Under review as a conference paper at ICLR 2026

B MCPMARK: A BENCHMARK FOR STRESS-TESTING
REALISTIC AND COMPREHENSIVE MCP USE

Anonymous authors
Paper under double-blind review

ABSTRACT

The MCP standardizes how LLMs interact with external systems, forming the
foundation for general agents. However, existing MCP benchmarks remain narrow
in scope: they focus on read-heavy tasks or tasks with limited interaction depth,
and fail to capture the complexity and realism of real-world workflows. To address
this, we propose MCPMark, a benchmark designed to evaluate realistic and com-
prehensive MCP use, comprising 127 high-quality tasks collaboratively created by
human experts and Al agents. Specifically, each task starts from a curated initial
state and incldes a programmatic script for automatic verification. Moreover, these
tasks require richer and more varied interactions with the environment, involving
diverse create, read, update, and delete (CRUD) operations. We conduct compre-
hensive evaluation of cutting-edge LLMs using a minimal agent framework that
operates in a tool-calling loop. Empirical results show that the best-performing
model, gpt —5-medium, reaches only 52.56% pass @1 and 33.86% pass”4, while
other widely regarded strong models, including claude-sonnet—-4 and o3, fall
below 30% pass@1 and 15% pass™4. On average, LLMs require 16.18 execution
turns and 17.38 tool calls per task, substantially exceeding those in previous MCP
benchmarks and demonstrating the stress-testing nature of MCPMark.

1 INTRODUCTION

The Model Context Protocol (MCP) (Anthropic, 2024) is a standardized interface that connects large
language models (LLMs) (Comanici et al., 2025; OpenAl, 2025c; Team, 2025) with external systems
such as tools, APIs, databases, and contextual resources (Singh et al., 2025). By standardizing the
way LLMs access and operate on these systems, MCP allows agents to function more effectively with
“eyes and hands” in real environments, and many see it as a foundational layer for Al in the agentic
era (Hou et al., 2025). Despite growing use in practice, existing MCP benchmarks remain limited:
tasks often involve shallow or read-heavy interactions (Liu et al., 2025; Yin et al., 2025; Mo et al.,
2025; Luo et al., 2025), leading to a narrow range of task patterns. As a result, they fail to capture
the complex, multi-step workflows typical of real-world usage. This makes it difficult to probe the
performance boundaries—especially in assessing whether current models and agents possess the
necessary capabilities, such as reasoning, planning, long-context processing, and tool use, to tackle
realistic and demanding agent tasks.

To address these gaps, we introduce MCPMark, a benchmark designed to simulate realistic user
scenarios within mirrored or isolated container environments, accompanied by reliable programmatic
evaluation. Specifically, MCPMark spans five representative MCP environments: Notion, GitHub,
Filesystem, PostgreSQL, and Playwright. As shown in Figure 1, each task begins from a carefully
curated initial state. Task instructions and corresponding verification scripts are then developed
through a human—Al collaborative pipeline, in which domain experts and language model agents iter-
atively co-design tasks and construct automated scripts. These scripts automatically validate the final
environment state after agent execution and incorporate full state tracking throughout the execution
process. Following pipeline generation, we apply expert cross-review and community-level validation
to ensure clarity, realism, and quality. Compared to existing MCP benchmarks, MCPMark offers
significantly broader coverage of create, read, update, and delete (CRUD) operations across diverse
workflows. In total, MCPMark comprises 127 tasks, with 20 to 30 tasks in each MCP environment.

Under review as a conference paper at ICLR 2026

G Cloudflare Turnstile Authentication @ Weekend Adventure Planner
i @ Activities
Enter username Toronto s fullof adventure, but keep in min, t's nicknamed °A City within a Park- So,
you'e going t see lots of parks and scenic walks n the collecton below,
password 88 Gallry = Grouped by tog

Enter password
St Lawrence Market Toronto Island High Park

Security Challenge

(] Verify you are human cvouorrane

Royal Ontario Museum N Tower

Task: Build tracking system with tables for projects,
assignments, milestones, and performance indexes.

Task: Use Playwright MCP tools to complete Cloudflare
Turnstile authentication.

1: Navigate to https://mcpmark/auth/trunstile;

2: Fill in the auth form with provided credentials;

3.

1: Create the project tracking tables;
2: Add foreign key relationships;
3.

Harbourfront Casa Loma

O Linting Cl Workflow i Contact Information

— 2 & o /=
% budget.csv I%e.csv % back.csv
[% dates.csv I% log.csv @ tax.csv

[y Personal/ % price.csv @ draft.txt
& Temp!

r src/ Olssues g‘],PRs @Actions Litte taly Asc(n;«saueryov
@app.js @ .prettierrc @.gilignore

[)calcutatorss () eslint.config s Tornto 200 - Theboches

() userservicejs [3) eslintrcjs () README.md

Task: Create a comprehensive weekend adventure

Task: Set up ESLint workflow for code quality planner that generates a structured itinerary page. Task: Extract contact details from various file formats
enforcement on all PRs with proper CI integration. 1: Create a new page ' Perfect Weekend Adventure® on desktop and perform analysis on the collected rela-
1: Create linting configuration branch; as a child page of the main page; tionship data.))

2: Create ESLint configuration; 2: Query to identify activities with Beaches' tag; 1: Extract contact information;

3. 3., 2: Create a CSV file; 3: ...

Figure 1: Representative task instances, showing initial states (Top) and task instruction (Bottom).
Examples include: Login with Cloudflare Turnstile in Playwright; CI/CD setup with ESLint in
GitHub; weekend planner using tagged queries in Notion; schema design for project tracking in
PostgreSQL; and contact extraction to CSV in Filesystem. All tasks show complex, multi-step
workflows typical of real-world usage.

To fairly evaluate model performance on these Table 1: Benchmark Comparison.
tasks, we introduce MCPMark—-Agent, a min-

. Task A

imal and general framework that executes mod- Benchmark Pa?tsern Verification %el::;%e
els through a standardized tool-calling loop. : :
MCPMark-Agent integrates with a variety of ~ MCPEval Synthetic Hybrid N/A

MCP servers and model providers, enabling LiveMCPBench CRUD-diverse LLM-as-judge 3.2
consistent and automated evaluation grounded =~ MCP-Universe ~ Read-heavy =~ Programmatic 6.8
in the programmatic infrastructure defined by = LiveMCP-101 N/A LLM-as-judge 5.4
MCPMark. Comprehensive experiments on
state-of-the-art models demonstrate the bench-
mark’s difficulty. The best-performing model,
gpt-5-medium (OpenAl, 2025c¢), achieves only 52.56% pass@1 and 33.86% pass™4, while other
strong models such as claude-sonnet—4 (Anthropic, 2025a) and 03 (OpenAl, 2025d) fall below
30% pass@1 and 15% pass™4. On average, each task requires 16.2 execution turns and 17.4 tool
calls, with some models such as kimi-k2-instruct (Team et al., 2025) averaging over 20 turns
per task. Overall, as shown in Table 1, prior MCP benchmarks are limited in task depth or verification
rigor. In contrast, MCPMark combines CRUD-diverse tasks, programmatic verification, and longer
workflows, aligning more closely with real-world MCP use and workflow complexity.

MCPMark CRUD-diverse Programmatic 16.2

In addition, our evaluation reveals several consistent patterns that underscore the distinctive properties
of the benchmark. First, the benchmark demonstrates its intrinsic difficulty through consistently low
performance on the pass”4, which more convincingly reflects real-world conditions than commonly
used metrics like pass@1 or pass@4 (Yao et al., 2024), emphasizing the challenge of solving tasks
reliably and consistently across multiple runs. Second, performance varies substantially across differ-
ent MCP environments, suggesting a notable environment gap. This variation arises from differences
in data availability and simulation fidelity: tasks involving local services such as the Filesystem are
generally easier to emulate and more commonly represented in training data, whereas remote services
like Notion require more complex, underrepresented interaction patterns that are harder to reproduce.
Finally, the benchmark emphasizes efficient tool use: successful completions tend to involve fewer,
more targeted tool calls, while failure cases often exhibit repetitive or exploratory interactions that fail
to make meaningful progress. Collectively, these patterns show that MCPMark effectively surfaces
key challenges in stability, generalization, and planning across diverse multi-component environments.

Under review as a conference paper at ICLR 2026

GitHub (23)

Filesystem (30) @1

B @
MCPMark praywrignt
5)

Notion (28)

GitHub (94 tools)
cancel_workflow_run
create_or_update_file
dismiss_notification
get_file_contents
get_pull_request
list_commits

add_sub_issue
create_branch
create_pull_request
fork_repository
get_issue
get_release_by_tag
list_issues

add_issue_comment
create_gist
create_repository
get_commit
get_latest_release
get_tag
list_notifications

merge_pull_request
create_issue

delete_file

get_discussion

get_me

list_branches

.. (68 remaining not shown)

Filesystem (14 tools) read_file read_text_file read_media_file
read_multiple_files write_file edit_file create_directory
list_directory list_directory_with_sizes directory_tree move._file
search_files get_file_info list_allowed_directories

Notion (19 tools) APL-get-user APL-get-users APL-get-self
APL-post-database-query APL-post-search API-get-block-children API-patch-block-children

API-retrieve-a-block
API-patch-page
APl-retrieve-a-database

APL-update-a-block
APL-post-page
APLretrieve-a-pa

API-delete-a-block
APl-create-a-databa

APL-retrieve-a-page

API-retri

API-update-a-databas:
API-create-a-c

property

Playwright (21 tools)
browser_drag
browser_handle_dialog
browser_network_requests
browser_snapshot
browser_tabs

browser_click
browser_evaluate
browser_hover
browser_press_key
browser_take_screenshot
browser_install

browser_close
browser_file_upload
browser_navigate
browser_resize
browser_type

browser_console_messages
browser_fill_form
browser_navigate_back
browser_select_option
browser_wait_for

PostgreSQL (9 tools)
execute_sql
analyze_query_indexes

list_schemas
explain_query
analyze_db_health

list_objects
get_top_queries

get_object_details
analyze_workload_indexes

Figure 2: Task distribution and tool set overview of MCPMark. Left: 127 tasks distributed across
5 MCP servers and 38 curated initial states. Right: toolset per server, covering commonly used
functionalities, with full support for CRUD operations in each corresponding MCP environment.

2 MCPMARK: STRESS-TESTING COMPREHENSIVE MCP USE

In this section, we provide a detailed introduction to MCPMark, including the benchmark construction
process, the associated evaluation framework, and an overview of the benchmark.

2.1 BENCHMARK CONSTRUCTION

MCEP services and initial states. MCPMark integrates 5 MCP servers that span diverse and practical
application environments. A partial overview of each MCP tool set is shown in Figure 2 (right).
Moreover, unlike prior work that uses generic or minimally initialized environments as task starting
states (Liu et al., 2025; Luo et al., 2025; Yin et al., 2025), we carefully design initial states that reflect
realistic and comprehensive usage scenarios, serving as the starting points for the tasks. Specifically:

« [Notion connects to the official remote API for creating, editing, and querying both documents
and databases. Initial states are instantiated from widely adopted templates.

+ €) GitHub leverages the official remote API to support project management and Git operations,
including CI/CD, issues, branches, pull requests, and commits. Initial states are derived from
repositories with realistic development histories and configurations.

» - Filesystem supports file I/O, directory organization, metadata inspection, and search. Initial
states are curated folder structures that mirror everyday user scenarios.

+ & PostgreSQL provides access to a relational database, with tools for schema exploration and
SQL query execution. Initial states are representative template databases with realistic schemas.

* @ Playwright enables browser automation, offering commands for navigation, form completion,
data extraction, and generating screenshots or PDF exports. Initial states come from two sources:
self-authored webpages designed to test specific functionalities (e.g., login through Cloudflare)
and localhost webpages adapted from WebArena (Zhou et al., 2023).

Task creation pipeline. Each task in MCPMark is grounded in an initial state of the respective
environment (e.g., a template Notion page or a designated website) and consists of a natural language
instruction paired with an automatic verification script. Constructing tasks of this form is difficult if
we rely solely on humans or solely on agents. To address this, we design a human—AI collaborative
pipeline that pairs human experts with two agents: a task creation agent and a task execution agent.
The pipeline proceeds in four steps:

I. Exploration: Given an initial environment state, a human expert and the task creation agent
jointly explore the environment, guided by a high-level instruction or topic informed by expertise
and real-world experience. This stage aims to capture both a wide overview of the environment
and deep, specific context that will later support realistic and well-grounded task creation.

