
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPD: SYNC-POINT DROP FOR EFFICIENT TENSOR PAR-
ALLELISM OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid expansion in the scale of large language models (LLMs), enabling
efficient distributed inference across multiple computing units has become in-
creasingly critical. However, communication overheads from frequent synchro-
nization during distributed inference pose a significant challenge to achieve scal-
ability and low latency. Therefore, we introduce a novel optimization technique,
Sync-Point Drop (SPD) to reduce communication overheads in tensor parallelism
by dropping synchronization on attention outputs. In detail, we first propose a
block design that allows execution to proceed without communication through
SPD. Second, we identify regions of communication redundancy, where dropping
synchronization results in no loss of model performance. In addition, to extend
SPD across all compute blocks, we employ a low-cost distillation, specifically
targeting blocks giving quality degradation, to maximize accuracy recovery. For
extreme blocks where performance degradation is severe, we introduce a new head
grouping enhancements to amplify the distillation’s recovery effect. The proposed
methods effectively alleviate communication bottlenecks while minimizing accu-
racy degradation during LLM inference, offering a scalable solution for distributed
environments.

1 INTRODUCTION

Large Language Models (LLMs) (Gunter et al., 2024; Brown et al., 2020; Bubeck et al., 2023; Tou-
vron et al., 2023a;b; Zhang et al., 2022; Penedo et al., 2023; Jiang et al., 2023) have revolutionized
the field of natural language processing (NLP), driving significant advancements in a wide range
of applications, from machine translation and sentiment analysis to question answering and content
generation. Their ability to understand and generate human-like text has opened new possibilities for
both research and practical use. However, as these models grow in size and complexity, optimizing
their performance becomes a crucial challenge, particularly in terms of latency.

One of the popular ways to offer low latency is to run LLM inference in distributed computing
environments, notably using Tensor Parallelism (TP) (Shoeybi et al., 2019). TP enables distributed
computations by sharding tensor operations into separated tracks or blocks that are then processed
on parallel devices simultaneously. As a direct benefit, TP allows us to leverage device’s quantity
against on-board memory per-device, which is a good way to improve hardware utilization and
accelerate inference for large scale models (Further discussion can be found in Section 3).

However, to maintain mathematical parity as on single-device inference, TP requires collective com-
munication, or sync-points, throughout the model — these are communication barriers across all
parallel devices to synchronize hidden representation tensors (the process is illustrated in Figure
1a). Because of its communicative nature, the overhead of sync-point is subjected to hardware sys-
tems, i.e. interconnect between devices, network connections between nodes, which can become a
bottleneck on execution. Also, sync-points may be critical failure points in any distributed systems.
As LLMs grow in size, one needs to use more compute devices, which necessitates more sync-points
and further worsens system stability and inference latency. Therefore, optimizing sync-point would
greatly improve the overall inference latency and system utilization.

Therefore, in this work, we propose Sync-Point Drop (SPD) a simple yet novel optimization tech-
nique with broad applications. Unlike the existing works which tried to improve the communication
process itself (NVIDIA, 2019b; Jeaugey, 2019; Cheng et al., 2023) on system-level, SPD directly
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removes sync-point on self attention output (as in Figure 1b) within the target budget. To enable
SPD directly on decoder block, we first present a block design for SPD which minimizes the neg-
ative effect from lack of communication (see Figure 2). Second, we differently apply SPD to each
blocks based on communication sensitivity, which is defined as the relative impact on downstream
performance when all communications are dropped up to that point. From our observations we iden-
tified three regions of communication sensitivity: in-sensitive, sensitive, and extremely sensitive (see
Figure 3). We show that in-sensitive blocks resulted in virtually no degradation of performance
in zero-shot when SPD is applied for many popular open-source models at various sizes. For sen-
sitive blocks, we propose block-to-block distillation which tunes the decoder block aware of SPD
while applying significantly low cost weight update. For extremely sensitive blocks, which show
large quality degradation even with block-to-block distillation, we introduce a novel SPD aware
initialization for block-to-block distillation. Our experimental results show effective possibility of
latency improvement with minimizing the accuracy degradation throughout diverse sizes of models.
In summary, our contributions are:

• We propose novel block designs for sync-point drop that minimize information loss from
lack of communication.

• We identify the sensitivity of each block within the model and classify them into three
distinct categories, allowing for the application of tailored optimization strategies to each
group based on their performance characteristics.

