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Abstract
Open-Set Domain Adaptation (OSDA) aims to
transfer knowledge from the labeled source do-
main to the unlabeled target domain that contains
unknown categories, thus facing the challenges
of domain shift and unknown category recogni-
tion. Little exploration has been conducted on
causal-inspired theoretical frameworks for OSDA.
To fill this gap, we introduce the concept of Sus-
ceptibility and propose a novel Counterfactual-
based susceptibility risk framework for OSDA,
termed COSDA. Specifically, COSDA consists
of three novel components: (i) a Susceptibility
Risk Estimator (SRE) for capturing causal infor-
mation, along with comprehensive derivations of
the computable theoretical upper bound, forming
a risk minimization framework under the OSDA
paradigm; (ii) a Contrastive Feature Alignment
(CFA) module, which is theoretically proven
based on mutual information to satisfy the Ex-
ogeneity assumption and facilitate cross-domain
feature alignment; (iii) a Virtual Multi-unknown-
categories Prototype (VMP) pseudo-labeling strat-
egy, providing label information by measuring
how similar samples are to known and multiple
virtual unknown category prototypes, thereby as-
sisting in open-set recognition and intra-class dis-
criminative feature learning. Extensive experi-
ments demonstrate that our approach achieves
state-of-the-art performance.
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Figure 1. (a) Causal graph for data generation, (b) causal graph for
domain shift, where red arrows describe the distribution of data
(X,Y ) is shifted because environment variables E are intervened
in a new unseen domain, and (c) causal graph for OSDA, where
red arrows indicate that the intervened environment variables E
and intervened causal variables C lead to unknown classes; (d)
shows how images changed with the interventions on E and C;
(e) the risk paradigm for OSDA, including source supervised risk,
feature alignment risk, and open-set space risk.

1. Introduction
Traditional supervised learning algorithms heavily rely on
the in-distribution assumption (Murphy, 2012), which as-
sumes that training and test data are sampled from the same
distribution. However, this assumption is not consistent in
wild environments, where domain shift (Zhang et al., 2013)
and category shift (Qu et al., 2023) lead to the failure of
supervised learning algorithms. Considering domain shift,
Close-Set Domain Adaptation (CSDA) aims to transfer a
model from a labeled source domain to an unlabeled target
domain under the assumption of a shared label space (Ganin
& Lempitsky, 2015; Cui et al., 2024). Existing domain adap-
tation methods can be broadly categorized into two main
streams: metric learning (Long et al., 2016; Wei et al., 2024)
and adversarial learning (Ganin et al.; Li et al., 2018).
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However, in test environments, encountering novel classes is
common, exposing the limitations of the shared label space
assumption. To address both domain shift and class shift,
researchers have begun to explore a different learning setting
known as Open-Set Domain Adaptation (OSDA) (Saito
et al., 2018; Wang et al., 2024; Fang et al., 2020), which
integrates CSDA with open-set recognition. OSDA assumes
that the label space of the source domain is a subset of that
of the target domain, meaning that the model is expected to
encounter unseen classes during real-world applications.

A body of work has focused on OSDA, and the risk for-
mation of these studies are illustrated in Fig. 1 (e). Here,
E

xs∼S
[I (h (xs) ̸= ys)] aims at unbiased supervised learn-

ing of source domain (Bucci et al., 2020; Li et al., 2023);
E

xs∼S
E

xt∼(T ∧S)
[I (G (xs) ̸= G (xt))] denotes feature align-

ment to address domain shift (Ganin et al.; Luo et al., 2020;
Wei et al., 2024); and E

xt∼(T \S)
[I (h (xt) ̸= K + 1)] repre-

sents the minimization of open-set risk to achieve unknown
class recognition (Saito et al., 2018), where most methods re-
quire the design of unknown class recognition strategies (Liu
et al., 2019; Saito, 2021; Qu et al., 2023).

Causal Models have been wildly utilized to achieve domain
alignment (Arjovsky et al., 2020; Lu et al., 2021; Yuan
et al., 2024; Yue et al., 2021) due to the invariance of causal
features. Most causal models divide latent features into
environment-specific features (E) and causal features (C),
assuming that E ⊥ C and E ⊥ Y | C (Yang et al., 2024; Lv
et al., 2022), as shown in Fig. 1(b). Domain shift in causal
diagrams arises from interventions on domain-specific vari-
ables, which alter their distributions and consequently affect
the joint distribution of the dataset, while P (Y | C) remains
stable(Yuan et al., 2024). However, for OSDA, there has
been little exploration of causal graphs and a comprehensive
causal-based risk theory. This is the gap that we aim to fill.

We argue that causal features still play a crucial role in
OSDA. When causal features are not intervened, the condi-
tional probability of the label P (Y |C) will remain stable.
However, significant shifts in causal features can lead to
category shifts, explaining the emergence of new categories.
Therefore, the model must be sufficiently concentrated on
core causal features. Based on this, we propose a promising
OSDA method using essential causal information, which
builds upon the probability of Susceptibility. First, we model
an evaluator to assess and optimize the susceptibility of fea-
tures. Second, to assess risk with limited data, an OSDA
risk framework is provided through theoretical analysis.
For the identifiability of counterfactual-based susceptibil-
ity risk, characteristics must fulfill two causal assumptions:
Exogeneity and Monotonicity. To ensure that extracted fea-
tures fit these causal assumptions, we propose two novel
strategies: a mutual information theory-based Contrastive-

inspired Feature Alignment (CFA) optimization objective to
align cross-domain features and a pseudo-labeling strategy
with virtual Multi-unknown-categories Prototypes (VMP)
instead of treating the unknown class as a single category.

The main contributions of this paper are as follows:

Promising Way: We propose a structural causal model
within the OSDA paradigm and perform theoretical deriva-
tions and algorithm design centered on the counterfactual
probability of susceptibility. This addresses its optimiz-
ability, evaluability, and identifiability, thus presenting a
principled causal framework for OSDA tasks.

Systematic Theoretical Framework: We introduce a novel
counterfactual-based risk—Susceptibility risk—along with
its evaluator. A theoretically computable upper bound for
the target domain’s susceptibility risk is derived within the
OSDA paradigm.

