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Abstract

We propose a method to improve the efficiency and accuracy of amortized Bayesian
inference (ABI) by leveraging universal symmetries in the probabilistic joint model
p(θ, y) of parameters θ and data y. In a nutshell, we invert Bayes’ theorem and
estimate the marginal likelihood based on approximate representations of the joint
model. Upon perfect approximation, the marginal likelihood is constant across all
parameter values by definition. However, approximation error leads to undesirable
variance in the marginal likelihood estimates across different parameter values. We
formulate violations of this symmetry as a loss function to accelerate the learning
dynamics of conditional neural density estimators. We apply our method to a
bimodal toy problem with an explicit likelihood (likelihood-based) and a realistic
model with an implicit likelihood (simulation-based).

1 Introduction

Computer simulations are ubiquitous in today’s world, and their widespread application in the sciences
has heralded a new era of simulation intelligence [18]. Typically, scientific simulators describe a
mapping from latent parameters θ to observable data y. This forward problem is probabilistically
described by the likelihood p(y | θ). The inverse problem of reasoning about the unknown parameters
θ given observed data y and a prior p(θ) is described by the posterior p(θ | y) = p(θ) p(y | θ)/p(y).
The posterior represents a coherent way to combine all available information in a probabilistic system
[12] and quantify epistemic uncertainty [17]. For complex models, the marginal likelihood p(y) in
the denominator is a high-dimensional integral, rendering the posterior analytically intractable.

Different from traditional likelihood-based inference [24, 7], simulation-based inference (SBI)
circumvents explicit likelihood evaluation and relies purely on random samples from a simulation
program [8]. In the face of analytically intractable simulators, previous research has explored other
properties of such programs for learning surrogate likelihood functions or the likelihood ratio [4, 6, 5].
As a general perspective on simulation intelligence, amortized Bayesian inference (ABI) is concerned
with enabling fully probabilistic inference in real-time [27, 14, 2].

A core principle of ABI lies in tackling probabilistic problems (forward, inverse, or both) with neural
networks. By re-casting an intractable probabilistic problem as forward passes through a trained
generative neural network, the required computational time reduces from hours (MCMC) to just a
few seconds (ABI). Yet, there is rarely a free lunch, and neural ABI algorithms require a potentially
long upfront training phase. Nevertheless, the latter is subsequently repaid with real-time inference
on new data sets, thereby amortizing the training time. To this end, past work has primarily focused
on amortized neural posterior estimation (NPE) for cases where no explicit likelihood is available
[27, 14, 2, 11, 30]. Recently, simulation-based inference and surrogate modeling have been tackled
jointly by learning an approximate neural posterior qϕ(θ | y) and a neural surrogate likelihood qη(y | θ)
in tandem, an approach coined neural posterior and likelihood estimation (NPLE;[28, 35, 13]).
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Figure 1: The performance of the posterior approximator is evaluated via the variance of the corre-
sponding marginal likelihood estimates. Top row: For the true posterior (or a perfect approximation
thereof), the estimated marginal likelihood is constant for any parameter value θ̃ ∼ p̃(θ). Bottom
row: For an imperfect approximate posterior, the estimated marginal likelihood varies across different
parameter values. Hence, the inherent symmetry of the probabilistic joint model p(θ, y) is violated by
its approximate representation. Minimizing the variance of the marginal likelihood estimates pushes
the estimated marginal likelihood towards uniformity. This restores the symmetry of the unified
representation, which is equivalent to improving the approximate posterior.

