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ABSTRACT

The MCP standardizes how LLMs interact with external systems, forming the
foundation for general agents. However, existing MCP benchmarks remain narrow
in scope: they focus on read-heavy tasks or tasks with limited interaction depth,
and fail to capture the complexity and realism of real-world workflows. To address
this, we propose MCPMark, a benchmark designed to evaluate realistic and com-
prehensive MCP use, comprising 127 high-quality tasks collaboratively created by
human experts and AI agents. Specifically, each task starts from a curated initial
state and incldes a programmatic script for automatic verification. Moreover, these
tasks require richer and more varied interactions with the environment, involving
diverse create, read, update, and delete (CRUD) operations. We conduct compre-
hensive evaluation of cutting-edge LLMs using a minimal agent framework that
operates in a tool-calling loop. Empirical results show that the best-performing
model, gpt-5-medium, reaches only 52.56% pass@1 and 33.86% pass^4, while
other widely regarded strong models, including claude-sonnet-4 and o3, fall
below 30% pass@1 and 15% pass^4. On average, LLMs require 16.18 execution
turns and 17.38 tool calls per task, substantially exceeding those in previous MCP
benchmarks and demonstrating the stress-testing nature of MCPMark.

1 INTRODUCTION

The Model Context Protocol (MCP) (Anthropic, 2024) is a standardized interface that connects large
language models (LLMs) (Comanici et al., 2025; OpenAI, 2025c; Team, 2025) with external systems
such as tools, APIs, databases, and contextual resources (Singh et al., 2025). By standardizing the
way LLMs access and operate on these systems, MCP allows agents to function more effectively with
“eyes and hands” in real environments, and many see it as a foundational layer for AI in the agentic
era (Hou et al., 2025). Despite growing use in practice, existing MCP benchmarks remain limited:
tasks often involve shallow or read-heavy interactions (Liu et al., 2025; Yin et al., 2025; Mo et al.,
2025; Luo et al., 2025), leading to a narrow range of task patterns. As a result, they fail to capture
the complex, multi-step workflows typical of real-world usage. This makes it difficult to probe the
performance boundaries—especially in assessing whether current models and agents possess the
necessary capabilities, such as reasoning, planning, long-context processing, and tool use, to tackle
realistic and demanding agent tasks.

To address these gaps, we introduce MCPMark, a benchmark designed to simulate realistic user
scenarios within mirrored or isolated container environments, accompanied by reliable programmatic
evaluation. Specifically, MCPMark spans five representative MCP environments: Notion, GitHub,
Filesystem, PostgreSQL, and Playwright. As shown in Figure 1, each task begins from a carefully
curated initial state. Task instructions and corresponding verification scripts are then developed
through a human–AI collaborative pipeline, in which domain experts and language model agents iter-
atively co-design tasks and construct automated scripts. These scripts automatically validate the final
environment state after agent execution and incorporate full state tracking throughout the execution
process. Following pipeline generation, we apply expert cross-review and community-level validation
to ensure clarity, realism, and quality. Compared to existing MCP benchmarks, MCPMark offers
significantly broader coverage of create, read, update, and delete (CRUD) operations across diverse
workflows. In total, MCPMark comprises 127 tasks, with 20 to 30 tasks in each MCP environment.
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Weekend Adventure Planner

Task: Create a comprehensive weekend adventure 
planner that generates a structured itinerary page.
1: Create a new page `Perfect Weekend Adventure`
as a child page of the main page;
2: Query to identify activities with `Beaches` tag;
3: ...

Linting CI Workflow

Task: Set up ESLint workflow for code quality 
enforcement on all PRs with proper CI integration.
1: Create linting configuration branch;
2: Create ESLint configuration;
3. ...

src/

app.js

calculator.js

userService.js

.prettierrc

eslint.config.js

.eslintrc.js

Issues PRs Actions

README.md

.gitignore

      Cloudflare Turnstile Authentication

Task: Use Playwright MCP tools to complete Cloudflare 
Turnstile authentication.
1: Navigate to https://mcpmark/auth/trunstile;
2: Fill in the auth form with provided credentials;
3: ...

Employee Project Tracking

Task: Build tracking system with tables for projects, 
assignments, milestones, and performance indexes.
1: Create the project tracking tables;
2: Add foreign key relationships;
3: ... 

employees.department

id bpchar(4)

dept_name varchar(40)

employees.department_employee

employee_id int8

department_id bpchar(4)

from_date date

to_date date

employees.department_manager

employee_id int8

department_id bpchar(4)

from_date date

to_date date

employees.employee

id int8

birth_date date

first_name varchar(14)

last_name varchar(16)

gender employees.employee_gender

hire_date date

employees.salary

employee_id int8

amount int8

from_date date

to_date date

employees.title

employee_id int8

title varchar(50)

from_date date

to_date date

Contact Information

budget.csv

dates.csv

Personal/

Documents/ Downloads/

e.csv

log.csv

price.csv

Temp/

back.csv

tax.csv

draft.txt

...

Archives/

Task: Extract contact details from various file formats
on desktop and perform analysis on the collected rela-
tionship data.
1: Extract contact information;
2: Create a CSV file; 3: ...

Figure 1: Representative task instances, showing initial states (Top) and task instruction (Bottom).
Examples include: Login with Cloudflare Turnstile in Playwright; CI/CD setup with ESLint in
GitHub; weekend planner using tagged queries in Notion; schema design for project tracking in
PostgreSQL; and contact extraction to CSV in Filesystem. All tasks show complex, multi-step
workflows typical of real-world usage.

Table 1: Benchmark Comparison.

Benchmark
Task

Verification
Average

Pattern Turns

MCPEval Synthetic Hybrid N/A
LiveMCPBench CRUD-diverse LLM-as-judge 3.2
MCP-Universe Read-heavy Programmatic 6.8
LiveMCP-101 N/A LLM-as-judge 5.4

MCPMark CRUD-diverse Programmatic 16.2

To fairly evaluate model performance on these
tasks, we introduce MCPMark-Agent, a min-
imal and general framework that executes mod-
els through a standardized tool-calling loop.
MCPMark-Agent integrates with a variety of
MCP servers and model providers, enabling
consistent and automated evaluation grounded
in the programmatic infrastructure defined by
MCPMark. Comprehensive experiments on
state-of-the-art models demonstrate the bench-
mark’s difficulty. The best-performing model,
gpt-5-medium (OpenAI, 2025c), achieves only 52.56% pass@1 and 33.86% pass^4, while other
strong models such as claude-sonnet-4 (Anthropic, 2025a) and o3 (OpenAI, 2025d) fall below
30% pass@1 and 15% pass^4. On average, each task requires 16.2 execution turns and 17.4 tool
calls, with some models such as kimi-k2-instruct (Team et al., 2025) averaging over 20 turns
per task. Overall, as shown in Table 1, prior MCP benchmarks are limited in task depth or verification
rigor. In contrast, MCPMark combines CRUD-diverse tasks, programmatic verification, and longer
workflows, aligning more closely with real-world MCP use and workflow complexity.

In addition, our evaluation reveals several consistent patterns that underscore the distinctive properties
of the benchmark. First, the benchmark demonstrates its intrinsic difficulty through consistently low
performance on the pass^4, which more convincingly reflects real-world conditions than commonly
used metrics like pass@1 or pass@4 (Yao et al., 2024), emphasizing the challenge of solving tasks
reliably and consistently across multiple runs. Second, performance varies substantially across differ-
ent MCP environments, suggesting a notable environment gap. This variation arises from differences
in data availability and simulation fidelity: tasks involving local services such as the Filesystem are
generally easier to emulate and more commonly represented in training data, whereas remote services
like Notion require more complex, underrepresented interaction patterns that are harder to reproduce.
Finally, the benchmark emphasizes efficient tool use: successful completions tend to involve fewer,
more targeted tool calls, while failure cases often exhibit repetitive or exploratory interactions that fail
to make meaningful progress. Collectively, these patterns show that MCPMark effectively surfaces
key challenges in stability, generalization, and planning across diverse multi-component environments.
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Figure 3: Distribution of MCPMark benchmark

GitHub (94 tools) add_sub_issue add_issue_comment merge_pull_request
cancel_workflow_run create_branch create_gist create_issue
create_or_update_file create_pull_request create_repository delete_file
dismiss_notification fork_repository get_commit get_discussion
get_file_contents get_issue get_latest_release get_me
get_pull_request get_release_by_tag get_tag list_branches
list_commits list_issues list_notifications ... (68 remaining not shown)

