t
2
⟨∇, st(x)⟩ −

∂Ut(x; η)

∂t
(28)

=

〈
∇Ut(x; η), atx− ζ2t

2
st(x)

〉
−
〈
∇, atxt −

ζ2t
2
st(x)

〉
+ dat −

∂Ut(x; η)

∂t
,

where d is the dimensionality of the state-space. For st(x) = −∇Ut(x; η) = ∇ log pt(x), we have

gt(x) = − 1

pt(x)

〈
∇, pt(x)

(
atxt −

ζ2t
2
∇ log pt(x)

)〉
+
∂ log pt(x)

∂t
+
∂ logZt

∂t
+ dat (29)

=
1

pt(x)

[
−
〈
∇, pt(x)

(
atx− ζ2t

2
∇ log pt(x)

)〉
+
∂pt(x)

∂t

]
︸ ︷︷ ︸

=0 due to Eq. (3)

+
∂ logZt

∂t
+ dat , (30)

where Zt =
∫
dx pt(x). The term in the brackets equals zero due to Eq. (3) since the ground true marginals pt(x) are defined as the

marginals of the diffusion process. Hence, we have

gt(x) =
∂ logZt

∂t
+ dat = constant of x , (31)

which becomes zero after the normalization gt(x)− Eqt(x)gt(x), which concludes the proof.

A.2. Inference-Time Geometric Averaging

For the diffusion process with marginals pt(x) and the target distribution pt=1(x) ∝ N (x | 0,1)(1−βi)π(x)βi , we assume having the
energy model Ut(x; η) and the score model st(x; θ). Then, for the following density

qt(x) ∝ exp

(
−βi+1

βi
Ut(x; η)−

βi+1 − βi
βi

logN (x | 0, (α2
1−t + σ2

1−t)1)

)
, (32)

we have qt=1(x) ≈ N (x | 0,1)(1−βi+1)π(x)βi+1 . To sample from this density, we derive another SDE that performs inference-time
geometric averaging. Analogously to Proposition 1, for γ = 1 and perfectly trained models, the weights become constant, and this SDE
yields the reverse-time diffusion SDE.

Proposition 3. [Inference-time Geometric Averaging] For the geometric averaging of the energy-based model qt(x) ∝
exp
(
(1− γ)(−Ut,β(x, η)) + γ logN (x | 0, σ2

t )
)
, the weighted samples from qt(x) can be collected by running the following

SDE

dxt = − atxt + (1− γ)
ζ2t
2
(st(xt)− ξt∇Ut(xt; η))− γ

1

σ2
t

(
1 + ξt

ζ2t
2

)
xt + ζt

√
ξtdWt ,

d logwt =

〈
−(1− γ)∇Ut(xt; η)− γ

1

σ2
t

xt,−atxt + (1− γ)
ζ2t
2
st(xt)− γ

1

σ2
t

xt

〉
+ (33)

+ (1− γ)
ζ2t
2
⟨∇, st(xt)⟩+ (1− γ)

∂Ut(xt; η)

∂t
+ γ

1

σ3
t

∥xt∥2
∂σt

∂t
. (34)

where st(x) is any vector field. Finally, unweighted samples from qt(x) can be sampled using SNIS from Eq. (9).

Proof. For the Energy-Based Model Ut(x; η), we denote the corresponding geometric averaged density as

qt(x) ∝ exp
(
(1− γ)(−Ut(x; η)) + γ logN (x | 0, σ2

t )
)
, (35)
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where γ is the target inverse temperature. Taking the time-derivative of qt(x) we get the following equation

∂qt(x)

∂t
= qt(x)

(
gt(x)− Eqt(x)gt(x)

)
, (36)

gt(x) = (1− γ)
∂Ut(x; η)

∂t
+ γ

1

σ3
t

∥x∥2 ∂σt

∂t
. (37)