2 Leveraging Probabilistic Symmetries

The joint model p(θ, y) implies a fundamental symmetry between marginal likelihood p(y), prior
p(θ), likelihood p(y | θ), and posterior p(θ | y). By inverting Bayes’ theorem, we obtain the equality

p(y) = p(θ) p(y | θ)
/
p(θ | y), (1)

which must still hold if any component of the joint model is represented through a perfect approxi-
mator q(·). However, we cannot directly use Equation 1 as a loss function for learning the posterior
because the marginal likelihood on the LHS is notoriously difficult to approximate with high precision
[21, 20]. Instead, we exploit the fact that p(y) is constant across all parameters θ (LHS), even though
its computation (RHS) hinges on an arbitrary but fixed parameter value θ. In other words, if we
choose K parameter values θ̃1, . . . , θ̃K , all computed marginal likelihoods must be equal, regardless
of the individual parameter θ̃k. We refer to this phenomenon as the self-consistency criterion:

p(θ̃) p(y | θ̃)
p(θ̃ | y)

= const ∀θ̃∈Θ =⇒ p(θ̃1) p(y | θ̃1)
p(θ̃1 | y)

= . . . =
p(θ̃K) p(y | θ̃K)

p(θ̃K | y)
θ̃1, . . . , θ̃K∈Θ (2)

2.1 Integrating self-consistency into ABI

The self-consistency loss measures the expected degree of violation of the self-consistency criterion
via the variance of the estimated (log) marginal likelihood across different parameter values θ,

LSC := Ep(y)

[
Varθ̃∼p̃(θ)

(
log p(θ̃) + log p(y | θ̃)− log qϕ(θ̃ | y)

)]
, (3)

where the analytic likelihood p(y | θ̃) may be replaced with an approximate qη(y | θ̃), as demonstrated
in Experiment 2. If the variance in Equation 3 is zero, the estimated marginal likelihood is constant
across the parameter space Θ and the approximation is consistent (cf. Figure 1). Increasing deviations
from a constant estimated marginal likelihood across the parameter space lead to a larger variance.
The self-consistency loss LSC can be seamlessly added to popular losses for NPE or NPLE. For
instance, using the maximum likelihood loss for NPE with conditional normalizing flows, we obtain:

LNPE-SC := Ep(y)

[
Ep(θ | y)

[
− log qϕ(θ | y)

]︸ ︷︷ ︸
NPE loss

+λVarθ̃∼p̃(θ)

(
log p(θ̃) + log p(y | θ̃)− log qϕ(θ̃ | y)

)
︸ ︷︷ ︸

self-consistency loss LSC with weight λ∈R+

]
(4)
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Figure 2: Experiment 1. Our self-consistent estimator (SC10, SC100, SC500) outperforms the NPE
baseline using the same neural architecture trained on an identical simulation budget. Adding the
self-consistency loss (SC) improves density estimation (A) and sampling (B), judged both visually
and via MMD between approximate and true posteriors (C). Pink star ⋆ marks the true parameter θ.

2.2 Monte Carlo estimation of the self-consistency loss

The variance in Equation 3 must be empirically estimated based on finite samples {θ̃k}Kk=1 from
some proposal distribution p̃(θ). Ideally, the Monte Carlo samples should cover regions of high
variance in the landscape of the estimated marginal likelihood. Due to the probabilistic symmetry of
the joint distribution, high-density regions in the approximate posterior have the potential to cause
large deviations in the estimated marginal likelihood landscape (cf. Figure 1). Consequently, we
choose the approximate posterior as the proposal, θ̃ ∼ qϕ(θ | y), to render the Monte Carlo estimate
efficient. The approximate posterior has one caveat: It is spectacularly bad at very early stages of
training. Therefore, we can enable the self-consistency loss after an initial warm-up (e.g., after 5
epochs in Experiment 1) or use a schedule for progressively increasing its weight λ during training.