• Optimization strategies applied to blocks based on sensitivity (zero-shot dropping with
no performance degradation, block-to-block distillation and self attention head-grouping
enhancement leading to better accuracy/latency trade-off) enable a scalable solution for
distributed environments.

• Empirical results on various datasets show sync-point drop can offer improved latency with
minimum quality loss for all budgets in distributed environments.

2 RELATED WORKS

The inefficiency of large language models, which emerged with significant impact, has led to the
development of numerous optimization techniques. Diverse techniques, i.e. quantization, pruning,
emerged on model-level optimization with enormous redundancy of large language model. Quanti-
zation (Frantar et al., 2023; Xiao et al., 2023; Lin et al., 2024; Shao et al., 2024; Chee et al., 2023;
Ashkboos et al., 2024) reduces the precision of model parameters, allowing for faster computations
with minimal impact on performance. Pruning (Frantar & Alistarh, 2023; Sun et al., 2024; Liu
et al., 2023; Xia et al., 2024) eliminates less critical parameters or neurons from the model, thereby
reducing its size and computational complexity. Furthermore, in the aggressive scale of pruning,
block skipping (Xia et al., 2024; Song et al., 2024), which involves bypassing certain blocks dur-
ing inference based on block characteristics, further enhances efficiency by decreasing the number
of operations aggressively required for prediction. This model-level optimizations are mostly fo-
cusing on compressive and computational effect that makes them more suitable for real-time and
resource-constrained environments without sacrificing accuracy.

Also, due to the large amount of computation and memory occupation of the large language model,
system-level optimizations (Shoeybi et al., 2019; Huang et al., 2019; Zhao et al., 2023; Aminabadi
et al., 2022; Kwon et al., 2023) are explored for deployment. Different with model-level opti-
mization, system-level optimization does not change any numerical values of a model. One of the
distributed deployment technique, tensor parallelism (Shoeybi et al., 2019), enables fast serving of a
model by parallel execution of a block into multiple devices. However, this technique requires large
communication overhead between devices to keep numeric precision of execution flow. Considering
the communication bottleneck of tensor parallelism, existing work also focus on improving the com-
munication operation itself systematically, including ring-topology all-reduce (NVIDIA, 2019b) and
tree-topology all-reduce (Jeaugey, 2019). Specifically for large models, ATP (Cheng et al., 2023)
improves training efficiency by dynamically choosing the best parallel strategy.

In this paper, we achieve optimization benefits from the system perspective by leveraging model-
level optimization (enabling SPD in the system with minimizing accuracy degradation in the model).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) With full sync tensor parallelism. (b) With sync-point drop in attention output

Figure 1: Tensor parallelism applied on transformer decoder block (in 2-GPUs inference case).

3 PRELIMINARY: TENSOR PARALLELISM IN LARGE LANGUAGE MODELS

Tensor parallelism (Shoeybi et al., 2019) is a systematic computing technique on distributed envi-
ronment used to accelerate large-scale language models. This is realized by partitioning individual
weight tensors of a model across multiple devices. Instead of replicating entire model across GPUs
(as in data parallelism), tensor parallelism (TP) divides each block’s computation across multiple
devices (as shown in Figure 1a), enabling the model to handle larger tensors that would otherwise
exceed the memory capacity of a single GPU. This approach significantly improves the scalability
and efficiency in both training and inference, particularly in large language models. However, real-
ization of effective TP requires collective communication (‘all-reduce’ in Figure 1) between devices
to synchronize and exchange partial computations, typically achieved via specialized interconnects
such as NVLink and NVSwitch (NVIDIA, 2019a). To reduce communication overhead, careful co-
ordination between computation and communication is crucial. In this paper, we introduce a novel
method Sync-Point Drop (SPD) to eliminate the communication within each decoder block, aiming
to alleviate communication bottlenecks during distributed inference.

Table 1: Latency of a decoder block of LLaMA2-
7B model inference with tensor parallelism (TP) and
sync-point drop (SPD) in diverse multi-gpu environ-
ments. (Latency metrics are measured in NVIDIA
A100-80G gpus equipped with NVLink each other).