Assuming that the change of the density is close to the trained diffusion process, we introduce the drift-term corresponding to the score of
the marginals

∂qt(x)

∂t
= ±

〈
∇, qt(x)(−atx+ (1− γ)

ζ2t
2
st(x)− γ

1

σ2
t

x)

〉
︸ ︷︷ ︸

fictitious term

+qt(x)
(
gt(x)− Eqt(x)gt(x)

)
,

gt(x) = (1− γ)
∂Ut(x; η)

∂t
+ γ

1

σ3
t

∥x∥2 ∂σt

∂t
. (38)

Moving the positive term to the weights and interpreting the negative term as the continuity equation, we get

∂qt(x)

∂t
= −

〈
∇, qt(x)(−atx+ (1− γ)

ζ2t
2
st(x)− γ

1

σ2
t

x)

〉
+ qt(x)

(
gt(x)− Eqt(x)gt(x)

)
,

gt(x) =

〈
−(1− γ)∇Ut(x; η)− γ

1

σ2
t

x,−atx+ (1− γ)
ζ2t
2
st(x)− γ

1

σ2
t

x

〉
+ (39)

+ (1− γ)
ζ2t
2
⟨∇, st(x)⟩+ (1− γ)

∂Ut(x; η)

∂t
+ γ

1

σ3
t

∥x∥2 ∂σt

∂t
. (40)

Finally, we introduce the noise term by adding the drift

ξt
ζ2t
2
∇ log qt(x) = ξt

ζ2t
2

(
−(1− γ)∇Ut(x; η)− γ

1

σ2
t

x

)
. (41)

Thus, we get

∂qt(x)

∂t
= −

〈
∇, qt(x)

(
−atx+ (1− γ)

ζ2t
2
(st(x)− ξt∇Ut(x; η))− γ

1

σ2
t

(
1 + ξt

ζ2t
2

)
x

)〉
+

+ ξt
ζ2t
2
∆qt(x) + qt(x)

(
gt(x)− Eqt(x)gt(x)

)
, (42)

gt(x) =

〈
−(1− γ)∇Ut(x; η)− γ

1

σ2
t

x,−atx+ (1− γ)
ζ2t
2
st(x)− γ

1

σ2
t

x

〉
+ (43)

+ (1− γ)
ζ2t
2
⟨∇, st(x)⟩+ (1− γ)

∂Ut(x; η)

∂t
+ γ

1

σ3
t

∥x∥2 ∂σt

∂t
. (44)

The corresponding SDE is

dxt = − atxt + (1− γ)
ζ2t
2
(st(xt)− ξt∇Ut(xt; η))− γ

1

σ2
t

(
1 + ξt

ζ2t
2

)
xt + ζt

√
ξtdWt ,

d logwt =

〈
−(1− γ)∇Ut(xt; η)− γ

1

σ2
t

xt,−atxt + (1− γ)
ζ2t
2
st(xt)− γ

1

σ2
t

xt

〉
+ (45)

+ (1− γ)
ζ2t
2
⟨∇, st(xt)⟩+ (1− γ)

∂Ut(xt; η)

∂t
+ γ

1

σ3
t

∥xt∥2
∂σt

∂t
. (46)

B. Bridging the Gap at the End-Point
Integrating the dynamics from Propositions 1 and 3 we generate a set of weighted samples {(xkt=1, w

k
t=1)}Kk=1 that converge to the

samples from qt=1(x) when K → ∞. In Section 3.1 we assume that this density is defined as the Boltzmann distribution of the
corresponding energy model, i.e. qt=1(x) ∝ exp(−βi+1/βi · Ut=1(x; η)), which approximates πβi+1 , but does not necessarily match it
exactly. Here we describe two possible ways to bridge the gap between the density model and the target density.
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The first way to sample from π(x)βi+1 is via Self-Normalized Importance Sampling (SNIS). The integrated weights wk
t=1 = e

∫ 1
0 dt gt(xt)

represent the density ratio between the distribution of the samples xkt=1 and the density of the integrated PDE (see discussion in
Section 2.3). Correspondingly, to sample from π(x)βi+1 , we have to take into account the density ratio π(x)βi+1/qt=1(x) and obtain a
new estimator, i.e.

