Finding Plans and Heuristics with Spectral Graph Theory

Johannes Schmalz

Saarland University, Germany

Abstract

Spectral graph theory can be used to construct plans and
heuristics for undirected graphs with a goal. A recent algo-
rithm computes the smallest eigenvector of a graph’s Dirich-
let Laplacian matrix and interprets this eigenvector as a
heuristic function over the graph’s vertices — greedily follow-
ing this heuristic is guaranteed to lead to the goal. In this pa-
per, we show that finding the smallest eigenvector is equiv-
alent to finding a network flow over the graph, and then it
becomes intuitively clear that following the flow must lead to
the goal. We also show that the eigenvector produces a con-
sistent, goal-aware heuristic, and discuss how this approach
may be applicable to planning.

1 Introduction

Spectral graph theory is a field of mathematics that encodes
graphs with various matrix representations and then inves-
tigates the properties of these matrices’ eigenvectors and
eigenvalues. For an overview, we refer to the text by Chung
(1997) or the work-in-progress text by Spielman (2025).
Spectral graph theory has applications in combinatorial op-
timisation, data mining, computer vision and pattern recog-
nition, internet search, load balancing, and many other ar-
eas of computer science (Cvetkovi¢ and Simi¢ 2011). As a
concrete example, specific eigenvalues can be used to upper
bound the max cut of a regular graph, and generalisations
of this connection have been exploited to produce efficient
approximation algorithms (Trevisan 2009). Curiously, the
problem of producing plans has only recently been inves-
tigated by Steinerberger (2021), who considers undirected
graphs with a goal vertex and presents a spectral algorithm
that produces plans from each non-goal vertex to the goal,
and proves the algorithm’s correctness. However, he admits
that the effectiveness of this algorithm is not well under-
stood. He relates his algorithm for this discrete problem to a
more general continuous problem, and argues that any in-
sight into the algorithm for graphs may give valuable in-
sights into the generalisation.

In this paper, we attempt to demystify the algorithm by
showing that it is equivalent to an optimisation problem that
computes a feasible network-flow solution over the graph.
By treating the solution as a way to route flow from all non-
goal vertices to the goal as a sink, it becomes intuitively clear
that “following the flow” must reach the goal, and gives in-

sight into further properties of the spectral solution. Further-
more, we demonstrate that the algorithm produces a con-
sistent, goal-aware heuristic, which gives us a lower bound
on the minimal plan length to complement the upper bound
produced by the spectral plans, i.e., the algorithm gives error
bounds on its solution. Afterwards, we present some exam-
ple graphs to illustrate the behaviours of the spectral algo-
rithm’s solutions, which gives more intuition for how the so-
Iution works and answers one of Steinerberger’s open ques-
tions. Finally, we motivate that the spectral approach may be
applicable to planning problems. There are graph operations
that let us combine graphs into larger graphs in a way that
the larger graph’s eigenvectors can be easily computed from
the eigenvectors of the smaller graphs. Then, in the spirit of
planning techniques it may be possible to solve large prob-
lems via a decomposition into smaller subproblems.

2 Background: Spectral Graph Theory

We present some preliminaries of spectral graph theory, and
explain the spectral algorithm for finding paths on undi-
rected graphs by Steinerberger (2021).

We consider graphs G = (V, E, g), where V are the ver-
tices, E are undirected edges, and g € V is a goal vertex. To
denote an undirected edge between vertices ¢ and j we write
{i,j} or equivalently {j,i}. Fori,j € V we write i ~ j to
denote that ¢ and j are neighbours, i.e., {i,j} € E. Later, it
will be useful to consider such an undirected edge {i,j} as
two directed edges, which we write as (7, j) and (j,), not-
ing that these two directed edges are not equal. We assume
that our graphs are connected and simple, i.e., there is a path
between any pair of vertices, there are no self loops with
i ~ 1, and there is at most one edge between any pair of ver-
tices. We additionally require for ease of presentation that
removing g from V' does not make the graph disconnected,
but this requirement is not necessary and can be handled.

The first step of spectral graph theory is to represent our
graphs in matrix form. Arguably the most canonical repre-
sentation of a graph is the adjacency matrix A € RIVI*IVI
which is defined such that the entry at ¢, j has

1 ifi~y
A=
7 {0 else.