Environment
(#-node / #-gpus per node) Per-block latency

1-node / 8-gpus TP 8.01 ms
1-node / 8-gpus SPD 7.45 ms
2-node / 8-gpus TP 28.78 ms

2-node / 8-gpus SPD 21.97 ms

Table 1 shows the latency of a decoder block
inference with TP and SPD. To make the
lowest bandwidth requirement between de-
vices as possible, we measured latency with
a block of LLaMA2-7B having an embed-
ding dimension of 4096 and using an in-
put with a batch size of one and a sequence
length of one. In the single node case op-
erating with 8-GPUs, SPD gives 7% latency
gain (from 8.01ms to 7.45ms) compared to
TP case. This becomes even larger in cross
nodes environment. In double node case
with 8-GPUs in each node, SPD gives 24%
latency gain (from 28.78ms to 21.97ms)
compared to TP case. Considering we utilize
smallest specification to use lower amount of communication, the latency gap will be much bigger
when larger batch size and sequence length are used with much larger models having a enormous
embedding dimensions. This highlights the importance of SPD for efficient distributed inference.

4 SYNC-POINT DROP FOR EFFICIENT TENSOR PARALLELISM

Sync-point drop (SPD) simply removes the ‘all-reduce’ communication after self attention output
as shown in Figure 1b. While the lack of communication harms numerical parity across all parallel
devices, if the application is handled properly, it can be well applied with less quality degradation of
the model. In this section, we propose several methods to enable keeping high quality model with
lowering the communication overhead by SPD. First, in order to apply SPD, we introduce a novel
block structure design that serves as the foundation block for the non-communicating structure with
minimal quality degradation. Second, we propose proper strategy of applying SPD in a block-wise
manner which can achieve benefits of low latency with minimizing the accuracy degradation.
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(a) Block design without bias in linear layer. (b) Block design with bias in linear layer.

Figure 2: Decoder block structure with sync-point drop (in 2-GPUs inference case). ‘Wi’ and ‘b’
represent weight and bias of linear layer on each device (i). ‘X’, ‘Yi’, ‘Zi’ and ‘Pi’ denotes a hidden
representation of each device (i) on ‘•’ in the figure.

4.1 BLOCK DESIGN

If the synchronization of the self attention output is disrupted, the attention output will be divided
into multiple outputs corresponding to the number of devices. This leads to design issues in two
aspects of the transformer decoder block: the MLP input and the MLP output. Furthermore, these
design issues vary depending on whether the output projection layer of self attention includes a bias
term or not. In this section, we present a block design for SPD that minimizes information losses
from lack of communication which lead to the accuracy degradation.

4.1.1 DECODER BLOCK WITHOUT BIAS IN LINEAR LAYER

Figure 2a shows the SPD block design used without bias in linear layer. The most essential ob-
jective of block design is constructing the combination of connections which gives least numerical
difference between TP and SPD.

MLP input The sync-point enables each parallel devices to capture the attention output from all
the other devices. However, when the outputs from other devices are unavailable by elimination of
sync-point, the only information the device (i) can utilize is its own attention output (Yi). Therefore,
to minimize the numerical difference compared to the case of all information available, residual
connection (X) and attention output of own device (Yi) are added and fed into MLP input (X +Yi).

MLP output When the sync-point exists after attention output, the MLP input is utilized as residual
connection added to MLP output. However, dropping the sync-point yields incomplete MLP input
(X + Yi) with lack of attention output from other devices. The desired block output is combination
of block input (X), attention output from all devices (

∑
i Yi) and MLP output from all devices

(
∑

i Zi). Therefore, we disassemble the original residual connection to block input residual (X) and
attention output residual from a device (Yi). Then, Yi forms a new type of residual connection which
is added before sync operation. X is added on the same point as original connection, after the sync
operation which finally leads to complete form of output (X +

∑
i Yi +

∑
i Zi).

4.1.2 DECODER BLOCK WITH BIAS IN LINEAR LAYER

In TP, each of the linear layers in self attention part of a block is parallelized in a different manner.
The linear layers before self attention operation (query, key and value projection) are divided in a
column-wise manner which enables the bias divided along same dimension. However, the linear
layer after self attention operation (output projection) is parallelized in an orthogonal way, row-wise
manner. The bias, a vector along the column dimension, therefore, can not be divided in the direction
of the row. This requires new mechanism of the bias application on MLP input and output as shown
in Figure 2b.