E
π(x)

βi+1φ(x) ∝ Eq1(x)
π(x)βi+1

q1(x)
φ(x) ∝ E

[
e
∫ 1
0 dt gt(xt) π(x1)

βi+1

q1(x1)
φ(x1)

]
, (47)

E
π(x)

βi+1φ(x) ≈
K∑

k=1

w̃k
1∑n

j=1 w̃
j
1

φ(xk1) , w̃
k
1 := e

∫ 1
0 dt gt(xt)π(xk1)

βi+1/q1(x
k
1) , (48)

where the new weights w̃k
1 are obtained from the old ones wk

1 by multiplication with the corresponding density ratio. Note, that the
following empirical distribution approximates the target density π(x)βi+1

π̃(x)βi+1 =

K∑
k=1

w̃k
1∑n

j=1 w̃
j
1

δ(x− xk1) . (49)

The alternative to importance sampling with the density model proposal is the gradual interpolation between the density model and the
target during the integration. In particular, one can satisfy the boundary conditions by defining a smooth interpolant between the boundary
densities pt=0 = N (0, I), pt=1 = πβi+1 and the annealed density model as follows

qt(x) ∝ exp

[
− γ

(
1− t

t1

)κ

+

logN (0, 1)−
(
1− 1− t

1− t2

)κ

+

βi+1 log π(x)− (50)

−

(
1−

(
1− t

t1

)κ

+

−
(
1− 1− t

1− t2

)κ

+

)
βi+1

βi
Ut(x; η)

]
, (51)

where (x)+ = max{0, x}, 0 < t1 < t2 < 1 are the hyperparameters that define switch times between models, and κ is the smoothness
parameter. Thus, we guarantee that qt=1(x) ∝ π(x)βi+1 . However, in practice, we found that this interpolation technique results in a
high variance of importance weights.

C. Network Parameterization and Preconditioning
We condition our score network s and our energy network Ut based on findings in EDM (Karras et al., 2022), use an energy
parameterization based on Neklyudov et al. (2023) and Thornton et al. (2025), and include a new pre-conditioning on β. All of our
networks are based on a backbone Fθ(xt, t, β) : (Rd × [0,∞)× [1,∞)) → Rd is a flexible network architecture based on a diffusion
transformer (DiT) backbone (Peebles & Xie, 2023). Specifically, we parameterize our denoiser network Dθ as:

Dθ(xt, t, β) := (1 + β(cskip(t)− 1)xt + βcout(t)Fθ(cin(t)xt, cnoise(t)) (52)

which allows us to define our score network sθ as

sθ(xt, t, β) :=
Dθ(xt, t, β)− xt

σ2
t

(53)

We pre-condition the energy as

Uη(xt, t, β) := β

(
1− atcskip(t)

2σ2
t

∥xt∥2 −
ξtcout(t)

cin(t)σ2
t

(xt · Fη(cin(t)xt, cnoise(t)))

)
(54)

D. Molecular Dynamics Analysis
In Fig. 6 and Fig. 7, we analyze the mixing behaviour of MD simulations for ALDP and AL3 across various annealing temperatures.
Specifically, we examine simulations consisting of 50 million steps—matching the quantity of MD data used for training PITA at 1200K.
As the temperature decreases, the sampling quality deteriorates: the chains exhibit poorer mixing and fail to explore significant regions of
the configuration space, missing major modes of the distribution. This is shown both in Ramachandran and TICA plots, as well as the
trace plots of the internal angle ϕ and the second TICA axis. More specifically, for ALDP, we see that the chain switches out of the main
mode 5.8%, 3.0%, 1.0% and 0% of the time at temperatures 1200K, 755.95K, 555.52K and 300K, respectively. For AL3, this happens at
a rate of 12.7%, 9.2%, 5.8% and 0%.