Innovative Techniques: We identify an optimization objec-
tive that satisfies the Exogeneity causal assumption, which is
recognized as maximizing the mutual information between
the target sample and the source domain prototype. Based
on this, we propose a Virtual Multi-unknown-categories Pro-
totype (VMP) pseudo-labeling strategy and a Contrastive-
inspired Feature Alignment (CFA) module.

Comprehensive Experiments: We validate the effective-
ness of the model on three benchmark datasets, achiev-
ing improvements of 2.9%, 2.2%, and 1.0% respectively,
compared to state-of-the-art (SOTA) algorithms. Ablation
studies and experiments on synthetic datasets confirm the
effectiveness of each proposed module.

2. Preliminaries
Causal inference based on counterfactual distributions in-
volves evaluating the effects of interventions on outcomes
and seeks to identify variables whose alterations signifi-
cantly influence the actual values of outcomes. To quantify
this influence, we introduce the concept of Probability of
Counterfactual, which is formally defined as below.

Definition 1 (Probability of Counterfactual (Pearl, 2009)).
Let the invariant representation of causal variables C for
label y as c, and c′ is the specific implementation of C,
where c ̸= c′. The probability that Y changes from Y ̸= y
to Y = y when C is altered from c′ to c is

PC = Pr(Ydo(C=c) = y | C = c′, Y ̸= y). (1)

Two causal definitions, Exogeneity and Monotonicity, have
been introduced from Pearl (Pearl, 2009) for identifiabil-
ity. Exogeneity represents a condition of no confounder,
ensuring the vanish of differences between the intervention
distribution and the conditional distribution. Monotonicity
further elucidates the monotonic direction of causal effects.
The definitions of Exogeneity and Monotonicity is detailed
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in Appendix B.

Based on Exogeneity and Monotonicity, the identifiable dis-
tribution of Equation 1 is described as the following lemma,
which is defined as susceptibility.

Lemma 1 (Probability of susceptibility ((Pearl, 2009))). If
C is exogenous relative to Y , and Y is monotonic relative
to C, then the probability that Y is susceptible to C is

PS =
Pr(Y = y|C = c)− Pr(Y = y|C = c′)

1− Pr(Y = y|C = c′)
. (2)

The proof of lemma 1 is established by the logical analysis
conducted by Pearl (Pearl, 2009). A characteristic with a
higher PS typically encompasses more significant causal
information. Appendix A presents provide examples to il-
lustrate where the susceptibility is high and where it is low.
Furthermore, susceptibility risk, compared to traditional
causal effect evaluations (Pearl, 2009), proves to be more
effective in identifying core causal features. This indicates
that susceptibility risk functions as a more discerning indica-
tor for identifying causal links, hence improving the model’s
capacity to concentrate on critical causal information.

Additionally, Causality posits the Semantic Separability as-
sumption of features, meaning that features with distinct
semantics maintain a certain distance and a certain feature
do not correspond to multiple semantic meanings simulta-
neously. To meet this condition, we define a stability loss
LSTA (Yang et al., 2024) as follows:

LSTA = ϵ− ∥c− c′∥2 . (3)

where ϵ represents the degree of intervention on the causal
features. LSTA indicates that the semantic meaning being
distinguishable between c and c′, requiring that the degree
of intervention must be sufficiently large to induce semantic
changes in features, thereby avoiding inherently unstable
learning.

3. Methodology
3.1. Learning Setup

Assume that we have the labeled source data Ds =
{Xs, Ys} = {(xsi, ysi)}ns

i=1 ∼ S and unlabeled target
data Dt = {Xt} = {(xti)}nt

i=1 ∼ TX, where S is the
joint probability distribution of the source domain, T is
the marginal distribution of the target domain, with ns and
nt indicating the size of the source and target datasets, re-
spectively. Open-set Domain Adaptation (OSDA) allows
the source label space Ys = {1, ...,K} and the target label
space Yt = {Ys,K + 1}, where K + 1 denotes the un-
known class. Given the i.i.d samples drawn from S and TX,
the goal of OSDA is to train a model that can classify the
samples from the known classes and recognize the samples
from the unknown class correctly.

3.2. Susceptibility Risk Modelling

This section presents the Susceptibility Risk Estimator (SRE)
for representation learning in the target domain. First, we
introduce a concept, Probability of Intervention Relevance
(PIR), which is used to quantify the probability of Y after
C has been intervened.
Definition 2 (Probability of Intervention Relevance (PIR)).
Given a test domain T , if E ⊥ C, and E ⊥ Y | C, the
probability of intervention relevance (PIR) is defined as:

PIRt(c
′) = Pt(Y = y|C = c′), (4)

and the Probability of Observational Relevance (POR) is
defined as:

PORt(c) = Pt(Y = y | C = c). (5)

Then, we define the estimation of Susceptibility risk.

Proposition 1 (Susceptibility Risk (SR)). observational
relevance risk Ot(c) and the intervened relevance risk
Ot(c

′) are defined as:
Ot(c) = E

(x,y)∼T
E

c∼Pt(C|x)
P (Y ̸= y | c), (6)

Ot(c
′) = E

(x,y)∼T
E

c′∼Pt(C′|x)
P (Y ̸= y | c′). (7)

Then, Susceptibility risk SRt based on Lemma 1 is formally
defined and we derived an new formation of SRt as:

SRt(c, c
′) = 1− PS := Ot(c)−Ot(c

′). (8)

The induction is detailed in Appendix B.1.

3.3. OSDA Risk Framework with Susceptibility

In this section, we introduced several theorems to gain an
evaluable upper bound for SRt.

Linking open-set recognition risks and closed-set classi-
fication risks.