Filesystem (14 tools) read_file read_text_file read_media_file
read_multiple_files write_file edit_file create_directory
list_directory list_directory_with_sizes directory_tree move_file
search_files get_file_info list_allowed_directories

Notion (19 tools) API-get-user API-get-users API-get-self
API-post-database-query API-post-search API-get-block-children API-patch-block-children
API-retrieve-a-block API-update-a-block API-delete-a-block API-retrieve-a-page
API-patch-page API-post-page API-create-a-database API-update-a-database
API-retrieve-a-database API-retrieve-a-page-property API-retrieve-a-comment API-create-a-comment

Playwright (21 tools) browser_click browser_close browser_console_messages
browser_drag browser_evaluate browser_file_upload browser_fill_form
browser_handle_dialog browser_hover browser_navigate browser_navigate_back
browser_network_requests browser_press_key browser_resize browser_select_option
browser_snapshot browser_take_screenshot browser_type browser_wait_for
browser_tabs browser_install

PostgreSQL (9 tools) list_schemas list_objects get_object_details
execute_sql explain_query get_top_queries analyze_workload_indexes
analyze_query_indexes analyze_db_health

2.3 BENCHMARK OVERVIEW

Dataset statistics. We create a total of 127 tasks across 5 MCP servers: 30 for Filesystem, 28 for
Notion, 25 for Playwright, 23 for GitHub, and 21 for PostgreSQL. On average, the task instructions
contain 288.6 words, and the corresponding verification scripts consist of 209.8 lines of code. The
detailed task distribution is presented in Figure x and Table x.

Task characteristics. Benefiting from the diversity and realism of MCPs and initial states, along
with strict and safe environment management and tracking mechanisms, the tasks cover a broad
spectrum of workflows. These include updating nested properties in Notion, managing commits
and pull requests in GitHub, automating interactive forms in Playwright, organizing large and
irregular directory structures in the Filesystem, and performing transactional updates in PostgreSQL.
Collectively, this curated set of tasks provides balanced CRUD coverage and reflects the challenges
of authentic multi-step workflows across these application scenarios.

[need a figure here to show the data/task distribution -Xiangyan]

5

Figure 2: Task distribution and tool set overview of MCPMark. Left: 127 tasks distributed across
5 MCP servers and 38 curated initial states. Right: toolset per server, covering commonly used
functionalities, with full support for CRUD operations in each corresponding MCP environment.

2 MCPMARK: STRESS-TESTING COMPREHENSIVE MCP USE

In this section, we provide a detailed introduction to MCPMark, including the benchmark construction
process, the associated evaluation framework, and an overview of the benchmark.

2.1 BENCHMARK CONSTRUCTION

MCP services and initial states. MCPMark integrates 5 MCP servers that span diverse and practical
application environments. A partial overview of each MCP tool set is shown in Figure 2 (right).
Moreover, unlike prior work that uses generic or minimally initialized environments as task starting
states (Liu et al., 2025; Luo et al., 2025; Yin et al., 2025), we carefully design initial states that reflect
realistic and comprehensive usage scenarios, serving as the starting points for the tasks. Specifically:

• Notion connects to the official remote API for creating, editing, and querying both documents
and databases. Initial states are instantiated from widely adopted templates.

• GitHub leverages the official remote API to support project management and Git operations,
including CI/CD, issues, branches, pull requests, and commits. Initial states are derived from
repositories with realistic development histories and configurations.

• Filesystem supports file I/O, directory organization, metadata inspection, and search. Initial
states are curated folder structures that mirror everyday user scenarios.

• PostgreSQL provides access to a relational database, with tools for schema exploration and
SQL query execution. Initial states are representative template databases with realistic schemas.

• Playwright enables browser automation, offering commands for navigation, form completion,
data extraction, and generating screenshots or PDF exports. Initial states come from two sources:
self-authored webpages designed to test specific functionalities (e.g., login through Cloudflare)
and localhost webpages adapted from WebArena (Zhou et al., 2023).

Task creation pipeline. Each task in MCPMark is grounded in an initial state of the respective
environment (e.g., a template Notion page or a designated website) and consists of a natural language
instruction paired with an automatic verification script. Constructing tasks of this form is difficult if
we rely solely on humans or solely on agents. To address this, we design a human–AI collaborative
pipeline that pairs human experts with two agents: a task creation agent and a task execution agent.
The pipeline proceeds in four steps:

I. Exploration: Given an initial environment state, a human expert and the task creation agent
jointly explore the environment, guided by a high-level instruction or topic informed by expertise
and real-world experience. This stage aims to capture both a wide overview of the environment
and deep, specific context that will later support realistic and well-grounded task creation.

II. Evolvement: The task creation agent proposes a new task instruction or refines an existing one
by introducing additional complexity. This may include removing unnecessary instructions,
increasing the difficulty of information seeking, raising the processing burden (e.g., through

3
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longer input content), or requiring more interaction steps. The human expert ensures that the
task remains practical, verifiable, and sufficiently challenging.

III. Verification: The task creation agent drafts a programmatic verification script. The human
expert then completes the task with assistance from the task execution agent. Afterward, the
verification script is executed and iteratively refined until it is fully consistent with the task
instruction. To ensure reliability, the human expert also adjusts the final environment state to
validate whether the script correctly detects both successful and unsuccessful outcomes.

IV. Iteration: Steps ② and ③ are repeated to progressively increase task difficulty, while preserving
automatic verifiability and maintaining realism through authentic user scenarios.

Overall, even with agent assistance, constructing each sample remains labor-intensive. Involving 10
experts with diverse backgrounds—including computer science PhD students, front-end designers,
full-stack & AI infra engineers, and AI investors—each task takes 3 ∼ 5 hours of focused expert effort.
While most tasks are built through the standard pipeline, experts occasionally leverage their accumu-
lated experience or domain knowledge to directly write natural language instructions. In these cases,
the task creation agent is bypassed, but the verification scripts are still generated and refined within the
same pipeline. We defer the prompts and guidelines used in the task creation pipeline to Appendix B.

Quality control. All tasks underwent cross-review by human experts and a month-long community
check to ensure clarity, consistency, and alignment with real-world application scenarios. In particular,
for tasks that no model solved correctly, we conducted additional verification to ensure their validity.
This process ensures that the benchmark remains challenging yet practical, and that evaluation
outcomes are unambiguous.

2.2 BENCHMARK OVERVIEW

Dataset statistics. We create a total of 127 tasks across 5 MCP servers—30 for Filesystem, 28 for
Notion, 25 for Playwright, 23 for GitHub, and 21 for PostgreSQL—based on 38 curated initial states.
On average, the task instructions contain 288.6 words, and the corresponding verification scripts
consist of 209.8 lines of code. The detailed task distribution is presented in Figure 2 (left), while the
corresponding toolsets for each MCP are shown in Figure 2 (right).

Task characteristics. The tasks span a wide range of realistic workflows, including updating nested
properties in Notion, managing commits and pull requests in GitHub, automating interactive forms in
Playwright, organizing complex directory structures in the Filesystem, and executing transactional
updates in PostgreSQL. Five representative tasks, one from each MCP, are shown in Figure 1.
Collectively, these tasks provide diverse CRUD coverage and reflect the challenges of authentic
multi-step workflows across varied application scenarios.

2.3 EVALUATION FRAMEWORK

State tracking and management. MCPMark executes all tasks within sandboxed environments that
enforce explicit state tracking, a design choice that ensures safety, reproducibility, and fair comparison
across models. Each evaluation follows a consistent lifecycle: ① tasks begin from a well-defined initial
state that mirrors realistic application scenarios, ② proceed with agent execution based on task instruc-
tions, and ③ conclude with an automatic verification script that programmatically checks whether
the final environment satisfies the task requirements. After verification, ④ the environment is reset to
its original state, preventing side effects and enabling repeated evaluation under identical conditions.

Evaluation Agent. To standardize evaluation, we provide MCPMark-Agent, a lightweight and
general-purpose agent framework. It is built on LiteLLM1 together with the Model Context Protocol
Python SDK2 to support compatibility and extensibility. Specifically, MCP servers are configured
through the SDK, and their tools are exposed to the agent. LiteLLM then (1) converts the tools into
the OpenAI function-call format and (2) routes requests to the official APIs of different providers,
thereby ensuring execution that reflects each model’s native capabilities.

