
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MCPMARK: A BENCHMARK FOR STRESS-TESTING
REALISTIC AND COMPREHENSIVE MCP USE

Anonymous authors
Paper under double-blind review

ABSTRACT

The MCP standardizes how LLMs interact with external systems, forming the
foundation for general agents. However, existing MCP benchmarks remain narrow
in scope: they focus on read-heavy tasks or tasks with limited interaction depth,
and fail to capture the complexity and realism of real-world workflows. To address
this, we propose MCPMark, a benchmark designed to evaluate realistic and com-
prehensive MCP use, comprising 127 high-quality tasks collaboratively created by
human experts and AI agents. Specifically, each task starts from a curated initial
state and incldes a programmatic script for automatic verification. Moreover, these
tasks require richer and more varied interactions with the environment, involving
diverse create, read, update, and delete (CRUD) operations. We conduct compre-
hensive evaluation of cutting-edge LLMs using a minimal agent framework that
operates in a tool-calling loop. Empirical results show that the best-performing
model, gpt-5-medium, reaches only 52.56% pass@1 and 33.86% pass^4, while
other widely regarded strong models, including claude-sonnet-4 and o3, fall
below 30% pass@1 and 15% pass^4. On average, LLMs require 16.18 execution
turns and 17.38 tool calls per task, substantially exceeding those in previous MCP
benchmarks and demonstrating the stress-testing nature of MCPMark.

1 INTRODUCTION

The Model Context Protocol (MCP) (Anthropic, 2024) is a standardized interface that connects large
language models (LLMs) (Comanici et al., 2025; OpenAI, 2025c; Team, 2025) with external systems
such as tools, APIs, databases, and contextual resources (Singh et al., 2025). By standardizing the
way LLMs access and operate on these systems, MCP allows agents to function more effectively with
“eyes and hands” in real environments, and many see it as a foundational layer for AI in the agentic
era (Hou et al., 2025). Despite growing use in practice, existing MCP benchmarks remain limited:
tasks often involve shallow or read-heavy interactions (Liu et al., 2025; Yin et al., 2025; Mo et al.,
2025; Luo et al., 2025), leading to a narrow range of task patterns. As a result, they fail to capture
the complex, multi-step workflows typical of real-world usage. This makes it difficult to probe the
performance boundaries—especially in assessing whether current models and agents possess the
necessary capabilities, such as reasoning, planning, long-context processing, and tool use, to tackle
realistic and demanding agent tasks.

To address these gaps, we introduce MCPMark, a benchmark designed to simulate realistic user
scenarios within mirrored or isolated container environments, accompanied by reliable programmatic
evaluation. Specifically, MCPMark spans five representative MCP environments: Notion, GitHub,
Filesystem, PostgreSQL, and Playwright. As shown in Figure 1, each task begins from a carefully
curated initial state. Task instructions and corresponding verification scripts are then developed
through a human–AI collaborative pipeline, in which domain experts and language model agents iter-
atively co-design tasks and construct automated scripts. These scripts automatically validate the final
environment state after agent execution and incorporate full state tracking throughout the execution
process. Following pipeline generation, we apply expert cross-review and community-level validation
to ensure clarity, realism, and quality. Compared to existing MCP benchmarks, MCPMark offers
significantly broader coverage of create, read, update, and delete (CRUD) operations across diverse
workflows. In total, MCPMark comprises 127 tasks, with 20 to 30 tasks in each MCP environment.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Weekend Adventure Planner

Task: Create a comprehensive weekend adventure
planner that generates a structured itinerary page.
1: Create a new page `Perfect Weekend Adventure`
as a child page of the main page;
2: Query to identify activities with `Beaches` tag;
3: ...

Linting CI Workflow

Task: Set up ESLint workflow for code quality
enforcement on all PRs with proper CI integration.
1: Create linting configuration branch;
2: Create ESLint configuration;
3. ...

src/

app.js

calculator.js

userService.js

.prettierrc

eslint.config.js

.eslintrc.js

Issues PRs Actions

README.md

.gitignore

 Cloudflare Turnstile Authentication

Task: Use Playwright MCP tools to complete Cloudflare
Turnstile authentication.
1: Navigate to https://mcpmark/auth/trunstile;
2: Fill in the auth form with provided credentials;
3: ...

Employee Project Tracking

Task: Build tracking system with tables for projects,
assignments, milestones, and performance indexes.
1: Create the project tracking tables;
2: Add foreign key relationships;
3: ...

employees.department

id bpchar(4)

dept_name varchar(40)

employees.department_employee

employee_id int8

department_id bpchar(4)

from_date date

to_date date

employees.department_manager

employee_id int8

department_id bpchar(4)

from_date date

to_date date

employees.employee

id int8

birth_date date

first_name varchar(14)

last_name varchar(16)

gender employees.employee_gender

hire_date date

employees.salary

employee_id int8

amount int8

from_date date

to_date date

employees.title

employee_id int8

title varchar(50)

from_date date

to_date date

Contact Information

budget.csv

dates.csv

Personal/

Documents/ Downloads/

e.csv

log.csv

price.csv

Temp/

back.csv

tax.csv

draft.txt

...

Archives/

Task: Extract contact details from various file formats
on desktop and perform analysis on the collected rela-
tionship data.
1: Extract contact information;
2: Create a CSV file; 3: ...

Figure 1: Representative task instances, showing initial states (Top) and task instruction (Bottom).
Examples include: Login with Cloudflare Turnstile in Playwright; CI/CD setup with ESLint in
GitHub; weekend planner using tagged queries in Notion; schema design for project tracking in
PostgreSQL; and contact extraction to CSV in Filesystem. All tasks show complex, multi-step
workflows typical of real-world usage.

Table 1: Benchmark Comparison.

Benchmark
Task

Verification
Average

Pattern Turns

MCPEval Synthetic Hybrid N/A
LiveMCPBench CRUD-diverse LLM-as-judge 3.2
MCP-Universe Read-heavy Programmatic 6.8
LiveMCP-101 N/A LLM-as-judge 5.4

MCPMark CRUD-diverse Programmatic 16.2

To fairly evaluate model performance on these
tasks, we introduce MCPMark-Agent, a min-
imal and general framework that executes mod-
els through a standardized tool-calling loop.
MCPMark-Agent integrates with a variety of
MCP servers and model providers, enabling
consistent and automated evaluation grounded
in the programmatic infrastructure defined by
MCPMark. Comprehensive experiments on
state-of-the-art models demonstrate the bench-
mark’s difficulty. The best-performing model,
gpt-5-medium (OpenAI, 2025c), achieves only 52.56% pass@1 and 33.86% pass^4, while other
strong models such as claude-sonnet-4 (Anthropic, 2025a) and o3 (OpenAI, 2025d) fall below
30% pass@1 and 15% pass^4. On average, each task requires 16.2 execution turns and 17.4 tool
calls, with some models such as kimi-k2-instruct (Team et al., 2025) averaging over 20 turns
per task. Overall, as shown in Table 1, prior MCP benchmarks are limited in task depth or verification
rigor. In contrast, MCPMark combines CRUD-diverse tasks, programmatic verification, and longer
workflows, aligning more closely with real-world MCP use and workflow complexity.

In addition, our evaluation reveals several consistent patterns that underscore the distinctive properties
of the benchmark. First, the benchmark demonstrates its intrinsic difficulty through consistently low
performance on the pass^4, which more convincingly reflects real-world conditions than commonly
used metrics like pass@1 or pass@4 (Yao et al., 2024), emphasizing the challenge of solving tasks
reliably and consistently across multiple runs. Second, performance varies substantially across differ-
ent MCP environments, suggesting a notable environment gap. This variation arises from differences
in data availability and simulation fidelity: tasks involving local services such as the Filesystem are
generally easier to emulate and more commonly represented in training data, whereas remote services
like Notion require more complex, underrepresented interaction patterns that are harder to reproduce.
Finally, the benchmark emphasizes efficient tool use: successful completions tend to involve fewer,
more targeted tool calls, while failure cases often exhibit repetitive or exploratory interactions that fail
to make meaningful progress. Collectively, these patterns show that MCPMark effectively surfaces
key challenges in stability, generalization, and planning across diverse multi-component environments.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

IT
 tr

ou
bl

e
sh

oo
tin

g
hu

b
(3

)

Ja
pa

n
tra

ve
l p

la
nn

er
 (4

)

MCPMark

Notion (28)

GitHub (23)

Playwright
(25)

PostgreSQL
(21)Filesystem (30)

co
m

pa
ny

 in
-a

-b
ox

 (3
)

co
m

pu
te

r s
ci

en
ce

St
ud

en
t d

as
hb

oa
rd

 (3
)

on
lin

e
re

su
m

e
(4

)

st
an

da
rd

 o
pe

ra
tin

g
pr

oc
ed

ur
e

(2
)

se
lf

as
se

ss
m

en
t (

3)
py

th
on

 ro
ad

m
ap

 (2
)

m
iss

in
g-

se
m

es
te

r (
3)

tea
m pr

oje
cts

 (2
)

Toronto guide (
2)

dvd
 re

ntal
 (3

)

reddit (7)
eval web (2)

shopping admin (7)

shopping (7)

chinook (3)

web search (2)

se
cu

rit
y

(2
)

le
go

 (3
)

em
plo

ye
es

 (6
)

desktop tem
plate (3)

ve
ct

or
s

(1
)

sp
or

ts
 (3

)

desktop (3)

file context (5)

claude-code (5)

build your own X (2)

folder structure (2)

legal document (3)
student database (3)

papers (3)

file property (2)

threestudio (3)

votenet (3)

mcp
mark

-ci
cd

 (4
)

easyr1 (4)

harm
ony (5)