This motivates training at a higher temperature then annealing to a lower temperature as is done in PITA. As we are able to take advantage
of relatively quick mode mixing at higher temperatures and the ability of inference time annealing to recover samples from a lower
temperature.
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(a) Visualization of the Ramachandran plots of the MD chain over time, the lines are colored from purple to yellow over 50 million MD
steps. The gray plot shows the Ramachandran plot of a chain with 1 billion MD steps.

(b) Trace plot for the internal angle ϕ. The blue lines show the value of ϕ across the 50-million-step MD chain. The orange line indicates
when the chain switches out of the main modes.

Figure 6: Analysis of the mixing of the MD chains for ALDP, for a 50 million-step MD simulation, across the annealing temperatures.

(a) AL3 TICA plots of ground-truth MD samples across different temperatures, using MD chains of 50 million steps. For all temperatures,
the TICA axes are matched to those of 300K.

(b) Trace plot for the second TICA axis of ground-truth MD samples. The blue lines show the value of the second TICA axis across the
50-million-step MD chain. The orange line indicates when the chain switches out of the main mode.

Figure 7: Analysis of the mixing of the MD chains for AL3, for a 50 million-step MD simulation, across the annealing temperatures.

E. Ablation Studies
To evaluate the impact of our design choices, we perform a series of ablation studies examining: (1) the effect of annealing to 300K using
different temperature jump sizes, (2) the choice of the γt schedule, and (3) the role of resampling and different loss components, as well as
comparing out method with a simple classifier-free guidance approach. The temperature jump size ablation is performed for both ALDP
and AL3, while the remaining studies are conducted on ALDP.
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Table 4: Effect of different starting temperatures on annealing performance for ALDP and AL3, evaluated at the final temperature of
300K.

(a) ALDP.

Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 ↓
TL to TS

1200K to 300K 0.100 ± 0.004 0.297 ± 0.019 6.438 ± 0.024 6.531 ± 0.021 0.301 ± 0.023
755.95K to 300K 0.180 ± 0.002 0.611 ± 0.003 5.639 ± 0.072 5.683 ± 0.070 0.358 ± 0.018
555.52K to 300K 0.121 ± 0.004 0.404 ± 0.019 1.541 ± 0.009 1.619 ± 0.010 0.270 ± 0.023

(b) AL3.

Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 ↓
TL to TS

1200K to 300K 0.291 ± 0.005 0.558 ± 0.003 0.521 ± 0.122 0.597 ± 0.110 1.351 ± 0.014
755.95K to 300K 0.234 ± 0.009 0.663 ± 0.019 17.147 ± 0.105 17.429 ± 0.107 0.751 ± 0.006
555.52K to 300K 0.158 ± 0.004 0.329 ± 0.025 40.222 ± 0.198 40.978 ± 0.208 0.621 ± 0.038

(a) Alanine Dipeptide

(b) Alanine Tripeptide

Figure 8: TICA plot of ALDP and AL3 samples obtained via annealing from various starting temperatures to 300K.

Temperature Jump Sizes in Annealing. To evaluate the effectiveness of the progressive annealing schedule, we compare the performance
of models where the system is annealed from different starting temperatures to 300K. For ALDP, skipping intermediate temperatures has
the most pronounced impact on energy distribution metrics, as shown in Table 4a and Fig. 9a. In the case of AL3, we find that sequential
training is essential for reliably capturing all modes at the lower temperature, as illustrated in Fig. 8b. However, energy metrics degrade,
likely due to small deviations in the sampled buffers at each annealing step, which accumulate over time. Accurately capturing the
energy distribution in the sampled buffers at each intermediate temperature appears to be more difficult for AL3, which may contribute to
the observed degradation. Nonetheless, capturing the correct modes remains a key priority, as modes lost during training are difficult
to recover later. In contrast, mild deviations in the energy distribution can often be corrected through short MD relaxation steps, as
demonstrated in Section 5.1.
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(a) Alanine Dipeptide (b) Alanine Tripeptide

Figure 9: Energy distributions of ALDP and AL3 samples obtained via annealing from various starting temperatures to 300K. The model
is trained on ground-truth MD samples at 1200K, and on annealed intermediate samples at 755.95K and 555.52K — the latter being our
default training setting.