II. Evolvement: The task creation agent proposes a new task instruction or refines an existing one
by introducing additional complexity. This may include removing unnecessary instructions,
increasing the difficulty of information seeking, raising the processing burden (e.g., through

Under review as a conference paper at ICLR 2026

longer input content), or requiring more interaction steps. The human expert ensures that the
task remains practical, verifiable, and sufficiently challenging.

III. Verification: The task creation agent drafts a programmatic verification script. The human
expert then completes the task with assistance from the task execution agent. Afterward, the
verification script is executed and iteratively refined until it is fully consistent with the task
instruction. To ensure reliability, the human expert also adjusts the final environment state to
validate whether the script correctly detects both successful and unsuccessful outcomes.

IV. Iteration: Steps @ and @ are repeated to progressively increase task difficulty, while preserving
automatic verifiability and maintaining realism through authentic user scenarios.

Overall, even with agent assistance, constructing each sample remains labor-intensive. Involving 10
experts with diverse backgrounds—including computer science PhD students, front-end designers,
full-stack & Al infra engineers, and Al investors—each task takes 3 ~ 5 hours of focused expert effort.
While most tasks are built through the standard pipeline, experts occasionally leverage their accumu-
lated experience or domain knowledge to directly write natural language instructions. In these cases,
the task creation agent is bypassed, but the verification scripts are still generated and refined within the
same pipeline. We defer the prompts and guidelines used in the task creation pipeline to Appendix B.

Quality control. All tasks underwent cross-review by human experts and a month-long community
check to ensure clarity, consistency, and alignment with real-world application scenarios. In particular,
for tasks that no model solved correctly, we conducted additional verification to ensure their validity.
This process ensures that the benchmark remains challenging yet practical, and that evaluation
outcomes are unambiguous.

2.2 BENCHMARK OVERVIEW

Dataset statistics. We create a total of 127 tasks across 5 MCP servers—30 for Filesystem, 28 for
Notion, 25 for Playwright, 23 for GitHub, and 21 for PostgreSQL—based on 38 curated initial states.
On average, the task instructions contain 288.6 words, and the corresponding verification scripts
consist of 209.8 lines of code. The detailed task distribution is presented in Figure 2 (left), while the
corresponding toolsets for each MCP are shown in Figure 2 (right).!

Task characteristics. The tasks span a wide range of realistic workflows, including updating nested
properties in Notion, managing commits and pull requests in GitHub, automating interactive forms in
Playwright, organizing complex directory structures in the Filesystem, and executing transactional
updates in PostgreSQL. Five representative tasks, one from each MCP, are shown in Figure 1.
Collectively, these tasks provide diverse CRUD coverage and reflect the challenges of authentic
multi-step workflows across varied application scenarios.

Necessity of MCPMark. Existing tool-use agent benchmarks such as AppWorld (Trivedi et al.,
2024), WebArena (Zhou et al., 2023), and SWE-Bench (Jimenez et al., 2023) provide valuable
testbeds, but they introduce trade-offs that limit their suitability for evaluating multi-step agent
workflows in real-world use. SWE-Bench offers strong realism but is restricted to a single domain,
whereas AppWorld and similar environments support diverse tasks but rely on custom wrappers or
research-oriented APIs that do not reflect the stateful behavior of production systems.

In contrast, MCPMark builds directly on official MCP servers and real environments, enabling agents
to interact with the same APIs and conditions they encounter in deployed settings. This design allows
us to capture workflow complexity that cannot be reproduced in simulated environments, including
CI/CD operations on live repositories, transactional database behavior, and multi-file organization in
realistic file systems. As a result, MCPMark complements existing tool-use benchmarks by providing
a high-fidelity evaluation setting tailored to modern MCP-based agent workflows.

2.3 EVALUATION FRAMEWORK

State tracking and management. MCPMark executes all tasks within sandboxed environments that
enforce explicit state tracking, a design choice that ensures safety, reproducibility, and fair comparison
across models. Each evaluation follows a consistent lifecycle: @ tasks begin from a well-defined initial

"We also provide a subset of MCPMark comprising 50 tasks (10 per MCP server), derived from the standard
tasks by relaxing subtask requirements or providing hints. The results are reported in Table 14.

Under review as a conference paper at ICLR 2026

McCP Task Initialization Agent Execution Result Verification
g N
Initial State Framework Final State
- B MCPMark Agent -
D N ONLINE RESUME 1 Call / Tools Calling Loop / Thinking * ONLINE RESUME
b &
) MODELS] &) +)
Filesystem \‘\“* o . EB \‘\“)
INTEREST CONTACT Agent Trajectory INTEREST CONTACT
Debug foo@bar.com ® post-search Debug foo@bar.com
+42 127-001-404 . +42127-001-404
PROJECTS R -
GitHub GUIMark , [+ Vibe Coding
May 2023 -> Aug 2023 PROJECTS
{ >
WORK HISTORY “object”: "list", _
“risults": r
Doagle R —— '+ June 2025 -> Sept 2025 |
Prompt Engineer } _
Notion OkayAl
Machine Unlearning Engineer o get-block-children |- May 2023 -> Aug 2023
{"block_id": "26c816.
@ Task Description ® update-a-database Programmatic Verification l
{"database_id": "813b-94
PostgreSQL 1.Delete outdated project | | | ... o/ New project added
2.Add MCPMark project .
3.Add post—pro?ec% blocks: ® patch-block-children o/ Outdated project deleted
;g;;;e:g {"block_id": "26c816. o "Skill" section below "Interest"
S 4.ASAC§E§?T§ g:g:g;:";lm P Allset. Here’s what | did to update your “Online (® Post-project blocks not found
three skills, below section "Interest" ?:;‘;g‘ne pagsiendissiganizeie biviect ® Only one new skill found
. J

Figure 3: MCPMark evaluation pipeline with full state tracking. Each task begins from a curated
initial state with a specific task instruction. The MCPMark-Agent then executes a tool-calling loop,
followed by a programmatic verifier that evaluates whether all required checks are satisfied.

state that mirrors realistic application scenarios, @ proceed with agent execution based on task instruc-
tions, and ® conclude with an automatic verification script that programmatically checks whether
the final environment satisfies the task requirements. After verification, @ the environment is reset to
its original state, preventing side effects and enabling repeated evaluation under identical conditions.

Evaluation Agent. To standardize evaluation, we provide MCPMark—-Agent, a lightweight and
general-purpose agent framework. It is built on LiteLLM? together with the Model Context Protocol
Python SDK? to support compatibility and extensibility. Specifically, MCP servers are configured
through the SDK, and their tools are exposed to the agent. LiteL.LM then (1) converts the tools into
the OpenAl function-call format and (2) routes requests to the official APIs of different providers,
thereby ensuring execution that reflects each model’s native capabilities.

During task evaluation, the agent follows a tool-calling loop in which the model iteratively invokes
MCP tools, interprets responses from MCP servers, and adjusts its actions. The loop terminates once
the model produces a final response without further tool calls. Although this agent framework is
deliberately basic and omits optimizations that may be desirable in production systems (which we
leave for future work), this design avoids task-specific heuristics and model-specific biases, thereby
providing a clearer measure of a model’s intrinsic agentic capabilities in MCP environments.

3 EXPERIMENTS

In this section, we describe the experimental setup, introduce the evaluated models and metrics, and
present results and analyses on different environment, reasoning efforts, and failure patterns.

3.1 EXPERIMENTAL SETUP

Models. We test a range of state-of-the-art proprietary and open-source models, primarily
accessed through LiteLLM. Proprietary models include gpt -5 (OpenAl, 2025¢c) with different
reasoning effort levels (1ow, medium, high) and smaller variants (mini and nano), as well
as earlier gpt—-4.1 (OpenAl, 2025b) variants. We also evaluate claude-opus-4.1,
claude-sonnet-4, grok-4, grok-code-fast-1, 03, o04-mini, gwen3-max,
gemini-2.5-flash, and gemini-2.5-pro (Anthropic, 2025b;a; xAl, 2025; OpenAl,

https://github.com/BerriAI/litellm
3https ://github.com/modelcontextprotocol/python-sdk

https://github.com/BerriAI/litellm
https://github.com/modelcontextprotocol/python-sdk

Under review as a conference paper at ICLR 2026

2025d; Comanici et al., 2025). On the open-source side, we evaluate gwen3-coder-plus,
kimi-k2-instruct, deepseek-v3.1,glm-4.5, and gpt-oss—-120b (Team, 2025; Team
et al., 2025; Liu et al., 2024; Zai, 2025; OpenAl, 2025a). We do not test small open-source models
(< 100B) due to the difficulty of the benchmark.

Metrics. We use three complementary metrics to measure agent performance: pass@ 1, pass@4,
and pass”4. Pass@ 1, captures the single-run success rate, i.e., the proportion of tasks successfully in
one single attempt. Pass @4 measures success when allowing up to 4 independent runs, indicating
whether repeated attempts improve coverage of difficult cases. Pass”4 is a stricter measure: a task is
counted as correct only if all four independent runs succeed, making it a strong indicator of model
consistency and stability under stochastic generation (Yao et al., 2024).

Implementation Details. We use MCPMark—-Agent as the unified framework to benchmark MCP
use across models. While specialized agent designs could further improve performance, we leave
such optimizations as important future work. Each run is limited to a maximum of 100 turns with
a 3600-second timeout. Unless otherwise specified, all models are evaluated under their default
inference settings (e.g., temperature, top-p, reasoning effort). The agent supports two execution paths:
a general path via LiteLLM with function-calling tools and a native path with direct tool support
for certain models (e.g., Anthropic API for extended thinking mode). For MCP server selection, we
generally choose the most commonly used ones (see Appendix C for details).

3.2 MAIN RESULTS

We evaluate all 127 tasks using MCPMark—-Agent, reporting pass@ 1, pass @4, and pass”4 metrics.
Unless otherwise specified, pass@1 scores are averaged over four independent runs and reported
as mean =+ std. Detailed results on each MCP service are provided in Appendix D, and representative
trajectories appear in Appendix E.

MCPMark remains challenging for frontier models. Table 2 shows that the best-performing model,
gpt—5-medium, reaches only 52.56% pass@1, while gwen3-coder-plus, the strongest open-
source model, achieves 24.80%. Most proprietary models fall within the 15% to 30% range on
pass@1, and several open-source models perform below 10%. Moreover, Table 10 highlights the
high interaction demands of the benchmark: for example, gwen3-max and kimi-k2-instruct
average 23.85/26.95 turns with 23.02/26.22 tool calls, respectively. These results underscore that
MCPMark remains a highly challenging benchmark for current frontier models.

Models generally perform better on local service tasks. We observe from Table 2 that perfor-
mance varies significantly across MCP services, showing a clear divide between local and remote
environments. Local services such as PostgreSQL, Filesystem, and Playwright achieve substantially
higher success rates, with gpt —5-medium reaching 76.19%, 57.50%, and 43.00% pass@ 1 respec-
tively. Remote services like Notion and GitHub remain challenging, with most models achieving
below 25% pass@1. This gap likely stems from data availability: local services are easier to simulate
and collect training data for, while remote service APIs require authentic interaction traces that are
expensive to curate at scale. These results suggest that data remains key to enabling better MCP use.

Robustness lags far behind. Table 2 demonstrates that pass@4 provides substantial gains, with
gpt-5-medium and claude-sonnet—-4 achieving 68.50% and 44.88% compared to just
52.56% and 28.15% for pass@1. However, the performance at pass*4 drops sharply to 33.86%
and 12.60%, respectively, underscoring the model’s inconsistency and instability across runs. Similar
discrepancies are observed across other models, with pass@4 often exceeding 30% while pass"4
remains in the 5% to 15% range, suggesting that while repeated attempts improve success, robustness
under multi-turn tool use in MCP contexts remains a common challenge—a shortcoming that poses
significant risks for real-world deployment where reliability across runs is essential.

More turns do not necessarily yield better performance. Figure 4 highlights distinct tool-calling
behaviors across models. In particular, the efficiency-accuracy correlation shows that stronger models
succeed through better decision making and targeted exploration, not blind trial-and-error. Notably,
kimi-k2-instruct often enters an overcalling mode, exceeding 30 turns with diminishing
success rates—indicating the model might get stuck or loop without effective information retrieval. In
contrast, gpt —5-medium achieves the highest pass@ 1 while maintaining reasonable turn budgets,

Under review as a conference paper at ICLR 2026

Table 2: Model comparison across MCPs. Pass@1 is computed as the average over four independent
runs, with the superscript showing the standard deviation; each MCP service value is also averaged
over four runs. Within each model group (Proprietary / Open-Source), the best result is marked
in bold and the second best result is underlined. For GPT-5 series models, explicit suffixes (e.g.,
“-medium”) indicate the reasoning effort setting; for all models, results correspond to their default
reasoning effort if supported. Abbreviations of MCP services are: FS = Filesystem, GH = GitHub,
NT = Notion, PW = Playwright, PG = PostgreSQL.