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

IT
 tr

ou
bl

e
sh

oo
tin

g
hu

b
(3

)

Ja
pa

n
tra

ve
l p

la
nn

er
 (4

)

MCPMark

Notion (28)

GitHub (23)

Playwright
(25)

PostgreSQL
(21)Filesystem (30)

co
m

pa
ny

 in
-a

-b
ox

 (3
)

co
m

pu
te

r s
ci

en
ce

St
ud

en
t d

as
hb

oa
rd

 (3
)

on
lin

e
re

su
m

e
(4

)

st
an

da
rd

 o
pe

ra
tin

g
pr

oc
ed

ur
e

(2
)

se
lf

as
se

ss
m

en
t (

3)
py

th
on

 ro
ad

m
ap

 (2
)

m
iss

in
g-

se
m

es
te

r (
3)

tea
m pr

oje
cts

 (2
)

Toronto guide (
2)

dvd
 re

ntal
 (3

)

reddit (7)
eval web (2)

shopping admin (7)

shopping (7)

chinook (3)

web search (2)

se
cu

rit
y

(2
)

le
go

 (3
)

em
plo

ye
es

 (6
)

desktop tem
plate (3)

ve
ct

or
s

(1
)

sp
or

ts
 (3

)

desktop (3)

file context (5)

claude-code (5)

build your own X (2)

folder structure (2)

legal document (3)
student database (3)

papers (3)

file property (2)

threestudio (3)

votenet (3)

mcp
mark

-ci
cd

 (4
)

easyr1 (4)

harm
ony (5)

Figure 3: Distribution of MCPMark benchmark

GitHub (94 tools) add_sub_issue add_issue_comment merge_pull_request
cancel_workflow_run create_branch create_gist create_issue
create_or_update_file create_pull_request create_repository delete_file
dismiss_notification fork_repository get_commit get_discussion
get_file_contents get_issue get_latest_release get_me
get_pull_request get_release_by_tag get_tag list_branches
list_commits list_issues list_notifications ... (68 remaining not shown)

Filesystem (14 tools) read_file read_text_file read_media_file
read_multiple_files write_file edit_file create_directory
list_directory list_directory_with_sizes directory_tree move_file
search_files get_file_info list_allowed_directories

Notion (19 tools) API-get-user API-get-users API-get-self
API-post-database-query API-post-search API-get-block-children API-patch-block-children
API-retrieve-a-block API-update-a-block API-delete-a-block API-retrieve-a-page
API-patch-page API-post-page API-create-a-database API-update-a-database
API-retrieve-a-database API-retrieve-a-page-property API-retrieve-a-comment API-create-a-comment

Playwright (21 tools) browser_click browser_close browser_console_messages
browser_drag browser_evaluate browser_file_upload browser_fill_form
browser_handle_dialog browser_hover browser_navigate browser_navigate_back
browser_network_requests browser_press_key browser_resize browser_select_option
browser_snapshot browser_take_screenshot browser_type browser_wait_for
browser_tabs browser_install

PostgreSQL (9 tools) list_schemas list_objects get_object_details
execute_sql explain_query get_top_queries analyze_workload_indexes
analyze_query_indexes analyze_db_health

2.3 BENCHMARK OVERVIEW

Dataset statistics. We create a total of 127 tasks across 5 MCP servers: 30 for Filesystem, 28 for
Notion, 25 for Playwright, 23 for GitHub, and 21 for PostgreSQL. On average, the task instructions
contain 288.6 words, and the corresponding verification scripts consist of 209.8 lines of code. The
detailed task distribution is presented in Figure x and Table x.

Task characteristics. Benefiting from the diversity and realism of MCPs and initial states, along
with strict and safe environment management and tracking mechanisms, the tasks cover a broad
spectrum of workflows. These include updating nested properties in Notion, managing commits
and pull requests in GitHub, automating interactive forms in Playwright, organizing large and
irregular directory structures in the Filesystem, and performing transactional updates in PostgreSQL.
Collectively, this curated set of tasks provides balanced CRUD coverage and reflects the challenges
of authentic multi-step workflows across these application scenarios.

[need a figure here to show the data/task distribution -Xiangyan]

5

Figure 2: Task distribution and tool set overview of MCPMark. Left: 127 tasks distributed across
5 MCP servers and 38 curated initial states. Right: toolset per server, covering commonly used
functionalities, with full support for CRUD operations in each corresponding MCP environment.

2 MCPMARK: STRESS-TESTING COMPREHENSIVE MCP USE

In this section, we provide a detailed introduction to MCPMark, including the benchmark construction
process, the associated evaluation framework, and an overview of the benchmark.

2.1 BENCHMARK CONSTRUCTION

MCP services and initial states. MCPMark integrates 5 MCP servers that span diverse and practical
application environments. A partial overview of each MCP tool set is shown in Figure 2 (right).
Moreover, unlike prior work that uses generic or minimally initialized environments as task starting
states (Liu et al., 2025; Luo et al., 2025; Yin et al., 2025), we carefully design initial states that reflect
realistic and comprehensive usage scenarios, serving as the starting points for the tasks. Specifically:

• Notion connects to the official remote API for creating, editing, and querying both documents
and databases. Initial states are instantiated from widely adopted templates.

• GitHub leverages the official remote API to support project management and Git operations,
including CI/CD, issues, branches, pull requests, and commits. Initial states are derived from
repositories with realistic development histories and configurations.

• Filesystem supports file I/O, directory organization, metadata inspection, and search. Initial
states are curated folder structures that mirror everyday user scenarios.

• PostgreSQL provides access to a relational database, with tools for schema exploration and
SQL query execution. Initial states are representative template databases with realistic schemas.

• Playwright enables browser automation, offering commands for navigation, form completion,
data extraction, and generating screenshots or PDF exports. Initial states come from two sources:
self-authored webpages designed to test specific functionalities (e.g., login through Cloudflare)
and localhost webpages adapted from WebArena (Zhou et al., 2023).

Task creation pipeline. Each task in MCPMark is grounded in an initial state of the respective
environment (e.g., a template Notion page or a designated website) and consists of a natural language
instruction paired with an automatic verification script. Constructing tasks of this form is difficult if
we rely solely on humans or solely on agents. To address this, we design a human–AI collaborative
pipeline that pairs human experts with two agents: a task creation agent and a task execution agent.
The pipeline proceeds in four steps:

I. Exploration: Given an initial environment state, a human expert and the task creation agent
jointly explore the environment, guided by a high-level instruction or topic informed by expertise
and real-world experience. This stage aims to capture both a wide overview of the environment
and deep, specific context that will later support realistic and well-grounded task creation.

II. Evolvement: The task creation agent proposes a new task instruction or refines an existing one
by introducing additional complexity. This may include removing unnecessary instructions,
increasing the difficulty of information seeking, raising the processing burden (e.g., through

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

longer input content), or requiring more interaction steps. The human expert ensures that the
task remains practical, verifiable, and sufficiently challenging.

III. Verification: The task creation agent drafts a programmatic verification script. The human
expert then completes the task with assistance from the task execution agent. Afterward, the
verification script is executed and iteratively refined until it is fully consistent with the task
instruction. To ensure reliability, the human expert also adjusts the final environment state to
validate whether the script correctly detects both successful and unsuccessful outcomes.

IV. Iteration: Steps ② and ③ are repeated to progressively increase task difficulty, while preserving
automatic verifiability and maintaining realism through authentic user scenarios.

Overall, even with agent assistance, constructing each sample remains labor-intensive. Involving 10
experts with diverse backgrounds—including computer science PhD students, front-end designers,
full-stack & AI infra engineers, and AI investors—each task takes 3 ∼ 5 hours of focused expert effort.
While most tasks are built through the standard pipeline, experts occasionally leverage their accumu-
lated experience or domain knowledge to directly write natural language instructions. In these cases,
the task creation agent is bypassed, but the verification scripts are still generated and refined within the
same pipeline. We defer the prompts and guidelines used in the task creation pipeline to Appendix B.

Quality control. All tasks underwent cross-review by human experts and a month-long community
check to ensure clarity, consistency, and alignment with real-world application scenarios. In particular,
for tasks that no model solved correctly, we conducted additional verification to ensure their validity.
This process ensures that the benchmark remains challenging yet practical, and that evaluation
outcomes are unambiguous.

2.2 BENCHMARK OVERVIEW

Dataset statistics. We create a total of 127 tasks across 5 MCP servers—30 for Filesystem, 28 for
Notion, 25 for Playwright, 23 for GitHub, and 21 for PostgreSQL—based on 38 curated initial states.
On average, the task instructions contain 288.6 words, and the corresponding verification scripts
consist of 209.8 lines of code. The detailed task distribution is presented in Figure 2 (left), while the
corresponding toolsets for each MCP are shown in Figure 2 (right).

Task characteristics. The tasks span a wide range of realistic workflows, including updating nested
properties in Notion, managing commits and pull requests in GitHub, automating interactive forms in
Playwright, organizing complex directory structures in the Filesystem, and executing transactional
updates in PostgreSQL. Five representative tasks, one from each MCP, are shown in Figure 1.
Collectively, these tasks provide diverse CRUD coverage and reflect the challenges of authentic
multi-step workflows across varied application scenarios.

2.3 EVALUATION FRAMEWORK

State tracking and management. MCPMark executes all tasks within sandboxed environments that
enforce explicit state tracking, a design choice that ensures safety, reproducibility, and fair comparison
across models. Each evaluation follows a consistent lifecycle: ① tasks begin from a well-defined initial
state that mirrors realistic application scenarios, ② proceed with agent execution based on task instruc-
tions, and ③ conclude with an automatic verification script that programmatically checks whether
the final environment satisfies the task requirements. After verification, ④ the environment is reset to
its original state, preventing side effects and enabling repeated evaluation under identical conditions.