Table 5: γt schedule ablation on ALDP.

Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 ↓
γ Schedule

Constant 0.115 ± 0.005 0.389 ± 0.014 1.485 ± 0.100 1.584 ± 0.095 0.258 ± 0.030
Linear 0.095 ± 0.009 0.243 ± 0.048 1.453 ± 0.099 1.555 ± 0.099 0.275 ± 0.058
Sigmoid 0.113 ± 0.009 0.339 ± 0.046 1.443 ± 0.087 1.550 ± 0.087 0.345 ± 0.027

Table 6: Additional Ablation Results on ALDP.

Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 ↓
Model

PITA 0.121 ± 0.004 0.404 ± 0.019 1.541 ± 0.009 1.619 ± 0.010 0.270 ± 0.023
w/o resampling 0.140 ± 0.007 0.452 ± 0.027 1.606 ± 0.094 1.676 ± 0.075 0.363 ± 0.023
w/o energy pinning loss 0.098 ± 0.012 0.291 ± 0.065 4.709 ± 0.091 4.722 ± 0.090 0.219 ± 0.021
MD-Diff + CFG 0.137 ± 0.007 0.446 ± 0.029 8.106 ± 0.025 8.190 ± 0.026 0.383 ± 0.042

γt schedule. We analyze the effects of using different schedules for time-dependent γt during inference. In particular, we annneal from
555.52K to 300.0K using a constant schedule, a linear schedule which linearly increases from γ = 1 to γ = 1.85, and a sigmoid schedule
again, increasing from γ = 1 to γ = 1.85. Table 5 shows that the linear schedule generally performs best across the different evaluation
metrics. It achieves the lowest values on the TICA metrics, while showing comparable performance to the sigmoid schedule on the
energy-based metrics.

Resampling, Energy Pinning Loss, and Classifier Free Guidance. To evaluate the impact of resampling on sample quality, we perform
inference from 556K to 300K without applying resampling. Across all metrics, we observe that resampling consistently improves
performance. To assess the roles of the energy pinning loss and classifier-free guidance, we retrain a model for the 556K to 300K
transition with each component removed. Omitting the energy pinning loss results in a slight improvement in TICA metrics but leads to a
noticeable decline in energy metrics, indicating that the loss plays an important role in maintaining accurate energy distributions. Finally,
we train a diffusion model on the data generated from PITA at 555.52K, and anneal to 300K simply by scaling the score by γ (similar to
classifier-free guidance approaches). This approach shows mixed results, offering no consistent improvement over MD-Diff (which is
directly trained on samples at 300K) and performing below the level of PITA in all metrics.

F. Training Dynamics Across Temperatures
In this section, we analyze the performance of the models (PITA and TA-BG) across different temperatures during annealing toward the
target temperature on ALDP. Table 7 presents quantitative metrics, demonstrating that PITA consistently achieves lower discrepancies
across all temperatures. Additionally, Figure 10 shows the Ramachandran plots at temperatures, further illustrating the ability of the
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Table 7: Metrics across temperatures

Temperature Model Tica-W1 ↓ Tica-W2 ↓ Energy-W1 ↓ Energy-W2 ↓ T-W2 ↓

755.95K PITA 0.024 ± 0.004 0.125 ± 0.021 2.855 ± 0.083 2.886 ± 0.079 0.134 ± 0.013
TA-BG 0.040 ± 0.002 0.178 ± 0.008 2.065 ± 0.044 2.140 ± 0.042 0.355 ± 0.007