MCP Services Metrics
Model
FS ()GH [ENT @ PW PG pass@l pass@4 pass"4
#1 Proprietary Models
gpt-5-medium 57.50 47.83 41.96 43.00 76.19 5256 68.50 33.86
® grok-4 50.83 14.13 2.68 35.00 58.33 31.69*>1 4488 18.11
% claude-opus—-4.1 33.33 21.74 35.71 24.00 33.33 29.92+0.00 - -
€D claude-sonnet-4 27.50 16.30 21.43 26.00 53.57 28.15%>7 4488 12.60
gpt-5-mini-medium 33.33 18.48 16.07 12.00 6190 2736312 4567 9.45
03 35.83 14.13 24.11 15.00 36.90 2539+204 4331 12.60
@ grok-code-fast-1 23.33 8.70 2.68 25.00 4762 204713 3071 9.45
® gwen3-max 10.83 14.13 16.96 8.00 44.05 17.72%'31 2283 11.02
o4-mini 25.00 14.13 20.54 12.00 1190 17.32*+>% 31.50 6.30
¢ gemini-2.5-pro 24.17 9.78 4.46 15.00 26.19 157593 2992 4.72
¢ gemini-2.5-flash 8.33 1522 6.25 6.00 1071 9.06+0:68 18.11 3.94
gpt—4.1 12.50 7.61 6.25 8.00 4.76 8.07 =065 12.60 3.15
gpt—-5-nano-medium 6.67 7.61 3.57 0.00 15.48 6.30 201 11.81 1.57
gpt—4.1-mini 333 6.52 1.79 0.00 9.52 3.94+090 7.09 1.57
gpt—4.1-nano 0.00 0.00 0.00 0.00 0.00 0.00+000 0.00 0.00

~. Open-Source Models

@& qwen3-coder-plus 13.33 19.57 19.64 30.00 47.62 24.80°2% 4094 12.60
 kimi-k2-instruct 14.17 16.30 8.04 30.00 47.62 21.85+1° 31.50 12.60

) deepseek-v3.1 15.83 9.78 12.50 7.00 42.86 1673+ 28.35 7.87
Qolm-4.5 7.50 22.83 21.43 13.00 1429 1555+116 2441 6.30
gpt-oss-120b 5.83 4.35 3.57 3.00 7.14 4.72+096 13.39 0.00

demonstrating that success arises from efficient decision-making rather than exhaustive tool calls.
Turn counts also vary significantly across MCP services (see Appendix G for details).

Cost is not a proxy for performance. Figure 21 shows that higher cost does not lead to higher
accuracy. Some of the most expensive runs achieve lower pass@ 1, while several lower-cost runs
reach stronger results. Table 10 reports per-task averages and further shows that costs vary widely
even when the number of turns is similar. Higher cost alone does not imply better results.

3.3 BENCHMARKING MCP SERVERS AND AGENT FRAMEWORKS

Beyond measuring model performance, MCPMark can also be used to evaluate differences across
MCEP server implementations and agent frameworks. These aspects are important in practical MCP
use, because the same model can behave very differently depending on server design or scaffold logic.

MCEP server variation. As shown in Table 12, the same model can show large performance gaps
across MCP servers. For GitHub tasks with claude—-sonnet—4, the KlavisAl server reaches
31.5% pass@1, compared to 16.3% for the official server. A similar gap appears in Notion (34.8%
vs. 21.4%). PostgreSQL shows the same trend on claude-sonnet—4.5: InsForge (54.8%) and
Supabase (52.4%) both exceed the official server (48.8%). These gaps also align with differences in
token usage, where higher-performing servers frequently require fewer tokens. Together, the results

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of MCPMark-Agent, ReAct, and Codex across MCP tasks.

Model Agent | Overall | - Fs ()GH [@NT wPw @rG
MCPMark-Agent | 52.6% | 57.5% 47.8% 42.0% 43.0% 762%

gpt -5-medium ReAct 37.8% | 492% 39.1% 214% 19.0% 64.3%
Codex 36.2% | 333% 304% 250% 200% 81.0%

MCPMark-Agent | 27.4% | 33.3% 18.5% 16.1% 12.0% 61.9%

gpt-5-mini-medium
ReAct 26.6% 35.0% 22.8% 14.3% 15.0% 48.8%

MCPMark-Agent | 24.0% 29.2% 13.0% 3.6% 27.0% 27.0%
grok—-4-fast

ReAct 26.0% 31.7% 21.7% 28.6% 11.0% 36.9%
lme4 6 MCPMark—-Agent | 23.6% 10.0% 19.6% 25.0% 19.0% 51.2%
m—4.
I ReAct 22.1% 10.8% 21.7% 25.0% 14.0% 44.0%
122 o.s
60
50 . 0.4
a0
" -
£ 039
2% 2
o
20 > 0.2
u, |
0.1
0

33
deepsee“)

5-pr° oS o3

ov C
p,‘_oss-n P st
9 ge'

x
.-
K2 3.(.0“3

50 b g 5-m¢d\““\
et awe® @aud®

-
a0 e
c\E\‘“‘e Mad

Figure 4: Turns distribution. Each point is one run (gray = fail). Plots show the turn distribution of
successes; color encodes pass@ 1. Stronger models finish with fewer, better-targeted calls.

indicate that choices in schema exposure, error messaging, and other engineering details on the server
side can materially influence agent success.

Agent scaffold comparison. Table 3 benchmarks MCPMark—-Agent against ReAct (Yao et al.,
2022) and Codex (OpenAl, 2025e). Surprisingly, the simplest design—naive iterative tool-
calling—provides the strongest baseline (gpt-5-medium: 52.6% pass@1), significantly out-
performing both ReAct (37.8%) and Codex (36.2%). We attribute this to the fact that structured
scaffolds impose rigid heuristics that introduce redundant constraints. In contrast, the naive approach
avoids these overheads, allowing the model to interact with MCP tools more directly and effectively.

4 ANALYSIS

In this section, we investigate two aspects that shape model performance on MCPMark: the role of
reasoning effort in agent generalization, and the types of failures that prevent successful execution.

4.1 REASONING MODE AND EFFORT

We study how models benefit from different levels of reasoning effort, which are typically reflected
in the number of consumed thinking tokens before issuing tool calls. Table 4 reports results for the
gpt -5 series and claude-sonnet -4 across different effort settings. *

Model perspective. The gpt—5 series benefits from increased reasoning effort at moderate and
large scales, though effects diverge by size. For gpt -5, medium effort raises pass@1 to 52.56%
from 46.85% at low effort. gpt—5-mini shows even stronger relative gains, improving from 8.27%

*We also include results on other agent scaffolds in Table 13 for reference.

Under review as a conference paper at ICLR 2026

Table 4: Reasoning effort. Comparison of gpt -5 series models and claude—-sonnet—4 under
different reasoning effort settings. Pass@1 is reported as mean with standard deviation (4 runs). Each
model expands into its supported reasoning effort settings. Best values in each column are bolded.

Model Reasoning | Overall FS cu @NNT @wpPw @rc

Low 46855331 | 54175788 27175217 36,6189 45,0020 73,81 470
gpt-5 Medium | 52.56*'% | 57.50 419 47.83%9%9 4196+ 43.00%0% 76.19*%%
High 51.57%5291 | 52505419 50.00£201 44.64200 42,0010 72,624

Low 8.27 +1.51 12.50 569 8.70i3'55 5.36+619 1.00£2:00 14.29 +3.89
gpt-5-mini Medium | 2736360 | 33.33%720 184889 16,0708 12.00%70 619007
High 3032198 | 35005882 19.575251 2054150 1500500 66.67

Low 4.33 +1.36 12.50 +4.19 0.00 +0.00 0.00 +0.00 0.00 +0.00 8.33 +4.56
gpt—-5-nano Medium 6.30 +2.32 6.67 +6.09 761 +2.17 3.57 +0.00 0.00 +0.00 15.48 +5.99
ngh 512 +2.36 5.83 +5.69 8.70i3.55 0.89i1'79 2.00 +2.31 952 +3.89

N/A 28.15%297 | 27.505319 16,3002 21.43F98 26,00+6% 53,5747
claude-sonnet—4 Low 27.36i|'97 2333 +5.44 25.00i4.l(w 22.32:&3.42 22.00:&41![] 48.81 +8.13
High 2835273 | 23.33F471 2826+ 19.64*0% 26.00+23" 50.00*+52

gemini-2.5-flash gpt-4.1 gpt-5-high kimi-k2-instruct
14% 16% 13% 5%
52% o e
66%
10% 84% 84%
context window overflow turn limit abandoned premature stop malformed calls implicit

Figure 5: Failure breakdown across models. Failures are categorized as either implicit (task
completes normally but fails verification) or explicit (e.g., context window overflow, turn limit
exceeded, abandoned, premature stop, or malformed tool calls).

to 30.32% between low and high. By contrast, gpt —5-nano shows only marginal changes around
4% to 6%, suggesting models of this scale lack the capacity to exploit additional reasoning tokens.
claude-sonnet—4 is similarly insensitive, remaining stable around 27% to 28%. These results
indicate that translating additional reasoning steps into better MCP use is non-trivial and likely
depends on a model’s base capacity and training approach.

MCP perspective. Reasoning effort selectively improves generalization in agentic tasks. Remote
services benefit most: GitHub performance nearly doubles from 27.17% to 50.00% between low
and high effort for gpt -5, while Notion rises from 36.61% to 44.64%. Local services remain
stable, with PostgreSQL at 72% to 76% and Filesystem varying under 5 percentage points. We
interpret this discrepancy as stemming from differences in training coverage. Remote services
typically have limited exposure due to rate limits and access restrictions, making the tasks harder and
requiring stronger generalization at test-time. Reasoning helps bridge this gap by enabling models
to extrapolate to unseen cases, aligning with recent discussions (Yao et al., 2023b; Yao, 2025) that
highlight “language generalizes through reasoning in agents”.

4.2 FAILURE BREAKDOWN

Introduction. We classify failures into two categories to ease presentation: implicit and explicit.
Implicit failures occur when the task completes successfully but the output does not meet the required
specifications. These often stem from issues such as reasoning errors, suboptimal planning, ineffective
tool usage, or difficulty handling long contexts, which may interact to cause complex failures that are
difficult to attribute to a single factor. In contrast, explicit failures can be directly linked to specific
issues. These include context window overflow (input exceeding the model’s processing length), furn

Under review as a conference paper at ICLR 2026

limit exceeded (the model exhausts its allowed interaction steps), abandoned tasks (model decides the
task is infeasible), premature stop (model halts without completing or making necessary tool calls),
and malformed tool calls (invalid parameters or improperly structured payloads).

Observations. As seen in Figure 5, implicit failures account for the majority of errors across all
models, often exceeding 50%. Models like gpt-5-high and kimi-k2-instruct show over
80% implicit failures, indicating they generally complete tasks without obvious breakdowns, with
errors being more subtle and capability-driven. In contrast, gemini-2.5-flash and gpt-4.1
have lower implicit failure rates (52% and 66%, respectively), suggesting more explicit causes. For
explicit failures, gemini-2.5-flash and gpt—4. 1 mainly experience abandoned or premature
stop errors, reflecting weaker reasoning and planning. gemini-2.5-f1lash also shows a higher in-
cidence of malformed tool calls (around 10%), possibly due to mismatches in tool-call conventions or
insufficient training. gpt —5-high has more context window overflow errors, indicating difficulties
with long-context handling, while kimi-k2-instruct faces frequent rurn limit exceeded errors,
often due to repetitive tool-calling loops. These results suggest that explicit errors are model-specific,
highlighting the need for targeted improvements in reasoning, context management, and tool use.