3 Empirical evaluation

3.1 Experiment 1: Gaussian mixture model

We illustrate our method using a 2-dimensional Gaussian mixture model with two symmetrical
components [11]. The symmetrical components are equally weighted and have equal variance,

θ ∼ N (θ |0, I), y ∼ 0.5N (y | θ, I/2) + 0.5N (y | −θ, I/2), (5)

where N (· |µ,Σ) is a Gaussian distribution with location µ and covariance matrix Σ. Each simulated
data set y consists of ten observations. The simulation budget is strictly limited to N=1024 tuples
of data sets and corresponding ground-truth parameters for training. We train four networks for
35 epochs each: NPE (baseline), SC10, SC100, and SC500, where SC stands for self-consistency
and 10/100/500 is the number K of Monte Carlo samples for estimating the variance in Equation 4.
All networks use the same neural spline flow [9] with a DeepSet [36] as a summary network and a
Student-t100 latent distribution in qϕ [1]. We enable the self-consistency loss after 5 epochs.

Results While NPE struggles to fit the posterior, our additional self-consistency loss drastically
improves the approximate posterior for the same simulation budget (see Figure 2). All self-consistent
variants outperform NPE through (i) more accurate posterior densities; and (ii) better samples, as
indexed by visual inspection and by lower maximum mean discrepancy (MMD;[16]) to samples
from the true posterior on 50 new data sets. All approximators are well-calibrated (see Appendix C).
Increasing the number of consistency samples beyond K=100 does not visibly improve performance.
We parallel this experiment with an approximate likelihood in Appendix E and also observe superior
performance of our self-consistent approximator with respect to density estimation and sampling.

3.2 Experiment 2: Oscillatory Hes1 expression model

As a more realistic example, we apply our method to an experimental data set in biology [31]. Upon
serum stimulation of various cell lines, the transcription factor Hes1 exhibits sustained oscillatory
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Figure 3: Experiment 2. The baseline NPLE approximator shows deficient simulation-based
calibration, as indexed by ECDF lines outside the gray 95% confidence bands (A). In contrast, our
self-consistent approximator is well-calibrated (C). Samples from the posterior predictive distribution
on real experimental data (black dots; [31]) are comparable between NPLE (B) and SC (D).

transcription patterns [23]. The measured concentration of Hes1 mRNA can be modeled with a set
of three differential equations which are governed by four parameters θ = (p0, h, k1, ν) with fixed
initial conditions according to [10] (see Appendix D for details).

We use a fixed simulation budget of N=512 data sets for neural network training. This simulation
budget enables amortized inference, yet it is orders of magnitude smaller than the required budget for
approximate Bayesian computation algorithms [33] such as ABC-SMC [32] for a single observed
data set [31]. In order to use an approximate likelihood qη(y | θ) in the self-consistency loss, we train
a neural surrogate likelihood in tandem with the neural posterior (NPLE;[28]). Both NPLE (baseline)
and our self-consistent approximator are trained for 70 epochs and use the same neural spline flow
architecture with spectral normalization [22] and a heavy-tailed Student-t50 latent distribution [1].
The self-consistent approximator uses K=500 Monte Carlo samples, and the self-consistency loss is
activated after 10 epochs.

Results Our self-consistent approximator with approximate likelihood shows superior simulation-
based calibration [34, 29] compared to the NPLE baseline, particularly with respect to the parameters
p0 and h (see Figure 3A and C). The posterior predictive distributions of both methods have a
comparable fit to the real experimental time series yreal from [31] (see Figure 3B and D).

4 Conclusion

In this paper, we proposed a new method to leverage inherent symmetry in a joint model p(θ, y) to
improve amortized Bayesian inference. In two experiments, we illustrated that the combination of
simulation-based inference and (approximate) likelihood-based learning increases the efficiency of
neural posterior estimation. Concretely, we demonstrated that an additional self-consistency loss leads
to (i) better densities and (ii) better samples from the approximate posterior in situations with scarce
training data The latter occurs frequently in real-world applications of simulation-based inference
(e.g., [38, 37, 3]), where the simulation program is a computational bottleneck or other reasons strictly
limit the simulation budget for neural network training.