It is also useful to consider the number of edges that are
incident to a vertex, called the vertex’s degree deg(i) =

—O—0O

Figure 1: Simple, undirected, and connected graph with a
goal.

{i,j} € E : j € V|, which we can encode in the degree
matrix D € RIVIXIVI with

deg(i) ifi=1
D;; =
" {O else.

These two pieces of information are combined in the Lapla-
cian matrix L = D — A € RIVIXIVI_ Finally, the matrix
that we will use for the spectral algorithm modifies L by
removing the row and column for the goal g, thereby encod-
ing that g is the goal. This gives us the Dirichlet Laplacian
L, € RIVI=12xIVI=1 (Biyikogu, Leydold, and Stadler 2007).

To illustrate these matrices, consider the graph with V' =
{0,1,2,3}, edges {{0,1}, {0,2}, {1,2}, {1,3}} and goal 3
as shown in fig. 1. Its matrices are as follows, where we give
the appropriate vertices’ indexes above and to the left of each
matrix, and empty entries represent 0:

0o 1 2 3
of 1 1 7
Adjacency A = ; 1 1 L
3l 1]
0 1 2 3
02 T
Degree D = ; 3 9
3| 1]
0 1 2 3
o[2 -1 -1
Laplacian L = ; :% _31 ;1 -1
3| -1 1
0 1 2
of2 -1 -1
Dirichlet Ly =1 -1 3 -1
2]-1 -1 2

We point out that the adjacency matrix is symmetric be-
cause the graph’s edges are undirected, and it follows that all
the other matrices are symmetric as well. This is an impor-
tant property because it guarantees that its eigenvalues and
eigenvectors are real with no imaginary parts.

For the matrix L, an eigenvector z € RIVI=! is a vector
that satisfies

Lyx = \x
for the eigenvalue A € R. L, has n = |V| — 1 eigenvalues
Ao, - - - An—1 and corresponding eigenvectors xg, . . ., Tp_1

which can be sorted according to the magnitude of the eigen-
values. Then,)\ is the smallest eigenvalue and we write v
to denote the corresponding “smallest eigenvector.”

Now, we are equipped to describe the spectral algorithm
of Steinerberger (2021):

Input: a graph with goal G = (V| E, g) and initial vertex i.
Output: a plan from ¢ to g.

1. Construct G’s Dirichlet Laplacian L.

2. Find the smallest eigenvector v for L, which can be cho-
sen so thatv; > 0 Vi € V without loss of generality.! We
extend v to include an entry for the goal and set v, = 0.

3. Starting from ¢, move through the graph greedily w.r.t. v.
That is, starting with j = 7, move from j to a neighbour
k with the smallest value vy, setting j < k with each
step, and repeat this until you reach the goal g.

Under the lens of planning, we can interpret v as a heuris-
tic function that maps each vertex to an estimate of the cost
to reach the goal, and then step 3 of the algorithm moves
from 7 to g by following the heuristic greedily. We note that
the first two steps of this algorithm are not dependent on the
initial vertex ¢, so v can be computed once and then used
to construct plans to the goal from any non-goal vertex in
the graph, i.e., it is an all-sources single-target path algo-
rithm. Steinerberger shows that this algorithm of following
v greedily is guaranteed to reach the goal, although not nec-
essarily with the minimal number of steps. In the case of tree
graphs, i.e., graphs where exactly one path exists between
any pair of vertices, this algorithm is proven to find minimal
plans. Moreover, Steinerberger shows that from each non-
goal vertex there is always a neighbour with lower v value,
and that v; < 0 only for the goal — consequently, one need
not follow v greedily, and it is sufficient to move to some
neighbour with a smaller v value to reach the goal.

We conclude this section by describing how the smallest
eigenvector can be computed via optimisation, which will be
important to establish a connection between v and network
flow. In general, the smallest eigenvector v € R" for a real
symmetric matrix M € R™*"™ can be computed with the
Courant-Fischer formula (Saad 2011; Spielman 2025):

v =argminz’ Mz st. ||z| = 1. ()
x#0

The term ” Mz /x” x is called the Rayleigh quotient and if
x is an eigenvector then its Rayleigh quotient computes x’s
corresponding eigenvalue. The term ||x|| is the Euclidean
norm of &, and the constraint ||x|| = 1 allows us to remove
the Rayleigh quotient’s denominator while ensuring that all
eigenvectors are normalised and their results are compara-
ble. Unfortunately, this is a non-convex problem because the
constraint forces a solution to lie on the unit sphere of R".