5 RELATED WORK

LLM Agents. With the development of large language models (LLMs) (Team, 2025; Anthropic,
2025a; Team et al., 2025; OpenAl, 2025¢; Comanici et al., 2025), LLM agents have progressed from
early prompting methods such as ReAct (Yao et al., 2023b), which integrated reasoning traces with
tool actions, to more structured designs like MetaGPT (Hong et al., 2024) that coordinate multi-agent
collaboration through explicit role assignment. This evolution has been supported by research on
tool use (Schick et al., 2023; Qin et al., 2023; Patil et al., 2024), which explore when and how models
should call APIs, as well as planning and reflection methods (Yao et al., 2023a; Shinn et al., 2023;
Wang et al., 2024a) that improve robustness in multi-step workflows. Multi-agent frameworks (Wu
et al., 2024; Li et al., 2023; Chen et al., 2023) further demonstrate the benefits of coordinated division
of labor. In applied domains, coding agents (Yang et al., 2024; Wang et al., 2024b) enable real
repository interaction; GUI and computer-use agents are advanced by benchmarks (Zhou et al., 2023;
Deng et al., 2023; Xie et al., 2024); and deep research efforts are represented by initiatives (Wei
et al., 2025; Starace et al., 2025; Du et al., 2025). Together, these developments illustrate the trend
toward general agents that can operate across heterogeneous systems and contexts, naturally pointing
to the need for standardized protocols such as the Model Context Protocol (MCP) (Anthropic, 2024)
that provide a unifying interface for tool and environment integration.

Benchmarks for evaluating MCP use. Recent work has begun to systematically benchmark agent
performance in MCP-enabled settings (Yan et al., 2025; Liu et al., 2025; Mo et al., 2025; Gao et al.,
2025). MCP-Universe (Luo et al., 2025) constructed tasks across multiple domains and evaluators,
revealing the difficulty models face with long and dynamic workflows. LiveMCP-101 (Yin et al.,
2025) focused on multi-tool interaction and execution-plan validation, while MCP-AgentBench (Guo
et al., 2025) scaled up evaluation with hundreds of tasks spanning diverse servers and tools. These
efforts primarily emphasize broad tool coverage or easier execution but leave gaps in assessing
high-fidelity workflows tied to realistic application environments. Our proposed MCPMark addresses
this by designing tasks with diverse CRUD operations in containerized settings to ensure safety and
reproducibility. Each task is paired with programmatic verification scripts and full environment state
tracking, enabling reliable and fine-grained evaluation.

6 DISCUSSION ON LIMITATIONS AND FUTURE DIRECTIONS

Our task creation pipeline, while ensuring task quality, is difficult to scale. This creates a bottleneck
for producing the large-scale training data needed to advance the field. Furthermore, the steep
difficulty of many tasks in MCPMark limits its utility for evaluating and guiding the development of
smaller, more efficient models. Future work on the benchmark should therefore focus on introducing
a more fine-grained difficulty gradient, potentially through semi-automated task generation and a
reduced task execution chain. Additionally, to better reflect real-world complexity, the benchmark
could be expanded to include tasks with ambiguous user intent. This would test an agent’s ability
to ask clarifying questions or infer the user’s actual intent. Finally, incorporating a wider variety
of MCP servers could also help challenge agents across a more diverse set of digital tools.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This section outlines how we address the ethical considerations involved in the construction of our
benchmark, which includes several key components that could raise ethical concerns:

* Initial State of MCP Environment: Each initial state and environment used in the benchmark
is provided with the appropriate license information (see Appendix H for details). A few
environments were self-curated, and for these, we have ensured transparency and compliance
with relevant licensing requirements, promoting ethical usage.

» Task Curation: All tasks included in the benchmark were collaboratively annotated by both
experts and Al agents. The experts involved in the curation process have been properly recognized
as co-authors in the author list, ensuring that their contributions are duly acknowledged. Addi-
tionally, the licenses for the agents used, including Claude Code (License) and Cursor (License),
are provided to ensure that all resources are used responsibly and in accordance with the relevant
licensing terms for research purposes.

* MCP Servers: The licenses for each specific MCP server used in the benchmark are provided in
Appendix C. This ensures that all external systems and tools are properly licensed for research
and evaluation purposes.

By adhering to these practices, we ensure that high ethical standards are maintained throughout the
construction of the benchmark, and that all resources are used responsibly and in accordance with
relevant regulations.

REPRODUCIBILITY STATEMENT

In order to ensure the reproducibility of our experiments, we have made available the evaluation code,
task data, and corresponding run instructions in the supplementary materials. The evaluation code
has been modified to remove any identifiable personal information to protect privacy. Additionally,
the tasks and data used for evaluation are included in the supplementary materials along with detailed
instructions on how to execute the experiments. This ensures that other researchers can replicate our
results under the same conditions while adhering to privacy standards.

REFERENCES

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context—protocol, November 2024. Accessed: 2025-06-30.

Anthropic. Claude opus 4.1. https://www.anthropic.com/news/claude-opus—4-1,
August 2025a. Accessed: 2025-08-06.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, May
2025b. Accessed: 2025-07-28.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring
emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
comprehensive benchmark for deep research agents. arXiv preprint arXiv:2506.11763, 2025.

11

https://www.anthropic.com/legal/commercial-terms
https://cursor.com/terms-of-service?lang=en
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-opus-4-1
https://www.anthropic.com/news/claude-4

Under review as a conference paper at ICLR 2026

Xuangi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. Mcp-radar: A multi-dimensional
benchmark for evaluating tool use capabilities in large language models. arXiv preprint
arXiv:2505.16700, 2025.

Zikang Guo, Benfeng Xu, Chiwei Zhu, Wentao Hong, Xiaorui Wang, and Zhendong Mao. Mcp-
agentbench: Evaluating real-world language agent performance with mcp-mediated tools. arXiv
preprint arXiv:2509.09734, 2025.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
security threats, and future research directions. arXiv preprint arXiv:2503.23278, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran
Yao, Huan Wang, Shelby Heinecke, et al. Mcpeval: Automatic mcp-based deep evaluation for ai
agent models. arXiv preprint arXiv:2507.12806, 2025.

Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen
Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. Mcp-universe: Benchmarking large
language models with real-world model context protocol servers. arXiv preprint arXiv:2508.14704,
2025.

Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He,
Xianpei Han, and Le Sun. Livemcpbench: Can agents navigate an ocean of mcp tools? arXiv
preprint arXiv:2508.01780, 2025.

OpenAl. Introducing gpt-oss. https://openai.com/index/introducing-gpt-oss/,
August 2025a. Accessed: 2025-08-14.

OpenAl. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, April
2025b. Accessed: 2025-07-28.

OpenAl. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
August 2025¢c. Accessed: 2025-08-13.

OpenAlL Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, April 2025d. Accessed: 2025-07-28.

OpenAl. Codex: Lightweight coding agent that runs in your terminal. https://github.com/
openai/codex, 2025e. Commit snapshot as of 2025-11-27.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems, 37:
126544-126565, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru

Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

12

https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/gpt-4-1/
https://cdn.openai.com/gpt-5-system-card.pdf
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://github.com/openai/codex
https://github.com/openai/codex

Under review as a conference paper at ICLR 2026

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539-68551,
2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

A. Singh, A. Ehtesham, S. Kumar, and T. T. Khoei. A survey of the model context protocol (mcp):
Standardizing context to enhance large language models (1lms). Preprints, 2025:2025040245,
2025. doi: 10.20944/preprints202504.0245.v1.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. arXiv preprint arXiv:2407.18901,
2024.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better 1lm agents. In Forty-first International Conference on Machine
Learning, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversations. In First Conference on Language Modeling, 2024.

XAl Grok 4. https://x.ai/news/grok—4, July 2025. Accessed: 2025-07-28.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Leli, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024.

Yunhe Yan, Shihe Wang, Jiajun Du, Yexuan Yang, Yuxuan Shan, Qichen Qiu, Xianqing Jia, Xinge
Wang, Xin Yuan, Xu Han, et al. Mcpworld: A unified benchmarking testbed for api, gui, and
hybrid computer use agents. arXiv preprint arXiv:2506.07672, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Shunyu Yao. The second half. https://ysymyth.github.io/The-Second-Half/,
2025.

13

https://arxiv.org/abs/2505.09388
https://x.ai/news/grok-4
https://ysymyth.github.io/The-Second-Half/

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The eleventh international
conference on learning representations, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian
Liu, Simin Ma, Song Wang, et al. Livemcp-101: Stress testing and diagnosing mcp-enabled agents
on challenging queries. arXiv preprint arXiv:2508.15760, 2025.

Zai. Glm-4.5: Reasoning, coding, and agentic abililties. https://z.ai/blog/glm-4.5, July
2025. Accessed: 2025-07-28.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

14

https://z.ai/blog/glm-4.5

Under review as a conference paper at ICLR 2026

APPENDIX

TABLE OF CONTENTS

A

Use of LLMs

Details of the Task Creation Pipeline
MCP servers

Detailed MCP Benchmark Results

Case Studies by MCP

Cost and Turn Distribution

Turn Distributions across MCP Services

Initial States Selection and Licenses

H.1 Notion Templates e e
H.2 GitHub Repositories o v v i e e e e e e
H.3 Playwright Usage
H.4 Filesystem Components oo v vt it e
H.5 PostgreSQL Databases e

Additional Experimental Results

A USE OF LLMs

15

16

18

19

24

39

40

Large language models were used as general-purpose assistants to support writing, debugging, and
the generation of some initial environment states. Specifically, claude-code and codex were prompted
to produce structured directory layouts, starter scripts, or database schemas that served as initial
configurations in selected tasks. These outputs were carefully reviewed and refined by human experts

to ensure correctness, realism, and alignment with benchmark goals.

LLMs also helped improve the grammar, flow of writing, and occasionally assisted in resolving minor
coding issues such as syntax errors or implementation quirks. All core ideas, benchmark designs,
implementations, experiments, and analyses were independently developed by the authors. No part

of the scientific contribution or methodological reasoning was generated by an LLM.

15

Under review as a conference paper at ICLR 2026

B DETAILS OF THE TASK CREATION PIPELINE

We use Playwright as an example to illustrate the guideline for human experts and the initial
instruction/prompt for the task creation agent. These are simplified for reference.

Guideline (Playwright)

Step 1. Select the starting environment
Pick a website or web app as the initial state. Prefer a staging or test instance to avoid
side effects. Examples: a Reddit-like forum or a Shopping Admin dashboard.

Step 2. Configure the agent environment
In Cursor or Claude Code, set up the MCP server stack and include the Playwright MCP
server so the agent can control a browser.

Step 3. Define an initial question or topic
Write a seed question or topic that will guide agent exploration and task
creation. It can be broad or moderately specific.

Step 4. Create and refine the task

Step 4.1. Exploration with the agent
Have the agent read the initial instruction (which includes the seed question),
then explore the target site together with the agent. Based on the collected con-
text, ask the agent to propose a task that fits the objectives and requirements.

Step 4.2. Provide feedback to improve the task
Guide the agent to revise the task as needed. Examples:

« If verification is weak: “This task is not sufficiently verifiable. Please revise
it to make verification clearer and more reliable.”

* If exploration lacks coverage: “You can explore deeper to collect more
diverse and detailed information.”

* If subtasks feel disconnected: “Make the subtasks integrated rather than
unrelated.”

Step 4.3. Save the task
Store the task description and the verification script as separate files. Use a
consistent folder structure based on category and name. Follow well-structured
prior examples for formatting.

Step 4.4. Human-in-the-loop adjustments
Iterate between the agent and the reviewer until both the task description and
the verification script meet quality standards.

Step 5. Execute and verify
Run the task with Playwright MCP to reach the final state, then run the verification script.
Stress-test the checker to confirm:
Step 5.1. The task is executable end to end.
Step 5.2. Pass or fail is clear and objective.
Step 5.3. The script flags both correct and incorrect outcomes, including edge cases.
Step 6. Assess difficulty (optional)

If the task and checker pass, consider whether difficulty is high enough to test the model.
Adjust scope or constraints if needed.

Notes. These steps target experts working with Cursor or Claude Code. They are guidelines. If
issues appear, collaborate with colleagues to debug efficiently.

16

Under review as a conference paper at ICLR 2026

Initial Instruction for Task Creation Agent (Playwright)

Your job is to:
1. First explore the web environment to understand available MCP tools and capabilities.

2. Generate one challenging, verifiable, and realistic task based on your collected information.
3. Focus your exploration and task generation on the following specific topic or question:

* Use this as a guiding theme for creating more targeted and relevant tasks.
* Ensure the task addresses different aspects or components related to this requirement.