During task evaluation, the agent follows a tool-calling loop in which the model iteratively invokes
MCP tools, interprets responses from MCP servers, and adjusts its actions. The loop terminates once

1https://github.com/BerriAI/litellm
2https://github.com/modelcontextprotocol/python-sdk
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Filesystem

GitHub

Notion

PostgreSQL

Contact

Online Resume

Interest

Work History

Projects

foo@bar.com 
+42 127-001-404

Debug

Doogle


Prompt Engineer

GUIMark


May 2023 -> Aug 2023

OkayAI


Machine Unlearning Engineer

1.Delete outdated project 
2.Add MCPMark project

3.Add post-project blocks:

	  a.divider

	  b.heading

	  c.content paragraph

4.Add skills section with at least

three skills, below section "Interest"

Agent Trajectory

Framework

post-search

......

get-block-children
{"block_id": "26c816...

update-a-database
{"database_id": "813b-94...

patch-block-children
{"block_id": "26c816...

Arguments{


  "query": "Online Resume",   


  "filter": {


    "value": "page" ...

}

Output{


  "object": "list",


  "results": [


    {


      "id": "2542b7e8-xxxx-xxx"...


}

Arguments

All set. Here’s what I did to update your “Online 
Resume” page and reorganize the Project 
section...

Final StateInitial State

Task Description Programmatic Verification

Contact

Online Resume

Interest

Projects

foo@bar.com 
+42 127-001-404

Debug

Skills+ 

+ Vibe Coding 

+ MCPMark 

- GUIMark


+ June 2025 -> Sept 2025 

- May 2023 -> Aug 2023

...MODELS

MCPMark Agent
LLM Call / Tools Calling Loop / Thinking

MCP Task Initialization Agent Execution Result Verification

New project added

Outdated project deleted

"Skill" section below "Interest"

Post-project blocks not found

Only one new skill found

Figure 3: MCPMark evaluation pipeline with full state tracking. Each task begins from a curated
initial state with a specific task instruction. The MCPMark-Agent then executes a tool-calling loop,
followed by a programmatic verifier that evaluates whether all required checks are satisfied.

the model produces a final response without further tool calls. Although this agent framework is
deliberately basic and omits optimizations that may be desirable in production systems (which we
leave for future work), this design avoids task-specific heuristics and model-specific biases, thereby
providing a clearer measure of a model’s intrinsic agentic capabilities in MCP environments.

3 EXPERIMENTS

In this section, we describe the experimental setup, introduce the evaluated models and metrics, and
present results and analyses on different environment, reasoning efforts, and failure patterns.

3.1 EXPERIMENTAL SETUP

Models. We test a range of state-of-the-art proprietary and open-source models, primarily
accessed through LiteLLM. Proprietary models include gpt-5 (OpenAI, 2025c) with different
reasoning effort levels (low, medium, high) and smaller variants (mini and nano), as well
as earlier gpt-4.1 (OpenAI, 2025b) variants. We also evaluate claude-opus-4.1,
claude-sonnet-4, grok-4, grok-code-fast-1, o3, o4-mini, qwen3-max,
gemini-2.5-flash, and gemini-2.5-pro (Anthropic, 2025b;a; xAI, 2025; OpenAI,
2025d; Comanici et al., 2025). On the open-source side, we evaluate qwen3-coder-plus,
kimi-k2-instruct, deepseek-v3.1, glm-4.5, and gpt-oss-120b (Team, 2025; Team
et al., 2025; Liu et al., 2024; Zai, 2025; OpenAI, 2025a). We do not test small open-source models
(≤ 100B) due to the difficulty of the benchmark.

Metrics. We use three complementary metrics to measure agent performance: pass@1, pass@4,
and pass^4. Pass@1, captures the single-run success rate, i.e., the proportion of tasks successfully in
one single attempt. Pass@4 measures success when allowing up to 4 independent runs, indicating
whether repeated attempts improve coverage of difficult cases. Pass^4 is a stricter measure: a task is
counted as correct only if all four independent runs succeed, making it a strong indicator of model
consistency and stability under stochastic generation (Yao et al., 2024).

Implementation Details. We use MCPMark-Agent as the unified framework to benchmark MCP
use across models. While specialized agent designs could further improve performance, we leave
such optimizations as important future work. Each run is limited to a maximum of 100 turns with
a 3600-second timeout. Unless otherwise specified, all models are evaluated under their default
inference settings (e.g., temperature, top-p, reasoning effort). The agent supports two execution paths:
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Table 2: Model comparison across MCPs. Pass@1 is computed as the average over four independent
runs, with the superscript showing the standard deviation; each MCP service value is also averaged
over four runs. Within each model group (Proprietary / Open-Source), the best result is marked
in bold and the second best result is underlined. For GPT-5 series models, explicit suffixes (e.g.,
“-medium”) indicate the reasoning effort setting; for all models, results correspond to their default
reasoning effort if supported. Abbreviations of MCP services are: FS = Filesystem, GH = GitHub,
NT = Notion, PW = Playwright, PG = PostgreSQL.

Model
MCP Services Metrics

FS GH NT PW PG pass@1 pass@4 pass^4

Proprietary Models

gpt-5-medium 57.50 47.83 41.96 43.00 76.19 52.56±1.29 68.50 33.86
grok-4 50.83 14.13 2.68 35.00 58.33 31.69±2.91 44.88 18.11

claude-opus-4.1 33.33 21.74 35.71 24.00 33.33 29.92±0.00 – –

claude-sonnet-4 27.50 16.30 21.43 26.00 53.57 28.15±2.57 44.88 12.60

gpt-5-mini-medium 33.33 18.48 16.07 12.00 61.90 27.36±3.12 45.67 9.45

o3 35.83 14.13 24.11 15.00 36.90 25.39±2.04 43.31 12.60

grok-code-fast-1 23.33 8.70 2.68 25.00 47.62 20.47±3.39 30.71 9.45

qwen3-max 10.83 14.13 16.96 8.00 44.05 17.72±1.31 22.83 11.02

o4-mini 25.00 14.13 20.54 12.00 11.90 17.32±2.30 31.50 6.30

gemini-2.5-pro 24.17 9.78 4.46 15.00 26.19 15.75±0.56 29.92 4.72

gemini-2.5-flash 8.33 15.22 6.25 6.00 10.71 9.06±0.68 18.11 3.94

gpt-4.1 12.50 7.61 6.25 8.00 4.76 8.07±0.65 12.60 3.15

gpt-5-nano-medium 6.67 7.61 3.57 0.00 15.48 6.30±2.01 11.81 1.57

gpt-4.1-mini 3.33 6.52 1.79 0.00 9.52 3.94±0.96 7.09 1.57

gpt-4.1-nano 0.00 0.00 0.00 0.00 0.00 0.00±0.00 0.00 0.00

Open-Source Models

qwen3-coder-plus 13.33 19.57 19.64 30.00 47.62 24.80±2.05 40.94 12.60
kimi-k2-instruct 14.17 16.30 8.04 30.00 47.62 21.85±1.16 31.50 12.60
deepseek-v3.1 15.83 9.78 12.50 7.00 42.86 16.73±1.41 28.35 7.87

glm-4.5 7.50 22.83 21.43 13.00 14.29 15.55±1.16 24.41 6.30

gpt-oss-120b 5.83 4.35 3.57 3.00 7.14 4.72±0.96 13.39 0.00

a general path via LiteLLM with function-calling tools and a native path with direct tool support
for certain models (e.g., Anthropic API for extended thinking mode). For MCP server selection, we
generally choose the most commonly used ones (see Appendix C for details).

3.2 MAIN RESULTS

We evaluate all 127 tasks using MCPMark-Agent, reporting pass@1, pass@4, and pass^4 metrics.
Unless otherwise specified, pass@1 scores are averaged over four independent runs and reported
as mean ± std. Detailed results on each MCP service are provided in Appendix D, and representative
trajectories appear in Appendix E.