Evaluation Agent. To standardize evaluation, we provide MCPMark-Agent, a lightweight and
general-purpose agent framework. It is built on LiteLLM1 together with the Model Context Protocol
Python SDK2 to support compatibility and extensibility. Specifically, MCP servers are configured
through the SDK, and their tools are exposed to the agent. LiteLLM then (1) converts the tools into
the OpenAI function-call format and (2) routes requests to the official APIs of different providers,
thereby ensuring execution that reflects each model’s native capabilities.

During task evaluation, the agent follows a tool-calling loop in which the model iteratively invokes
MCP tools, interprets responses from MCP servers, and adjusts its actions. The loop terminates once

1https://github.com/BerriAI/litellm
2https://github.com/modelcontextprotocol/python-sdk

4

https://github.com/BerriAI/litellm
https://github.com/modelcontextprotocol/python-sdk

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Filesystem

GitHub

Notion

PostgreSQL

Contact

Online Resume

Interest

Work History

Projects

foo@bar.com 
+42 127-001-404

Debug

Doogle

Prompt Engineer

GUIMark

May 2023 -> Aug 2023

OkayAI

Machine Unlearning Engineer

1.Delete outdated project 
2.Add MCPMark project

3.Add post-project blocks:

	 a.divider

	 b.heading

	 c.content paragraph

4.Add skills section with at least

three skills, below section "Interest"

Agent Trajectory

Framework

post-search

......

get-block-children
{"block_id": "26c816...

update-a-database
{"database_id": "813b-94...

patch-block-children
{"block_id": "26c816...

Arguments{

 "query": "Online Resume",

 "filter": {

 "value": "page" ...

}

Output{

 "object": "list",

 "results": [

 {

 "id": "2542b7e8-xxxx-xxx"...

}

Arguments

All set. Here’s what I did to update your “Online
Resume” page and reorganize the Project
section...

Final StateInitial State

Task Description Programmatic Verification

Contact

Online Resume

Interest

Projects

foo@bar.com 
+42 127-001-404

Debug

Skills+

+ Vibe Coding

+ MCPMark

- GUIMark

+ June 2025 -> Sept 2025

- May 2023 -> Aug 2023

...MODELS

MCPMark Agent
LLM Call / Tools Calling Loop / Thinking

MCP Task Initialization Agent Execution Result Verification

New project added

Outdated project deleted

"Skill" section below "Interest"

Post-project blocks not found

Only one new skill found

Figure 3: MCPMark evaluation pipeline with full state tracking. Each task begins from a curated
initial state with a specific task instruction. The MCPMark-Agent then executes a tool-calling loop,
followed by a programmatic verifier that evaluates whether all required checks are satisfied.

the model produces a final response without further tool calls. Although this agent framework is
deliberately basic and omits optimizations that may be desirable in production systems (which we
leave for future work), this design avoids task-specific heuristics and model-specific biases, thereby
providing a clearer measure of a model’s intrinsic agentic capabilities in MCP environments.

3 EXPERIMENTS

In this section, we describe the experimental setup, introduce the evaluated models and metrics, and
present results and analyses on different environment, reasoning efforts, and failure patterns.

3.1 EXPERIMENTAL SETUP

Models. We test a range of state-of-the-art proprietary and open-source models, primarily
accessed through LiteLLM. Proprietary models include gpt-5 (OpenAI, 2025c) with different
reasoning effort levels (low, medium, high) and smaller variants (mini and nano), as well
as earlier gpt-4.1 (OpenAI, 2025b) variants. We also evaluate claude-opus-4.1,
claude-sonnet-4, grok-4, grok-code-fast-1, o3, o4-mini, qwen3-max,
gemini-2.5-flash, and gemini-2.5-pro (Anthropic, 2025b;a; xAI, 2025; OpenAI,
2025d; Comanici et al., 2025). On the open-source side, we evaluate qwen3-coder-plus,
kimi-k2-instruct, deepseek-v3.1, glm-4.5, and gpt-oss-120b (Team, 2025; Team
et al., 2025; Liu et al., 2024; Zai, 2025; OpenAI, 2025a). We do not test small open-source models
(≤ 100B) due to the difficulty of the benchmark.

Metrics. We use three complementary metrics to measure agent performance: pass@1, pass@4,
and pass^4. Pass@1, captures the single-run success rate, i.e., the proportion of tasks successfully in
one single attempt. Pass@4 measures success when allowing up to 4 independent runs, indicating
whether repeated attempts improve coverage of difficult cases. Pass^4 is a stricter measure: a task is
counted as correct only if all four independent runs succeed, making it a strong indicator of model
consistency and stability under stochastic generation (Yao et al., 2024).

Implementation Details. We use MCPMark-Agent as the unified framework to benchmark MCP
use across models. While specialized agent designs could further improve performance, we leave
such optimizations as important future work. Each run is limited to a maximum of 100 turns with
a 3600-second timeout. Unless otherwise specified, all models are evaluated under their default
inference settings (e.g., temperature, top-p, reasoning effort). The agent supports two execution paths:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Model comparison across MCPs. Pass@1 is computed as the average over four independent
runs, with the superscript showing the standard deviation; each MCP service value is also averaged
over four runs. Within each model group (Proprietary / Open-Source), the best result is marked
in bold and the second best result is underlined. For GPT-5 series models, explicit suffixes (e.g.,
“-medium”) indicate the reasoning effort setting; for all models, results correspond to their default
reasoning effort if supported. Abbreviations of MCP services are: FS = Filesystem, GH = GitHub,
NT = Notion, PW = Playwright, PG = PostgreSQL.

Model
MCP Services Metrics

FS GH NT PW PG pass@1 pass@4 pass^4

Proprietary Models

gpt-5-medium 57.50 47.83 41.96 43.00 76.19 52.56±1.29 68.50 33.86
grok-4 50.83 14.13 2.68 35.00 58.33 31.69±2.91 44.88 18.11

claude-opus-4.1 33.33 21.74 35.71 24.00 33.33 29.92±0.00 – –

claude-sonnet-4 27.50 16.30 21.43 26.00 53.57 28.15±2.57 44.88 12.60

gpt-5-mini-medium 33.33 18.48 16.07 12.00 61.90 27.36±3.12 45.67 9.45

o3 35.83 14.13 24.11 15.00 36.90 25.39±2.04 43.31 12.60

grok-code-fast-1 23.33 8.70 2.68 25.00 47.62 20.47±3.39 30.71 9.45

qwen3-max 10.83 14.13 16.96 8.00 44.05 17.72±1.31 22.83 11.02

o4-mini 25.00 14.13 20.54 12.00 11.90 17.32±2.30 31.50 6.30

gemini-2.5-pro 24.17 9.78 4.46 15.00 26.19 15.75±0.56 29.92 4.72

gemini-2.5-flash 8.33 15.22 6.25 6.00 10.71 9.06±0.68 18.11 3.94

gpt-4.1 12.50 7.61 6.25 8.00 4.76 8.07±0.65 12.60 3.15

gpt-5-nano-medium 6.67 7.61 3.57 0.00 15.48 6.30±2.01 11.81 1.57

gpt-4.1-mini 3.33 6.52 1.79 0.00 9.52 3.94±0.96 7.09 1.57

gpt-4.1-nano 0.00 0.00 0.00 0.00 0.00 0.00±0.00 0.00 0.00

Open-Source Models

qwen3-coder-plus 13.33 19.57 19.64 30.00 47.62 24.80±2.05 40.94 12.60
kimi-k2-instruct 14.17 16.30 8.04 30.00 47.62 21.85±1.16 31.50 12.60
deepseek-v3.1 15.83 9.78 12.50 7.00 42.86 16.73±1.41 28.35 7.87

glm-4.5 7.50 22.83 21.43 13.00 14.29 15.55±1.16 24.41 6.30

gpt-oss-120b 5.83 4.35 3.57 3.00 7.14 4.72±0.96 13.39 0.00

a general path via LiteLLM with function-calling tools and a native path with direct tool support
for certain models (e.g., Anthropic API for extended thinking mode). For MCP server selection, we
generally choose the most commonly used ones (see Appendix C for details).

3.2 MAIN RESULTS

We evaluate all 127 tasks using MCPMark-Agent, reporting pass@1, pass@4, and pass^4 metrics.
Unless otherwise specified, pass@1 scores are averaged over four independent runs and reported
as mean ± std. Detailed results on each MCP service are provided in Appendix D, and representative
trajectories appear in Appendix E.

MCPMark remains challenging for frontier models. Table 2 shows that the best-performing model,
gpt-5-medium, reaches only 52.56% pass@1, while qwen3-coder-plus, the strongest open-
source model, achieves 24.80%. Most proprietary models fall within the 15% to 30% range on
pass@1, and several open-source models perform below 10%. Moreover, Table 9 highlights the
high interaction demands of the benchmark: for example, qwen3-max and kimi-k2-instruct
average 23.85/26.95 turns with 23.02/26.22 tool calls, respectively. These results underscore that
MCPMark remains a highly challenging benchmark for current frontier models.