Playwright MCP Tools Reference:

<playwright_mcp_doc>
[contents of docs/playwright-mcp-introduction.md go here]
</playwright_mcp_doc>

Output Format:
{
"tasks": [
{
"task_id": "task_1",
"description": "Clear, conversational task description",
"difficulty": "hard",
"verification_criteria": ["criterion 1", "criterion 2"],
"expected_mcp_calls": ["browser_navigate", "browser_snapshot",
"browser_click"],

"estimated_complexity": "high"

}
]
}

Based on the given web application environment, write one challenging, verifiable, and realistic
browser automation task that aligns with users’ actual web interaction workflows. The goal is to
evaluate an Agent’s ability to use Playwright MCP tools effectively. Requirements:

* Difficulty: The task should be really hard ... (omitted)
* Verifiability: Avoid open-ended outcomes ... (omitted)
¢ Authenticity: Describe the task in a natural, conversational tone ... (omitted)

» Context Awareness: Leverage page structure, form elements, navigation patterns, ... (omitted)

Start by exploring the web application environment using MCP tools to understand the
current structure, interactive elements, and user workflows, then generate a task that combines:

1. Your real-time MCP exploration findings.
2. The specific website structure and interactive elements you discover.

3. A focus on browser automation operations that require multiple Playwright MCP tools rather
than only content reading.

4. The specific focus area: <seed_topic>.

Please explore thoroughly before creating the task. Consider:
* Form elements and input fields.

* Navigation patterns and menu structures.

* Dynamic content and interactive features.

* User workflow patterns.

 Authentication and session management.

* Data submission and validation processes.

17

Under review as a conference paper at ICLR 2026

C MCP SERVERS

We relied on five Model Context Protocol (MCP) servers in our setup. Below we summarize their
functionality, invocation, repository, and license.

Filesystem. The filesystem server provides local read, write, and directory operations over the
host file system. It is invoked as @modelcontextprotocol/server-filesystem. The
implementation is hosted at github.com/modelcontextprotocol/servers under the MIT License.

GitHub. The GitHub server integrates with the GitHub API to manage repositories, issues, and
pull requests. The endpoint used is https://api.githubcopilot.com/mcp/. The code is
available at github.com/github/github-mcp-server, released under the MIT License.

Notion. The Notion server allows interaction with Notion databases and pages. It is invoked as
@notionhg/notion-mcp-server. The official repository is github.com/makenotion/notion-
mcp-server, licensed under the MIT License.

Playwright. The Playwright server enables browser automation and scripted web work-
flows. It is started using @playwright/mcp@latest. The source code is provided at
github.com/microsoft/playwright-mcp, distributed under the Apache License 2.0.

PostgreSQL. The PostgreSQL server provides access to a relational database through SQL queries.
It is launched with postgres-mcp —access-mode=unrestricted. The implementation is
maintained at github.com/crystaldba/postgres-mcp, and is released under the MIT License.

18

https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://opensource.org/licenses/MIT
https://api.githubcopilot.com/mcp/
https://github.com/github/github-mcp-server
https://opensource.org/licenses/MIT
https://github.com/makenotion/notion-mcp-server
https://github.com/makenotion/notion-mcp-server
https://opensource.org/licenses/MIT
https://github.com/microsoft/playwright-mcp
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/crystaldba/postgres-mcp
https://opensource.org/licenses/MIT

Under review as a conference paper at ICLR 2026

D DETAILED MCP BENCHMARK RESULTS

Tables 2 and 10 presented the overall success rates and usage statistics, aggregated across all MCPs.
Here we provide the corresponding breakdown by individual MCP from Table 5 to Table 9. #Input and
#Output are measured in thousands of tokens (K), and Cost is reported in USD. For success metrics,
bold and underline indicate the best and second-best results, respectively. For usage statistics, bold
and underline denote the largest and second-largest values, without implying better performance.

Table 5: Filesystem MCP benchmark results.

Metrics Per-Task Avg Usage
Model
Pass@1 Pass@4 Pass®4 #Input #Output Cost Turns Tool Calls
#1 Proprietary Models

gpt-5-medium 57.50 39 76.67 36.67 215.96 17.38 044 10.06 21.07
® grok-4 50.83+640 7333 26.67 247.33 10.70 0.90 10.80 16.87

o3 35.83%27¢ 50.00 26.67 689.64 17.79 152 28.79 27.80

gpt-5-mini-medium 33.33%6024 5333 10.00 398.34 12.58 0.12 14.84 36.93
€ claude-opus—4.1 33,3300 - - 27217 437 441 1637 1540
€D claude-sonnet-4 27.50+27% 50.00 6.67 302.21 4.00 0.97 16.02 15.08

o4-mini 25.00%%% 36.67 13.33 293.34 15.89 039 20.88 19.88
¢ gemini-2.5-pro 2417363 4333 10.00 21497 7.75 0.65 14.35 14.72
@ ogrok-code-fast-1 23.33%74 40.00 10.00 276.40 2.36 0.06 16.38 16.77
gpt-4.1 12.50%144 20,00 333 143.95 1.81 030 928 18.48
¢ gemini-2.5-flash 8.33 107 13.33 6.67 67.64 7.57 0.04 6.50 11.15

gpt-5-nano-medium 6.67%77 16.67 0.00 462.74 19.53 0.03 20.75 27.76
gpt-4.1-mini 3.33£0:00 3.33 3.33 196.15 1.63 0.08 15.50 19.57
gpt-4.1l-nano 0.00 £0-00 0.00 0.00 116.98 1.32 0.01 12.17 15.32

¥ Open-Source Models

© deepseek-v3.1 15.83 1% 26.67 6.67 421.33 3.38 024 23.83 23.12
Qkimi-k2-instruct-0905 14.17+!% 2333 6.67 696.79 4.47 043 2627 25.70
@ awen3-coder-plus 13334067 26,67 3.33 972.41 4.15 0.20 28.23 27.32
® awen3-max 10.83 144 13.33 10.00 389.56 2.87 0.48 19.27 18.39
@olm-4.5 7.50 %144 13.33 3.33 193.95 3.92 0.07 16.39 17.09
gpt-o0ss-120b 5.83 433 16.67 0.00 19.75 1.08 <001 462 3.62

19

Under review as a conference paper at ICLR 2026

Table 6: O GitHub MCP benchmark results.

Metrics Per-Task Avg Usage
Model
Pass@1 Pass@4 Pass™4 #Input #Output Cost Turns Tool Calls
#1 Proprietary Models
) gpt —5-medium 47.83%%13 65,22 17.39 659.73 20.57 1.03 14.33 21.23
63 claude-opus-4.1 21.74+000 - - 620.63 5.84 9.75 10.78 10.13
) gpt—-5-mini-medium 18.48+770 34,78 435 614.68 7.71 0.17 13.92 17.28
é:@ claude-sonnet-4 16.30 56 30.43 8.70 696.81 4.44 2.16 11.16 10.50
¢ gemini-2.5-flash 15224217 21.74 8.70 1107.04 12.70 0.36 10.46 17.71
@ grok-4 14.13 430! 21.74 8.70 804.50 1.93 244 1298 16.76
o4-mini 14.13%64 26,09 435 510.13 8.74 0.60 10.92 10.08
o3 14,13 %301 21.74 4.35 451.18 3.56 0.93 9.20 8.24
4 gemini-2.5-pro 9.78 £1.88 21.74 0.00 173.43 5.75 0.52 5.45 6.29
@ grok-code-fast-1 8.70+332 1739 435 75141 6.50 0.16 17.85 17.28
) gpt—5-nano-medium 7.61 188 13.04 0.00 751.62 26.77 0.05 15.15 17.63
gpt-4.1 7.61 188 8.70 435 445.88 2.49 0.91 9.95 14.97
gpt-4.1-mini 6.52+02 17.39 0.00 466.70 1.51 0.19 12.00 14.63
gpt-4.1l-nano 0.00 =000 0.00 0.00 312.86 2.59 0.03 9.27 11.04
% Open-Source Models

Qolm-4.5 22.83%04 3478 13.04 482.00 3.65 0.16 11.92 11.04
® awen3-coder-plus 19.57+032 34,78 13.04 1987.14 3.36 040 19.12 18.13
Qkimi-k2-instruct-0905 16.30F!% 26.09 8.70 995.65 8.25 0.62 23.68 23.23
® awen3-max 14.13 430! 17.39 4.35 1348.13 2.55 1.63 26.70 25.78
© deepseek-v3.1 9.78 £1:88 13.04 8.70 362.36 2.24 0.21 9.46 9.22
gpt-o0ss-120b 435307 8.70 0.00 76.30 1.41 <0.01 4.62 3.62

20

Under review as a conference paper at ICLR 2026

Table 7: @ Notion MCP benchmark results.

Metrics Per-Task Avg Usage
Model
Pass@1 Pass@4 Pass™4 #Input #Output Cost Turns Tool Calls
#1 Proprietary Models
) gpt —5-medium 41.96+2% 50,00 32.14 375.04 31.62 0.79 12.94 21.60
63 claude-opus-4.1 35.71 =000 - - 638.06 3.93 9.87 17.04 16.04
03 2411538 4643 7.14 224.93 9.47 0.53 13.72 12.72
é:@ claude-sonnet-4 21.43+505 39.29 7.14 646.64 4.24 2.00 19.71 18.71
o4-mini 20.54%% 4286 7.14 267.63 25.97 0.41 15.29 14.29
) gpt—-5-mini-medium 16.07+5%2 32.14 3.57 705.09 12.34 0.20 14.60 17.28
¢ gemini-2.5-flash 6.25 +464 21.43 0.00 201.00 6.58 0.08 6.11 9.61
gpt-4.1 6.25+1% 14.29 0.00 135.55 1.37 0.28 8.58 11.82
4 gemini-2.5-pro 4.46+29% 7.14 0.00 212.92 7.13 0.64 7.12 8.67
) gpt—5-nano-medium 3.57 000 3.57 3.57 204.32 32.08 0.02 7.46 8.74
® grok-4 2.68 15 3.57 0.00 678.64 13.04 223 20.14 24.80
@ grok-code-fast-1 2.68 15 3.57 0.00 561.49 7.26 0.12 20.27 20.09
gpt-4.1-mini 1.79+179 3.57 0.00 262.75 1.35 0.11 12.57 14.56
gpt-4.1l-nano 0.00 =000 0.00 0.00 93.38 1.40 <0.01 9.64 10.93
% Open-Source Models
Qolm-4.5 2143253 32,14 10.71 625.97 5.04 0.21 22.15 21.17
® awen3-coder-plus 19.64 6044 39.29 7.14 796.73 2.75 0.16 21.07 20.23
® awen3-max 16.96 %46+ 25,00 3.57 973.92 3.66 1.19 2657 25.63
© deepseek-v3.1 12.50+390 2857 0.00 503.35 2.20 0.29 17.94 17.40
@ kimi-k2-instruct-0905 8.04 +2.96 10.71 3.57 1117.21 5.20 0.68 33.55 32.72
gpt-o0ss-120b 3.57 %23 14.29 0.00 68.31 1.72 <001 549 4.49

21

Under review as a conference paper at ICLR 2026

Table 8: @ Playwright MCP benchmark results.

Metrics Per-Task Avg Usage
Model
Pass@1 Pass@4 Pass®4 #Input #Output Cost Turns Tool Calls
#1 Proprietary Models

gpt-5-medium 43.00°2° 56.00 36.00 1807.17 21.79 248 2378 22.96
® grok-4 35.00*79% 48.00 20.00 1264.91 6.64 3.89 2005 23.02
€3 claude-sonnet-4 26.00+9% 36,00 8.00 1241.92 3.52 378 19.80 19.12
@ grok-code-fast-1 2500%'7 3600 800 115772 717 0.24 1823 18.18
€D claude-opus-4.1 24.00+0-00 - - 1146.05 2.88 1741 19.04 18.40
4 gemini-2.5-pro 15.00+73 32,00 4.00 1696.44 5.58 432 19.15 18.33

o3 15005520 32,00 8.00 556.30 4.46 1.15 1630 15.40

o4-mini 12.002% 28.00 0.00 862.51 18.07 1.03 17.70 16.93

gpt-5-mini-medium 12.00%632 24,00 400 1814.94 8.55 047 2275 22.04
gpt-4.1 8.00 +283 12.00 4.00 859.77 0.86 1.73 13.80 15.21
4 gemini-2.5-flash 6.00 200 12.00 0.00 3838.93 8.21 1.17 2633 38.78

gpt-5-nano-medium 0.00 =000 0.00 0.00 711.95 17.71 0.04 1852 17.55
gpt-4.1-mini 0.00 =000 0.00 0.00 4959.14 3.28 1.99 31.33 31.52
gpt-4.1l-nano 0.00 +000 0.00 0.00 389.80 0.74 0.04 1351 13.61

¥, Open-Source Models

@ qwen3-coder-plus 30.00 =447 48.00 8.00 2851.57 2.39 0.57 21.21 20.40
@ kimi-k2-instruct-0905 30.00+%° 40.00 20.00 1358.02 2.17 0.82 20.64 19.79
Qolm-4.5 13.00%332 20.00 4.00 582.73 2.76 020 15.36 14.61
® gwen3-max 8.00+0-00 12.00 4.00 2297.67 1.16 276 27.83 27.41
© deepseek-v3.1 7.00%332 16.00 0.00 836.01 1.77 0.47 19.09 20.78
gpt-o0ss-120b 3.00%173 4.00 0.00 139.33 1.27 0.01 7.21 6.26

22

Under review as a conference paper at ICLR 2026

Table 9: @ PostgreSQL MCP benchmark results.