Assume supp(S) is the shared support set; the target do-
main in OSDA has a subsample set {X, Y } /∈ supp(S).
Therefore, SRt can be rewritten as:

Theorem 1. Given the source domain distribution S and
the target domain distribution TX, the susceptibility risk on
the test domain SRt(c, c

′) is rewritten as:

SRT
(
c, c′

)
= E

(x,y)∼T
[I(x, y) ∈ supp(S)]

[
E

c∼Pt(C|X=x)

P (Y ̸= y | C = c)− E
c′∼Pt(C′|X=x)

P (Y ̸= y | C′ = c′)
]
+ E(x,y)∼T [I(x, y) /∈ supp(S)][

E
c∼Pt(C|X=x)

P (Y ̸= K + 1 | C = c)−

E
c′∼Pt(C′|X=x)

P (Y ̸= K + 1 | C′ = c′)

]
:= πt∧s(X, Y ) + πt\s(X, Y ),

(9)
where supp(S) is the support set of the source domain dis-
tribution. Pt(X, Y /∈ supp(S)) share the same idea as the
Open Space Risk (Scheirer et al., 2012), quantifying how
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Figure 2. An overview of our proposed COSDA. (a) describes the deployment of feature interventions. We add an intervention module
utilizing Multi-Layer Perception (MLP) following feature C, executing an intervention via a nonlinear transformation of feature C. The
feature distribution is a Gaussian distribution with parameterized mean and variance, as popularized by VIB (Kingma et al., 2015). (b)
The VMP and CFA are proposed to address Exogeneity. The central idea of VMP (1.-4.) is to build the centroids of all known and
unknown classes, and then generate the pseudo label for samples by comparing the distance between samples and the centroids. CFA (5.)
introduces the concept of feature alignment, which reduces the distance to the appropriate class centroid while maximizing the distance
to the centroids of other classes, establishing class-level cross-domain feature alignment. Through adaptation, we align the features of
known classes while also learning the decision boundary for unknown classes.

open the OSDA problem setting. πt\s(X, Y ) accumulates
the open-set recognition error.

Linking Target Risks and Source Risks.

In the OSDA task, only the labeled observations of the
source domain S and the unlabeled observations of the target
domain TX are provided. Consequently, direct assessment
of susceptibility risk in the target domain is unattainable. To
resolve this issue, we introduce the expected disagreement
dTx and the expected joint error eS (Lacasse et al., 2006),
which needs no label information of the target domain. Then,
we propose Theorem 2 using β-divergence (Germain et al.,
2016) and Hölder’s Inequality. Proof for Theorem 2 is
provided in Appendix B.3.

Theorem 2. Given the source domain distribution S and
the target domain distribution TX, an invariant represen-
tation inference model G, an intervention model G′, and
a classifier h, The susceptibility risk on the test domain
SRt(c, c

′) is upper bounded by:

SRT
(
c, c′

)
<

1

2
(dTX(c)− dTX(c′))

+ lim
q→∞

βq(T ∥S)(eS(c)− eS(c
′))

+ πt\s(X, Y ),

(10)

where
Lt := dTX(c)− dTX(c′) + πt\s(X, Y ), (11)

Ls := eS(c)− eS(c
′). (12)

Linking Empirical Risks and Expected Risks. The ex-
pected risk SR(c, c′) can not be calculated since the distri-
bution S and TX are not provided. We define the estimation
distributions on available data D as P̄ (Y = y | C = c),
P̄ (Y = y | C′ = c′), P̄ (Y = y | C = c), P̄ (Y = y |
C′ = c′), then the empirical risks w.r.t S̄R(c, c′) are defined
as Eq. 13 below.

S̄R(c, c′) := EDEc∼P̄ (C|X=x)P̄ (Y = y | C = c)

− EDEc∼P̄ (C′|X=x)P̄ (Y = y | C′ = c′).
(13)

To address the issue that the estimation of expected risk is
not available, we propose Corollary 1 using the Variational
Inference, Hoeffding inequality, Markov Inequality, and
Jensen inequality following (Yang et al., 2024) to ensure
the expected risk can be upper bounded by the empirical
risk.
Corollary 1. Suppose prior distributions for the represen-
tations γC := P (C), γC′ := P (C′). With probability 1−δ
over the choice of samples X ∼ D, for every parameter
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combinations,
∣∣SR(c, c′)− S̄R(c, c′)

∣∣ is upper bounded
by

LKL = −log(σC) + log(σC′). (14)

Corollary 1 indicates that the error between the empirical
risk and expected risk can be minimized as the KL diver-
gences decrease.Proof for Corollary 1 is provided in Ap-
pendix B.4.

3.4. Satisfaction of Causal Assumptions

In this section, we concern the satisfaction of causal as-
sumptions, Exogeneity (Assumption 1) and Monotonicity
(Assumption 2).

As for Monotonicity, it emphasizes the value of y given c
should be larger than given any other intervened feature c′.
This objective can be formulated as:

maxPt(Y = y|C = c)− Pt(Y = y|C = c′), (15)

which is equal to minimizing the susceptibility risk. There-
fore, we can naturally introduce the Monotonicity measure-
ment into the estimation of susceptibility risk.

As for Exogeneity, we first rewrite the assumption using
information theory (Kraskov et al., 2004).
Proposition 2. (Mutual Information Equivalence) The
Exogeneity condition in Assumption 1 can be equivalently
represented with the Mutual Information I(·; ·):

Pr(Y = k|C,E = et/s) = Pr(Y = k|C)

⇔ max E
xti∈k

I(Cti; Ck
s ),

(16)

where Cti represents sample features in the target domain
G(xti) and Cks represents the center point representation
in the source domain G(xsi)). Both Ct and Ck belong to
k-th category. If Pr(Y = k|C,E = et/s) = Pr(Y = k|C),
then certain domain traits are unnecessary for identifying Y .
Maximizing E

xti∈k
I(Cti; Cks ) mitigates domain changes on

causal features, ensuring resilient and trustworthy represen-
tation. Proposition 2 is proven in Appendix B.5.

To achieve E
xti∈k

I(Cti; Cks ), we introduce an innovative

and efficient pseudo-labeling strategy termed Virtual Multi-
unknown-categories Prototype pseudo-labeling (VMP) for
classifying samples from the target domain, subsequently
maximizing the feature information shared between target
domain and source domain through Contrastive-inspired
Feature Alignment (CFA).

Virtual Multi-unknown-categories Prototype pseudo-
labeling (VMP). Unlike previous clustering-based algo-
rithms, which group unknown classes into a unique class,
this paper presupposes the existence of U unknown classes
in the representation space. The fundamental concept of this
approach is to initially identify positive instances of recog-
nized classes using confidence scores and compute positive

prototypes by these positive instances. Subsequently, these
affirmative instances of known classes are eliminated, and
the remaining samples are subjected to a clustering algo-
rithm in order to estimate the prototypes of U unknown
classes. The pseudo-labels for the samples are determined
by calculating and comparing the distances between each
target domain sample and all prototypes.