Models generally perform better on local service tasks. We observe from Table 2 that perfor-
mance varies significantly across MCP services, showing a clear divide between local and remote

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

gpt-oss-120b

gemini-2.5-pro

deepseek-v3.1

kimi-k2-instruct

qwen3-coder-plus o3

claude-sonnet-4

claude-opus-4.1
grok-4

gpt-5-medium
0

10

20

30

40

50
60

80
100

Tu
rn

s

0.1

0.2

0.3

0.4

0.5

pa
ss

@
1

Figure 4: Turns distribution. Each point is one run (gray = fail). Plots show the turn distribution of
successes; color encodes pass@1. Stronger models finish with fewer, better-targeted calls.

environments. Local services such as PostgreSQL, Filesystem, and Playwright achieve substantially
higher success rates, with gpt-5-medium reaching 76.19%, 57.50%, and 43.00% pass@1 respec-
tively. Remote services like Notion and GitHub remain challenging, with most models achieving
below 25% pass@1. This gap likely stems from data availability: local services are easier to simulate
and collect training data for, while remote service APIs require authentic interaction traces that are
expensive to curate at scale. These results suggest that data remains key to enabling better MCP use.

Robustness lags far behind. Table 2 demonstrates that pass@4 provides substantial gains, with
gpt-5-medium and claude-sonnet-4 achieving 68.50% and 44.88% compared to just
52.56% and 28.15% for pass@1. However, the performance at pass^4 drops sharply to 33.86%
and 12.60%, respectively, underscoring the model’s inconsistency and instability across runs. Similar
discrepancies are observed across other models, with pass@4 often exceeding 30% while pass^4
remains in the 5% to 15% range, suggesting that while repeated attempts improve success, robustness
under multi-turn tool use in MCP contexts remains a common challenge—a shortcoming that poses
significant risks for real-world deployment where reliability across runs is essential.

More turns do not necessarily yield better performance. Figure 4 highlights distinct tool-calling
behaviors across models. In particular, the efficiency-accuracy correlation shows that stronger models
succeed through better decision making and targeted exploration, not blind trial-and-error. Notably,
kimi-k2-instruct often enters an overcalling mode, exceeding 30 turns with diminishing
success rates—indicating the model might get stuck or loop without effective information retrieval. In
contrast, gpt-5-medium achieves the highest pass@1 while maintaining reasonable turn budgets,
demonstrating that success arises from efficient decision-making rather than exhaustive tool calls.
Turn counts also vary significantly across MCP services (see Appendix G for details).

Cost is not a proxy for performance. Figure 21 shows that higher cost does not lead to higher
accuracy. Some of the most expensive runs achieve lower pass@1, while several lower-cost runs
reach stronger results. Table 9 reports per-task averages and further shows that costs vary widely
even when the number of turns is similar. Higher cost alone does not imply better results.

4 ANALYSIS

In this section, we investigate two aspects that shape model performance on MCPMark: the role of
reasoning effort in agent generalization, and the types of failures that prevent successful execution.

4.1 REASONING MODE AND EFFORT

We study how models benefit from different levels of reasoning effort, which are typically reflected
in the number of consumed thinking tokens before issuing tool calls. Table 3 reports results for the
gpt-5 series and claude-sonnet-4 across different effort settings.

Model perspective. The gpt-5 series benefits from increased reasoning effort at moderate and
large scales, though effects diverge by size. For gpt-5, medium effort raises pass@1 to 52.56%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Reasoning effort. Comparison of gpt-5 series models and claude-sonnet-4 under
different reasoning effort settings. Pass@1 is reported as mean with standard deviation (4 runs). Each
model expands into its supported reasoning effort settings. Best values in each column are bolded.

Model Reasoning Overall FS GH NT PW PG

gpt-5

Low 46.85±3.31 54.17±7.88 27.17±2.17 36.61±8.93 45.00±2.00 73.81±4.76

Medium 52.56±1.29 57.50±4.19 47.83±9.39 41.96±3.42 43.00±6.00 76.19±8.69

High 51.57±2.91 52.50±4.19 50.00±2.51 44.64±2.06 42.00±5.16 72.62±4.56

gpt-5-mini

Low 8.27±1.51 12.50±5.69 8.70±3.55 5.36±6.19 1.00±2.00 14.29±3.89

Medium 27.36±3.60 33.33±7.20 18.48±8.96 16.07±6.84 12.00±7.30 61.90±6.73

High 30.32±1.98 35.00±8.82 19.57±2.51 20.54±15.0 15.00±6.00 66.67±3.89

gpt-5-nano

Low 4.33±1.36 12.50±4.19 0.00±0.00 0.00±0.00 0.00±0.00 8.33±4.56

Medium 6.30±2.32 6.67±6.09 7.61±2.17 3.57±0.00 0.00±0.00 15.48±5.99

High 5.12±2.36 5.83±5.69 8.70±3.55 0.89±1.79 2.00±2.31 9.52±3.89

claude-sonnet-4

N/A 28.15±2.97 27.50±3.19 16.30±6.52 21.43±5.83 26.00±6.93 53.57±7.14

Low 27.36±1.97 23.33±5.44 25.00±4.16 22.32±3.42 22.00±4.00 48.81±8.13

High 28.35±2.73 23.33±4.71 28.26±2.51 19.64±9.45 26.00±2.31 50.00±8.25

14%

20%

10%

52%

gemini-2.5-flash

16%

17%

66%

gpt-4.1

13%

84%

gpt-5-high

5%

84%

kimi-k2-instruct

context window overflow turn limit abandoned premature stop malformed calls implicit

Figure 5: Failure breakdown across models. Failures are categorized as either implicit (task
completes normally but fails verification) or explicit (e.g., context window overflow, turn limit
exceeded, abandoned, premature stop, or malformed tool calls).

from 46.85% at low effort. gpt-5-mini shows even stronger relative gains, improving from 8.27%
to 30.32% between low and high. By contrast, gpt-5-nano shows only marginal changes around
4% to 6%, suggesting models of this scale lack the capacity to exploit additional reasoning tokens.
claude-sonnet-4 is similarly insensitive, remaining stable around 27% to 28%. These results
indicate that translating additional reasoning steps into better MCP use is non-trivial and likely
depends on a model’s base capacity and training approach.

MCP perspective. Reasoning effort selectively improves generalization in agentic tasks. Remote
services benefit most: GitHub performance nearly doubles from 27.17% to 50.00% between low
and high effort for gpt-5, while Notion rises from 36.61% to 44.64%. Local services remain
stable, with PostgreSQL at 72% to 76% and Filesystem varying under 5 percentage points. We
interpret this discrepancy as stemming from differences in training coverage. Remote services
typically have limited exposure due to rate limits and access restrictions, making the tasks harder and
requiring stronger generalization at test-time. Reasoning helps bridge this gap by enabling models
to extrapolate to unseen cases, aligning with recent discussions (Yao et al., 2023b; Yao, 2025) that
highlight “language generalizes through reasoning in agents”.

4.2 FAILURE BREAKDOWN

Introduction. We classify failures into two categories to ease presentation: implicit and explicit.
Implicit failures occur when the task completes successfully but the output does not meet the required
specifications. These often stem from issues such as reasoning errors, suboptimal planning, ineffective
tool usage, or difficulty handling long contexts, which may interact to cause complex failures that are
difficult to attribute to a single factor. In contrast, explicit failures can be directly linked to specific

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

issues. These include context window overflow (input exceeding the model’s processing length), turn
limit exceeded (the model exhausts its allowed interaction steps), abandoned tasks (model decides the
task is infeasible), premature stop (model halts without completing or making necessary tool calls),
and malformed tool calls (invalid parameters or improperly structured payloads).

Observations. As seen in Figure 5, implicit failures account for the majority of errors across all
models, often exceeding 50%. Models like gpt-5-high and kimi-k2-instruct show over
80% implicit failures, indicating they generally complete tasks without obvious breakdowns, with
errors being more subtle and capability-driven. In contrast, gemini-2.5-flash and gpt-4.1
have lower implicit failure rates (52% and 66%, respectively), suggesting more explicit causes. For
explicit failures, gemini-2.5-flash and gpt-4.1 mainly experience abandoned or premature
stop errors, reflecting weaker reasoning and planning. gemini-2.5-flash also shows a higher in-
cidence of malformed tool calls (around 10%), possibly due to mismatches in tool-call conventions or
insufficient training. gpt-5-high has more context window overflow errors, indicating difficulties
with long-context handling, while kimi-k2-instruct faces frequent turn limit exceeded errors,
often due to repetitive tool-calling loops. These results suggest that explicit errors are model-specific,
highlighting the need for targeted improvements in reasoning, context management, and tool use.

5 RELATED WORK

LLM Agents. With the development of large language models (LLMs) (Team, 2025; Anthropic,
2025a; Team et al., 2025; OpenAI, 2025c; Comanici et al., 2025), LLM agents have progressed from
early prompting methods such as ReAct (Yao et al., 2023b), which integrated reasoning traces with
tool actions, to more structured designs like MetaGPT (Hong et al., 2024) that coordinate multi-agent
collaboration through explicit role assignment. This evolution has been supported by research on
tool use (Schick et al., 2023; Qin et al., 2023; Patil et al., 2024), which explore when and how models
should call APIs, as well as planning and reflection methods (Yao et al., 2023a; Shinn et al., 2023;
Wang et al., 2024a) that improve robustness in multi-step workflows. Multi-agent frameworks (Wu
et al., 2024; Li et al., 2023; Chen et al., 2023) further demonstrate the benefits of coordinated division
of labor. In applied domains, coding agents (Yang et al., 2024; Wang et al., 2024b) enable real
repository interaction; GUI and computer-use agents are advanced by benchmarks (Zhou et al., 2023;
Deng et al., 2023; Xie et al., 2024); and deep research efforts are represented by initiatives (Wei
et al., 2025; Starace et al., 2025; Du et al., 2025). Together, these developments illustrate the trend
toward general agents that can operate across heterogeneous systems and contexts, naturally pointing
to the need for standardized protocols such as the Model Context Protocol (MCP) (Anthropic, 2024)
that provide a unifying interface for tool and environment integration.