MCPMark remains challenging for frontier models. Table 2 shows that the best-performing model,
gpt-5-medium, reaches only 52.56% pass@1, while qwen3-coder-plus, the strongest open-
source model, achieves 24.80%. Most proprietary models fall within the 15% to 30% range on
pass@1, and several open-source models perform below 10%. Moreover, Table 9 highlights the
high interaction demands of the benchmark: for example, qwen3-max and kimi-k2-instruct
average 23.85/26.95 turns with 23.02/26.22 tool calls, respectively. These results underscore that
MCPMark remains a highly challenging benchmark for current frontier models.

Models generally perform better on local service tasks. We observe from Table 2 that perfor-
mance varies significantly across MCP services, showing a clear divide between local and remote
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Figure 4: Turns distribution. Each point is one run (gray = fail). Plots show the turn distribution of
successes; color encodes pass@1. Stronger models finish with fewer, better-targeted calls.

environments. Local services such as PostgreSQL, Filesystem, and Playwright achieve substantially
higher success rates, with gpt-5-medium reaching 76.19%, 57.50%, and 43.00% pass@1 respec-
tively. Remote services like Notion and GitHub remain challenging, with most models achieving
below 25% pass@1. This gap likely stems from data availability: local services are easier to simulate
and collect training data for, while remote service APIs require authentic interaction traces that are
expensive to curate at scale. These results suggest that data remains key to enabling better MCP use.

Robustness lags far behind. Table 2 demonstrates that pass@4 provides substantial gains, with
gpt-5-medium and claude-sonnet-4 achieving 68.50% and 44.88% compared to just
52.56% and 28.15% for pass@1. However, the performance at pass^4 drops sharply to 33.86%
and 12.60%, respectively, underscoring the model’s inconsistency and instability across runs. Similar
discrepancies are observed across other models, with pass@4 often exceeding 30% while pass^4
remains in the 5% to 15% range, suggesting that while repeated attempts improve success, robustness
under multi-turn tool use in MCP contexts remains a common challenge—a shortcoming that poses
significant risks for real-world deployment where reliability across runs is essential.

More turns do not necessarily yield better performance. Figure 4 highlights distinct tool-calling
behaviors across models. In particular, the efficiency-accuracy correlation shows that stronger models
succeed through better decision making and targeted exploration, not blind trial-and-error. Notably,
kimi-k2-instruct often enters an overcalling mode, exceeding 30 turns with diminishing
success rates—indicating the model might get stuck or loop without effective information retrieval. In
contrast, gpt-5-medium achieves the highest pass@1 while maintaining reasonable turn budgets,
demonstrating that success arises from efficient decision-making rather than exhaustive tool calls.
Turn counts also vary significantly across MCP services (see Appendix G for details).

Cost is not a proxy for performance. Figure 21 shows that higher cost does not lead to higher
accuracy. Some of the most expensive runs achieve lower pass@1, while several lower-cost runs
reach stronger results. Table 9 reports per-task averages and further shows that costs vary widely
even when the number of turns is similar. Higher cost alone does not imply better results.

4 ANALYSIS

In this section, we investigate two aspects that shape model performance on MCPMark: the role of
reasoning effort in agent generalization, and the types of failures that prevent successful execution.

4.1 REASONING MODE AND EFFORT

We study how models benefit from different levels of reasoning effort, which are typically reflected
in the number of consumed thinking tokens before issuing tool calls. Table 3 reports results for the
gpt-5 series and claude-sonnet-4 across different effort settings.

Model perspective. The gpt-5 series benefits from increased reasoning effort at moderate and
large scales, though effects diverge by size. For gpt-5, medium effort raises pass@1 to 52.56%
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Table 3: Reasoning effort. Comparison of gpt-5 series models and claude-sonnet-4 under
different reasoning effort settings. Pass@1 is reported as mean with standard deviation (4 runs). Each
model expands into its supported reasoning effort settings. Best values in each column are bolded.

Model Reasoning Overall FS GH NT PW PG

gpt-5

Low 46.85±3.31 54.17±7.88 27.17±2.17 36.61±8.93 45.00±2.00 73.81±4.76

Medium 52.56±1.29 57.50±4.19 47.83±9.39 41.96±3.42 43.00±6.00 76.19±8.69

High 51.57±2.91 52.50±4.19 50.00±2.51 44.64±2.06 42.00±5.16 72.62±4.56

gpt-5-mini

Low 8.27±1.51 12.50±5.69 8.70±3.55 5.36±6.19 1.00±2.00 14.29±3.89

Medium 27.36±3.60 33.33±7.20 18.48±8.96 16.07±6.84 12.00±7.30 61.90±6.73

High 30.32±1.98 35.00±8.82 19.57±2.51 20.54±15.0 15.00±6.00 66.67±3.89

gpt-5-nano

Low 4.33±1.36 12.50±4.19 0.00±0.00 0.00±0.00 0.00±0.00 8.33±4.56

Medium 6.30±2.32 6.67±6.09 7.61±2.17 3.57±0.00 0.00±0.00 15.48±5.99

High 5.12±2.36 5.83±5.69 8.70±3.55 0.89±1.79 2.00±2.31 9.52±3.89

claude-sonnet-4

N/A 28.15±2.97 27.50±3.19 16.30±6.52 21.43±5.83 26.00±6.93 53.57±7.14

Low 27.36±1.97 23.33±5.44 25.00±4.16 22.32±3.42 22.00±4.00 48.81±8.13

High 28.35±2.73 23.33±4.71 28.26±2.51 19.64±9.45 26.00±2.31 50.00±8.25

14%

20%

10%

52%

gemini-2.5-flash

16%

17%

66%

gpt-4.1

13%

84%

gpt-5-high

5%

84%

kimi-k2-instruct

context window overflow turn limit abandoned premature stop malformed calls implicit

Figure 5: Failure breakdown across models. Failures are categorized as either implicit (task
completes normally but fails verification) or explicit (e.g., context window overflow, turn limit
exceeded, abandoned, premature stop, or malformed tool calls).

from 46.85% at low effort. gpt-5-mini shows even stronger relative gains, improving from 8.27%
to 30.32% between low and high. By contrast, gpt-5-nano shows only marginal changes around
4% to 6%, suggesting models of this scale lack the capacity to exploit additional reasoning tokens.
claude-sonnet-4 is similarly insensitive, remaining stable around 27% to 28%. These results
indicate that translating additional reasoning steps into better MCP use is non-trivial and likely
depends on a model’s base capacity and training approach.

MCP perspective. Reasoning effort selectively improves generalization in agentic tasks. Remote
services benefit most: GitHub performance nearly doubles from 27.17% to 50.00% between low
and high effort for gpt-5, while Notion rises from 36.61% to 44.64%. Local services remain
stable, with PostgreSQL at 72% to 76% and Filesystem varying under 5 percentage points. We
interpret this discrepancy as stemming from differences in training coverage. Remote services
typically have limited exposure due to rate limits and access restrictions, making the tasks harder and
requiring stronger generalization at test-time. Reasoning helps bridge this gap by enabling models
to extrapolate to unseen cases, aligning with recent discussions (Yao et al., 2023b; Yao, 2025) that
highlight “language generalizes through reasoning in agents”.

4.2 FAILURE BREAKDOWN

Introduction. We classify failures into two categories to ease presentation: implicit and explicit.
Implicit failures occur when the task completes successfully but the output does not meet the required
specifications. These often stem from issues such as reasoning errors, suboptimal planning, ineffective
tool usage, or difficulty handling long contexts, which may interact to cause complex failures that are
difficult to attribute to a single factor. In contrast, explicit failures can be directly linked to specific
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issues. These include context window overflow (input exceeding the model’s processing length), turn
limit exceeded (the model exhausts its allowed interaction steps), abandoned tasks (model decides the
task is infeasible), premature stop (model halts without completing or making necessary tool calls),
and malformed tool calls (invalid parameters or improperly structured payloads).

Observations. As seen in Figure 5, implicit failures account for the majority of errors across all
models, often exceeding 50%. Models like gpt-5-high and kimi-k2-instruct show over
80% implicit failures, indicating they generally complete tasks without obvious breakdowns, with
errors being more subtle and capability-driven. In contrast, gemini-2.5-flash and gpt-4.1
have lower implicit failure rates (52% and 66%, respectively), suggesting more explicit causes. For
explicit failures, gemini-2.5-flash and gpt-4.1 mainly experience abandoned or premature
stop errors, reflecting weaker reasoning and planning. gemini-2.5-flash also shows a higher in-
cidence of malformed tool calls (around 10%), possibly due to mismatches in tool-call conventions or
insufficient training. gpt-5-high has more context window overflow errors, indicating difficulties
with long-context handling, while kimi-k2-instruct faces frequent turn limit exceeded errors,
often due to repetitive tool-calling loops. These results suggest that explicit errors are model-specific,
highlighting the need for targeted improvements in reasoning, context management, and tool use.