Specifically, given the scores of xt after the softmax func-
tion ξ(h(G(xt))), for the k-th known class, we first define
the Top-M ξk(h(G(xt))) scores represented as positive in-
stances Pk, and let the positive prototype representation
pk
t :

{pk
t }K = { 1

M

∑
Pk

G(xti)}Kk=1. (17)

For the unknown classes, we remove all positive instances
of known classes and use the K-means algorithm to generate
U negative prototypes for the unknown classes.

{put }U = K-means
xt∈Dt\{Pk}K

k=1

(G(xt)). (18)

Here we set U = K, M = Nt/(U +K). For sample xti,
the o-th element of its pseudo label ŷ is defined as follows:

ŷo =

 1, if s (G (xti) ,p
o
t ) = max {s (G (xti) , p

a
t )}K+U

a=1

0, if s (G (xti) ,p
o
t ) < max {s (G (xti) , p

a
t )}K+U

a=1

,

(19)

where s(a, b) measures the similarity between a and b.
Based on Eq. (19), we obtain the pseudo labels ŷk for all
categories o ∈ {Ys,U} = {1, ....,K,K + 1, ...,K + U}.
Then samples with pseudo label {K + 1, ...,K + U} are
defined as unknown class samples.

Contrastive-inspired Feature Alignment (CFA). To fully
leverage the labeled knowledge from the source domain,
this paper adopts a contrastive learning strategy to align the
feature space of shared classes across domains. Unlike the
contrastive learning strategy in CSDA, the prototypes for
comparison in this work include not only the source domain
prototypes pk

s but also the virtual unknown class prototypes
pu
t (estimated by Eq. 18). The prototypes of known classes

in the source domain are defined as:

{pks}K = { 1

nk
s

nk
s∑

i=1

G(xsi)}Kk=1. (20)

To prevent negative effects from pseudo label noise, the
target domain samples used for contrastive learning are
filtered by I(xt): (i) the pseudo label obtained based on the
highest logit is aligned with the label obtained through the
VMP strategy, and (ii) the value of the highest logit is higher
than 0.7.

I(xt) =

{
1,max

k
{ξk(h(G(xt)))}Kk=1 ∧ ŷk = 1

0, else
. (21)
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Table 1. Comparison results (%) of Image-CLEF. (Best in bold and second best in underline)

Average B→C B→I B→P C→B C→IMethod OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSNN (Mendes et al., 2017) 77.0 50.4 60.4 92.3 63.0 74.9 79.6 61.0 69.1 68.3 59.3 63.5 65.3 47.3 54.9 84.3 47.0 60.4
OSBP (Saito et al., 2018) 74.4 70.2 71.5 87.0 81.0 83.9 85.3 65.7 74.3 66.3 66.7 66.5 62.0 58.0 59.9 89.0 80.0 84.3
STA (Liu et al., 2019) 81.3 55.1 65.0 93.3 51.7 66.5 86.0 60.7 71.2 77.7 48.7 59.8 61.3 69.7 65.2 91.7 66.7 77.2
ROS (Bucci et al., 2020) 69.9 76.9 73.1 78.3 90.0 83.8 73.0 76.3 74.6 59.0 68.3 63.3 59.0 68.3 63.3 78.3 83.0 80.6
DAOD (Fang et al., 2020) 71.1 75.8 73.3 79.4 82.0 80.7 78.4 90.9 84.3 72.1 80.8 76.3 51.3 47.1 49.1 79.0 88.6 83.6
ANNA (Li et al., 2023) 78.2 85.6 81.4 95.3 98.3 96.8 81.3 84.7 83.0 74.0 75.0 74.5 58.0 83.0 68.3 87.0 93.0 89.9

Ours 81.0 88.3 84.3 95.0 97.9 96.4 87.4 88.9 88.1 78.5 82.5 80.5 61.5 80.5 69.7 90.8 93.8 92.3

C→P I→B I→C I→P P→B P→C P→IMethod OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSNN 75.3 46.3 57.3 62.0 41.6 49.8 92.0 41.3 57.0 81.3 40.6 54.2 55.0 49.6 52.2 86.0 55.3 67.3 82.0 52.6 64.1
OSBP 87.7 53.7 66.7 55.7 60.7 58.1 80.7 92.7 86.3 66.3 74,3 70.1 52.3 61.0 56.3 94.0 68.0 78.9 66.0 80.7 72.6
STA 84.0 54.0 65.7 62.3 54.0 57.9 94.0 53.7 68.4 80.7 59.0 68.2 61.3 43.7 51.0 93.7 47.7 63.2 90.0 51.0 65.1
ROS 68.7 78.7 73.3 58.0 59.7 58.8 88.7 92.7 90.6 78.0 76.0 77.0 47.3 59.3 52.7 71.3 90.3 79.7 79.7 81.3 80.5
DADO 74.5 78.9 76.7 54.5 56.9 55.7 80.3 82.0 81.2 73.3 80.8 76.9 51.7 51.0 51.3 79.0 82.0 80.5 79.6 86.6 83.9
ANNA 78.7 84.0 81.2 56.0 78.0 65.2 94.3 97.7 96.0 80.7 82.7 81.7 54.0 73.7 62.3 94.0 93.7 93.8 85.0 83.3 84.2

Ours 80.9 84.5 82.7 60.8 79.4 68.9 94.5 97.9 96.2 82.4 87.2 84.7 58.9 78.2 67.2 94.0 97.0 95.5 87.2 91.7 89.4

The optimization objective of our proposed contrastive learn-
ing is

Lexo = −
K∑

k=1

nk
t∑
i

s(G(xti), pk
s )× I(xti)

S(G(xti), {pk
s}K) + S(G(xti), {pu

t }U )
,

(22)
where

S(G(xti), {pk
s}

K) =

K∑
k=1

s(G(xti), pk
s ), (23)

S(G(xti), {pu
t }

U ) =

K+U∑
u=K+1

s(G(xti), pu
t ). (24)

where s(a, b) denotes the similarity between a and b. nk
t

denotes the number of samples in the target domain with
label k.

Our proposed contrastive inspired Lexo comprises two ef-
fects: (i) For the source-share (known) categories, Lexo

operates the domain alignment with intra-class compact-
ness and inter-class separability; (ii) for the target-private
(unknown) categories, Lexo increases the discrepancy be-
tween private-class samples and the source domain features,
enabling the model to better recognize unknown classes.