Benchmarks for evaluating MCP use. Recent work has begun to systematically benchmark agent
performance in MCP-enabled settings (Yan et al., 2025; Liu et al., 2025; Mo et al., 2025; Gao et al.,
2025). MCP-Universe (Luo et al., 2025) constructed tasks across multiple domains and evaluators,
revealing the difficulty models face with long and dynamic workflows. LiveMCP-101 (Yin et al.,
2025) focused on multi-tool interaction and execution-plan validation, while MCP-AgentBench (Guo
et al., 2025) scaled up evaluation with hundreds of tasks spanning diverse servers and tools. These
efforts primarily emphasize broad tool coverage or easier execution but leave gaps in assessing
high-fidelity workflows tied to realistic application environments. Our proposed MCPMark addresses
this by designing tasks with diverse CRUD operations in containerized settings to ensure safety and
reproducibility. Each task is paired with programmatic verification scripts and full environment state
tracking, enabling reliable and fine-grained evaluation.

6 DISCUSSION ON LIMITATIONS AND FUTURE DIRECTIONS

Our task creation pipeline, while ensuring task quality, is difficult to scale. This creates a bottleneck
for producing the large-scale training data needed to advance the field. Furthermore, the steep
difficulty of many tasks in MCPMark limits its utility for evaluating and guiding the development of
smaller, more efficient models. Future work on the benchmark should therefore focus on introducing
a more fine-grained difficulty gradient, potentially through semi-automated task generation and a
reduced task execution chain. Additionally, to better reflect real-world complexity, the benchmark
could be expanded to include tasks with ambiguous user intent. This would test an agent’s ability
to ask clarifying questions or infer the user’s actual intent. Finally, incorporating a wider variety
of MCP servers could also help challenge agents across a more diverse set of digital tools.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This section outlines how we address the ethical considerations involved in the construction of our
benchmark, which includes several key components that could raise ethical concerns:

• Initial State of MCP Environment: Each initial state and environment used in the benchmark
is provided with the appropriate license information (see Appendix H for details). A few
environments were self-curated, and for these, we have ensured transparency and compliance
with relevant licensing requirements, promoting ethical usage.

• Task Curation: All tasks included in the benchmark were collaboratively annotated by both
experts and AI agents. The experts involved in the curation process have been properly recognized
as co-authors in the author list, ensuring that their contributions are duly acknowledged. Addi-
tionally, the licenses for the agents used, including Claude Code (License) and Cursor (License),
are provided to ensure that all resources are used responsibly and in accordance with the relevant
licensing terms for research purposes.

• MCP Servers: The licenses for each specific MCP server used in the benchmark are provided in
Appendix C. This ensures that all external systems and tools are properly licensed for research
and evaluation purposes.

By adhering to these practices, we ensure that high ethical standards are maintained throughout the
construction of the benchmark, and that all resources are used responsibly and in accordance with
relevant regulations.

REPRODUCIBILITY STATEMENT

In order to ensure the reproducibility of our experiments, we have made available the evaluation code,
task data, and corresponding run instructions in the supplementary materials. The evaluation code
has been modified to remove any identifiable personal information to protect privacy. Additionally,
the tasks and data used for evaluation are included in the supplementary materials along with detailed
instructions on how to execute the experiments. This ensures that other researchers can replicate our
results under the same conditions while adhering to privacy standards.

REFERENCES

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol, November 2024. Accessed: 2025-06-30.

Anthropic. Claude opus 4.1. https://www.anthropic.com/news/claude-opus-4-1,
August 2025a. Accessed: 2025-08-06.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, May
2025b. Accessed: 2025-07-28.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring
emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
comprehensive benchmark for deep research agents. arXiv preprint arXiv:2506.11763, 2025.

10

https://www.anthropic.com/legal/commercial-terms
https://cursor.com/terms-of-service?lang=en
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-opus-4-1
https://www.anthropic.com/news/claude-4

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. Mcp-radar: A multi-dimensional
benchmark for evaluating tool use capabilities in large language models. arXiv preprint
arXiv:2505.16700, 2025.

Zikang Guo, Benfeng Xu, Chiwei Zhu, Wentao Hong, Xiaorui Wang, and Zhendong Mao. Mcp-
agentbench: Evaluating real-world language agent performance with mcp-mediated tools. arXiv
preprint arXiv:2509.09734, 2025.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
security threats, and future research directions. arXiv preprint arXiv:2503.23278, 2025.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran
Yao, Huan Wang, Shelby Heinecke, et al. Mcpeval: Automatic mcp-based deep evaluation for ai
agent models. arXiv preprint arXiv:2507.12806, 2025.

Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen
Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. Mcp-universe: Benchmarking large
language models with real-world model context protocol servers. arXiv preprint arXiv:2508.14704,
2025.

Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He,
Xianpei Han, and Le Sun. Livemcpbench: Can agents navigate an ocean of mcp tools? arXiv
preprint arXiv:2508.01780, 2025.

OpenAI. Introducing gpt-oss. https://openai.com/index/introducing-gpt-oss/,
August 2025a. Accessed: 2025-08-14.

OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, April
2025b. Accessed: 2025-07-28.

OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
August 2025c. Accessed: 2025-08-13.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, April 2025d. Accessed: 2025-07-28.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems, 37:
126544–126565, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

11

https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/gpt-4-1/
https://cdn.openai.com/gpt-5-system-card.pdf
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

A. Singh, A. Ehtesham, S. Kumar, and T. T. Khoei. A survey of the model context protocol (mcp):
Standardizing context to enhance large language models (llms). Preprints, 2025:2025040245,
2025. doi: 10.20944/preprints202504.0245.v1.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversations. In First Conference on Language Modeling, 2024.

xAI. Grok 4. https://x.ai/news/grok-4, July 2025. Accessed: 2025-07-28.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Yunhe Yan, Shihe Wang, Jiajun Du, Yexuan Yang, Yuxuan Shan, Qichen Qiu, Xianqing Jia, Xinge
Wang, Xin Yuan, Xu Han, et al. Mcpworld: A unified benchmarking testbed for api, gui, and
hybrid computer use agents. arXiv preprint arXiv:2506.07672, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Shunyu Yao. The second half. https://ysymyth.github.io/The-Second-Half/,
2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

12

https://arxiv.org/abs/2505.09388
https://x.ai/news/grok-4
https://ysymyth.github.io/The-Second-Half/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian
Liu, Simin Ma, Song Wang, et al. Livemcp-101: Stress testing and diagnosing mcp-enabled agents
on challenging queries. arXiv preprint arXiv:2508.15760, 2025.

Zai. Glm-4.5: Reasoning, coding, and agentic abililties. https://z.ai/blog/glm-4.5, July
2025. Accessed: 2025-07-28.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

13

https://z.ai/blog/glm-4.5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

TABLE OF CONTENTS

A Use of LLMs 14

B Details of the Task Creation Pipeline 15

C MCP servers 17

D Detailed MCP Benchmark Results 18

E Case Studies by MCP 23

F Cost and Turn Distribution 38

G Turn Distributions across MCP Services 39

H Initial States Selection and Licenses 41

H.1 Notion Templates . 41

H.2 GitHub Repositories . 41

H.3 Playwright Usage . 41

H.4 Filesystem Components . 41

H.5 PostgreSQL Databases . 42

A USE OF LLMS

Large language models were used as general-purpose assistants to support writing, debugging, and
the generation of some initial environment states. Specifically, claude-code and codex were prompted
to produce structured directory layouts, starter scripts, or database schemas that served as initial
configurations in selected tasks. These outputs were carefully reviewed and refined by human experts
to ensure correctness, realism, and alignment with benchmark goals.

LLMs also helped improve the grammar, flow of writing, and occasionally assisted in resolving minor
coding issues such as syntax errors or implementation quirks. All core ideas, benchmark designs,
implementations, experiments, and analyses were independently developed by the authors. No part
of the scientific contribution or methodological reasoning was generated by an LLM.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DETAILS OF THE TASK CREATION PIPELINE

We use Playwright as an example to illustrate the guideline for human experts and the initial
instruction/prompt for the task creation agent. These are simplified for reference.

Guideline (Playwright)

Step 1. Select the starting environment
Pick a website or web app as the initial state. Prefer a staging or test instance to avoid
side effects. Examples: a Reddit-like forum or a Shopping Admin dashboard.

Step 2. Configure the agent environment
In Cursor or Claude Code, set up the MCP server stack and include the Playwright MCP
server so the agent can control a browser.

Step 3. Define an initial question or topic
Write a seed question or topic that will guide agent exploration and task
creation. It can be broad or moderately specific.

Step 4. Create and refine the task
Step 4.1. Exploration with the agent

Have the agent read the initial instruction (which includes the seed question),
then explore the target site together with the agent. Based on the collected con-
text, ask the agent to propose a task that fits the objectives and requirements.

Step 4.2. Provide feedback to improve the task
Guide the agent to revise the task as needed. Examples:
• If verification is weak: “This task is not sufficiently verifiable. Please revise

it to make verification clearer and more reliable.”
• If exploration lacks coverage: “You can explore deeper to collect more

diverse and detailed information.”
• If subtasks feel disconnected: “Make the subtasks integrated rather than

unrelated.”
Step 4.3. Save the task

Store the task description and the verification script as separate files. Use a
consistent folder structure based on category and name. Follow well-structured
prior examples for formatting.

Step 4.4. Human-in-the-loop adjustments
Iterate between the agent and the reviewer until both the task description and
the verification script meet quality standards.