3 Background: Network Flow

The Linear Program (LP) over Occupation Measure shown
in LP 1 can be used to compute minimal plans from each
non-goal vertex to the goal (Puterman 2005). With this LP it

'This fact is derived in Steinerberger’s proof of theorem 1.

can be useful to imagine the graph as a network of pipes,
and the LP’s task is to route the flow into the goal with
minimal cost. The LP has the variables z; ; for each di-
rected edge (i, j) € E, which can be seen as the amount of
flow being pushed through the pipe from ¢ to j; we use the
macros out(i) = >>.; nep iy and in(i) = 3 nep T
to encode the amount of flow exiting and entering a vertex
i, respectively. C1 ensures that the amount of flow enter-
ing a vertex ¢, from in-flow in(i) and injection «;, must
all exit through out(i). We do not allow negative flow to
pass through any of the directed edges with C2. To en-
code the goal vertex g we say that there are no directed
edges leaving g. We also have the so-called state-relevance
weights a € RIVI~! for each non-goal vertex, which satisfy
«; > 0 Vi € V, but otherwise the choice does not matter,
but it is convenient to pick them so that } . |, a; = 1. Each
value «; represents how much flow is injected into vertex i,
and the cumulative injected flow must be routed to the goal.
Consequently, if ZieV «; = 1, then a unit of flow must exit
from the goal.

min Z i j s.t. C1-C2 (LP 1)
(ij)eE
out(i) —in(i) = oy Vie V\{g} (C1)

Tij >0 V<Z,]> ek (C2)

A similar LP is used to compute optimal solutions for
Markov Decision Processes (Puterman 2005), as well as
Stochastic Shortest Path problems, which are similar but
have goals and no discount factor (Trevizan et al. 2016). So-
lutions to such problems are called policies, which in our
context either map a vertex to a single neighbour that we
should move to (such a policy is called deterministic) or
to a probability distribution over neighbours, from which
we select the next neighbour randomly (called a stochastic
policy). A feasible solution @ induces the stochastic policy
7 with 7(i, j) = x; j/out(i), where (i, j) represents the
probability with which we move to j when we are in ¢. Such
policies are guaranteed to reach the goal (called proper poli-
cies) and an optimal solution x* produces a proper policy
that additionally minimises expected cost (called an opti-
mal policy) (Puterman 2005). Moreover, basic solutions x
produce deterministic policies, i.e., they have a degenerate
probability distribution with a single j that has 7 (¢,j) = 1
for each :. Basic feasible solutions are significant because
they correspond to vertices on the polytope described by
the linear equalities and inequalities of an LP, and impor-
tantly, these are the solutions that are found by the simplex
method, which is the standard algorithm for solving LPs in
practice (Bertsimas and Tsitsiklis 1997). In our setting, it is
clear that we can obtain a plan from ¢ by following a deter-
ministic proper policy. We can also obtain plans by follow-
ing a stochastic proper policy, but we have to be careful be-
cause stochastic policies can have cycles, e.g., for the graph
in fig. 1, consider the policy 7 with 7(0,1) = 1,7(1,2) =
0.5,7(1,3) = 0.5,7(2,0) = 1. This 7 is proper because it
will eventually reach the goal from any vertex, but it may
produce a plan that contains one or more cycles involving
vertices 0, 1, 2.

4 Solution to Network Flow

Recall that v, the smallest eigenvector for L, can be com-
puted with the Courant-Fischer minimisation in eq. (1) and
can only have positive entries. This is sufficient to show that
v must induce a solution for LP 1.

Theorem 1. The smallest eigenvector for L, called v, is a
feasible solution for LP 1.