3.5. Model Optimization

During the adaptation stage of the proposed COSDA, we
implement the optimization objective as follows:

L = Lt + λs Ls + λexo Lexo + LKL + LSTA , (25)

Eq. (11) Eq. (12) Eq. (22) Eq. (14) Eq. (3)

whereLt+λsLs+LKL is from the OSDA theory framework.
Intuitively, Ls measures the empirical susceptibility risk
of the source domain using source domain labels, while
Lt measures the empirical susceptibility risk of the target

domain using predicted pseudo-labels. LKL is used to reduce
the error between the expected risk and the empirical risk.
Lexo is for satisfaction of the Exogeneity assumption, and
LSTA tends to sufficiently large intervention operations to
ensure that the learning parameters of the model are stable.

4. Experiments.
In this section, we verify the effectiveness of COSDA using
real-world and synthetic datasets.

4.1. Experiment Setup

Benchmark Dataset Settings. Extensive experiments
are conducted on three benchmarks following the stan-
dard setting (Qu et al., 2023; Bucci et al., 2020): Office-
Home (Venkateswara et al., 2017), Office-31 (Wang et al.,
2019), and Image-CLEF (Li et al., 2023).

Evaluation Metrics. Following the main OSDA stream (Qu
et al., 2023; Li et al., 2023), we utilize four widely used
measures, i.e., UNK, OS∗, OS, and harmonic mean accu-
racy (HOS). Among them, HOS is regarded as the most
equitable evaluation criterion.

HOS =
2× OS∗ × UNK

OS∗ + UNK
. (26)

Implementation Details. We adopt the same network ar-
chitecture as mainstream OSDA methods (Qu et al., 2023;
Li et al., 2023). All experiments are conducted using the
ImageNet (Deng et al., 2009) pre-trained ResNet-50 (He
et al., 2016) feature extractor. First, we train a source model
on the source domain. During target model adaptation, we
apply the SGD optimizer with a momentum of 0.9 and a
batch size of 32 for all benchmark datasets, following (Li
et al., 2023). We set the learning rate to 1 × 10−3 for
Office-31, Image-CLEF, and Office-Home. For hyperpa-
rameters, λs=0.2, λexo =1. All experiments are conducted
on an RTX-4090 GPU with PyTorch-1.10. We compare
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Table 2. Comparison results (%) of Office-31. (Best in bold and second best in underline)
Average A→D A→W D→A D→W W→A W→DMethod OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP (Saito et al., 2018) 87.2 80.4 83.7 90.5 75.5 82.4 86.8 79.2 82.7 76.1 72.3 75.1 97.7 96.7 97.2 73.0 74.4 73.7 99.1 84.2 91.1
STAsum (Liu et al., 2019) 94.6 50.5 65.5 95.4 45.5 61.6 92.1 58.0 71.0 94.1 55.0 69.4 97.1 49.7 65.5 92.1 46.2 60.9 96.6 48.5 64.4
UAN (You et al., 2019) 93.4 40.3 55.1 95.6 24.4 38.9 95.5 31.0 46.8 93.5 53.4 68.0 99.8 52.5 68.8 94.1 38.8 54.9 81.5 41.4 53.0
ROS (Bucci et al., 2020) 86.6 85.8 85.9 87.5 77.8 82.4 88.4 76.7 82.1 74.8 81.2 77.9 99.3 93.0 96.0 69.7 86.6 77.2 100.0 99.4 99.7
ANNA (Li et al., 2023) 87.8 90.0 88.6 93.2 76.1 83.8 82.8 88.4 85.5 75.4 91.1 82.5 99.4 99.6 99.5 76.0 87.9 81.6 100.0 96.8 98.4
GLC (Qu et al., 2023) - - 89.0 - - - - - - - - - - - - - - - - - -
OSLPP (Wang et al., 2024) 89.3 85.6 87.4 92.6 90.4 91.5 89.5 88.4 89.0 82.1 76.6 79.3 96.9 88.0 92.3 78.9 78.5 78.7 95.8 91.5 93.6
GLC++ (Qu et al., 2024) - - 90.4 - - - - - - - - - - - - - - - - - -

Ours 91.4 93.9 92.6 91.3 85.9 88.6 86.7 91.5 89.1 90.2 96.9 93.4 92.1 98.8 95.3 91.5 94.7 93.1 96.6 95.3 95.9

Table 3. Ablation study results (%) on Office-Home with four different sub-tasks. (Best in bold and second best in underline)

Office-Home A-R R-P P-C C-A Average
OS* UNK OS HOS OS* UNK OS HOS OS* UNK OS HOS OS* UNK OS HOS OS* UNK OS HOS

Causal Assumption

w/o Lexo 75.6 80.0 75.8 77.7 73.6 82.6 74.0 77.8 56.9 74.8 57.6 64.6 52.2 75.0 53.1 61.6 64.6 78.1 65.1 70.4

OSDA Theory Framework

w/o Lt 89.0 0.0 85.6 0.0 82.9 0.0 79.7 0.0 49.8 0.0 47.9 0.0 61.5 0.0 59.1 0.0 70.8 0.0 68.1 0.0
w/o Ls 72.9 85.2 73.4 78.6 71.1 87.2 71.7 78.3 51.5 77.9 52.5 62.0 49.8 77.6 50.9 60.7 64.6 82.0 62.1 69.9

Pseudo labelling Strategy

with MLP 84.3 0.0 81.1 0.0 83.1 0.0 79.9 0.0 55.7 0.0 53.6 0.0 66.6 0.0 64.1 0.0 72.4 0.0 69.7 0.0
with GC 77.2 82.9 77.2 77.0 73.6 84.0 74.0 78.4 51.5 75.5 52.5 61.3 50.7 74.1 51.6 60.2 63.3 78.7 63.8 69.2

Ours 80.3 79.5 80.2 79.9 81.1 77.3 80.9 79.1 58.5 69.9 58.9 63.7 57.9 74.0 58.6 65.0 69.4 75.2 69.6 71.9

our method with recent works that adopt the same OSDA
settings. All baseline scores are directly taken from their
publicly reported results. A detailed review of the base-
lines is provided in Appendix C. The code is available at
https://github.com/ZHOURui6025/COSDA-master.