Step 5. Execute and verify
Run the task with Playwright MCP to reach the final state, then run the verification script.
Stress-test the checker to confirm:
Step 5.1. The task is executable end to end.
Step 5.2. Pass or fail is clear and objective.
Step 5.3. The script flags both correct and incorrect outcomes, including edge cases.

Step 6. Assess difficulty (optional)
If the task and checker pass, consider whether difficulty is high enough to test the model.
Adjust scope or constraints if needed.

Notes. These steps target experts working with Cursor or Claude Code. They are guidelines. If
issues appear, collaborate with colleagues to debug efficiently.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Initial Instruction for Task Creation Agent (Playwright)

Your job is to:
1. First explore the web environment to understand available MCP tools and capabilities.
2. Generate one challenging, verifiable, and realistic task based on your collected information.
3. Focus your exploration and task generation on the following specific topic or question:

• Use this as a guiding theme for creating more targeted and relevant tasks.
• Ensure the task addresses different aspects or components related to this requirement.

Playwright MCP Tools Reference:

<playwright_mcp_doc>
[contents of docs/playwright-mcp-introduction.md go here]
</playwright_mcp_doc>

Output Format:

{
"tasks": [
{
"task_id": "task_1",
"description": "Clear, conversational task description",
"difficulty": "hard",
"verification_criteria": ["criterion 1", "criterion 2"],
"expected_mcp_calls": ["browser_navigate", "browser_snapshot",

"browser_click"],
"estimated_complexity": "high"

}
]

}

Based on the given web application environment, write one challenging, verifiable, and realistic
browser automation task that aligns with users’ actual web interaction workflows. The goal is to
evaluate an Agent’s ability to use Playwright MCP tools effectively. Requirements:
• Difficulty: The task should be really hard ... (omitted)
• Verifiability: Avoid open-ended outcomes ... (omitted)
• Authenticity: Describe the task in a natural, conversational tone ... (omitted)
• Context Awareness: Leverage page structure, form elements, navigation patterns, ... (omitted)

Start by exploring the web application environment using MCP tools to understand the
current structure, interactive elements, and user workflows, then generate a task that combines:
1. Your real-time MCP exploration findings.
2. The specific website structure and interactive elements you discover.
3. A focus on browser automation operations that require multiple Playwright MCP tools rather

than only content reading.
4. The specific focus area: <seed_topic>.
Please explore thoroughly before creating the task. Consider:
• Form elements and input fields.
• Navigation patterns and menu structures.
• Dynamic content and interactive features.
• User workflow patterns.
• Authentication and session management.
• Data submission and validation processes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C MCP SERVERS

We relied on five Model Context Protocol (MCP) servers in our setup. Below we summarize their
functionality, invocation, repository, and license.

Filesystem. The filesystem server provides local read, write, and directory operations over the
host file system. It is invoked as @modelcontextprotocol/server-filesystem. The
implementation is hosted at github.com/modelcontextprotocol/servers under the MIT License.

GitHub. The GitHub server integrates with the GitHub API to manage repositories, issues, and
pull requests. The endpoint used is https://api.githubcopilot.com/mcp/. The code is
available at github.com/github/github-mcp-server, released under the MIT License.

Notion. The Notion server allows interaction with Notion databases and pages. It is invoked as
@notionhq/notion-mcp-server. The official repository is github.com/makenotion/notion-
mcp-server, licensed under the MIT License.

Playwright. The Playwright server enables browser automation and scripted web work-
flows. It is started using @playwright/mcp@latest. The source code is provided at
github.com/microsoft/playwright-mcp, distributed under the Apache License 2.0.

PostgreSQL. The PostgreSQL server provides access to a relational database through SQL queries.
It is launched with postgres-mcp -access-mode=unrestricted. The implementation is
maintained at github.com/crystaldba/postgres-mcp, and is released under the MIT License.

17

https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://opensource.org/licenses/MIT
https://api.githubcopilot.com/mcp/
https://github.com/github/github-mcp-server
https://opensource.org/licenses/MIT
https://github.com/makenotion/notion-mcp-server
https://github.com/makenotion/notion-mcp-server
https://opensource.org/licenses/MIT
https://github.com/microsoft/playwright-mcp
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/crystaldba/postgres-mcp
https://opensource.org/licenses/MIT

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D DETAILED MCP BENCHMARK RESULTS

Tables 2 and 9 presented the overall success rates and usage statistics, aggregated across all MCPs.
Here we provide the corresponding breakdown by individual MCP from Table 4 to Table 8. #Input and
#Output are measured in thousands of tokens (K), and Cost is reported in USD. For success metrics,
bold and underline indicate the best and second-best results, respectively. For usage statistics, bold
and underline denote the largest and second-largest values, without implying better performance.

Table 4: Filesystem MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 57.50±3.63 76.67 36.67 215.96 17.38 0.44 10.06 21.07

grok-4 50.83±6.40 73.33 26.67 247.33 10.70 0.90 10.80 16.87

o3 35.83±2.76 50.00 26.67 689.64 17.79 1.52 28.79 27.80

gpt-5-mini-medium 33.33±6.24 53.33 10.00 398.34 12.58 0.12 14.84 36.93
claude-opus-4.1 33.33±0.00 – – 272.17 4.37 4.41 16.37 15.40

claude-sonnet-4 27.50±2.76 50.00 6.67 302.21 4.00 0.97 16.02 15.08

o4-mini 25.00±2.89 36.67 13.33 293.34 15.89 0.39 20.88 19.88

gemini-2.5-pro 24.17±3.63 43.33 10.00 214.97 7.75 0.65 14.35 14.72

grok-code-fast-1 23.33±7.45 40.00 10.00 276.40 2.36 0.06 16.38 16.77

gpt-4.1 12.50±1.44 20.00 3.33 143.95 1.81 0.30 9.28 18.48

gemini-2.5-flash 8.33±1.67 13.33 6.67 67.64 7.57 0.04 6.50 11.15

gpt-5-nano-medium 6.67±5.27 16.67 0.00 462.74 19.53 0.03 20.75 27.76

gpt-4.1-mini 3.33±0.00 3.33 3.33 196.15 1.63 0.08 15.50 19.57

gpt-4.1-nano 0.00±0.00 0.00 0.00 116.98 1.32 0.01 12.17 15.32

Open-Source Models

deepseek-v3.1 15.83±1.44 26.67 6.67 421.33 3.38 0.24 23.83 23.12

kimi-k2-instruct-0905 14.17±1.44 23.33 6.67 696.79 4.47 0.43 26.27 25.70

qwen3-coder-plus 13.33±6.67 26.67 3.33 972.41 4.15 0.20 28.23 27.32
qwen3-max 10.83±1.44 13.33 10.00 389.56 2.87 0.48 19.27 18.39

glm-4.5 7.50±1.44 13.33 3.33 193.95 3.92 0.07 16.39 17.09

gpt-oss-120b 5.83±4.33 16.67 0.00 19.75 1.08 < 0.01 4.62 3.62

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: GitHub MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 47.83±8.13 65.22 17.39 659.73 20.57 1.03 14.33 21.23
claude-opus-4.1 21.74±0.00 – – 620.63 5.84 9.75 10.78 10.13

gpt-5-mini-medium 18.48±7.76 34.78 4.35 614.68 7.71 0.17 13.92 17.28

claude-sonnet-4 16.30±5.65 30.43 8.70 696.81 4.44 2.16 11.16 10.50

gemini-2.5-flash 15.22±2.17 21.74 8.70 1107.04 12.70 0.36 10.46 17.71

grok-4 14.13±3.61 21.74 8.70 804.50 1.93 2.44 12.98 16.76

o4-mini 14.13±6.43 26.09 4.35 510.13 8.74 0.60 10.92 10.08

o3 14.13±3.61 21.74 4.35 451.18 3.56 0.93 9.20 8.24

gemini-2.5-pro 9.78±1.88 21.74 0.00 173.43 5.75 0.52 5.45 6.29

grok-code-fast-1 8.70±5.32 17.39 4.35 751.41 6.50 0.16 17.85 17.28

gpt-5-nano-medium 7.61±1.88 13.04 0.00 751.62 26.77 0.05 15.15 17.63

gpt-4.1 7.61±1.88 8.70 4.35 445.88 2.49 0.91 9.95 14.97

gpt-4.1-mini 6.52±6.52 17.39 0.00 466.70 1.51 0.19 12.00 14.63

gpt-4.1-nano 0.00±0.00 0.00 0.00 312.86 2.59 0.03 9.27 11.04

Open-Source Models

glm-4.5 22.83±6.43 34.78 13.04 482.00 3.65 0.16 11.92 11.04

qwen3-coder-plus 19.57±6.52 34.78 13.04 1987.14 3.36 0.40 19.12 18.13

kimi-k2-instruct-0905 16.30±1.88 26.09 8.70 995.65 8.25 0.62 23.68 23.23

qwen3-max 14.13±3.61 17.39 4.35 1348.13 2.55 1.63 26.70 25.78
deepseek-v3.1 9.78±1.88 13.04 8.70 362.36 2.24 0.21 9.46 9.22

gpt-oss-120b 4.35±3.07 8.70 0.00 76.30 1.41 < 0.01 4.62 3.62

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Notion MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 41.96±2.96 50.00 32.14 375.04 31.62 0.79 12.94 21.60