Proof. Consider the smallest eigenvalue)y and its eigen-
vector v. Without loss of generality, we rescale v such that
> icv Aov; = 1. Then, we rewrite the i element of Lyv as
follows (recall that we define v, = 0):

(Lgv); = v; - deg(i) = Y v,
{i,j}eE

= (vi —v))

{i,j}€FE

=Y (Wi—v)+ > (vi—v;)

(i,7)EEw; >0, (i,7)€Ew; <v;

= (wi—v) =Y (v —vi)

(1,5)EEv; >v; (j,0)EE:w;>v;

and we suggestively write z; ; = max{v; —v;,0} and o; =
Aov;. Then, we get that

(Lgv)i =D mij— 3 @ji =0)

(i,J)€E (4,9 EE
25 >0 3)
> ai=1)

ieV\{g}

which precisely satisfies the constraints of LP 1, i.e., it de-
scribes a feasible solution for the Occupation Measure LP.
The subtlety of this proof is that L, and v encode informa-
tion for a graph with undirected edges where flow is allowed
to go in either direction, and we need to split this undirected
flow into non-negative flow across directed edges. O

Thus, v produces a feasible solution for LP 1, but not
generally a basic one. Consider the modified house graph
in fig. 2, where we give the value of v inside each vertex.
From the bottom-right vertex with value 1.28, there are two
neighbours with lower values, namely top-left with 1.00 and
top-right with 0.88; this indicates that most of the flow from
bottom-right moves to top-right, with the lower pressure, but
some flow also moves into top-left. This means that the in-
duced policy is stochastic, i.e., we randomly decide the next
vertex according to a non-degenerate probability distribu-
tion. It follows that v is a non-basic solution for LP 1 (Put-
erman 2005). Alternatively, one can see that the solution is
non-basic because x; ; > 0 for 7 variables and there are only
4 constraints — a basic solution can not have more non-zero
variables than constraints. The stochastic policy is still guar-
anteed to reach the goal, i.e., it is proper, but recall that there

Figure 2: Modified house graph. We give the value of v at
each vertex. In this case v produces a stochastic policy.

could be cycles that can only be escaped by eventually ran-
domly picking a particular transition (see section 3). There-
fore, this is not enough to conclude that following v greed-
ily leads to the goal. However, we observe that z; ; > 0
only if v; > w;, which has the effect that our policy can
have no cycles, e.g., a cycle between i, 7, k would require
v; > v; > v > v;, which is a contradiction. Now, we can
re-prove Steinerberger’s result:

Corollary 2. The smallest eigenvector v describes a proper
policy that has no cycles, so following it greedily is guaran-
teed to lead to the goal g.

Thus, the smallest eigenvector v of a graph’s Dirichlet
Laplacian L, thanks to the way it is defined via the min-
imisation of Rayleigh quotients and to the additional prop-
erties it gets in the case of L, describes a network flow
over the graph such that all flow exits through the goal state.
This makes it intuitively clear that “following the flow” must
reach the goal. Observe that v; corresponds to «; in LP 1,
which can be interpreted as the amount of flow that is in-
jected into vertex %, and then the flow between vertices is
simply the difference of injected flow, in other words, the
“difference in pressure.” The injected flow can also be in-
terpreted as voltage which induces electrical current, con-
necting to works such as (Anshelevich 2002). The end re-
sult is not new and has already been shown by Steinerberger
(2021), but we argue that the intuition of network flow is
quite valuable.

5 Consistent Heuristic

In this section, we show that the spectral solution v, in ad-
dition to producing plans, also describes lower bounds on
the minimal plan length by being a consistent, goal-aware
heuristic. In the context of a graph with unit-cost edges and
the goal g, a heuristic h is consistent if h(i) < h(j) + 1
and goal-aware if h(g) = 0 (Pommerening et al. 2015). It
turns out that v satisfies these properties. If we assume that
|lv|| = 1 from the Courant-Fischer minimisation, then we
can scale v by k > 1 and it remains consistent when we
pick & so that it satisfies

k- max (v; —v;) = 1.
<i,j>eE< i)

Theorem 3. The heuristic h with h(i) = kv, is consistent
and goal-aware.