MLP input The difference from Section 4.1.1 is that indecomposable bias term (b) is included after
weight multiplication. Following the most essential objective, least error in the MLP input compared
to the result after communication, we use the partial weight multiplication result with the addition
of bias (Yi = Pi + b) and input residual connection (X) as MLP input (X + Pi + b).
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Figure 3: Sync sensitivity identifica-
tion process of a block (‘TP’ is for
tensor parallelism and ‘SPD’ is for
sync-point drop).

Algorithm 1 Sync-point drop based on sensitivity

1: SPD: SYNC-POINT DROP
2: B2B: BLOCK-TO-BLOCK DISTILLATION
3: HG: ATTENTION HEAD GROUPING ENHANCEMENT
4: Block ← list of all decoder blocks in model
5: S ← list of sensitivity measurement
6: B ← block index list in ascending order of S
7: Nspd ← Target budget: the number of blocks to SPD
8: τ1, τ2 ← sensitivity thresholds
9: for i = 0 to Nspd − 1 do

10: if S[B[i]] ≤ τ1 then ▷ Section 4.2.2: in-sensitive
11: Block[B[i]]← SPD(Block[B[i]])
12: else if S[B[i]] ≤ τ2 then ▷ Section 4.2.3: sensitive
13: Block[B[i]]← SPD(B2B(Block[B[i]]))
14: else ▷ Section 4.2.4: extremely sensitive
15: Block[B[i]]← SPD(B2B(HG(Block[B[i]])))
16: end if
17: end for

MLP output Following Section 4.1.1, the original residual connection is disassembled to block
input residual (X) and attention output residual (Yi) from a device. Due to existence of bias, we
further disassemble Yi to the result of the partial weight multiplication (Pi) and the bias (b). To make
the bias not affected by communication, we place the bias residual add after the sync operation while
adding the partial weight multiplication result before the sync operation. Finally, in a device, this
makes the bias residual be added once on MLP output while the parallelized weight multiplication
results form complete state through collective communication (X +

∑
i Pi + b+

∑
i Zi).

4.2 SYNC-POINT DROP BASED ON BLOCK-WISE SENSITIVITY

While the lack of communication harms numerical parity across all parallel devices, we found that
some blocks aren’t affected a lot from SPD based on the designed block structure in Section 4.1. In
fact, there is varying sensitivity to SPD depending on which block it is. In our proposed approach,
we categorize transformer blocks based on their sensitivity: in-sensitive blocks, sensitive blocks
and extremely sensitive blocks. This classification enables us to tailor our strategies on each block
effectively, optimizing the inference processes block-by-block with less accuracy degradation.

4.2.1 BLOCK-WISE SYNC SENSITIVITY IDENTIFICATION

Figure 3 shows the overall sync sensitivity identification algorithm flow of a model in the parallel
system setting. To identify the sensitivity of a block to SPD, we utilize perplexity metric by measur-
ing relative impact of a block to performance (the difference between TP block and SPD block in
Figure 3) as sensitivity measurement. For example, when we measure the sensitivity of i-th block to
SPD, we apply SPD to all blocks starting from the {i + 1}-th block to the final block and measure
the perplexity, while leaving the i-th block unchanged. Then we measure the perplexity by addi-
tionally modifying the system setting of i-th block to SPD. The difference in perplexity before and
after applying SPD to i-th block is used as a measure of sensitivity. Here, we use calibration data ob-
tained by sampling a small portion from the large training dataset. By progressive replacement of TP
block to SPD block and measurement of quality degradation as relative perplexity difference, we can
compare the sensitivity between blocks in entire model and classify the blocks to three sensitivity
categories (in-sensitive blocks, sensitive blocks and extremely sensitive blocks).

Algorithm 1 shows the overall process of properly applying SPD in a block-wise manner with sync
sensitivity. Based on the measured sensitivity value of blocks (S), we rank the blocks in an ascend-
ing order (B). Following this ranking of the sensitivity of each blocks, we apply SPD sequentially
within the target number of blocks to optimize (Nspd). In the sequence, the processing of a block
is classified based on a predefined threshold criterion (τ1 and τ2). This makes the blocks classified
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into three sensitivity categories. Consequently, this classification allows us to implement individ-
ual strategies aimed at minimizing quality degradation according to the identified groups. In the
following sections, we introduce the individual strategies, applied based on classification result.