555.52K PITA 0.141 ± 0.001 0.836 ± 0.004 1.420 ± 0.030 1.430 ± 0.027 0.219 ± 0.015
TA-BG 0.337 ± 0.009 0.967 ± 0.013 48.486 ± 0.042 56.897 ± 0.059 1.135 ± 0.004

300K PITA 0.112 ± 0.006 0.379 ± 0.028 1.530 ± 0.068 1.615 ± 0.053 0.270 ± 0.023
TA-BG 0.219 ± 0.013 0.685 ± 0.034 83.457 ± 0.070 86.176 ± 0.104 0.979 ± 0.012

model to generate physically realistic samples that capture the temperature-dependent conformational landscape at each step of the
annealing process. TA-BG demonstrates reasonable performance at 755.95K when initialized with ground-truth samples, reflecting its
ability to model high-temperature distributions under ideal conditions. However, its performance deteriorates when transitioning to lower
temperatures using recursively generated samples for importance sampling, indicated by the mode collapse in the Ramachandran plots,
where the conformational diversity sharply diminishes.

G. Additional Experimental Details
G.1. Network Parameters

PITA. For LJ-13, we use equal loss weights for energy pinning, denoising score matching, and EBM distillation. We use the noise
schedule of Karras et al. (2022), with the following parameters: σmin = 0.05, σmax = 80 and ρ = 7. The model uses EGNN (Satorras
et al., 2021) with approximately 90k parameters, consisting of three layers and a hidden dimension of 32. For ALDP and AL3, the energy
pinning, denoising score matching, and EBM distillation components of the loss are weighted equally at 1.0, with an additional target
score matching loss weighted at 0.01. We use the same noise schedule as the LJ-13 experiment, using a smaller σmin of 0.01. We use
DiT (Peebles & Xie, 2023) comprising six layers and six attention heads, with a hidden size of 192 and a total of roughly 12 million
parameters. All models are trained with a learning rate of 1× 10−3 without any weight decay. For ALDP and AL3, we use Exponential
Moving Average (EMA) with a decay rate of 0.999, updating every gradient step.

MD-Diff. We train the diffusion model on the MD trajectories generated at the target temperature. This serves as a strong baseline, since
we have direct access to the ground-truth samples, unlike PITA and TA-BG. To ensure a controlled comparison, the length of the MD
chain used to train the diffusion model is chosen such that the total number of energy evaluations matches the computational budget used
to train PITA over all annealing steps. We provide further analysis on the mixing properties of different lengths of MD chains at low and
high temperatures in Appendix D. We use a σmin value of 0.005, while keeping the rest of the model hyperparameters the same as PITA.

TA-BG. In Schopmans & Friederich (2025), TA-BG trains a normalizing flow by minimizing the reverse Kullback–Leibler (KL)
divergence at high temperature and progressively refining the model via importance sampling as the temperature is annealed toward
the target distribution. We carefully adapt their training pipeline to ensure a consistent and fair comparison. Specifically, we initialize the
training with ground-truth MD data rather than learned high-temperature samples, represent molecular configurations in Cartesian rather
than internal coordinates, and use the same temperature annealing schedule as PITA. We use TarFlow (Zhai et al., 2024), configured
with four meta blocks, each containing four attention layers and a hidden size of 256, resulting in approximately 12 million parameters.
We use a learning rate of 1× 10−4 and employ 60,000 samples at the end of training for each temperature to compute the importance
weights used in generating the buffer for the next temperature.