Proof. Goal-awareness is trivial because v, is defined
as 0. For consistency, our choice of x guarantees that
k (v; —vj) < 1VY(i,j) € E. Then:

h(i) = kv; = k(v; — v;) + kv < 14+ h(j).
O

Consequently, h(z) gives a lower bound on the minimal
plan length from ¢ because h describes a consistent, goal-
aware, and therefore admissible heuristic. At the same time,
v gives us an upper bound on the minimal plan length from
i by constructing some valid plan p;, which means that v
gives an optimality gap with length(p;) — h(3).

To conclude this section, we observe that h = kv (and
in fact the unscaled v) is a solution to the dual LP of LP 1,
given in LP 2.

max Z a;y; s.t. C3—-C4 (LP2)
i€V\{g}
vi <yj+1 V(i,j) € E (C3)

Yy =0 (C4)

LP 2’s constraints describe the consistency and goal-
awareness constraints, and LP 2 computes the consistent,
goal-aware potential heuristic over all vertices (Pommeren-
ing et al. 2015). An optimal solution for LP 2 produces
the perfect heuristic h*, also called V* in the probabilis-
tic setting (Puterman 2005). It follows that our eigenvec-
tor v describes a solution for the primal LP 1 with x; ; =
max{v; —vj, 0}, and it also describes a solution for the dual
LP 2 with kv (and v). This is surprising because a feasible
solution for a primal LP is not generally easy to transform
into a feasible solution for its dual — a primal LP’s optimal
solution is easily transformed into an optimal solution for its
dual thanks to strong duality, but this is not generally true
for feasible solutions. To understand this property of v we
point out that thm. 3 applies to any vector ¢ € RIVI with
zg =0, ||z|| =1, and x; > 0 Vi, i.e., a vector « that satis-
fies these conditions can not have a difference of greater than
1 between any vertex pairs, making it a consistent heuris-
tic. On the other hand, the Courant-Fischer formula eq. (1)
restricts « to ||x|| = 1. Then, any solution x that is feasi-
ble for the Courant-Fischer formula and additionally satis-
fies z; > 0 Vi € V (and we assume x, = 0) must satisfy
consistency by thm. 3. If is also an eigenvector, which oc-
curs at the minimiser of the Courant-Fischer formula, then
x describes a feasible network flow. Thus, v is the unique
solution that is simultaneously an eigenvector, has non-zero
entries, and has a norm of 1, thereby indirectly producing a
satisfying solution for the primal LP 1 and directly giving a
solution for the dual LP 2.

6 Descending Heuristic

In addition to being consistent and goal aware, we point out
that v (and consequently h = kv) is a descending heuris-
tic (Seipp et al. 2016). This means that each non-goal vertex

has a neighbour with a strictly lower heuristic value. For-
mally, in our setting, a heuristic 4 is descending if h(g) = 0
and
Vie V\{g} 3(,j) € E:h(j) < h(@).

Steinerberger proves precisely that v is a descending heuris-
tic (with different terminology) and uses this property to
demonstrate that following v greedily leads to the goal,
which reflects a similar result by Seipp et al. Note that Seipp
et al. require additional properties such as alive and solvable
vertices, and dead-end avoiding heuristics, but these prop-
erties are all trivially satisfied in our setting of undirected
connected graphs. Under this lens it becomes clear that fol-
lowing v greedily must lead to the goal, but the fact that
v is a descending heuristic remains non-obvious, and our
network-flow argument helps to motivate this.

7 Examples

To give an intuition for the behaviour of the spectral algo-
rithm we present some example graphs in fig. 3, where we
report the found plan length, the minimal plan length, and
the spectral heuristic defined by h(i) = kv; for each vertex.
In the maze graph (fig. 3a), we observe the found plan
length matches the minimal plan length at all vertices, i.e.,
the eigenvector describes minimal plans for all vertices. This
motivates that the spectral algorithm can produce minimal
plans for interesting problems, and Steinerberger argues that
the algorithm often produces minimal or close-to-minimal
plans for a large variety of problems. Turning our attention
to the spectral heuristic, it provides a perfect lower bound
at the goal’s immediate neighbour, but the bound becomes
increasingly looser the further we move away from the goal.
To better understand the spectral heuristic’s looseness,
consider the path graph with 12 vertices, where one of the
end points is the goal. We enumerate the heuristic values of
vertices, ordered by the vertices’ distances to the goal:

0,1,1.98,2.93,3.82, 4.63, 5.37, 6.00, 6.52, 6.92, 7.19, 7.33.