claude-opus-4.1 35.71±0.00 – – 638.06 3.93 9.87 17.04 16.04

o3 24.11±3.89 46.43 7.14 224.93 9.47 0.53 13.72 12.72

claude-sonnet-4 21.43±5.05 39.29 7.14 646.64 4.24 2.00 19.71 18.71

o4-mini 20.54±5.85 42.86 7.14 267.63 25.97 0.41 15.29 14.29

gpt-5-mini-medium 16.07±5.92 32.14 3.57 705.09 12.34 0.20 14.60 17.28

gemini-2.5-flash 6.25±4.64 21.43 0.00 201.00 6.58 0.08 6.11 9.61

gpt-4.1 6.25±1.55 14.29 0.00 135.55 1.37 0.28 8.58 11.82

gemini-2.5-pro 4.46±2.96 7.14 0.00 212.92 7.13 0.64 7.12 8.67

gpt-5-nano-medium 3.57±0.00 3.57 3.57 204.32 32.08 0.02 7.46 8.74

grok-4 2.68±1.55 3.57 0.00 678.64 13.04 2.23 20.14 24.80
grok-code-fast-1 2.68±1.55 3.57 0.00 561.49 7.26 0.12 20.27 20.09

gpt-4.1-mini 1.79±1.79 3.57 0.00 262.75 1.35 0.11 12.57 14.56

gpt-4.1-nano 0.00±0.00 0.00 0.00 93.38 1.40 < 0.01 9.64 10.93

Open-Source Models

glm-4.5 21.43±2.53 32.14 10.71 625.97 5.04 0.21 22.15 21.17

qwen3-coder-plus 19.64±6.44 39.29 7.14 796.73 2.75 0.16 21.07 20.23

qwen3-max 16.96±4.64 25.00 3.57 973.92 3.66 1.19 26.57 25.63

deepseek-v3.1 12.50±3.09 28.57 0.00 503.35 2.20 0.29 17.94 17.40

kimi-k2-instruct-0905 8.04±2.96 10.71 3.57 1117.21 5.20 0.68 33.55 32.72
gpt-oss-120b 3.57±2.53 14.29 0.00 68.31 1.72 < 0.01 5.49 4.49

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Playwright MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 43.00±5.20 56.00 36.00 1807.17 21.79 2.48 23.78 22.96

grok-4 35.00±7.68 48.00 20.00 1264.91 6.64 3.89 20.05 23.02

claude-sonnet-4 26.00±6.00 36.00 8.00 1241.92 3.52 3.78 19.80 19.12

grok-code-fast-1 25.00±1.73 36.00 8.00 1157.72 7.17 0.24 18.23 18.18

claude-opus-4.1 24.00±0.00 – – 1146.05 2.88 17.41 19.04 18.40

gemini-2.5-pro 15.00±1.73 32.00 4.00 1696.44 5.58 4.32 19.15 18.33

o3 15.00±5.20 32.00 8.00 556.30 4.46 1.15 16.30 15.40

o4-mini 12.00±2.83 28.00 0.00 862.51 18.07 1.03 17.70 16.93

gpt-5-mini-medium 12.00±6.32 24.00 4.00 1814.94 8.55 0.47 22.75 22.04

gpt-4.1 8.00±2.83 12.00 4.00 859.77 0.86 1.73 13.80 15.21

gemini-2.5-flash 6.00±2.00 12.00 0.00 3838.93 8.21 1.17 26.33 38.78
gpt-5-nano-medium 0.00±0.00 0.00 0.00 711.95 17.71 0.04 18.52 17.55

gpt-4.1-mini 0.00±0.00 0.00 0.00 4959.14 3.28 1.99 31.33 31.52

gpt-4.1-nano 0.00±0.00 0.00 0.00 389.80 0.74 0.04 13.51 13.61

Open-Source Models

qwen3-coder-plus 30.00±4.47 48.00 8.00 2851.57 2.39 0.57 21.21 20.40

kimi-k2-instruct-0905 30.00±6.00 40.00 20.00 1358.02 2.17 0.82 20.64 19.79

glm-4.5 13.00±3.32 20.00 4.00 582.73 2.76 0.20 15.36 14.61

qwen3-max 8.00±0.00 12.00 4.00 2297.67 1.16 2.76 27.83 27.41
deepseek-v3.1 7.00±3.32 16.00 0.00 836.01 1.77 0.47 19.09 20.78

gpt-oss-120b 3.00±1.73 4.00 0.00 139.33 1.27 0.01 7.21 6.26

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: PostgreSQL MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 76.19±7.53 100.00 47.62 113.35 17.04 0.31 13.37 12.45

gpt-5-mini-medium 61.90±5.83 90.48 28.57 115.40 9.27 0.05 11.77 10.77

grok-4 58.33±7.81 80.95 38.10 186.07 8.23 0.68 17.89 17.08

claude-sonnet-4 53.57±6.19 71.43 38.10 331.10 7.54 1.11 26.80 25.81
grok-code-fast-1 47.62±4.76 61.90 28.57 226.41 5.46 0.05 19.70 18.70

o3 36.90±3.95 66.67 14.29 63.56 4.72 0.16 10.71 9.71

claude-opus-4.1 33.33±0.00 – – 260.68 9.80 4.64 24.86 23.86

gemini-2.5-pro 26.19±7.90 47.62 9.52 39.74 8.91 0.23 7.45 6.45

gpt-5-nano-medium 15.48±5.19 28.57 4.76 105.02 23.04 0.01 9.46 10.15

o4-mini 11.90±4.12 19.05 4.76 15.92 5.76 0.04 5.06 4.06

gemini-2.5-flash 10.71±6.19 23.81 4.76 46.08 9.93 0.04 8.76 11.38

gpt-4.1-mini 9.52±3.37 14.29 4.76 46.63 1.78 0.02 9.77 11.61

gpt-4.1 4.76±0.00 4.76 4.76 55.11 1.20 0.12 8.12 10.54

gpt-4.1-nano 0.00±0.00 0.00 0.00 71.06 2.43 < 0.01 8.73 10.18

Open-Source Models

qwen3-coder-plus 47.62±5.83 61.90 38.10 573.90 5.13 0.12 29.00 28.00

kimi-k2-instruct-0905 47.62±4.76 66.67 28.57 441.16 5.38 0.28 30.21 29.25
qwen3-max 44.05±2.06 52.38 38.10 192.13 4.91 0.26 18.88 17.92

deepseek-v3.1 42.86±7.53 61.90 28.57 316.60 4.65 0.19 26.48 25.49

glm-4.5 14.29±7.53 23.81 0.00 204.61 5.14 0.07 25.39 24.40

gpt-oss-120b 7.14±2.38 23.81 0.00 21.36 1.42 < 0.01 5.07 4.07

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E CASE STUDIES BY MCP

Filesystem - Contact Information

Initial State

Figure 6: Task sheet and initial directory tree for the Filesystem case; trajectories are in Figures 7–8.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Model Trajectory - claude-sonnet-4

Verifier Result

Contact info CSV Exists

Answer TXT Exists

Files in Correct Locations

Correct CSV Structure

Answer Content

Figure 7: Successful run by claude-sonnet-4: extracts contacts, writes CSV and answer file,
verifier passes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Model Trajectory - gemini-2.5-pro

Verifier Result

Contact info CSV Exists

Answer TXT Exists

Files in Correct Locations

Correct CSV Structure

Answer Content

Figure 8: Failed run by gemini-2.5-pro: files are created but CSV/answer content is incorrect,
verifier fails.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

GitHub - Linting CI Workflow

Initial State

Figure 9: Task sheet and initial repository snapshot for the GitHub case; trajectories are in Figures 10–
11.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Model Trajectory - gpt-5-medium

Verifier Result

CI branch exists

.eslintrc.json config

.github/worflows/lint.yml

Linting PR exists

Workflow 1 fail 1 pass

Linting error fixed

Figure 10: Successful run by gpt-5-medium: branch, ESLint config, workflow, and PR are created;
CI run fixes lint errors; verifier passes.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Model Trajectory - qwen3-coder-plus

Verifier Result

CI branch exists

.eslintrc.json config

.github/worflows/lint.yml

Linting PR exists

Workflow 1 fail 1 pass

Linting error fixed

Figure 11: Failed run by qwen3-coder-plus: partial setup leaves artifacts or CI incomplete,
verifier fails.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Notion - Toronto Guide

Initial State

Figure 12: Task sheet and initial Notion page/databases for the Notion case; trajectories are in
Figures 13–14.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Model Trajectory - claude-opus-4.1

Verifier Result

Callout Block

Activities Database Tags

Food Database Tags

Cafes Database Tags

Additional Check

Figure 13: Successful run by claude-opus-4.1: updates callout and retags database items
consistently, verifier passes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Model Trajectory - deepseek-v3.1-non-thinking

Verifier Result

Callout Block

Activities Database Tags

Food Database Tags

Cafe Database Tags

Additional Check

Figure 14: Failed run by deepseek-v3.1: performs partial edits but misses required tag updates,
verifier fails.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Playwright - Cloudflare Turnstile Challenge

Initial State

Figure 15: Task sheet and initial login page for the Playwright case; trajectories are in Figures 16–17.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Model Trajectory - o3

Verifier Result

Credential Correct

Cloudflare Turnstile Passed

Figure 16: Successful run by o3: navigates login, fills credentials, passes Turnstile, reaches authenti-
cated state, verifier passes.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Model Trajectory - grok-4

Verifier Result

Credential Correct

Cloudflare Turnstile Failed

Figure 17: Failed run by grok-4: credentials entered but Turnstile not solved, verifier fails.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

PostgreSQL - Employee Project Tracking

Initial State

Figure 18: Task sheet and initial schema for the PostgreSQL case; trajectories are in Figs. 19–20.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Model Trajectory - grok-code-fast-1

Verifier Result

Table Structures

Required indexes Found

Project Data Exists

Assignment Data Exists

Milestones Data Exists

Figure 19: Successful run by grok-code-fast-1: creates/updates tracking tables, adds indexes
and seed rows, verifier passes.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Model Trajectory - grok-4

Verifier Result

Table Structures

Required Indexes Found

Project Data not Exists

Assignment Data not Exists

Milestones Data not Exists

Figure 20: Failed run by grok-4: schema work incomplete and required rows/indexes missing,
verifier fails.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

F COST AND TURN DISTRIBUTION

gpt-oss-120b

gpt-5-mini-low

glm-4.5
deepseek-v3.1

o4-mini

gemini-2.5-pro

qwen3-max

o3

kimi-k2-instruct
grok-code-fast-1

qwen3-coder-plus

gpt-5-mini-medium

gpt-5-mini-high

gpt-5-low

gpt-5-high

gpt-5-medium

grok-4

claude-sonnet-4
claude-sonnet-4-high

claude-sonnet-4-low
claude-opus-4.1

High cost-performance zone

Figure 21: Cost-performance map per run. The shaded area highlights runs with higher performance
at lower cost.