4.2.2 IN-SENSITIVE BLOCKS: ZERO-SHOT DROPPING

In-sensitive blocks show minimal accuracy degradation with SPD. Therefore, within the targeted
budget of communication optimization, we drop the sync-point of these blocks, prioritized over
other types of blocks, in a zero-shot manner. Note that zero-shot dropping can give significant
amount of benefit with sensitivity identification. As shown in Section 5, in every models, zero-shot
dropping can obtain at least 44% of blocks as SPD with little sacrifice of accuracy.

4.2.3 SENSITIVE BLOCKS: SPD AWARE BLOCK-TO-BLOCK DISTILLATION

Sensitive blocks exhibit larger effect on quality degradation compared to in-sensitive blocks. To
further increase the optimization objectives and recover the associated performance degradation by
dropping sync-point in sensitive block, we obtain SPD specific parameter by adopting the concept
of block-to-block distillation. Block-to-block distillation is a low-cost training method that involves
training only the specific sensitive block with SPD. The training objective of distillation is shown in
Equation 1. We set teacher block as TP block and student block as SPD block. For the data used in
tuning, we utilize same calibration data used in sensitivity identification step in Section 4.2.1. This
calibration data passes through consecutive TP blocks of the model by the block which distillation
will be conducted. To conduct distillation, we forward this hidden representation (x) to each teacher
and student block and apply outputs to mean squared error (MSE) loss. Note that the parameter of
SPD block (θspd) is initialized from TP block (θ). Since SPD and TP are execution methods within
the system, they originally use the same model parameters. However, to make the separate weights
aware of elminated communcation, parameters for SPD are newly initialized and used separately.

argmin
θspd

MSE(SPD(θspd, x), TP(θ, x)) (1)

4.2.4 EXTREMELY SENSITIVE BLOCKS: ATTENTION HEAD GROUPING ENHANCEMENT FOR
SPD AWARE BLOCK-TO-BLOCK DISTILLATION

Beyond the recovery of block-to-block distillation on sensitive blocks, a few number of blocks show
sharp quality degradation. We define these blocks as extremely sensitive blocks and introduce a
novel SPD aware initialization for block-to-block distillation. As the sync-points are removed, the
model partitions are isolated from each other, preventing mutual access. This makes a decoder block
as if it is a combination of parallel and independent mini decoder blocks. In this circumstance, a
self attention fragment cannot access any MLPs in other parallel devices and also MLPs are unable
to access self attention output in other parallel devices, resulting in inevitable information loss. To
ensure that these parallel architectures operate as close as the original structure, it is important to
make attention heads evenly distributed based on functionality following the sparse nature of head
activated differently (Liu et al., 2023) and redundancy of head showing similar behaviors (Agarwal
et al., 2024) on in-context. To reflect these in-context properties to out-context as much as possible,
we utilize calibration data and obtain attention score (σ) as a metric of the head functionality.

Head scattering In the self attention, the set of query (Q), key (K) and value (V) associated with
each head can be defined as A = {<Q1,K1, V1 >,<Q2,K2, V2 >, · · · , <QN ,KN , VN >} where
N is number of heads. The goal of head scattering is finding the set of heads showing the even
distribution of attention score (σ(Qi,Ki)) on each device. By defining Ai ⊂ A where n(Ai) =
N/number of devices , the objective of head scattering is defined in Equation 2. We achieve the
objective of finding even distribution based on head functionality by maximizing sum of distance on
clustering algorithm which originally utilize opposite metric. Here, for the distance, attention scores
of each sequences as a high dimension vector are utilized with euclidean distance (d).

argmax
Ai

n(Ai)∑
j=1

n(Ai)∑
k=j+1

d(σ(QAi,j
,KAi,j

), σ(QAi,k
,KAi,k

)), where Ai ⊂ A (2)
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MLP matching After getting the scattered clusters of attention heads, matching Ai with proper
MLP partition should be conducted to search complete parallel independent architecture which op-
erate close to the original structure. We found that the norm of MLP output before adding residual
connection is well fit indicator to maximize the impact of scattered head subset. Therefore, we
compare the norm of all the matching combinations and pick the best maximum case as matching
result. By defining MLP partition of a device as MLPm and a matching combinations as MC and
its universal set as MCall, the objective of MLP matching is defined as Equation 3.

argmax
MC

MC∑
<Ai,MLPm>

Norm(MLPm(Ai)), where MC ∈MCall (3)

Figure 4: SPD block structure without bias having
8-heads on 4-GPUs case with given Ai and MC.