Metrics Per-Task Avg Usage
Model
Pass@1 Pass@4 Pass™4 #Input #Output Cost Turns Tool Calls
#1 Proprietary Models
gpt-5-medium 7619753 100.00 47.62 113.35 17.04 0.31 13.37 12.45
gpt-5-mini-medium 61.90+583 90.48 28.57 115.40 9.27 0.05 11.77 10.77
® grok-4 5833781 80.95 38.10 186.07 8.23 0.68 17.89 17.08
€} claude-sonnet—4 53.57+019 7143 38.10 33110 7.54 111 26.80 25.81
@ grok-code-fast-1 4762470 61.90 28.57 22641 5.46 0.05 19.70 18.70
o3 36.90 3% 66.67 14.29 63.56 4.72 0.16 10.71 9.71
éB claude-opus-4.1 33.33+0.00 - - 260.68 9.80 4.64 24.86 23.86
4 gemini-2.5-pro 26.19%790 47,62 952 3974 8.91 023 745 6.45
gpt-5-nano-medium 1548519 2857 4.76 105.02 23.04 0.01 9.46 10.15
o4-mini 11.90 =412 19.05 4.76 15.92 5.76 0.04 5.06 4.06
¢ gemini-2.5-flash 10714619 2381 4.76 46.08 9.93 0.04 8.76 11.38
gpt-4.1-mini 9.52+337 14.29 4.76 46.63 1.78 0.02 9.77 11.61
gpt-4.1 47600 476 476 55.11 1.20 012 8.12 10.54
gpt-4.1l-nano 0.00 =000 0.00 0.00 71.06 243 <0.01 873 10.18
¥ Open-Source Models
® awen3-coder-plus 47.625% 6190 3810 573.90 5.13 0.12 29.00 28.00
Q«kimi-k2-instruct-0905 47.62%*7° 66.67 28.57 441.16 5.38 028 30.21 29.25
® qwen3-max 44.05+2% 5238 38.10 192.13 491 0.26 18.88 17.92
© deepseek-v3.1 42.86%7 6190 28.57 316.60 4.65 0.19 2648 25.49
Qoln-4.5 14.29%753 2381 0.00 204.61 5.14 0.07 2539 24.40
gpt-oss-120b 7.14%238 23381 0.00 2136 142 <001 507 4.07

23

Under review as a conference paper at ICLR 2026

E CASE STUDIES BY MCP

Filesystem - Contact Information

Please use FileSystem tools to finish the following task:

Task Description

Your task is to compile all contact information from all the files into a single CSV table. You need to extract all people's contact information and organize it systematically.
Task Objectives

1. Scan all files in the directory

2. Extract contact i ion for all and found

3. Create a CSV file named contact_info.csv in the main directory

4. Structure the CSV with the following columns:
First column: Name (required)
Second column: Email (required)
- Third column: Phone (required)
- Additional columns: Any other contact information types found
5. Consolidate information by merging the same types of information into single columns
6. Leave cells blank if specific information is not available for a person/organization
Expected Output
File name: contact_info.csv
- Format: CSV with headers and data rows
Reasoning Task
After creating the contact_info.csv file, analyze the data to answer: What is Charlie Davis's job/profession?
Hint: focus on the contact information in contact_info.csv.
Write your answer in a file named answer.txt in the main directory.
Important Notes
Do not modify any existing files

- Only create the two new files: contact_info.csv and answer. txt

Initial State

book list.txt

expenses.csv

fitness_log.csv

price_comparisons.csv
Personal

J bookmark_expor‘t.txt?

Downloads

calculations.txt

tax_info_2023.csv

J cor‘respondence72023.txtj

Root

Documents

draft lettertxt

mesheet.csv

important_dates.csv
example.txt

backup_contacts.csv

tax_documents_2022.csv

emergency_contacts.txtj

experiment.ﬁresults.txtbl

Figure 6: Task sheet and initial directory tree for the Filesystem case; trajectories are in Figures 7-8.

24

Under review as a conference paper at ICLR 2026

Model Trajectory - claude-sonnet-4

% claude-sonnet-4 18 turns

I'll help you compile all contact information from the files into a CSV table. Let me start by exploring the directory
structure to understand what files are available.

® filesystem
arguments

output result

Allowed directories:
/app/mcpmark_backups/backup_filesystem_desktop_template_contact_information_1

® filesystem

Now | need to read all the files to extract contact information. Let me start by reading the files that are most likely
to contain contact information:

® filesystem re: It q
Let me also read some other files that might contain contact information:
® filesystem re: It q
Let me check the remaining files to make sure | don't miss any contact information:
® filesystem re: t g
Let me check a few more files to be thorough:
® filesystem re: it g
Let me also check the remaining text files:

® filesystem re: it q

Verifier Result

&/ Contact info CSV Exists

« Answer TXT Exists
& Files in Correct Locations PASS

& Correct CSV Structure

«/ Answer Content

Figure 7: Successful run by claude-sonnet-4: extracts contacts, writes CSV and answer file,
verifier passes.

25

Under review as a conference paper at ICLR 2026

Model Trajectory - gemini-2.5-pro

¢ gemini-2-5-pro 12 turns
® filesystem h_fi

Okay, | understand. | will start by listing all the files in the current directory to identify the files containing contact
information. Then, | will read each of these files to extract the necessary data. After collecting all the contact details,
| will compile them into a single contact_info.csv file, ensuring the data is consolidated and formatted correctly
with the required headers. Finally, | will analyze the compiled data to determine Charlie Davis's job/profession and
save this answer in an answer.txt file.

® filesystem 1 dir
| need to compile contact information from all the files in the current directory, create a CSV file with it, and then

answer a question based on the compiled data. However, the search_files and 1list_directory commands
failed. I'll start by listing the allowed directories to understand the file system's constraints.

® filesystem list_allo 1t ori

® filesystem 1 di

® filesystem «

® filesystem

filesystem
® filesystem v

® filesystem write

Done.

| have created the contact_info.csv file with all the contact information and the answer.txt file with the
answer to your question.

Verifier Result

& Contact info CSV Exists

&« Answer TXT Exists
® Files in Correct Locations FA ".

@ Correct CSV Structure

@ Answer Content

Figure 8: Failed run by gemini-2.5-pro: files are created but CSV/answer content is incorrect,
verifier fails.

26

Under review as a conference paper at ICLR 2026

GitHub - Linting Cl Workflow

I need you to set up a proper linting workflow for our C1 pipeline to ensure code quality standards are enforced on all pull requests. Here's what you need to do:
Step 1: Create Linting Configuration Branch Create a new branch called ‘ci/add-eslint-workflow' from the main branch.

Step 2: Create ESLint Configuration On the new branch, create the file .eslintrc.json in the repository root with:

renv': {
"browser": true,
"es2021": true,

nod

true

}

"extends": [
"eslint:reconmended"

1,

"parser0ptions":

“ecmaversion": 12,
“sourceType": "module"

},

"rules”: {
“no-unused-vars

"“no-console":

"semi®: [

"quotes”:
},
"ignorePatterns": ["node_modules/", "dist/", "build/"]

Step 3: Create GitHub Actions Linting Workflow Create the file .github/workflows/Uint.ynl with:
- Workflow name: "Code Linting"
- Triggers on: push to main, pull_request events
- Uses ubuntu-latest runner
Sets up Nodejs version 18 using actions/setup-node
Installs dependencies with npm ci
Installs ESLint globally
Runs ESLint on all JavaScript files in src/ directories
Fails the workflow if linting errors are found
Step 4: Create a File That Will Fail Linting Create the file src/exanple.js with intentional linting violations that will cause the CI check to fail

Step 5: Create Pull Request Commit all the changes (ESLint config, workflow file, and example file with linting errors) in a single commit, then create a pull request from ‘ci/add-eslint-
workflow' to ‘main’ with:

-~ Title: "Add ESLint workflow for code quality enforcement”
Body must include:
- A"## Summary" heading describing the linting setup
- A"## Changes" heading listing the files added
- A"## Testing" heading explaining how to test the workflow
- Mention that the PR intentionally includes linting errors to demonstrate the workflow

Step 6: Fix Linting Errors and Update PR Fix the linting errors in src/example.js and commit the changes in a single commit to update the PR so that the CI check passes.

Initial State

=0 J— oD BRI

< Code @ lssues 11 Pulrequests © Actions [Projects @ Securty L nsights 3 Setings

Aug 24, 2025.
mepmark-cicd (Fusic srchive 2 Edtbios - OWatch 0 - Y Fk 0 - frsw 0 -

¥ ¥ 1o © o Q coto . Avout

Restored mirror of mcpmark-cicd

o tests Format code with Prettier according to .prettierrc configu. last month @ L
o

D gitignore Initial commit: Node js Express API with comprehensive te. last month Y ofo

O pretiierrc Initial commit: Node js Express API with comprehensive te last month

[README.md Format code with Prettier according to prettierrc configu. last month Releases.

D eslint.configjs Format code with Prettier according to prettierrc configu. last month i

[package-lock json nitial co

mit: Node Js Express API with comprehensive te last month

D packagejson Format code with Prettier according to prettierrc configu. last month
(1) README =3
Conttuton @
MCPMark CI/CD L T
[~ |
eingmgYoD pctos

Figure 9: Task sheet and initial repository snapshot for the GitHub case; trajectories are in Figures
11.

27

Under review as a conference paper at ICLR 2026

Model Trajectory - gpt-5-medium

©) gpt-5-medium 5 turns

® github ate_branc
arguments
"owner": "mcpmark-eval",
"repo": "mcpmark-cicd",
"branch": "ci/add-eslint-workflow",
"from_branch": "main"

output result

"meta": null,
"c%ntent“: [
"type": "text",
"text": "{\"ref\":\"refs/heads/ci/add-eslint-workflow\",\"url\":\"https://api.git

"annotations": null,
"meta": null

]
“étructuredContent“: null,
"i{sError": false

® github p
® github : pull
® github

All set. | completed all steps and created a pull request, then fixed the linting violations and updated the PR so it
should pass Cl now. Here’s what | did:

Step 1: Created branch ci/add-eslint-workflow from main.
Step 2: Added .eslintrc.json at the repo root with the specified configuration.
Step 3: Added GitHub Actions workflow at .github/workflows/lintyml:

Name: Code Linting

Triggers: push to main and pull_request targeting main

Verifier Result

« CI branch exists
& .eslintrc.json config
« .github/worflows/lint.yml PASS
&/ Linting PR exists

" Workflow 1 fail 1 pass

&/ Linting error fixed

Figure 10: Successful run by gpt —5-medium: branch, ESLint config, workflow, and PR are created;
CI run fixes lint errors; verifier passes.

28

Under review as a conference paper at ICLR 2026

Model Trajectory - qwen3-coder-plus

@ gwen-3-coder-plus 25 turns

I'll help you set up a proper linting workflow for your Cl pipeline. Let me start by creating the necessary branch and
files.

First, I'll create the new branch 'ci/add-eslint-workflow' from the main branch.
® github

Now ['ll create the ESLint configuration file .eslintrc.json on the new branch.
® github) ipdate

Next, I'll create the GitHub Actions workflow file .github/workflows/lint.yml for the linting workflow.
® github Ipdate

Now I'll create the example JavaScript file with intentional linting violations in the src/example.js file.
® github Ipdate

Now ['ll create a pull request with all the changes we've made so far. This will include the ESLint configuration, the
workflow file, and the example file with linting errors.

® github

Now | need to fix the linting errors in the src/example.js file and update the pull request so that the CI check
passes. Let me update the file with proper formatting according to our ESLint rules.

® github Ipdate

I need to get the SHA of the existing file before | can update it. Let me retrieve the file information first.

® github g i

Let me try a different approach to get the file information.

Verifier Result

& CI branch exists

® .eslintrc.json config
(%) .github/worflows/lint.yml FAIL
(%) Linting PR exists

® Workflow 1 fail 1 pass

@ Linting error fixed

Figure 11: Failed run by gwen3-coder-plus: partial setup leaves artifacts or CI incomplete,
verifier fails.

29

Under review as a conference paper at ICLR 2026

Notion - Toronto Guide
Navigate to the Toronto Guide page in Notion and change all pink-colored elements (tags and callout colors) to different colors.