5 RELATED WORK

LLM Agents. With the development of large language models (LLMs) (Team, 2025; Anthropic,
2025a; Team et al., 2025; OpenAI, 2025c; Comanici et al., 2025), LLM agents have progressed from
early prompting methods such as ReAct (Yao et al., 2023b), which integrated reasoning traces with
tool actions, to more structured designs like MetaGPT (Hong et al., 2024) that coordinate multi-agent
collaboration through explicit role assignment. This evolution has been supported by research on
tool use (Schick et al., 2023; Qin et al., 2023; Patil et al., 2024), which explore when and how models
should call APIs, as well as planning and reflection methods (Yao et al., 2023a; Shinn et al., 2023;
Wang et al., 2024a) that improve robustness in multi-step workflows. Multi-agent frameworks (Wu
et al., 2024; Li et al., 2023; Chen et al., 2023) further demonstrate the benefits of coordinated division
of labor. In applied domains, coding agents (Yang et al., 2024; Wang et al., 2024b) enable real
repository interaction; GUI and computer-use agents are advanced by benchmarks (Zhou et al., 2023;
Deng et al., 2023; Xie et al., 2024); and deep research efforts are represented by initiatives (Wei
et al., 2025; Starace et al., 2025; Du et al., 2025). Together, these developments illustrate the trend
toward general agents that can operate across heterogeneous systems and contexts, naturally pointing
to the need for standardized protocols such as the Model Context Protocol (MCP) (Anthropic, 2024)
that provide a unifying interface for tool and environment integration.

Benchmarks for evaluating MCP use. Recent work has begun to systematically benchmark agent
performance in MCP-enabled settings (Yan et al., 2025; Liu et al., 2025; Mo et al., 2025; Gao et al.,
2025). MCP-Universe (Luo et al., 2025) constructed tasks across multiple domains and evaluators,
revealing the difficulty models face with long and dynamic workflows. LiveMCP-101 (Yin et al.,
2025) focused on multi-tool interaction and execution-plan validation, while MCP-AgentBench (Guo
et al., 2025) scaled up evaluation with hundreds of tasks spanning diverse servers and tools. These
efforts primarily emphasize broad tool coverage or easier execution but leave gaps in assessing
high-fidelity workflows tied to realistic application environments. Our proposed MCPMark addresses
this by designing tasks with diverse CRUD operations in containerized settings to ensure safety and
reproducibility. Each task is paired with programmatic verification scripts and full environment state
tracking, enabling reliable and fine-grained evaluation.

6 DISCUSSION ON LIMITATIONS AND FUTURE DIRECTIONS

Our task creation pipeline, while ensuring task quality, is difficult to scale. This creates a bottleneck
for producing the large-scale training data needed to advance the field. Furthermore, the steep
difficulty of many tasks in MCPMark limits its utility for evaluating and guiding the development of
smaller, more efficient models. Future work on the benchmark should therefore focus on introducing
a more fine-grained difficulty gradient, potentially through semi-automated task generation and a
reduced task execution chain. Additionally, to better reflect real-world complexity, the benchmark
could be expanded to include tasks with ambiguous user intent. This would test an agent’s ability
to ask clarifying questions or infer the user’s actual intent. Finally, incorporating a wider variety
of MCP servers could also help challenge agents across a more diverse set of digital tools.
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ETHICS STATEMENT

This section outlines how we address the ethical considerations involved in the construction of our
benchmark, which includes several key components that could raise ethical concerns:

• Initial State of MCP Environment: Each initial state and environment used in the benchmark
is provided with the appropriate license information (see Appendix H for details). A few
environments were self-curated, and for these, we have ensured transparency and compliance
with relevant licensing requirements, promoting ethical usage.

• Task Curation: All tasks included in the benchmark were collaboratively annotated by both
experts and AI agents. The experts involved in the curation process have been properly recognized
as co-authors in the author list, ensuring that their contributions are duly acknowledged. Addi-
tionally, the licenses for the agents used, including Claude Code (License) and Cursor (License),
are provided to ensure that all resources are used responsibly and in accordance with the relevant
licensing terms for research purposes.

• MCP Servers: The licenses for each specific MCP server used in the benchmark are provided in
Appendix C. This ensures that all external systems and tools are properly licensed for research
and evaluation purposes.

By adhering to these practices, we ensure that high ethical standards are maintained throughout the
construction of the benchmark, and that all resources are used responsibly and in accordance with
relevant regulations.

REPRODUCIBILITY STATEMENT

In order to ensure the reproducibility of our experiments, we have made available the evaluation code,
task data, and corresponding run instructions in the supplementary materials. The evaluation code
has been modified to remove any identifiable personal information to protect privacy. Additionally,
the tasks and data used for evaluation are included in the supplementary materials along with detailed
instructions on how to execute the experiments. This ensures that other researchers can replicate our
results under the same conditions while adhering to privacy standards.
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A USE OF LLMS

Large language models were used as general-purpose assistants to support writing, debugging, and
the generation of some initial environment states. Specifically, claude-code and codex were prompted
to produce structured directory layouts, starter scripts, or database schemas that served as initial
configurations in selected tasks. These outputs were carefully reviewed and refined by human experts
to ensure correctness, realism, and alignment with benchmark goals.

LLMs also helped improve the grammar, flow of writing, and occasionally assisted in resolving minor
coding issues such as syntax errors or implementation quirks. All core ideas, benchmark designs,
implementations, experiments, and analyses were independently developed by the authors. No part
of the scientific contribution or methodological reasoning was generated by an LLM.
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B DETAILS OF THE TASK CREATION PIPELINE

We use Playwright as an example to illustrate the guideline for human experts and the initial
instruction/prompt for the task creation agent. These are simplified for reference.

Guideline (Playwright)

Step 1. Select the starting environment
Pick a website or web app as the initial state. Prefer a staging or test instance to avoid
side effects. Examples: a Reddit-like forum or a Shopping Admin dashboard.

Step 2. Configure the agent environment
In Cursor or Claude Code, set up the MCP server stack and include the Playwright MCP
server so the agent can control a browser.

Step 3. Define an initial question or topic
Write a seed question or topic that will guide agent exploration and task
creation. It can be broad or moderately specific.

Step 4. Create and refine the task
Step 4.1. Exploration with the agent

Have the agent read the initial instruction (which includes the seed question),
then explore the target site together with the agent. Based on the collected con-
text, ask the agent to propose a task that fits the objectives and requirements.

Step 4.2. Provide feedback to improve the task
Guide the agent to revise the task as needed. Examples:
• If verification is weak: “This task is not sufficiently verifiable. Please revise

it to make verification clearer and more reliable.”
• If exploration lacks coverage: “You can explore deeper to collect more

diverse and detailed information.”
• If subtasks feel disconnected: “Make the subtasks integrated rather than

unrelated.”
Step 4.3. Save the task

Store the task description and the verification script as separate files. Use a
consistent folder structure based on category and name. Follow well-structured
prior examples for formatting.

Step 4.4. Human-in-the-loop adjustments
Iterate between the agent and the reviewer until both the task description and
the verification script meet quality standards.

Step 5. Execute and verify
Run the task with Playwright MCP to reach the final state, then run the verification script.
Stress-test the checker to confirm:
Step 5.1. The task is executable end to end.
Step 5.2. Pass or fail is clear and objective.
Step 5.3. The script flags both correct and incorrect outcomes, including edge cases.

Step 6. Assess difficulty (optional)
If the task and checker pass, consider whether difficulty is high enough to test the model.
Adjust scope or constraints if needed.

Notes. These steps target experts working with Cursor or Claude Code. They are guidelines. If
issues appear, collaborate with colleagues to debug efficiently.
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Initial Instruction for Task Creation Agent (Playwright)

Your job is to:
1. First explore the web environment to understand available MCP tools and capabilities.
2. Generate one challenging, verifiable, and realistic task based on your collected information.
3. Focus your exploration and task generation on the following specific topic or question:

• Use this as a guiding theme for creating more targeted and relevant tasks.
• Ensure the task addresses different aspects or components related to this requirement.