Table 9: Usage stats. Per-task averages: input/output tokens (K), cost (USD), turns, tool calls.

Model
Per-Task Avg Usage

Input # Output Cost Turns Tool Calls

Proprietary Models

claude-opus-4.1 586.07 5.14 9.18 17.43 16.57

grok-4 633.51 8.42 2.03 16.25 19.84

claude-sonnet-4 639.37 4.63 1.99 18.48 17.62

gemini-2.5-pro 469.65 7.02 1.28 10.95 11.20

qwen3-max 1034.96 2.99 1.26 23.85 23.02
gpt-5-medium 627.66 21.91 1.00 14.71 20.16

o3 414.23 8.59 0.90 16.47 15.50

gpt-4.1 323.00 1.55 0.66 9.94 14.42

o4-mini 393.10 15.57 0.50 14.60 13.68

gpt-4.1-mini 1172.70 1.90 0.47 16.39 18.61

gemini-2.5-flash 1024.09 8.80 0.33 11.41 17.47

gpt-5-mini-medium 737.22 10.31 0.20 15.67 21.78

grok-code-fast-1 590.50 5.65 0.13 18.42 18.19

gpt-4.1-nano 193.37 1.64 0.02 10.78 12.39

gpt-5-nano-medium 447.99 23.83 0.03 14.50 16.81

Open-Source Models

kimi-k2-instruct 931.50 5.01 0.57 26.95 26.22
qwen3-coder-plus 1421.47 3.51 0.29 23.75 22.84

deepseek-v3.1 493.05 2.81 0.28 19.43 19.27

glm-4.5 419.66 4.09 0.14 18.14 17.62

gpt-oss-120b 64.50 1.37 0.01 5.40 4.41

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

G TURN DISTRIBUTIONS ACROSS MCP SERVICES

In this section, we provide per-service turn distributions for the five MCPs in MCPMark from Figure
22 to Figure 26. These plots complement the overall turn analysis in Figure 4 and illustrate how turn
requirements differ by service.

gpt-oss-120b

qwen3-coder-plus

kimi-k2-instruct

deepseek-v3.1

gemini-2.5-pro

claude-sonnet-4

claude-opus-4.1 o3
grok-4

gpt-5-medium
0

10

20

30

40

50
60

80
100

Tu
rn

s

0.1

0.2

0.3

0.4

0.5

pa
ss

@
1

Figure 22: Turn distribution per task on the Filesystem MCP.

grok-4

gpt-oss-120b

gemini-2.5-pro

kimi-k2-instruct

deepseek-v3.1

qwen3-coder-plus

claude-sonnet-4 o3

claude-opus-4.1

gpt-5-medium
0

10

20

30

40

50
60

80
100

Tu
rn

s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pa
ss

@
1

Figure 23: Turn distribution per task on the Notion MCP.

gpt-oss-120b

deepseek-v3.1

gemini-2.5-pro grok-4 o3

claude-sonnet-4

kimi-k2-instruct

qwen3-coder-plus

claude-opus-4.1

gpt-5-medium
0

10

20

30

40

50
60

80
100

Tu
rn

s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pa
ss

@
1

Figure 24: Turn distribution per task on the GitHub MCP.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

gpt-oss-120b

gemini-2.5-pro

claude-opus-4.1 o3

deepseek-v3.1

kimi-k2-instruct

qwen3-coder-plus

claude-sonnet-4 grok-4

gpt-5-medium
0

10

20

30

40

50
60

80
100

Tu
rn

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pa
ss

@
1

Figure 25: Turn distribution per task on the PostgreSQL MCP.

gpt-oss-120b

deepseek-v3.1

gemini-2.5-pro o3

claude-opus-4.1

claude-sonnet-4

kimi-k2-instruct

qwen3-coder-plus
grok-4

gpt-5-medium
0

10

20

30

40

50
60

80
100

Tu
rn

s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
pa

ss
@

1

Figure 26: Turn distribution per task on the Playwright MCP.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

H INITIAL STATES SELECTION AND LICENSES

This section provides an overview of the initial states selection, including Notion templates, GitHub
repositories, PostgreSQL databases, Playwright websites, and Filesystem components, along with
their corresponding licenses.

H.1 NOTION TEMPLATES

We utilized 9 publicly available Notion templates from the Notion Template Marketplace for bench-
marking purposes. According to Notion’s Marketplace Guidelines & Terms, templates are provided
under a non-exclusive license for use within the user’s workspace as long as an active Notion sub-
scription is maintained. Redistribution or resale is prohibited. Our use of these templates was limited
to internal research and benchmarking, in compliance with the licensing conditions.

Template
1 Online Resume
2 Japan Travel Planner
3 Company in-a-Box
4 Computer Science Student Dashboard
5 Standard Operating Procedure
6 Team Projects
7 Python Roadmap
8 Toronto Guide
9 IT Trouble Shooting Hub

Table 10: Notion templates used in this research benchmark.

H.2 GITHUB REPOSITORIES

Several GitHub repositories were utilized during the research. Below is a summary of the repositories
and their respective licenses:

• anthropics/claude-code: © Anthropic PBC. All rights reserved. Use is subject to An-
thropic’s Commercial Terms of Service.

• openai/harmony: Apache License 2.0.

• missing-semester/missing-semester: CC BY-NC-SA 4.0.

• codecrafters-io/build-your-own-x: CodeCrafters, Inc. has waived all copyright and related
or neighboring rights to this work.

• hiyouga/EasyR1: Apache License 2.0.

• mcpmark-cicd: Written by authors and hosted via GitHub.

H.3 PLAYWRIGHT USAGE

We utilized environments “reddit”, “shopping”, and “shopping_admin” from the web-arena-
x/webarena repository, which is licensed under the Apache License 2.0. These modules were
incorporated for testing and evaluation purposes within the benchmarking setup. Other websites were
written by authors and hosted via Vercel.

H.4 FILESYSTEM COMPONENTS

The following filesystem components were used as part of our research environment: (1) desktop,
desktop_template, file_context, file_property, folder_structure, papers, and student_database
were collected from the authors’ own local environment or files synthesized using LLMs. (2)
legal_document refers to a legal document on NVCA financing, which can be accessed at CooleyGo .

41

https://www.notion.com/templates
https://www.notion.com/help/template-gallery-guidelines-and-terms
https://www.notion.so/marketplace/templates/online-resume?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/japantravelplanner101?cr=pro%253Apurindailylife
https://www.notion.so/marketplace/templates/company-in-a-box?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/computer-science-student-dashboard?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/standard-operating-procedure?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/gantt-chart?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/python-roadmap?cr=pro%253Adatawithbaraa
https://www.notion.so/marketplace/templates/conquering-toronto-a-destination-guide?cr=pro%253Asohrab
https://www.notion.so/marketplace/templates/it-trouble-shooting-hub?cr=pro%253Anotion
https://www.anthropic.com/legal/commercial-terms
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/web-arena-x/webarena
https://github.com/web-arena-x/webarena
https://www.cooleygo.com/documents/nvca-financing-documents/

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

(3) threestudio and votenet are open-source projects utilized from GitHub repositories. Specifically,
votenet (MIT License), and threestudio (Apache License 2.0).

H.5 POSTGRESQL DATABASES

We utilized the following PostgreSQL databases, which are publicly available with their corresponding
licenses:

• chinook: MIT License, and Apache License 2.0.
• employees: CC BY-SA 3.0, and Apache License 2.0.
• lego: CC0 1.0 Universal (Public Domain Dedication), and Apache License 2.0.
• sports: Apache License 2.0.
• dvdrental: MIT License.

42

https://github.com/facebookresearch/votenet?tab=MIT-1-ov-file
https://github.com/threestudio-project/threestudio?tab=Apache-2.0-1-ov-file
https://github.com/lerocha/chinook-database/blob/master/LICENSE.md
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://github.com/yugabyte/yugabyte-db/blob/master/licenses/APACHE-LICENSE-2.0.txt
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt

	Introduction
	MCPMark: Stress-Testing Comprehensive MCP use
	Benchmark Construction
	Benchmark Overview
	Evaluation Framework

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Reasoning Mode and Effort
	Failure Breakdown

	Related Work
	Discussion on Limitations and Future Directions
	Use of LLMs
	Details of the Task Creation Pipeline
	MCP servers
	Detailed MCP Benchmark Results
	Case Studies by MCP
	Cost and Turn Distribution
	Turn Distributions across MCP Services
	Initial States Selection and Licenses
	Notion Templates
	GitHub Repositories
	Playwright Usage
	Filesystem Components
	PostgreSQL Databases