4.2. Benchmark Comparison

Image-CLEF. We report the comparison results of the real-
world benchmark Image-CLEF in Table 1. We observe
that COSDA achieves the best results in 11 of 12 sub-tasks
for the HOS comparison and 10 of 12 tasks for the UNK
comparison, verifying our great potential for more complex
real-world scenes. Moreover, COSDA achieves the best
84.3% average HOS, which yields 2.9% gains than the state-
of-the-art work ANNA, 11.0% than DADO (Fang et al.,
2020), 12.8% than OSBP, and the best 88.3% average UNK,
which outperforms ANNA by 2.7%, DADO by 12.5% and
OSBP by 18.1%, verifying the effectiveness of our method.

Office-31. Comparison results on Office-31 are shown in Ta-
ble 2. The proposed method achieves the best average HOS
(92.6%) over all 6 tasks, outperforming OSBP (Saito et al.,
2018), ROS (Bucci et al., 2020) and OSLPP (Wang et al.,
2024) with 8.9%, 6.7% and 5.2% HOS and 13.5%, 8.1%
and 8.3% UNK, respectively. Compared with the state-of-
the art OSDA (source-free) work GLC++ (Qu et al., 2024),
our method comprehensively surpasses it with 2.2% HOS.
Compared with the state-of-the art OSDA (source-support)
work ANNA (Li et al., 2023), our method comprehensively
surpasses it with 3.6% OS*, 3.9% UNK, and 4% HOS re-

spectively, verifying the effect of our method.

Office-Home. Comparison results on Office-Home are
shown in Table 6. COSDA gives the best average HOS
(71.6%) evaluated over 12 tasks. Specifically, our method
outperforms OSBP, ROS, and OSLPP with 7.0%, 5.5%,
and 4.7% HOS, and surpass them 8.0%, 1.9% and 2.6%
in UNK comparison, demonstrating the robustness of our
unbiased OSDA framework.

4.3. Efficiency of Susceptibility Risk

In this section, we conduct synthetic experiments to evaluate
the effectiveness of susceptibility risk. The effectiveness of
susceptibility risk is demonstrated by examining whether
it can learn the essential causal relationships. To this end,
we designed a synthetic data generator based on Fig. 3 and
created a sample set {X, Y }, where X is generated from
three causal factors C and a spurious association factor S.

S 𝑌𝐂
𝜆𝑝𝑠𝑐𝜆𝑝𝑠𝑟

noise

𝛽

noise

𝛽

Figure 3. Causal graph for Synthetic Data Generation: Y ⊥ S | C

We use a parameter λpsc to distinguish the importance of
causal factors. When λpsc is closer to 0 or 1, the causal
association is stronger to Y; Conversely, the closer λpsc is to
0.5, the weaker the causal association is. Then we introduce
a parameter β to represent the noise intensity in the data. We
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set λpsc = {0.15, 0.25, 0.35} and β = {0.1, 0.4, 0.7, 1.1}.
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Figure 4. Results of Suscepetibility risk ( yellow ) and Vanilla risk
( orange )

Besides, λpsr denotes the spurious degree. When λpsr gets
higher, the spurious correlation is stronger in data X . We
set λpsr = 0.4, and the dimension of the factors d = 64.
Then we develop a non-linear function to generate X from
[C0.15, C0.25, C0.35, S]. We use Distance Correlation to
evaluate the correlation between the learned representation
and these factors. A higher Distance Correlation indicates a
better representation of factors. In Fig. 4, we compare the
performance of the susceptibility risk evaluator with that
of a standard empirical risk evaluator. For critical causal
factors (λpsc = 0.15), our method achieved a distance cor-
relation higher than the standard risk. For factors with lower
causal relevance (λpsc = 0.25, λpsc = 0.35). For spurious
factors, our method yielded a lower Distance Correlation
compared to the standard risk. These results verified that
by incorporating susceptibility risk evaluation, models can
reduce the learning of spurious correlations and maintain a
focus on critical causal factors. Due to page limitation, ad-
ditional details and results regarding synthetic experiments
are provided in the Appendix D.

4.4. Ablation Study

In this part, we conducted detailed ablation studies on four
subtasks in Office-Home and summarized the efficiency of
different parts of COSDA.

Efficiency of CFA. As shown in Table 3, compared to the
complete COSDA, removing Lexo (row 3) results in a 1.5%
decrease in average HOS, with a particularly notable 4.8%
reduction in OS*. This indicates that the CFA significantly
enhances the model’s ability to recognize known categories.

Efficiency of the Evalutation on Source/Target Risks. As
shown in Table 3, when Lt is removed (row 5), the model
fails to recognize unknown classes. Conversely, when the
Ls is removed (row 6), the model becomes overconfident
for unknown classes, while its ability to recognize known

categories declines. Overall, removing the risk from either
domain negatively impacts the model’s performance, with
the OS dropping by 1.5% and 7.5% respectively.

Efficiency of VMP. To assess the effectiveness of VMP,
we compare it to the logit-based pseudo-labeling strategy
(MLP) (Wang et al., 2022) and the Global Clustering pseudo-
labeling strategy (GC) (Qu et al., 2023; Saito, 2021). The
comparison illustrates that MLP (row 8) has virtually no
discriminative ability for unknown categories. This is most
likely because it relies heavily on source domain knowl-
edge and lacks unknown class information. Furthermore,
our technique outperforms GC by 2.7%, demonstrating the
usefulness of VMP.