We also enumerate the error, i.e., the difference between the
heuristic and the minimal plan length in the same order:

0,0,0.02,0.07,0.18,0.37, 0.63, 1.00, 1.48, 2.08, 2.81, 3.67.

In this example it is clear that the heuristic becomes a looser
lower bound the further it moves away from the goal. This
makes sense because v minimises @’ L, which can be ex-
panded into (remember that v, and z, are defined as 0):

CCTLg:E = Z Z Iz(ﬂjl — Ij)

i€V {i,j}eE

= Y awilwi—ay) +zjz; - a)
{i,j}€E

= Y (@)
{i,j}eE

In words, v tries to reduce the squared difference between
neighbours, with the effect that vertices with large v; need
to have closer values to their neighbours than vertices with
smaller values. Unfortunately, the decay of heuristic value

is complex (see appendix A), which makes it non-trivial to
normalise values in a way to produce a tighter lower bound.

In the Barnette-Bosak-Lederberg graph (fig. 3b) the spec-
tral algorithm fails to find minimal plans for 13 of the 37
non-goal vertices, where in the worst case the found plan
is of length 10 (11) and the minimal plan length is 5 (6).
This graph was identified as an example where the spectral
algorithm fails to find minimal plans at certain vertices by
Steinerberger (2021), although we use a different goal state.

We conclude this section by presenting a family of graphs
where the spectral algorithm produces the worst possible
plans. The (m,n)-tadpole graph is produced by attaching
an m-cycle graph to an n-path graph. Let ¢ be the vertex
where the tail (path) attaches to the head (cycle), and let j
and k be its neighbours on the cycle. If we set j to be the
goal and ensure that the tail is long enough (n sufficiently
large) then the spectral algorithm will direct k to go the long
way round the cycle, thereby producing the longest possible
simple plan from k to j. This is shown in fig. 4.

This phenomenon can be intuitively explained with net-
work flow: if there is sufficiently high pressure coming from
the tail along ¢ to j, then even more pressure would be re-
quired to push flow from k to j along those pipes, and it
is easier to push the flow the other way instead. Looking
at it algebraically, if v; at the connection between head and
tail is sufficiently large, then a solution that minimises the
difference of squares will choose a smaller value for vy
thereby sending flow the long way around, rather than mak-
ing vy, even larger than v;. This behaviour seems to appear
on (m, n)-tadpole graphs with n > m — 3. We observe that
the graph’s tail does not need to be a path, and can equally
well be any graph with enough vertices so that a sufficient
amount of flow enters the graph’s head to divert the flow
from k.

This family of graphs addresses one of Steinerberger’s
open questions: “Are there planar graphs such that, for
some pair of vertices i # j, the path produced by the spec-
tral method is c-times as long as the shortest path for any
¢ > 1?7 Yes, for any c the (2¢ + 2, n)-tadpole graph with
sufficiently large n produces a plan of length 2¢ even though
the shortest path is 2.

8 Potential Application to Planning

It is clear that for large planning problems it is completely
impractical to construct L, for the transition system, and it
is even more impractical to compute the smallest eigenvec-
tor for it. However, there are certain graph operations that let
us change the structure of a graph while preserving the orig-
inal graph’s eigenvectors. This potentially allows us to find
eigenvectors for small graphs, combine the small graphs into
larger, more interesting graphs, and then we can easily com-
pute the large graph’s eigenvectors.

Consider the graphs G = (Vg, E¢) and H = (Vg, Eg).
The Cartesian product for graphs GOH = (V, E) has V =
Ve x Vi and E such that

(i,3") ~ (4,7)iff G = ANi' ~)V (i~jAni =]

where i ~ j iff {i,j} € Eg and i’ ~ j'iff {i,j'} € Ep.
If the G and H’s corresponding Laplacian matrices have the

3/3
2.50

4/4
2.72

1/1
1.00

(b) Barnette-Bosédk-Lederberg graph.