Playwright MCP Tools Reference:

<playwright_mcp_doc>
[contents of docs/playwright-mcp-introduction.md go here]
</playwright_mcp_doc>

Output Format:

{
"tasks": [
{
"task_id": "task_1",
"description": "Clear, conversational task description",
"difficulty": "hard",
"verification_criteria": ["criterion 1", "criterion 2"],
"expected_mcp_calls": ["browser_navigate", "browser_snapshot",

"browser_click"],
"estimated_complexity": "high"

}
]

}

Based on the given web application environment, write one challenging, verifiable, and realistic
browser automation task that aligns with users’ actual web interaction workflows. The goal is to
evaluate an Agent’s ability to use Playwright MCP tools effectively. Requirements:
• Difficulty: The task should be really hard ... (omitted)
• Verifiability: Avoid open-ended outcomes ... (omitted)
• Authenticity: Describe the task in a natural, conversational tone ... (omitted)
• Context Awareness: Leverage page structure, form elements, navigation patterns, ... (omitted)

Start by exploring the web application environment using MCP tools to understand the
current structure, interactive elements, and user workflows, then generate a task that combines:
1. Your real-time MCP exploration findings.
2. The specific website structure and interactive elements you discover.
3. A focus on browser automation operations that require multiple Playwright MCP tools rather

than only content reading.
4. The specific focus area: <seed_topic>.
Please explore thoroughly before creating the task. Consider:
• Form elements and input fields.
• Navigation patterns and menu structures.
• Dynamic content and interactive features.
• User workflow patterns.
• Authentication and session management.
• Data submission and validation processes.
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C MCP SERVERS

We relied on five Model Context Protocol (MCP) servers in our setup. Below we summarize their
functionality, invocation, repository, and license.

Filesystem. The filesystem server provides local read, write, and directory operations over the
host file system. It is invoked as @modelcontextprotocol/server-filesystem. The
implementation is hosted at github.com/modelcontextprotocol/servers under the MIT License.

GitHub. The GitHub server integrates with the GitHub API to manage repositories, issues, and
pull requests. The endpoint used is https://api.githubcopilot.com/mcp/. The code is
available at github.com/github/github-mcp-server, released under the MIT License.

Notion. The Notion server allows interaction with Notion databases and pages. It is invoked as
@notionhq/notion-mcp-server. The official repository is github.com/makenotion/notion-
mcp-server, licensed under the MIT License.

Playwright. The Playwright server enables browser automation and scripted web work-
flows. It is started using @playwright/mcp@latest. The source code is provided at
github.com/microsoft/playwright-mcp, distributed under the Apache License 2.0.

PostgreSQL. The PostgreSQL server provides access to a relational database through SQL queries.
It is launched with postgres-mcp -access-mode=unrestricted. The implementation is
maintained at github.com/crystaldba/postgres-mcp, and is released under the MIT License.
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D DETAILED MCP BENCHMARK RESULTS

Tables 2 and 9 presented the overall success rates and usage statistics, aggregated across all MCPs.
Here we provide the corresponding breakdown by individual MCP from Table 4 to Table 8. #Input and
#Output are measured in thousands of tokens (K), and Cost is reported in USD. For success metrics,
bold and underline indicate the best and second-best results, respectively. For usage statistics, bold
and underline denote the largest and second-largest values, without implying better performance.

Table 4: Filesystem MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 57.50±3.63 76.67 36.67 215.96 17.38 0.44 10.06 21.07

grok-4 50.83±6.40 73.33 26.67 247.33 10.70 0.90 10.80 16.87

o3 35.83±2.76 50.00 26.67 689.64 17.79 1.52 28.79 27.80

gpt-5-mini-medium 33.33±6.24 53.33 10.00 398.34 12.58 0.12 14.84 36.93
claude-opus-4.1 33.33±0.00 – – 272.17 4.37 4.41 16.37 15.40

claude-sonnet-4 27.50±2.76 50.00 6.67 302.21 4.00 0.97 16.02 15.08

o4-mini 25.00±2.89 36.67 13.33 293.34 15.89 0.39 20.88 19.88

gemini-2.5-pro 24.17±3.63 43.33 10.00 214.97 7.75 0.65 14.35 14.72

grok-code-fast-1 23.33±7.45 40.00 10.00 276.40 2.36 0.06 16.38 16.77

gpt-4.1 12.50±1.44 20.00 3.33 143.95 1.81 0.30 9.28 18.48

gemini-2.5-flash 8.33±1.67 13.33 6.67 67.64 7.57 0.04 6.50 11.15

gpt-5-nano-medium 6.67±5.27 16.67 0.00 462.74 19.53 0.03 20.75 27.76

gpt-4.1-mini 3.33±0.00 3.33 3.33 196.15 1.63 0.08 15.50 19.57

gpt-4.1-nano 0.00±0.00 0.00 0.00 116.98 1.32 0.01 12.17 15.32

Open-Source Models

deepseek-v3.1 15.83±1.44 26.67 6.67 421.33 3.38 0.24 23.83 23.12

kimi-k2-instruct-0905 14.17±1.44 23.33 6.67 696.79 4.47 0.43 26.27 25.70

qwen3-coder-plus 13.33±6.67 26.67 3.33 972.41 4.15 0.20 28.23 27.32
qwen3-max 10.83±1.44 13.33 10.00 389.56 2.87 0.48 19.27 18.39

glm-4.5 7.50±1.44 13.33 3.33 193.95 3.92 0.07 16.39 17.09

gpt-oss-120b 5.83±4.33 16.67 0.00 19.75 1.08 < 0.01 4.62 3.62
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Table 5: GitHub MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 47.83±8.13 65.22 17.39 659.73 20.57 1.03 14.33 21.23
claude-opus-4.1 21.74±0.00 – – 620.63 5.84 9.75 10.78 10.13

gpt-5-mini-medium 18.48±7.76 34.78 4.35 614.68 7.71 0.17 13.92 17.28

claude-sonnet-4 16.30±5.65 30.43 8.70 696.81 4.44 2.16 11.16 10.50

gemini-2.5-flash 15.22±2.17 21.74 8.70 1107.04 12.70 0.36 10.46 17.71

grok-4 14.13±3.61 21.74 8.70 804.50 1.93 2.44 12.98 16.76

o4-mini 14.13±6.43 26.09 4.35 510.13 8.74 0.60 10.92 10.08

o3 14.13±3.61 21.74 4.35 451.18 3.56 0.93 9.20 8.24

gemini-2.5-pro 9.78±1.88 21.74 0.00 173.43 5.75 0.52 5.45 6.29

grok-code-fast-1 8.70±5.32 17.39 4.35 751.41 6.50 0.16 17.85 17.28

gpt-5-nano-medium 7.61±1.88 13.04 0.00 751.62 26.77 0.05 15.15 17.63

gpt-4.1 7.61±1.88 8.70 4.35 445.88 2.49 0.91 9.95 14.97

gpt-4.1-mini 6.52±6.52 17.39 0.00 466.70 1.51 0.19 12.00 14.63

gpt-4.1-nano 0.00±0.00 0.00 0.00 312.86 2.59 0.03 9.27 11.04

Open-Source Models

glm-4.5 22.83±6.43 34.78 13.04 482.00 3.65 0.16 11.92 11.04

qwen3-coder-plus 19.57±6.52 34.78 13.04 1987.14 3.36 0.40 19.12 18.13

kimi-k2-instruct-0905 16.30±1.88 26.09 8.70 995.65 8.25 0.62 23.68 23.23

qwen3-max 14.13±3.61 17.39 4.35 1348.13 2.55 1.63 26.70 25.78
deepseek-v3.1 9.78±1.88 13.04 8.70 362.36 2.24 0.21 9.46 9.22

gpt-oss-120b 4.35±3.07 8.70 0.00 76.30 1.41 < 0.01 4.62 3.62
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Table 6: Notion MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 41.96±2.96 50.00 32.14 375.04 31.62 0.79 12.94 21.60