After determining the optimal Ai and MC, the
hidden representation of each head should be
physically located on the device designated by
MC. Figure 4 illustrates the example of SPD
with best Ai and MC. To align the assign-
ment with the static behavior of the system in
SPD, we reorder the columns of the query, key,
and value linear layer weights (WQ, WK , WV )
based on their head-specific partitions (WQh,
WKh, WV h, where h denotes the head index).
Similarly, the row order of output linear layer
weight (WO) based on head partitions (WOh)
are reordered. This reordering ensures that the
hidden representations are distributed in the or-
der of MC, allowing the heads in Ai to reside
on the same parallel device. As a result, a group
of scattered head subset and MLP partition is
assigned to a single device, referred to as head
grouping. Applying block-to-block distillation
after head grouping further enhances accuracy
recovery in the extremely sensitive blocks.

5 EXPERIMENTS

5.1 SETUP

Models We conduct experiments on LLaMA2 (7B, 13B and 70B) (Touvron et al., 2023b) and OPT
(6.7B, 13B, 30B and 66B) (Zhang et al., 2022). We apply 8-GPUs case and 4-GPUs case settings
for all the models except LLaMA2-70B, OPT-30B and 66B which apply 8-GPUs case setting only.

Calibration data From WikiText2 (Merity et al., 2016) training dataset, randomly selected 128-
samples consist of tokens with sequence length of 2048 are used by following existing work (Shao
et al., 2024). Each one sample of calibration data is utilized as mini batch for distillation.

Settings For all models except larger models (LLaMA2-70B, OPT-30B and OPT-66B), we use τ1 as
0.05 and τ2 as 10. For larger models, we use τ1 as 0.02 and τ2 as 10. In block-to-block distillation
on sensitive blocks, learning rate is used as 5×10−5 for LLaMA2 and 1×10−6 for OPT. 10-epochs
of distillation is conducted with 1-epoch as utilizing whole 128-samples of calibration data.

Evaluation data We evaluate accuracy of our optimization method to zero-shot tasks (ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), LAMBADA (Paperno et al., 2016), PIQA (Bisk et al.,
2020), SciQ (Welbl et al., 2017), and WinoGrande (Sakaguchi et al., 2020)) by averaging all the
results and MMLU tasks (Hendrycks et al., 2021).

5.2 SENSITIVITY IDENTIFICATION

Figure 5 shows the block-wise sync sensitivity identification result of the blocks in LLaMA2 and
OPT models. For all models, the percentage of in-sensitive blocks (yellow bar) indicate that the
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0% 20% 40% 60% 80% 100%

LLaMA2-70b 8-GPUs

LLaMA2-13b 4-GPUs

LLaMA2-13b 8-GPUs

LLaMA2-7b 4-GPUs

LLaMA2-7b 8-GPUs

in-sensitive sensitive extremely sensitive

(a) LLaMA2 models

0% 20% 40% 60% 80% 100%

OPT-66B 8-GPUs

OPT-30B 8-GPUs

OPT-13B 4-GPUs

OPT-13B 8-GPUs

OPT-6.7B 4-GPUs

OPT-6.7B 8-GPUs

in-sensitive sensitive extremely sensitive

(b) OPT models

Figure 5: Block-wise sync sensitivity identification result for LLaMA2 and OPT models.

same amount of blocks can be used as SPD with ignorable accuracy drop (less than 1% on zero-shot
tasks). This can be achieved in zero-shot manner (detailed results are described in Section 5.3). The
percentage of in-sensitive blocks increases when the model size gets larger (75% in LLaMA2-70B 8-
GPUs and 84% in OPT-66B 8-GPUs). Overall, LLaMA2 models show higher sensitivity compared
to OPT models. LLaMA2-7B 8-GPUs model is available with zero-shot drop of 44% while entire
OPT models are available with dropping 70% of blocks. Extremely sensitive blocks are shown only
in smaller models (LLaMA2-7B, 13B and OPT-6.7B) with the amount of one or two blocks.