8/8 9/9 4/4 5/5 0/0
2.74 2.80 1.97 2.01 0.00
I I I
77 4/4 3/3 2/2 1/1
2.63 2.12 1.88 1.52 1.00
I I I I I
6/6 5/5 4/4 3/3 2/2
2.46 2.32 1.90 1.64 1.46
I I I
/7 6/6 5/5 4/4 3/3
2.40 2.28 2.13 1.91 1.72
I I I I
8/8 /7 6/6 5/5 4/4
2.32 2.27 2.17 2.06 1.76
(a) Maze graph.
2/2
1.87
\ I /
4/4 7/3 3/2
2.82 / 2.05 \ 1.09
10/5 8/4 6/4 4/3
2.90 / 2.37 1.85 1.30
9/5 5/4
2.77 1.50
I I
11/6 10/6 5/4 4/4
3.00 2.96 1.31 1.25
I I
5/5 6/6 4/4 3/3 3/3 2/2
2.96 3.04 2.20 1.94 1.10 0.95
I I
7/7 6/6 4/3 3/3
3.05 3.01 1.13 1.05
I I
5/5 3/2
2.92 0.99
6/6 2/2
3.00 0.90
5/5 1/1
/ 2.93 0.62 \
4/4 3/3 2/2 1/1
2.65 2.21 1.70 0.91

0/0
0.00

Figure 3: The found plan length X, minimal plan length Y, and spectral heuristic Z presented as X/Y Z.

3/3
2.25

1/1
1.00

0/0
0.00

1/1
0.45

(a) (5, 2)-tadpole graph.

Figure 4: The found plan length X, minimal plan length Y, and spectral heuristic Z presented as X/Y Z.

10/10

6.69
6/6 I
4.15 9/9
6.54
[
8/8
5/5 6.25
3.91 I
7/7
5.81
[
4/4 6/6
3.44 5.25
I
5/5
4.56
3/3 [
2.77 4/4
3.78
[
3/3
2/2 2.91
1.94 [
2/2
1.98
I
1/1 1/1
1.00 ////// 1iX)\\\\\\
0/0 10/2
0.00 1.00
0/0 6/2 [I
0.00 1.00 1/1 9/3
0.15 0.98
I I
2/2 8/4
3/2 1/1 5/3 0.30 0.93
1.00 0.24 0.94 [[
3/3 7/5
0.44 0.87
[[
2/2 2/2 3/3 4/4 4/4 5/5 6/6
0.80 0.47 0.67 0.83 0.56 0.68 0.78

(b) (8, 5)-tadpole graph.

(c) (12, 9)-tadpole graph.

eigenvectors o, . . ., ;-1 and Yo, . . ., Yn—1 form = |Vg|
and n = |V /|, then GOIH has the eigenvectors

{’vi®uj:i6{0,...,m—1},j6{0,...,71—1}}

where ® is the Kronecker product, which is easy to compute.
Consequently, if we are able to express a large graph in terms
of Cartesian products of small graphs, then we only need to
find solutions for the small graphs and combine them. Un-
fortunately, the Cartesian product does not allow the sub-
graphs to interact, in the sense that we can produce a plan for
the Cartesian product by concatenating plans for each of the
constituent subgraphs, without any concerns of the subplans
interfering. This severely limits the graphs that we can con-
struct, and suggests a more efficient approach for these kinds
of problems: run Dijkstra’s algorithm on each subgraph and
concatenate its solutions.

We point out that the Cartesian product preserves all
eigenvalues exactly, whereas we only need the smallest
eigenvector and may be content with an approximation. For
this reason, we optimistically argue that there may be a
graph operation that lets us decompose interesting graphs
into subgraphs, potentially approximately, such that the sub-
graphs are sufficiently easy to solve with the spectral algo-
rithm and can be recombined into a solution for the large
problem.

9 Related Work

As mentioned in the introduction, there has been surpris-
ingly little work on the topic of finding plans with spectral
graph theory. However, it has been used in planning in other
contexts. Ren et al. (2024) use the property that the second-
smallest eigenvector A; of a graph’s normalised Laplacian
approximates how well-connected a graph is. They use this
connection to estimate the difficulty of automatically gener-
ated 2D grid-based problem — well-connected graphs are
typically easier to solve and have larger \;, whereas poorly-
connected graphs, such as mazes, have smaller A;.