While this paper focused on amortized Bayesian inference with conditional normalizing flows, our
self-consistency loss can readily be applied to sequential simulation-based inference [26, 15, 13, 35].
Likewise, other conditional density estimators like score modeling [11, 30, 25] or flow-matching [19]
may certainly benefit from our additional loss function as well. Finally, future research could explore
variations and extensions of our proposed method, such as different proposal distributions p̃(θ) for
more efficient Monte Carlo estimates, or better loss functions altogether that build on the principle
of self-consistency. A selection of frequently asked questions (FAQ) which a reader might have is
answered in Appendix A.
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APPENDIX

A Frequently Asked Questions (FAQ)

Q: How does the self-consistency loss change my current amortized Bayesian workflow?
If you have access to an explicit likelihood, you need to implement a likelihood.log_prob
method to evaluate p(y | θ̃). This is straightforward with common frameworks such as
tensorflow_probability or scipy.stats. Equivalently, you need to implement a
prior.log_prob method for your prior distribution, regardless of whether you use NPE (explicit
likelihood) or NPLE (implicit likelihood).

Q: When is it useful to add the self-consistency loss?
When the simulation program is computationally costly or the simulation budget is fixed, our
experiments suggest that adding the self-consistency loss to your current optimization objective might
help you get more out of the data.

Q: What about learned summary statistics?
Our method is fully compatible with end-to-end learning of summary statistics alongside the neural
approximator [27, 28]. In fact, Experiment 1 uses a DeepSet [36] to learn fixed-length summary
statistics from the observables, which are then passed to the posterior approximator.

Q: When do I activate the self-consistency loss during training?
This depends on the complexity of the problem. Your approximate posterior (and approximate
likelihood, if applicable) should be sufficiently good so that (i) the proposals for θ̃ cover relevant
regions; and (ii) the log density estimates for the posterior (and likelihood, if applicable) have an
acceptable quality for the Monte Carlo estimate in Equation 3. Future work might address this
question with analyses of the learning dynamics which govern the neural approximator training.

Q: Why aren’t the posterior samples in Experiment 1 perfectly aligned with the true parameter?
The simulated data sets in the Gaussian mixture model only consist of ten observations from the
Gaussian mixture model with locations θ and −θ. Due to aleatoric uncertainty in the data-generating
process [17], the empirical information in the sample does not even suffice to inform the true
posteriorto concentrate on the true data-generating parameter θ. Instead, the goal of an approximate
posterior is to match the true posterior, which all self-consistent approximators achieve.

B Algorithm

The Monte Carlo estimation of the self-consistency loss in Equation 3 and Equation 4 is outlined in
Algorithm 1.

Algorithm 1 Self-consistency loss for finite training

Input: N training data tuples {(θ(i), y(i))}Ni=1
Input: Number of self-consistency samples K

1: for i = 1, . . . , N do
2: < compute other losses such as NPE/NPLE loss >
3: for k = 1, . . . ,K do
4: θ̃k ∼ p̃(θ) {sample from proposal p̃(θ)}

5: log p̂k(y
(i)) =

{
log p(θ̃k) + log p(y(i) | θ̃k) − log qϕ(θ̃k | y(i)) {explicit likelihood (NPE)}
log p(θ̃k) + log qη(y

(i) | θ̃k)− log qϕ(θ̃k | y(i)){implicit likelihood (NPLE)}
6: end for
7: L(i)

SC = Var({log p̂k(y(i))}Kk=1) {variance of logML estimates}
8: end for
9: return 1

N

∑N
i=1 L

(i)
SC {average over training data}
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C Details about Experiment 1

All approximators (NPE and self-consistent ones) are well-calibrated according to simulation-based
calibration [34, 29], as illustrated in Figure 4.
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Figure 4: Experiment 1. All approximators are well-calibrated.