4.5. Qualitative Results

Trade-off Analysis. To analyze the impact of parame-
ters in Eq. (25) on COSDA performance, we define λs =
{0.1, 0.2, 0.5, 0.8, 1.0} and λexo = {0.1, 0.2, 0.5, 0.8, 1.0}.
Figure 5 shows that the proposed technique has good pa-
rameter stability across datasets.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 0
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0 . 4
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0 . 8

1 . 0

9 3 . 0

9 3 . 5

9 4 . 0

9 4 . 5

9 5 . 0

� � �
� �

A c c u r a c y

� � �

Figure 5. The sensitivity analysis (λs, λexo) of COSDA on P-I
(Image-CLEF) task (left) and Rw-Pr (Office-Home) task (right) in
terms of parameter variations.
Feature-level Analysis. To illustrate the success of our
strategy, we compare the characteristics recovered by the
baseline algorithms and our approach to the t-SNE.Fig. (?)
shows the t-SNE visualization of feature distributions on the
W → D task (Office-31, left) and Ar → Rw task (Office-
Home, right) with the ResNet-50 backbone. Comparative
methods include OSBP, ANNA and COSDA. The gray node
denotes the unknown target sample, the red node denotes the
known source sample, and the blue node denotes the known
target sample. Compared with OSBP, our method clusters
class characteristics more compactly, which imdicates the
improvement of the decision border between known and
unknown classes. Since both OSBP and ANNA utilize ad-
versarial training and share the same underlying framework,
their feature spaces exhibit similar characteristics. Com-
paratively, ANNA better delineates the boundaries between
known and unknown classes, as only a small number of gray
points overlap with the blue and red points. Due to their
similar performance, we cannot clearly exhibit COSDAis
advantage at the feature level comparing with ANNA. How-
ever, the clustering tendency of local unknown classes sug-
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(a) OSBP (Office-Home)

target known
target unknown
source

(b) ANNA (Office-Home) (c) Ours (Office-Home)

(d) OSBP (Office-31)

target known
target unknown
source

(e) ANNA (Office-31) (f) Ours (Office-31)

Figure 6. The t-SNE visualization of feature distributions on the W → D task (Office-31, left) and Ar → Rw task (Office-Home, right)
with the ResNet-50 backbone.

gests that VMP’s approach of considering unknown classes
as multiple distinct groups is beneficial.

Table 4. Comparison results on DomainNet and VisDA with CLIP
backbone (All baseline results are obtained from Reference (Deng
& Jia, 2023)).

Method DomainNet(173/172) VisDA(6/6)
OS* UNK HOS OS* UNK HOS

DCC (Li et al., 2021) 50.2 45.1 47.5 75.3 46.2 57.3
UNIOT (Deng & Jia, 2023) 59.2 45.1 51.2 75.7 49.4 59.8
CROW (Wen & Brbic, 2024) 70.3 50.9 59.0 77.0 62.8 69.2
COSDA-CLIP 72.0 76.2 73.9 85.2 72.6 78.4

Comparison on more datasets and more backbones. we
implemented additional experiments on VisDA (Li et al.,
2021) and DomainNet (Deng & Jia, 2023; Wen & Brbic,
2024) and discovered that our method demonstrates good
performance on both CNN-based and CLIP-based architec-
tures. Considering both time constraints and GPU mem-
ory demands (particularly for the larger models), we uti-
lized six 40GB NVIDIA A100 GPUs to execute the new
experiments. DomainNet and VisDA use the same hyper-
parameter settings as smaller-scale datasets, specifically
λs = 0.2, λexo = 1. But the learning rate has been reduced,
specifically lr = 5e − 4. On DomainNet, COSDA-CLIP
achieves 73.9% HOS, outperforming CROW by 14.9%. On
VisDA, COSDA-CLIP reaches 78.4% HOS, outperforming
CROW by 9.2%. With CLIP, COSDA particularly further
enhances known-class classification and unknown-class de-
tection (UNK).

5. Conclusion
This paper establishes a theoretical framework for OSDA
grounded in the classical concept of Susceptibility to address
the OSDA problem. We further present two modules, des-
ignated as CFA and VMP, to fulfill causal assumptions and
mitigate both feature alignment risk and open-set risk. Ex-
periments show that COSDA outperforms the competition
on all three benchmarks.
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————Appendix————
The structure of Appendix is as follows

• Appendix A gives examples to illustrate where the susceptibility is high and where it is low.

• Appendix B contains all missing proofs in the main manuscript.

• Appendix C contains the extended related work.

• Appendix D details the dataset, implementation details and additional experimental results.

A. Understanding Susceptibility
As a fundamental concept in causal inference, susceptibility pertains to determining whether an event (cause) leads to another
event (effect). The average causal effect (ACE) is a classical metric for quantifying the strength of causal relationships,
defined as:

ACE = P (B|A)− P (B|¬A), (27)

where the first term represents the probability of event B occurring given that event A occurs, and the second term measures
the probability of B occurring in the absence of A. By intervening on causal variable A (i.e., altering their states), we can
observe changes in the outcome B. In the complex physical world, one event often has multiple causes, and it is crucial
to evaluate their causal significance. Generally, a larger ACE indicates a stronger causal relationship, implying a more
significant influence of the cause on the effect and greater mutual information between the cause and the effect.

The probability of susceptibility (PS) is defined as:

PS =
P (B|A)− P (B|¬A)

1− P (B|¬A)
. (28)

equal to ACE

the association between A and B after intervention

Here, the numerator is identical to Eq. 27, while the denominator quantifies the association between events A and B after
intervention. When interventions of the same magnitude on A produce equivalent changes in B, the average causal effect
treats them as equal. However, a higher P (B | ¬A) indicates stronger susceptibility, guiding us to pay greater attention to it,
which is intuitively more reasonable. We provided three examples to illustrate the effectiveness of susceptibility.

For the label ”maple”, we define four relevant characteristics: (1) palmately lobed leaves, (2) larger leaves with a few
prominent teeth, (3) palmate veins, and (4) orange or red color. The conditional probabilities between these characteristics
and the label (i.e., whether a leaf belongs to a maple tree) are summarized in the Fig. 7. When comparing a certain feature,
we presume that information regarding other features is inaccessible.

Example 1.(with same ACE) The characteristic ”palm-shaped lobes” is regarded as the most distinguishing feature of
maple leaves, whose presence firmly signifies a maple leaf. Conversely, the distinguishing ”palmate veins” is another relative
trait of maple leaves, albeit less pertinent than ”palm-shaped lobes.” Given these assumptions, the average causal effect
(ACE) for both features is determined to be identical, at 0.5. Nonetheless, susceptibility risk directs the model to emphasize
the characteristic ”palm-shaped lobes” owing to its elevated P (B|A). This underscores the superiority of the susceptibility
model in detecting more distinctive causal factors.