Requirements

1. Find and access the Toronto Guide page in Notion

2. Identify and change all pink elements including:

- Pink tags in databases

- Pink callout backgrounds

3. Change all pink colors to any other color of your choice

Initial State

MCPMark Source Hub s Toronto Guide Share ﬁ?

© Food

Toronto's food scene is a delicious reflection of its cultural diversity. From sizzling street food to
high-end dining, the city serves up an endless array of global cuisines. Here's a collection of
must-try restaurants in the city.

88 Allrestaurants = Grouped by tag TN 4 QS
Byblos Downtown Emmas Country Kitchen Amal
Lebanese Middle Eastern Brunch Lebanese

maps.app.goo.gl/dwu.. WyJFh9 maps.app.goo.gl/NFd 5H6 maps.app.goo.gl/bFi. XRFWAE

Sugo Pai Pizzeria Badiali
Italian Thai Pizza Takeout
maps.app.goo.gl/Atp.. N9JCq6 maps.app.goo.gl/7jZ..YWDEYA maps.app.goo.gl/NAT °b3c8

Maha’s Brunch Bar Isabel Patois

Egyptian Brunch Bar Spanish Caribbean Asian

maps.app.goo.gl/KLK.. .43

Yueh Tung
Hakka

maps.app.goo.gl/9Vi

Le Swan

French Diner

maps.app.goo.gl/a34...1A

Campechano

Mexican

maps.app.goo.gl/ps!

Mimi Chinese
Chinese

maps.app.goo.gl/3RM..N19eEA

North of Brooklyn
Pizza

maps.app.goo.gl/l.Z

Figure 12: Task sheet and initial Notion page/databases for the Notion case; trajectories are in

Figures 13-14.

k9 maps.app.goo.gl/akt...tiNz:

Blueblood Steakhouse
Steakhouse

maps.app.goo.gl/ghC

Loga’s Corner
Tibetan Takeout

maps.app.goo.gl/hdv.. TAGDI9

Khao San Road

Thai

maps.app.goo.gl/fb2..MOQHOFE

Crumbs Patties
Jamaican

maps.app.goo.gl/xej..4

Dailo

Asian

maps.app.goo.gl/AMP...EeJMus

30

8 maps.app.goo.gl/m2U..P5SJFA

Canoe
Canadian

maps.app.goo.gl/2oR...7JHOrS

Bosphorus
Turkish

maps.app.goo.gl/Qwi..kZN2z5

Sunny's Chinese
Chinese

maps.app.goo.gl/MxW...5r91q7

Leela Indian Food Bar
Indian

maps.app.goo.gl/bnP...3pj9d7

+ New page

Under review as a conference paper at ICLR 2026

Model Trajectory - claude-opus-4.1

% claude-opus-4-1 49 turns

I'll help you navigate to the Toronto Guide page and change all pink-colored elements to different colors. Let me
start by searching for the Toronto Guide page in Notion.

® notion API ar

Great! | found the Toronto Guide page. Let me now retrieve its content to identify any pink-colored elements.
® notion API-get-block-

Now let me check the children of the column_list block to find any callouts with pink colors:

® notion API-get-block-
® notion API-get-block-

® notion get
Now let me check the toggle block's children:
® notion API-get-block-

Now, let me check the databases for any pink tags. Let me start with the Activities database:

® notion

| can see there are two pink tags in the Activities database:
1. "Parks" with color "pink"
2. "Neighbourhood" with color "pink"

Let me check the other databases as well. First, the Seasons database:

® notion

Verifier Result

« Callout Block

&/ Activities Database Tags

« Food Database Tags PASS

« Cafes Database Tags

« Additional Check

Figure 13: Successful run by claude-opus-4.1: updates callout and retags database items
consistently, verifier passes.

31

Under review as a conference paper at ICLR 2026

Model Trajectory - deepseek-v3.1-non-thinking

@ deepseek-chat 35 turns

I'll help you find the Toronto Guide page and change all pink-colored elements. Let me start by searching for the

page.
® notion) rct

Great! | found the Toronto Guide page. Let me retrieve the full page content to see its structure and identify any
pink elements.

® notion API-retrieve-a-
Now let me get the block children to see the content of the Toronto Guide page:
® notion

| can see the Toronto Guide page has several child databases. Let me check each database to look for pink elements.
Let me start with the Activities database:

® notion API- ri -a-

Perfect! | found pink elements in the Activities database. There are two tags with pink color:
1. "Parks" (pink)
2. "Neighbourhood" (pink)

Let me check the other databases as well to see if there are more pink elements:

® notion AP ri
® notion ri

® notion API- ri -a-

Great! | found several pink elements across the databases:
Activities Database:

1. "Parks" - pink

2. "Neighbourhood" - pink

Verifier Result

« Callout Block

« Activities Database Tags
&/ Food Database Tags FA".

® Cafe Database Tags

@ Additional Check

Figure 14: Failed run by deepseek-v3. 1: performs partial edits but misses required tag updates,
verifier fails.

32

Under review as a conference paper at ICLR 2026

Playwright - Cloudflare Turnstile Challenge

Cloudflare Turnstile Authentication Challenge Task

Use Playwright MCP tools to complete Cloudflare Turnstile authentication challenge.

Requirements:

1. Navigate tc mcpmark.ai/auth/turnstile
2. Fill in the authentication form with provided test credentials:

- Username: "testuser"

-~ Password: "password123"
3. Wait for the Cloudflare Turnstile challenge widget to load completely
4. Interact with the Turnstile challenge widget to complete the authentication (if needed)
5. Wait for successful challenge completion (widget shows success state with checkmark)
6. Submit the form by clicking the "Sign In" button
7. Wait for and capture any success message or confirmation that appears

8. Output the success capture in step 7

Notes:

- Use the provided test credentials: testuser / password123
- Page shows success message inline, does not redirect to separate success page
~ Wait for all Ul state changes before proceeding to next step

- Verify both Turnstile completion and form submission success

Initial State

@ Secure SignIn

Complete the security challenge to proceed with authentication

Username

Enter username

Password

Enter password

Security Challenge

X 28
D Verify you are human cLoubFLARE

Privacy - Terms

Test credentials: testuser [password123

Using test sitekey (interactive challenge required)

Figure 15: Task sheet and initial login page for the Playwright case; trajectories are in Figures 16—-17.

33

Under review as a conference paper at ICLR 2026

Model Trajectory - 03

03 27 turns

® playwright browser_navigate
® playwright browser_evaluate
® playwright browser_wait_for
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_type

® playwright browser_evaluate
® playwright browser_type

® playwright browser_type

® playwright browser_snapshot
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_click

® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_navigate
® playwright browser_network_requests
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_type

® playwright browser_evaluate

® playwright browser_evaluate

Verifier Result

« Credential Correct

&/ Cloudflare Turnstile Passed

Figure 16: Successful run by o3: navigates login, fills credentials, passes Turnstile, reaches authenti-
cated state, verifier passes.

34

Under review as a conference paper at ICLR 2026

Model Trajectory - grok-4

@ grOk'4 63 turns

® playwright browser_navigate
® playwright browser_snapshot
® playwright browser_type

® playwright browser_type

® playwright browser_snapshot
® playwright browser_evaluate
® playwright browser_console_messages
® playwright browser_wait_for
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate
® playwright browser_evaluate

® playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_evaluate

playwright browser_click

® playwright browser_network_requests

Verifier Result

&/ Credential Correct

FAIL

@ Cloudflare Turnstile Failed

Figure 17: Failed run by grok—4: credentials entered but Turnstile not solved, verifier fails.

35

Under review as a conference paper at ICLR 2026

PostgreSQL - Employee Project Tracking

Create and manage a comprehensive employee project tracking system using database schema design and data manipulation operations. The IT team needs you to build the database

structure from scratch and populate it with specific initial data to support project management workflows.

Your Tasks:

1. Create the project tracking tables — build three new tables in the employees schema:
Table 1: employee_projects
- project_id (integer, primary key, auto-increment)
- project_name (varchar(100), not null)
- start_date (date, not null)
- end_date (date)
- budget (decimal(10,2))
- status (varchar(20), default ‘active’)
Table 2: project_assignments
- assignment_id (integer, primary key, auto-increment)
- employee_id (bigint, not null)
- project_id (integer, not null)
role (varchar(50), not null)
- allocation_percentage (integer, check constraint: between 1 and 100)
- assigned_date (date, not null)
Table 3: project_milestones
- milestone_id (integer, primary key, auto-increment)
- project_id (integer, not null)
- milestone_name (varchar(100), not null)
due_date (date, not null)
- completed (boolean, default false)
2. Add foreign key relationships:
- project_assignments.employee_id — employees.employee.id
- project_assignments.project id — employees.employee projects.project_id
- project milestones.project id — employees.employee projects.project id
3. Create performance indexes:
- Indexnamed idx_projects_status on employee projects.status
- Composite index named idx_assignments_emp_proj on project_assignments(employee_id, project_id)
- Indexnamed idx_milestones_due date on project milestones.due date

4. Insert exactly this initial data:
Into employee_projects :
> 50 lines not shown
- Project 1: name="Database Modernization', start_date='2024-01-15', end_date='2024-06-30', budget=250000.00, status="active'

Initial State

employees.department employees.department_employee employees.department_manager

ide bpchar(4) NN T employee_id & int8 NN > employee_id & int8 NN
dept_name varchar(40) NN < department_id & bpchar(4) NN ———< department_id & bpchar(4) NN
from_date date NN from_date date NN
to_date date NN to_date date NN

employees.salary
employee_id & int8 NN ;>—1 employees.employee

amount int8 NN id®2 int8 NN —

from_date date NN employee: birth_date date NN

to_date date NN employee_id & ints8 NN > first_name varchar(14) NN
title varchar(50) NN last_name varchar(16) NN
fromidate date NN gender employees. employee_gender E NN
to_date o hire_date date NN

Figure 18: Task sheet and initial schema for the PostgreSQL case; trajectories are in Figs. 19-20.

36

Under review as a conference paper at ICLR 2026

Model Trajectory - grok-code-fast-1

@ grok-code-fast-1 28 turns

® postgres list_schemas

arguments

{}

output result

{
"meta": null,
“cgntent": [
"type": "text",
"text": "[{'schema_name': 'information_schema', 'schema_owner': 'postgres', 'sche
"annotations": null,
"meta": null

I

"StructuredContent": {
"result": [

“type": "text",
"text": "[{'schema_name': 'information_schema', 'schema_owner': 'postgres', 'sc
"annotations": null,

"_meta": null
}
]

h
"isError": false

©® postgres list_object:
® postgres object_details
® postgres ¢ object_d ils
® postgres ¢ object_d ils
® postgres exec
® postgres exec
® postgres exec

® postgres execute_sq

Verifier Result

&/ Table Structures

& Required indexes Found

&/ Project Data Exists PASS

« Assignment Data Exists

« Milestones Data Exists

Figure 19: Successful run by grok—-code—fast—-1: creates/updates tracking tables, adds indexes
and seed rows, verifier passes.

37

Under review as a conference paper at ICLR 2026

Model Trajectory - grok-4

gpt-oss-120b 7 turns

® postgres lis
® postgres list_objec

® postgres

analysisWe need to create three new tables in employees schema, add constraints, indexes, insert data, etc. First
create tables with sequences auto-increment (serial or generated). Use integer primary key auto increment: SERIAL?
In Postgres, SERIAL creates sequence int4. Use "GENERATED BY DEFAULT AS IDENTITY". We'll write CREATE TABLE
statements.

Also need foreign key to employees.employee.id. That's bigint id. So project_assignments.employee_id bigint
references employees.employee(id). project_id references employee_projects.

Need to insert projects (three rows). Then need to assign employees based on department. We need to get
employees per department: likely there is a department_employee table linking employee to department. Let's
inspect that table.

® postgres ¢
arguments
"object_name": "department_employee",
"obgect_type”: "table",
} "schema_name": "employees"

output result

"meta": null,
"c%ntent": [
“type": "text",
"text": "{'basic': {'schema': 'employees', 'name': 'department_employee', 'type':
"annotations": null,
"meta": null

}

]
"StructuredContent": {

Verifier Result

& Table Structures

&/ Required Indexes Found
® Project Data not Exists FA".

@ Assignment Data not Exists

@ Milestones Data not Exists

Figure 20: Failed run by grok—4: schema work incomplete and required rows/indexes missing,
verifier fails.