claude-opus-4.1 35.71±0.00 – – 638.06 3.93 9.87 17.04 16.04

o3 24.11±3.89 46.43 7.14 224.93 9.47 0.53 13.72 12.72

claude-sonnet-4 21.43±5.05 39.29 7.14 646.64 4.24 2.00 19.71 18.71

o4-mini 20.54±5.85 42.86 7.14 267.63 25.97 0.41 15.29 14.29

gpt-5-mini-medium 16.07±5.92 32.14 3.57 705.09 12.34 0.20 14.60 17.28

gemini-2.5-flash 6.25±4.64 21.43 0.00 201.00 6.58 0.08 6.11 9.61

gpt-4.1 6.25±1.55 14.29 0.00 135.55 1.37 0.28 8.58 11.82

gemini-2.5-pro 4.46±2.96 7.14 0.00 212.92 7.13 0.64 7.12 8.67

gpt-5-nano-medium 3.57±0.00 3.57 3.57 204.32 32.08 0.02 7.46 8.74

grok-4 2.68±1.55 3.57 0.00 678.64 13.04 2.23 20.14 24.80
grok-code-fast-1 2.68±1.55 3.57 0.00 561.49 7.26 0.12 20.27 20.09

gpt-4.1-mini 1.79±1.79 3.57 0.00 262.75 1.35 0.11 12.57 14.56

gpt-4.1-nano 0.00±0.00 0.00 0.00 93.38 1.40 < 0.01 9.64 10.93

Open-Source Models

glm-4.5 21.43±2.53 32.14 10.71 625.97 5.04 0.21 22.15 21.17

qwen3-coder-plus 19.64±6.44 39.29 7.14 796.73 2.75 0.16 21.07 20.23

qwen3-max 16.96±4.64 25.00 3.57 973.92 3.66 1.19 26.57 25.63

deepseek-v3.1 12.50±3.09 28.57 0.00 503.35 2.20 0.29 17.94 17.40

kimi-k2-instruct-0905 8.04±2.96 10.71 3.57 1117.21 5.20 0.68 33.55 32.72
gpt-oss-120b 3.57±2.53 14.29 0.00 68.31 1.72 < 0.01 5.49 4.49
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Table 7: Playwright MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 43.00±5.20 56.00 36.00 1807.17 21.79 2.48 23.78 22.96

grok-4 35.00±7.68 48.00 20.00 1264.91 6.64 3.89 20.05 23.02

claude-sonnet-4 26.00±6.00 36.00 8.00 1241.92 3.52 3.78 19.80 19.12

grok-code-fast-1 25.00±1.73 36.00 8.00 1157.72 7.17 0.24 18.23 18.18

claude-opus-4.1 24.00±0.00 – – 1146.05 2.88 17.41 19.04 18.40

gemini-2.5-pro 15.00±1.73 32.00 4.00 1696.44 5.58 4.32 19.15 18.33

o3 15.00±5.20 32.00 8.00 556.30 4.46 1.15 16.30 15.40

o4-mini 12.00±2.83 28.00 0.00 862.51 18.07 1.03 17.70 16.93

gpt-5-mini-medium 12.00±6.32 24.00 4.00 1814.94 8.55 0.47 22.75 22.04

gpt-4.1 8.00±2.83 12.00 4.00 859.77 0.86 1.73 13.80 15.21

gemini-2.5-flash 6.00±2.00 12.00 0.00 3838.93 8.21 1.17 26.33 38.78
gpt-5-nano-medium 0.00±0.00 0.00 0.00 711.95 17.71 0.04 18.52 17.55

gpt-4.1-mini 0.00±0.00 0.00 0.00 4959.14 3.28 1.99 31.33 31.52

gpt-4.1-nano 0.00±0.00 0.00 0.00 389.80 0.74 0.04 13.51 13.61

Open-Source Models

qwen3-coder-plus 30.00±4.47 48.00 8.00 2851.57 2.39 0.57 21.21 20.40

kimi-k2-instruct-0905 30.00±6.00 40.00 20.00 1358.02 2.17 0.82 20.64 19.79

glm-4.5 13.00±3.32 20.00 4.00 582.73 2.76 0.20 15.36 14.61

qwen3-max 8.00±0.00 12.00 4.00 2297.67 1.16 2.76 27.83 27.41
deepseek-v3.1 7.00±3.32 16.00 0.00 836.01 1.77 0.47 19.09 20.78

gpt-oss-120b 3.00±1.73 4.00 0.00 139.33 1.27 0.01 7.21 6.26
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Table 8: PostgreSQL MCP benchmark results.

Model
Metrics Per-Task Avg Usage

Pass@1 Pass@4 Pass^4 # Input # Output Cost Turns Tool Calls

Proprietary Models

gpt-5-medium 76.19±7.53 100.00 47.62 113.35 17.04 0.31 13.37 12.45

gpt-5-mini-medium 61.90±5.83 90.48 28.57 115.40 9.27 0.05 11.77 10.77

grok-4 58.33±7.81 80.95 38.10 186.07 8.23 0.68 17.89 17.08

claude-sonnet-4 53.57±6.19 71.43 38.10 331.10 7.54 1.11 26.80 25.81
grok-code-fast-1 47.62±4.76 61.90 28.57 226.41 5.46 0.05 19.70 18.70

o3 36.90±3.95 66.67 14.29 63.56 4.72 0.16 10.71 9.71

claude-opus-4.1 33.33±0.00 – – 260.68 9.80 4.64 24.86 23.86

gemini-2.5-pro 26.19±7.90 47.62 9.52 39.74 8.91 0.23 7.45 6.45

gpt-5-nano-medium 15.48±5.19 28.57 4.76 105.02 23.04 0.01 9.46 10.15

o4-mini 11.90±4.12 19.05 4.76 15.92 5.76 0.04 5.06 4.06

gemini-2.5-flash 10.71±6.19 23.81 4.76 46.08 9.93 0.04 8.76 11.38

gpt-4.1-mini 9.52±3.37 14.29 4.76 46.63 1.78 0.02 9.77 11.61

gpt-4.1 4.76±0.00 4.76 4.76 55.11 1.20 0.12 8.12 10.54

gpt-4.1-nano 0.00±0.00 0.00 0.00 71.06 2.43 < 0.01 8.73 10.18

Open-Source Models

qwen3-coder-plus 47.62±5.83 61.90 38.10 573.90 5.13 0.12 29.00 28.00

kimi-k2-instruct-0905 47.62±4.76 66.67 28.57 441.16 5.38 0.28 30.21 29.25
qwen3-max 44.05±2.06 52.38 38.10 192.13 4.91 0.26 18.88 17.92

deepseek-v3.1 42.86±7.53 61.90 28.57 316.60 4.65 0.19 26.48 25.49

glm-4.5 14.29±7.53 23.81 0.00 204.61 5.14 0.07 25.39 24.40

gpt-oss-120b 7.14±2.38 23.81 0.00 21.36 1.42 < 0.01 5.07 4.07
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E CASE STUDIES BY MCP

Filesystem - Contact Information

Initial State

Figure 6: Task sheet and initial directory tree for the Filesystem case; trajectories are in Figures 7–8.
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Model Trajectory - claude-sonnet-4

Verifier Result

Contact info CSV Exists

Answer TXT Exists

Files in Correct Locations

Correct CSV Structure

Answer Content

Figure 7: Successful run by claude-sonnet-4: extracts contacts, writes CSV and answer file,
verifier passes.
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Model Trajectory - gemini-2.5-pro

Verifier Result

Contact info CSV Exists

Answer TXT Exists

Files in Correct Locations

Correct CSV Structure

Answer Content

Figure 8: Failed run by gemini-2.5-pro: files are created but CSV/answer content is incorrect,
verifier fails.
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GitHub - Linting CI Workflow

Initial State

Figure 9: Task sheet and initial repository snapshot for the GitHub case; trajectories are in Figures 10–
11.
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Model Trajectory - gpt-5-medium

Verifier Result

CI branch exists

.eslintrc.json config

.github/worflows/lint.yml

Linting PR exists

Workflow 1 fail 1 pass

Linting error fixed

Figure 10: Successful run by gpt-5-medium: branch, ESLint config, workflow, and PR are created;
CI run fixes lint errors; verifier passes.
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Model Trajectory - qwen3-coder-plus

Verifier Result

CI branch exists

.eslintrc.json config

.github/worflows/lint.yml

Linting PR exists

Workflow 1 fail 1 pass

Linting error fixed

Figure 11: Failed run by qwen3-coder-plus: partial setup leaves artifacts or CI incomplete,
verifier fails.
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Notion - Toronto Guide

Initial State

Figure 12: Task sheet and initial Notion page/databases for the Notion case; trajectories are in
Figures 13–14.
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Model Trajectory - claude-opus-4.1