D Details about Experiment 2

In Experiment 2, we apply our method to an experimental data set in biology [31]. Upon serum
stimulation of various cell lines, the transcription factor Hes1 exhibits sustained oscillatory transcrip-
tion patterns [23]. The concentration of Hes1 mRNA can be modeled by a set of three differential
equations,

dm

dt
= −kdegm+

1

1 + (p2/p0)h
,

dp1
dt

= −kdegp1+νm−k1p1,
dp2
dt

= −kdegp2+k1p1 (6)

with degradation rate kdeg, Hes1 mRNA concentration m, cytosolic Hes1 protein concentration p1,
and nuclear Hes1 protein concentration p2. The parameters θ={p0, h, k1, ν} govern the dynamics of
the differential equations, and we estimate them in the unbounded log space to facilitate inference.
p0 corresponds to the amount of Hes1 protein in the nucleus when the rate of transcription of Hes1
mRNA is at half of its maximum value, h is the Hill coefficient, k1 is the rate of transport of Hes1
protein into the nucleus and ν is the rate of translation of Hes1 mRNA [31].

In accordance to [10], we use fixed initial conditions m0=2, p1=5, p2=3 and set kreg=0.03. In our
model we regard the observed mRNA concentrations yt as noisy measurements of the true underlying
mRNA concentration mt with unit Gaussian observation error:

yt ∼ N (mt, 1) (7)

Silk et al. [31] used quantitative real-time PCR to collect the real experimental data

yt = [1.20, 5.90, 4.58, 2.64, 5.38, 6.42, 5.60, 4.48]

where the first observation y1 is measured after 30 minutes, and all subsequent values are measured
in 30 minute intervals [10]. The mRNA measures yt refer to fold changes relative to a control sample.
The Bayesian model uses Gamma priors on all parameters,

p0 ∼ Γ(2, 1), h ∼ Γ(10, 1), k1 ∼ Γ(2, 50), ν ∼ Γ(2, 50), (8)

where Γ(a, b) denotes the Gamma distribution with shape a and rate b.
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E Gaussian mixture model with implicit likelihood

We repeat Experiment 1 with a fully simulation-based approach which does not need an explicit
likelihood to estimate the self-consistency loss. To this end, we replace the explicit likelihood p(y | θ)
in Equation 3 with the approximate likelihood qη(y | θ), which is represented by a neural network
and learned simultaneously with the neural posterior approximator. The full loss follows as

LNPLE-SC = Ep(θ,y)

[
− log qϕ(θ | y)− log qη(y | θ)︸ ︷︷ ︸

NPLE loss

+ λVarθ̃∼p̃(θ)

(
log p(θ̃) + log qη(y | θ̃)− log qϕ(θ̃ | y)

)
︸ ︷︷ ︸

self-consistency loss LSC with approximate likelihood

]
,

(9)

which is a combination of the NPLE loss and the self-consistency loss with approximate likelihood.

The simulation budget is fixed to N=1024 data sets. Both NPLE and our self-consistent approximator
with K=100 Monte Carlo samples are trained for 35 epochs, have an identical neural spline flow
architecture, have a heavy-tailed Student-t100 latent space [1], and use an identical DeepSet [36]
to learn summary statistics of the data y for the posterior approximator. Since the Monte Carlo
approximation in the self-consistency loss now depends on both an approximate posterior and an
approximate likelihood, we only activate the self-consistency loss after 20 epochs (as opposed to 5
epochs in Experiment 1 with an explicit likelihood).

We can benchmark the methods’ performance against the true posterior since the explicit likelihood
of this simulator is known (albeit inaccessible for the approximators). We confirm the results of
Experiment 1 in the fully simulation-based setting with only an implicit likelihood: Our self-
consistent approximator consistently outperforms the baseline NPLE approximator with respect to
posterior density and sampling (see Figure 5).
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Figure 5: Our self-consistent posterior estimator (SC100) outperforms the NPLE baseline using
the same neural architecture trained on an identical simulation budget. Adding the self-consistency
loss leads to improved density estimation (A) and sampling (B), judged both visually and via MMD
between approximate and true posteriors (C). Both approximators are well-calibrated (D, E). Pink
star ⋆ marks the true parameter θ.
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