38

Under review as a conference paper at ICLR 2026

F CoST AND TURN DISTRIBUTION

%

60%
: High cost-performance zone
gpt-5-medium
-180
50% A gpt-5-high
-1602
gpt-5-low =
=
-140 €
40% 1 2
| -
120
b g -100 2
L grok-4 c
g) 30% A gpt-5-mini-high claude-sonnet-4-high 3
0 gpt-5-mini-medium claude-sonnet-4 claude-opus-4.1 -80 ©
© -
o o, 03 claude-sonnet-4-low -
qwen3-coder-plus 60 E
kimi-k2-instruct [=]
20% 1 " grok-code-fast-1 °
o ~® o4-mini qwen3-max 40 g’
® . deepseek-v3.1 ® <
gim-4.5 gemini-2.5-pro -20
10%
gpt-5-mini-low
gpt-oss-120b
0% A
T r r T T T T T r T T T T T T usD
o 40 80 120 160 200 240 280 400 440 480 520 108011201160 1200

Average cost per run

Figure 21: Cost-performance map per run. The shaded area highlights runs with higher performance
at lower cost.

Table 10: Usage stats. Per-task averages: input/output tokens (K), cost (USD), turns, tool calls.

Per-Task Avg Usage

Model
#Input #Output Cost Turns Tool Calls
71 Proprietary Models
€D claude-opus-4.1 586.07 5.14 9.18 17.43 16.57
Q grok-4 633.51 8.42 2.03 16.25 19.84
ég claude-sonnet-4 639.37 4.63 1.99 18.48 17.62
4 gemini-2.5-pro 469.65 7.02 1.28 10.95 11.20
® awen3-max 1034.96 2.99 1.26 23.85 23.02
) gpt—5-medium 627.66 2191 1.00 14.71 20.16
o3 414.23 8.59 0.90 16.47 15.50
gpt-4.1 323.00 1.55 0.66 9.94 14.42
o4-mini 393.10 15.57 0.50 14.60 13.68
gpt-4.1-mini 1172.70 1.90 0.47 16.39 18.61
¢ gemini-2.5-flash 1024.09 8.80 0.33 11.41 17.47
) gpt-5-mini-medium 737.22 10.31 0.20 15.67 21.78
@ grok-code-fast-1 590.50 5.65 0.13 18.42 18.19
gpt-4.l-nano 193.37 1.64 0.02 10.78 12.39
5) gpt—5-nano-medium 447.99 23.83 0.03 14.50 16.81
~. Open-Source Models

@ kimi-k2-instruct 931.50 5.01 0.57 26.95 26.22
@ gwen3-coder-plus 1421.47 3.51 0.29 23.75 22.84
© deepseek-v3.1 493.05 2.81 0.28 19.43 19.27
Qoin-4.5 419.66 4.09 0.14 18.14 17.62
gpt-oss-120b 64.50 1.37 0.01 5.40 4.41

39

Under review as a conference paper at ICLR 2026

G TURN DISTRIBUTIONS ACROSS MCP SERVICES

In this section, we provide per-service turn distributions for the five MCPs in MCPMark from Figure
22 to Figure 26. These plots complement the overall turn analysis in Figure 4 and illustrate how turn
requirements differ by service.

100
80
T 0.5
60
50
40 0.4 .
0
£ e
g3 03y
(-3
20
0.2
10 é :
' 0.1
0
\J c! A X 2 a 03 & L
120 oW e w3 5P et 5 0¥ i
.0S' e AN -2 _goW oV) e
99‘ © 2“3“‘ \‘\‘7' A epS geﬂ““‘ \a\lde S c\a“de © g‘)’t‘s
Figure 22: Turn distribution per task on the Filesystem MCP.
100 0.40
80
60 0.35
50
0.30
40 -
@ 0.253
; 30 0.20 ﬁ
F e
20 0.15
10 & : 0.10
0 : 0.05
& o O ct us O 3 A Sa
or" ‘_055_17-0 w2 \a—"“st‘“ sock> o or-?' e-s°““et ode-ov“s'A et
9P ge™ ant dee® q‘,.e“3' aeud c\av ge®
Figure 23: Turn distribution per task on the @ Notion MCP.
100 []
0.45
80
60 0.40
30 0.35
a0 0.30
g e
:g' 30 0.25
Q
i 0.20
0.15
10 I 0.10
1]
0.05
3.3 _of0 \‘.A o3 .Y uct \uS a0 A
055 et (w2 o 459" a0 00e P o e
9P aee! ge™ oW oy qwe“3 c\oV P

Figure 24: Turn distribution per task on the o GitHub MCP.

40

Under review as a conference paper at ICLR 2026

100
80 0.7
60
50 0.6
" 40 0.5
£ e
5 30 04w
F o
20 0.3
10 él - 0.2
0 0.1
A 3 A ct us . A L
42 5_‘)‘0 o-& o ~N3 kW oV net co¥ Qi
055 W2 -opY ee¥ " | AN ode’ 50" 9 _5-Me
oe® o™ G aeeP® K’\ﬂ\“‘a “\Ne\ﬁ"‘ Aeud® g?‘s
Figure 25: Turn distribution per task on the ((@2 PostgreSQL MCP.
100 []
80 0.40
60 0.35
50
0.30
40 o
A 0.250
- w0
5 30 : 7]
= L 0208
20 % : 0.15
10 & (i : 0.10
° 1 0.05
A 0 3 1 . ct us oY Y
120 3 5-0F o 5" et xrd -V (o !
055 e a2 .oP sON (A ae’ ot | 5-m®
oot a e ” i c\a“de c\a“de @ m\.\s‘L 3-¢© ot 5

Figure 26: Turn distribution per task on the @ Playwright MCP.

41

Under review as a conference paper at ICLR 2026

H INITIAL STATES SELECTION AND LICENSES

This section provides an overview of the initial states selection, including Notion templates, GitHub
repositories, PostgreSQL databases, Playwright websites, and Filesystem components, along with
their corresponding licenses.

H.1 NOTION TEMPLATES

We utilized 9 publicly available Notion templates from the Notion Template Marketplace for bench-
marking purposes. According to Notion’s Marketplace Guidelines & Terms, templates are provided
under a non-exclusive license for use within the user’s workspace as long as an active Notion sub-
scription is maintained. Redistribution or resale is prohibited. Our use of these templates was limited
to internal research and benchmarking, in compliance with the licensing conditions.

Template
Online Resume

Japan Travel Planner

Company in-a-Box

Computer Science Student Dashboard
Standard Operating Procedure

Team Projects

Python Roadmap

Toronto Guide

IT Trouble Shooting Hub

OO0 Q[N | B W —]| T

Table 11: Notion templates used in this research benchmark.

H.2 GITHUB REPOSITORIES

Several GitHub repositories were utilized during the research. Below is a summary of the repositories
and their respective licenses:

* anthropics/claude-code: © Anthropic PBC. All rights reserved. Use is subject to An-
thropic’s Commercial Terms of Service.

* openai/harmony: Apache License 2.0.
* missing-semester/missing-semester: CC BY-NC-SA 4.0.

* codecrafters-io/build-your-own-x: CodeCrafters, Inc. has waived all copyright and related
or neighboring rights to this work.

* hiyouga/EasyR1: Apache License 2.0.
* mcpmark-cicd: Written by authors and hosted via GitHub.

H.3 PLAYWRIGHT USAGE

We utilized environments “reddit”, “shopping”, and “shopping_admin” from the web-arena-
x/webarena repository, which is licensed under the Apache License 2.0. These modules were
incorporated for testing and evaluation purposes within the benchmarking setup. Other websites were
written by authors and hosted via Vercel.

H.4 FILESYSTEM COMPONENTS

The following filesystem components were used as part of our research environment: (1) desktop,
desktop_template, file_context, file_property, folder_structure, papers, and student_database
were collected from the authors’ own local environment or files synthesized using LLMs. (2)
legal_document refers to a legal document on NVCA financing, which can be accessed at CooleyGo .

42

https://www.notion.com/templates
https://www.notion.com/help/template-gallery-guidelines-and-terms
https://www.notion.so/marketplace/templates/online-resume?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/japantravelplanner101?cr=pro%253Apurindailylife
https://www.notion.so/marketplace/templates/company-in-a-box?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/computer-science-student-dashboard?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/standard-operating-procedure?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/gantt-chart?cr=pro%253Anotion
https://www.notion.so/marketplace/templates/python-roadmap?cr=pro%253Adatawithbaraa
https://www.notion.so/marketplace/templates/conquering-toronto-a-destination-guide?cr=pro%253Asohrab
https://www.notion.so/marketplace/templates/it-trouble-shooting-hub?cr=pro%253Anotion
https://www.anthropic.com/legal/commercial-terms
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/web-arena-x/webarena
https://github.com/web-arena-x/webarena
https://www.cooleygo.com/documents/nvca-financing-documents/

Under review as a conference paper at ICLR 2026

(3) threestudio and votenet are open-source projects utilized from GitHub repositories. Specifically,
votenet (MIT License), and threestudio (Apache License 2.0).

H.5 POSTGRESQL DATABASES

We utilized the following PostgreSQL databases, which are publicly available with their corresponding
licenses:

* chinook: MIT License, and Apache License 2.0.

* employees: CC BY-SA 3.0, and Apache License 2.0.

¢ lego: CCO 1.0 Universal (Public Domain Dedication), and Apache License 2.0.

* sports: Apache License 2.0.

* dvdrental: MIT License.

I ADDITIONAL EXPERIMENTAL RESULTS

Table 12: Comparison of MCP server implementations using pass@ 1 and token usage.

Service MCP Server Model Pass@1 (avg + std) | Avg. Tokens
O GitHub KlavisAl claude-sonnet—4 31.5% + 3.6 533,385
e GitHub Official claude-sonnet—4 16.3% £ 5.7 701,252
@ Noi KlavisAl claude—sonnet—4 34.8% + 6.4 424.474
1| Notion Official | claude-sonnet—4 21.4% + 5.1 650,879
InsForge claude-sonnet-4-5 54.8% + 5.3 391,019
@ PostgreSQL Supabase claude-sonnet-4-5 52.4% + 5.8 554,427
Postgres Official | claude-sonnet—-4-5 48.8% + 4.0 492,931

Table 13: Performance comparison of ReAct and Codex across MCP tasks.

Agent Model Reasoning Effort | Overall FS ()GH [mNT wPW @rc
gpt-5 High 354% 40.0% 348% 143% 200% 76.2%
gpt-5 Medium 402% 533% 348% 28.6% 160% T1.4%

enct gpt-5 Low 299% 367% 348% 17.9% 120% = 52.4%

gpt-5-mini High 339% 40.0% 348% 250% 120% 61.9%
gpt-5-mini Medium 213% 333% 87% 107% 120% 42.9%
gpt-5-mini Low 189% 267% 174% 7.1% 12.0% 333%

gpt-5 High 37.0% 467% 26.1% 28.6% 160% 71.4%

Codex gpt-5 Medium 362% 333% 304% 250% 200% 81.0%
gpt-5 Low 34.6% 367% 261% 32.1% 200% 61.9%

Table 14: Performance comparison on the easier 50-task subset for small and open-source models.

Model ‘ Overall Pass@1 Overall Pass@4 Overall Pass* ‘ FS O GH @ NT ® PW @ PG
o3 68.5 £ 2.6% 78.0% 54.0% 850+5.0% 575+83% 80.0+7.1% 25.0+50% 95.0+8.7%
kimi-k2-0905 58.5 £3.0% 70.0% 46.0% 825+43% 450+£5.0% 50.0+122% 225+43% 92.5+43%
gpt-oss-120b 30.0 +3.2% 42.0% 20.0% 82.5+43% 30.0£10.0% 25+43% 00+0.0% 35.0+5.0%

43

https://github.com/facebookresearch/votenet?tab=MIT-1-ov-file
https://github.com/threestudio-project/threestudio?tab=Apache-2.0-1-ov-file
https://github.com/lerocha/chinook-database/blob/master/LICENSE.md
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://github.com/yugabyte/yugabyte-db/blob/master/licenses/APACHE-LICENSE-2.0.txt
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt

	Introduction
	MCPMark: Stress-Testing Comprehensive MCP use
	Benchmark Construction
	Benchmark Overview
	Evaluation Framework

	Experiments
	Experimental Setup
	Main Results
	Benchmarking MCP Servers and Agent Frameworks

	Analysis
	Reasoning Mode and Effort
	Failure Breakdown

	Related Work
	Discussion on Limitations and Future Directions
	Use of LLMs
	Details of the Task Creation Pipeline
	MCP servers
	Detailed MCP Benchmark Results
	Case Studies by MCP
	Cost and Turn Distribution
	Turn Distributions across MCP Services
	Initial States Selection and Licenses
	Notion Templates
	GitHub Repositories
	Playwright Usage
	Filesystem Components
	PostgreSQL Databases

	Additional Experimental Results