Verifier Result

Callout Block

Activities Database Tags

Food Database Tags

Cafes Database Tags

Additional Check

Figure 13: Successful run by claude-opus-4.1: updates callout and retags database items
consistently, verifier passes.
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Model Trajectory - deepseek-v3.1-non-thinking

Verifier Result

Callout Block

Activities Database Tags

Food Database Tags

Cafe Database Tags

Additional Check

Figure 14: Failed run by deepseek-v3.1: performs partial edits but misses required tag updates,
verifier fails.
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Playwright - Cloudflare Turnstile Challenge

Initial State

Figure 15: Task sheet and initial login page for the Playwright case; trajectories are in Figures 16–17.
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Model Trajectory - o3

Verifier Result

Credential Correct

Cloudflare Turnstile Passed

Figure 16: Successful run by o3: navigates login, fills credentials, passes Turnstile, reaches authenti-
cated state, verifier passes.
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Model Trajectory - grok-4

Verifier Result

Credential Correct

Cloudflare Turnstile Failed

Figure 17: Failed run by grok-4: credentials entered but Turnstile not solved, verifier fails.
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PostgreSQL - Employee Project Tracking

Initial State

Figure 18: Task sheet and initial schema for the PostgreSQL case; trajectories are in Figs. 19–20.
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Model Trajectory - grok-code-fast-1

Verifier Result

Table Structures

Required indexes Found

Project Data Exists

Assignment Data Exists

Milestones Data Exists

Figure 19: Successful run by grok-code-fast-1: creates/updates tracking tables, adds indexes
and seed rows, verifier passes.
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Model Trajectory - grok-4

Verifier Result

Table Structures

Required Indexes Found

Project Data not Exists

Assignment Data not Exists

Milestones Data not Exists

Figure 20: Failed run by grok-4: schema work incomplete and required rows/indexes missing,
verifier fails.
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F COST AND TURN DISTRIBUTION

gpt-oss-120b

gpt-5-mini-low

glm-4.5
deepseek-v3.1

o4-mini

gemini-2.5-pro

qwen3-max

o3

kimi-k2-instruct
grok-code-fast-1

qwen3-coder-plus

gpt-5-mini-medium

gpt-5-mini-high

gpt-5-low

gpt-5-high

gpt-5-medium

grok-4

claude-sonnet-4
claude-sonnet-4-high

claude-sonnet-4-low
claude-opus-4.1

High cost-performance zone 

Figure 21: Cost-performance map per run. The shaded area highlights runs with higher performance
at lower cost.

Table 9: Usage stats. Per-task averages: input/output tokens (K), cost (USD), turns, tool calls.

Model
Per-Task Avg Usage

# Input # Output Cost Turns Tool Calls

Proprietary Models

claude-opus-4.1 586.07 5.14 9.18 17.43 16.57

grok-4 633.51 8.42 2.03 16.25 19.84

claude-sonnet-4 639.37 4.63 1.99 18.48 17.62

gemini-2.5-pro 469.65 7.02 1.28 10.95 11.20

qwen3-max 1034.96 2.99 1.26 23.85 23.02
gpt-5-medium 627.66 21.91 1.00 14.71 20.16

o3 414.23 8.59 0.90 16.47 15.50

gpt-4.1 323.00 1.55 0.66 9.94 14.42

o4-mini 393.10 15.57 0.50 14.60 13.68

gpt-4.1-mini 1172.70 1.90 0.47 16.39 18.61

gemini-2.5-flash 1024.09 8.80 0.33 11.41 17.47

gpt-5-mini-medium 737.22 10.31 0.20 15.67 21.78

grok-code-fast-1 590.50 5.65 0.13 18.42 18.19

gpt-4.1-nano 193.37 1.64 0.02 10.78 12.39

gpt-5-nano-medium 447.99 23.83 0.03 14.50 16.81

Open-Source Models

kimi-k2-instruct 931.50 5.01 0.57 26.95 26.22
qwen3-coder-plus 1421.47 3.51 0.29 23.75 22.84

deepseek-v3.1 493.05 2.81 0.28 19.43 19.27

glm-4.5 419.66 4.09 0.14 18.14 17.62

gpt-oss-120b 64.50 1.37 0.01 5.40 4.41
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G TURN DISTRIBUTIONS ACROSS MCP SERVICES

In this section, we provide per-service turn distributions for the five MCPs in MCPMark from Figure
22 to Figure 26. These plots complement the overall turn analysis in Figure 4 and illustrate how turn
requirements differ by service.
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Figure 22: Turn distribution per task on the Filesystem MCP.
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Figure 23: Turn distribution per task on the Notion MCP.
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Figure 24: Turn distribution per task on the GitHub MCP.
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Figure 25: Turn distribution per task on the PostgreSQL MCP.
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Figure 26: Turn distribution per task on the Playwright MCP.
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H INITIAL STATES SELECTION AND LICENSES

This section provides an overview of the initial states selection, including Notion templates, GitHub
repositories, PostgreSQL databases, Playwright websites, and Filesystem components, along with
their corresponding licenses.

H.1 NOTION TEMPLATES

We utilized 9 publicly available Notion templates from the Notion Template Marketplace for bench-
marking purposes. According to Notion’s Marketplace Guidelines & Terms, templates are provided
under a non-exclusive license for use within the user’s workspace as long as an active Notion sub-
scription is maintained. Redistribution or resale is prohibited. Our use of these templates was limited
to internal research and benchmarking, in compliance with the licensing conditions.

# Template
1 Online Resume
2 Japan Travel Planner
3 Company in-a-Box
4 Computer Science Student Dashboard
5 Standard Operating Procedure
6 Team Projects
7 Python Roadmap
8 Toronto Guide
9 IT Trouble Shooting Hub

Table 10: Notion templates used in this research benchmark.

H.2 GITHUB REPOSITORIES

Several GitHub repositories were utilized during the research. Below is a summary of the repositories
and their respective licenses:

• anthropics/claude-code: © Anthropic PBC. All rights reserved. Use is subject to An-
thropic’s Commercial Terms of Service.

• openai/harmony: Apache License 2.0.

• missing-semester/missing-semester: CC BY-NC-SA 4.0.

• codecrafters-io/build-your-own-x: CodeCrafters, Inc. has waived all copyright and related
or neighboring rights to this work.

• hiyouga/EasyR1: Apache License 2.0.

• mcpmark-cicd: Written by authors and hosted via GitHub.

H.3 PLAYWRIGHT USAGE

We utilized environments “reddit”, “shopping”, and “shopping_admin” from the web-arena-
x/webarena repository, which is licensed under the Apache License 2.0. These modules were
incorporated for testing and evaluation purposes within the benchmarking setup. Other websites were
written by authors and hosted via Vercel.

H.4 FILESYSTEM COMPONENTS

The following filesystem components were used as part of our research environment: (1) desktop,
desktop_template, file_context, file_property, folder_structure, papers, and student_database
were collected from the authors’ own local environment or files synthesized using LLMs. (2)
legal_document refers to a legal document on NVCA financing, which can be accessed at CooleyGo .
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https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/web-arena-x/webarena
https://github.com/web-arena-x/webarena
https://www.cooleygo.com/documents/nvca-financing-documents/
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(3) threestudio and votenet are open-source projects utilized from GitHub repositories. Specifically,
votenet (MIT License), and threestudio (Apache License 2.0).

H.5 POSTGRESQL DATABASES

We utilized the following PostgreSQL databases, which are publicly available with their corresponding
licenses:

• chinook: MIT License, and Apache License 2.0.
• employees: CC BY-SA 3.0, and Apache License 2.0.
• lego: CC0 1.0 Universal (Public Domain Dedication), and Apache License 2.0.
• sports: Apache License 2.0.
• dvdrental: MIT License.
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https://github.com/facebookresearch/votenet?tab=MIT-1-ov-file
https://github.com/threestudio-project/threestudio?tab=Apache-2.0-1-ov-file
https://github.com/lerocha/chinook-database/blob/master/LICENSE.md
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/neondatabase-labs/postgres-sample-dbs/blob/main/LICENSE
https://github.com/yugabyte/yugabyte-db/blob/master/licenses/APACHE-LICENSE-2.0.txt
https://github.com/devrimgunduz/pagila/blob/master/LICENSE.txt
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