5.3 SENSITIVITY BASED SYNC-POINT DROP

Figure 6 shows the SPD results of LLaMA2 models on zero-shot tasks. After the amount of target
SPD blocks exceeds in-sensitive boundary, zero-shot dropping (ZS) shows large accuracy drop (over
1%) in all models and cases. Block-to-block distillation with ZS (ZS+B2B) successfully recovers
large amount of accuracy in sensitive block region, especially giving larger amount on smaller mod-
els (+28% on 13B 8-GPUs and +20% on 7B 4-GPUs on 100% SPD). Furthermore, smaller models
having extremely sensitive blocks show further accuracy recovery from B2B (+3% on 7B 8-GPUs
and +2% on 13B 4-GPUs on 100% SPD) with adding head grouping enhancement (ZS+B2B+HG).
Similar tendencies are also appeared on MMLU results as in Figure 7.

Figure 8 shows the SPD results of OPT models on zero-shot tasks. OPT models show less drop
compared to LLaMA2 models possibly due to high redundancy (Liu et al., 2023; Agarwal et al.,
2024). Models except 1.3B show maximum 1.3% degradation regardless of sensitivity of block.
Therefore, results in OPT with ZS+B2B and ZS+B2B+HG shows no large improvements since it
already have less drop only with ZS. However, in OPT-6.7B, when the drop occurs in ZS, ZS+B2b
and ZS+B2B+HG gives recovered accuracy (+2.8% in 8-GPUs and +2% in 4-GPUs on 100% SPD).

Overall the proposed SPD effectively alleviates sync-point bottleneck while minimizing accuracy
degradation. This shows that SPD gives both moderate optimization with no performance degrada-
tion and better trade-off between larger optimization and performance leading to scalable solution.

5.4 EFFECTS OF DESIGN CHOICE IN BLOCK DESIGN

Table 2: SPD MLP output design choice Wiki-
Text2 perplexity on block without bias in linear
layer (SPD is only on 1st block of the model).

Attention output residual add (Yi) PPL (↓)
LLaMA2-7B no SPD 5.47

Before MLP all-reduce 10.65
After MLP all-reduce 177.69

Table 3: SPD MLP output design choice Wiki-
Text2 perplexity on block with bias in linear layer
(SPD is only on 1st block of the model).

Bias residual add (b) PPL (↓)
OPT-6.7B no SPD 10.86

Before MLP all-reduce 332.60
After MLP all-reduce 13.07

Section 4.1 shows that the tensor parallelism block system is not compatible with lack of com-
munication and this makes several design choices on block structure. Table 2 and 3 show quality
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(d) LLaMA2-13B 4-GPUs case
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(e) LLaMA2-70B 8-GPUs case

Figure 6: LLaMA2 average accuracy results on zero-shot tasks (‘ZS’ represents applying zero-shot
dropping to all blocks. ‘ZS+B2B’ represents applying zero-shot dropping on in-sensitive blocks and
block-to-block distillation to the other blocks. ‘ZS+B2B+HG’ is applying zero-shot dropping on
in-sensitive blocks and block-to-block distillation to sensitive blocks and block-to-block distillation
with head grouping enhancement to the other blocks which is extremely sensitive blocks).

degradation per design choice on MLP output. Whether the targeted residual connections on each
table use collective communication or not will be determined by the addition point (before and after
MLP all-reduce). The results show that using collective communication on attention output residual
(Table 2) and not using it on bias (Table 3) are the proper choice of residual addition point design
selections as in Figure 2 which minimizes negative effect from SPD.

6 CONCLUSION

In this paper, we present Sync-Point Drop (SPD), a novel optimization technique improving the
latency of LLMs on distributed inference environment by reducing the communication overhead in
tensor parallelism with model-side solutions. By identifying regions of communication redundancy
and selectively omitting synchronization on attention outputs, SPD enables efficient deployment
across multiple computing units with little compromising model performance. To extend the range
of SPD with little degradation, our block-wise sync sensitivity analysis allows us to target only
blocks that experience accuracy degradation with a low-cost block-to-block distillation process, en-
suring minimal quality drop. For blocks largely impacted by syncing, we introduce block-to-block
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Figure 7: LLaMA2 accuracy results on MMLU tasks (Notations are same as in Figure 6).
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(e) OPT-30B 8-GPUs case
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Figure 8: OPT average accuracy results on zero-shot tasks (Notations are same as in Figure 6).

distillation and attention head grouping enhancements to maximize the recovery from dropped qual-
ity. Our experiments show that SPD offers improved latency with minimum quality loss in all
budgets which enable scalable solution for distributed environments.
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