10 Conclusion

In this paper we investigated Steinerberger’s spectral algo-
rithm for finding plans on undirected graphs with goals,
which works by computing the smallest eigenvector v for
the graph’s Dirichlet Laplacian matrix, interpreting this v as
a heuristic function over the non-goal states, and then fol-
lowing this heuristic greedily. We gave an alternate proof
for the algorithm’s correctness by showing that v is a fea-
sible solution to the network flow problem, which gives a
simple intuition for why the method works. We further re-
lated the algorithm to planning by showing that v also pro-
duces a consistent, goal-aware heuristic, with the effect that
v simultaneously produces an upper and lower bound on the
minimal plan length. Then, we gave examples that demon-
strate v’s behaviour, and in particular, show that the spectral
solution produces arbitrarily suboptimal solutions for a fam-
ily of tadpole graphs, answering one of Steinerberger’s open
questions. Finally, we motivated that the spectral method can
be practical for large graphs, as long as those graphs can be
constructed out of the Cartesian product of smaller graphs:

0 5000 10000 15000 20000 25000 30000
Distance from Goal

Figure 5: Error on a path graph as distance from goal in-
creases.

we can compute the smallest eigenvectors for each smaller
graph, and then easily combine them into the smallest eigen-
vector of the large graph, without ever needing to construct
the large graph’s Dirichlet Laplacian directly. Unfortunately,
the Cartesian product is limited, and we would need different
operations for combining graphs in order to solve interesting
problems.

A Spectral Heuristic for Path Graph

We consider a path graph with 30000 vertices and report the
error for each vertex, which is computed by h* (i) — h(i)
for each vertex ¢, where h* (%) is the optimal plan length and
(%) is the spectral heuristic. In fig. 5 we show each vertex’s
error as a function of distance from the goal. We observe that
the error grows very large, but with an unintuitive sinusoidal
rate. We propose that this is because the path graph’s Lapla-
cian has sinusoidal eigenvalues (Spielman 2025). For gen-
eral graphs this trend does not hold, and can be even more
difficult to predict.

References

Anshelevich, V. V. 2002. A hierarchical approach to com-
puter Hex. Artificial Intelligence.

Bertsimas, D.; and Tsitsiklis, J. 1997. Introduction to Linear
Optimization. Athena Scientific, 1st edition.

Biyikogu, T.; Leydold, J.; and Stadler, P. F. 2007. Laplacian
Eigenvectors of Graphs. Springer Berlin Heidelberg.
Chung, F. 1997. Spectral Graph Theory. American Mathe-
matical Society.

Cvetkovié, D.; and Simié, S. 2011. Graph spectra in Com-
puter Science. Linear Algebra and its Applications.
Pommerening, F.; Helmert, M.; Roger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. Proc. of AAAI Conf. on Artificial Intelligence.

Puterman, M. L. 2005. Markov Decision Processes. Wiley-
Interscience.

Ren, J.; Ewing, E.; Kumar, T. K. S.; Koenig, S.; and Aya-
nian, N. 2024. Map Connectivity and Empirical Hardness
of Grid-based Multi-Agent Pathfinding Problem. In Proc. of
Int. Conf. on Automated Planning and Scheduling (ICAPS).

Saad, Y. 2011. Numerical Methods for Large Eigenvalue
Problems: Revised Edition. Society for Industrial and Ap-
plied Mathematics (SIAM).

Seipp, J.; Pommerening, F.; Roger, G.; and Helmert, M.
2016. Correlation complexity of classical planning domains.
In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI).

Spielman, D. 2025. Spectral and Algebraic Graph Theory.
http://cs-www.cs.yale.edu/homes/spielman/sagt/. Work in
progress. Accessed July 2025.

Steinerberger, S. 2021. A spectral approach to the shortest
path problem. Linear Algebra and its Applications.

Trevisan, L. 2009. Max cut and the smallest eigenvalue. In
Proc. of 41st ACM Symposium on Theory of computing.

Trevizan, F.; Thiébaux, S.; Santana, P.; and Williams, B.
2016. Heuristic Search in Dual Space for Constrained
Stochastic Shortest Path Problems. In Proc. of 26th Int.
Conf. on Automated Planning and Scheduling (ICAPS).