G.2. Metrics

We evaluate model performance using both sample-based metrics and metrics that assess energy distributions. To compare energy
distributions between generated samples and ground-truth molecular dynamics (MD) samples, we compute the 1D 1-Wasserstein and
2-Wasserstein distances on the energy histograms. For sample-based evaluation, we measure the 2D wrapped 2-Wasserstein distance of
the internal dihedral angles, ϕ and ψ (denoted as T-W2). Additionally, we calculate the 2D 1-Wasserstein and 2-Wasserstein distances
between the first two TICA axes of the ground-truth and generated samples.

G.3. MD Parameters

LJ-13 Parameters. The Lennard-Jones (LJ) potential is an intermolecular potential that models interactions of non-bonding particles.
The energy is a function of the interatomic distance of the particles:

ELJ(x) =
ε

2τ

∑
ij

((
rm
dij

)6

−
(
rm
dij

)12
)

(55)
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Figure 10: Ramachandran plots for Alanine Dipeptide (ALDP) obtained from different temperatures using 30k samples. We compare the
samples from PITA and TA-BG with the ground-truth MD samples.
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where the distance between two particles i and j is dij = ∥xi − xj∥2 and rm, τ , ϵ and c are physical constants. As in Köhler et al.
(2020), we also add a harmonic potential to the energy so that ELJ−system = ELJ(x) + cEosc(x) This harmonic potential is given by:

Eosc(x) =
1

2

∑
i

||xi − xCOM||2 (56)

where xCOM is the center of mass of the system. We use rm = 1, τ = 1, ε = 2.0 and c = 1.0. For the LJ-13 dataset, we draw MCMC
chains using the No-U-Turn-Sampler (NUTS) (Hoffman & Gelman, 2011)

Alanine Parameters. For MD data on ALDP and AL,3, we run two chains one for training and one for test. We use the same simulation
parameters for both. For training data we sample shorter chains more frequently (every 100 md steps). To conserve disk space for long
test chains, we save every 10k steps. Further parameters can be found in Table 8 and Table 9.

Table 8: OpenMM simulation parameters.

Force field amber-14
Integration time step 1 fs
Friction coefficient 0.3 ps−1

Temperature 310K
Nonbonded method CutoffNonPeriodic
Nonbonded cutoff 2 nm
Integrator LangevinMiddleIntegrator

Table 9: Training and evaluation dataset parameters.

Train Test

Burn-in period 50 ps 50 ps
Sampling interval 0.1 ps 10 ps
Simulation time 50 ns 1 µs

H. Extended Related Work
Annealed Importance Sampling. In the context of AIS (Jarzynski, 1997; Neal, 2001) and parallel tempering (Swendsen & Wang,
1986), our method reduces the number of energy evaluations by learning the models of intermediate marginals. Indeed, when the buffer
of samples from the current temperature is sampled, training of the diffusion model does not require new energy evaluations (note that the
gradients for target score matching can be cached). Thus, the only time we need to evaluate the energies is for the importance sampling at
the final step of the inference-time annealing and for the collection of samples via MCMC at a high temperature. Obviously, for sampling
from the target density π(x), the trained diffusion model, unlike AIS, allows producing uncorrelated samples without restarting the
chain from the prior distribution.

Boltzmann Generators. Noé et al. (2019) proposed training a probabilistic model and resampling the generated samples according to
the target Boltzmann density via importance sampling. The entire framework was coined as the Boltzmann Generator. The nature of the
probabilistic model can vary as long as it allows for evaluation of the density and efficient training, e.g. continuous normalizing flows (Chen
et al., 2018) and the flow matching objective (Lipman et al., 2022) also allow for efficient training and resampling under the Boltzmann
generators framework (Köhler et al., 2020; Klein et al., 2023). Boltzmann Generators can also be combined with Annealed Importance
Sampling, which allows for the use of SMC style resampling approaches ane enhances their scalability (Tan et al., 2025). However, as
we demonstrate empirically, the straightforward resampling with a target density of a different temperature results in high variance of
importance weights. Thus, one has to deviate from the Boltzmann Generators framework to perform the inference-time annealing.
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