Example 2.(with same P (B|¬A) ) For label ”maple”, the feature ”orange or red” is not causally relative to ”maple”.
Therefore, given C = 0 or C = 1, the conditional probability P (Y |C) remains unchanged, so we assume it to be 0.3 in
both cases. Under these assumptions, P (B|¬A) is equal for ”orange or red” and ”palace-shaped lobes”. Relying solely on
P (B|¬A) may lead to misguided attention, as it fails to distinguish between causally relevant and irrelevant features. By
calculating the PS ≈ 0.43, we find that the feature ”prominent teeth” is more significant than ”orange or red”, which aligns
with the results of comparing ACE.
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label ( ) feature ( )

palm-shaped lobes

prominent teeth

orange, or yellow

maple

palmate veins

Figure 7. Example for understanding susceptibility in image classification problem

Example 3.(with same P (B|A) ) The feature ”prominent teeth” is assumed third-relative characteristic of maple leaves. If
a leaf lacks ”prominent teeth”, it is highly unlikely to be a maple leaf. However, the presence of ”prominent teeth” does
not exclusively indicate a maple leaf, as other species may also exhibit this trait. Therefore, we assume P (Y = 1|C =
1) = 0.6, P (Y = 1|C = 1) = 0.3. Under these assumptions, P (B|A) is equal for ”prominent teeth” and ”palace-shaped
lobes”.However, susceptibility risk guides the model to prioritize the feature ”palm-shaped lobes”, which exhibits greater
difference than ACE. This highlights the superiority of the susceptibility model in identifying more discriminative causal
features.

In summary, susceptibility provides a more robust measure of the causal relationship between features and the target. This
work proposes a susceptibility risk estimator derived from this principle, aiming to guide the model in learning more causally
relevant features and improving its generalization capabilities across domains.

The connections of SRE, CFA, and VMP. SRE quantifies causal feature representation ability via susceptibility analysis.
Direct SRE estimation in the target domain is infeasible due to label scarcity. To resolve this problem, we first decompose
target-domain expected risk into open-set and closed-set, then bridge source/target risks using domain-invariant represen-
tations, and finally derive generalization bounds to narrow the gap between empirical and expected susceptibility risks
(Theorems 1 2 & Corollary 1). To satisfy the exogeneity assumption for causal identifiability, we propose CFA, which
encourages independence across causal features belonging to different categories via information bottleneck (Proposition 2)
and then introduces VMP pseudo-label strategy.

B. Proofs
Assumption 1 ((Exogeneity (Causality (Pearl, 2009)))). The Exogeneity of C holds, if the following invariant conditions
are satisfied in Fig. 1(b) satisfied: E ⊥ C, E ⊥ Y | C, which can be equivalently represented using the probability:
Pr(Y |C,E = et/s) = Pr(Y |C), where et/s is the domain specific features.

Assumption 2 ((Monotonicity (Causality (Pearl, 2009)))). If the causal feature of y is c, Y is monotonic relative to X if
and only if y′c ∧ yc′ = false.

In this section, we provided theoretical proofs. Theorem 2 and Corollary 1 follow the PAC-Bayesian Theory Frame-
work (Catoni, 2007; Germain et al., 2016). Proposition 2 is based on Mutual Information Theorey (Kraskov et al., 2004).
The proof of Monotonicity is built upon Causality Theory (Pearl, 2009).

13



COSDA: Counterfactual-based Susceptibility Risk Framework for Open-Set Domain Adaptation

Algorithm 1 Overall Training Process of COSDA
Input: source domain DS , target domains DT ; pretrained source model f0

θ , number of epochs E, batch size B, Trade-off
hyperparameters λs, λexo, a blank MemoryM.
Initialize parameters randomly;M← f0.
for epoch = 1 to E do

Compute prototypes pk/ut by VMP (Eq. (17), (18)).
for b = 1 to max{|Ds|,|Dt|}

B do
Sample a mini-batch Bs = {Xsb, ysb}, Bt = {Xtb} from DS , DT .
Forward pass: ŷc

s, ŷc
′

s , σc
s , σ

c′

s ,Zc
s, ints = f(Bs; θ), where ints denotes the intervention on Zc

s.
Compute loss: Ls,LKL(s),LSTA(s) ← ysb, ŷcs, ŷc′

s , σc
s , σ

c′

s , ints. (Eq. (12), (14), (3))
Get pesudo labels ỹtb of Bt by VMP with pk/ut . (Eq. (19))
Forward pass: ŷct , ŷ

c′

t , σc
t , σ

c′

t ,Zc
t , intt = f(Bt; θ).

Compute loss: Lt,LKL(t),LSTA(t) ← ỹtb, ŷct , ŷc
′

t , σc
t , σ

c′

t , intt. (Eq. (11), (14), (3))
UpdateM← Zc

s.
Get pk

s byM. (Eq. (21))
Compute loss: Lexo ← ỹtb, pk

s , pu
t . (Eq. (22))

Calculate the overall loss, as L ← Eq. (25)
Backward pass: compute gradients∇θL.
Update parameters: θ = θ − η∇θL.

end for
end for
Output: Final Optimized Models f∗

θ .

B.1. Proof of Proposition 1

Proof. Based on Eq. 5 and Eq. 28, PS can be altered by the Eq. 29 below.

PSt =
PORt − PIRt

1− PIRt
(29)

Then,

ln(SRt(c, c
′)) = 1− PORt − PIRt

1− PIRt

= ln(1− PS)

= ln(
1− PORt

1− PIRt
)

= ln(1− PORt)− ln(1− PIRt)

= ln(1− E(x,y)∼T Ec∼Pt(C|X=x)P (Y = y | C = c))

− ln(1− E(x,y)∼T Ec′∼Pt(C′|X=x)P (Y = y | C′ = c′)

= ln(E(x,y)∼T Ec∼Pt(C|X=x)P (Y ̸= y | C = c))

− ln(E(x,y)∼T Ec′∼Pt(C′|X=x)P (Y ̸= y | C′ = c′)

= ln(Ot(c))− ln(It(c
′))

(30)

Then,
SRt(c, c

′) = eln(Ot(c))−ln(It(c
′))

< eOt(c)−It(c
′)−2

< eOt(c)−It(c
′)

(31)

Then, by minimizing Ot(c)− It(c
′), we can minimize SRt(c, c

′). Therefore, we can get the result of Proposition 1. By
minimizing SRt(c, c

′), it can improve the consistency of the representation results of the model.
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B.2. Proof of Theorem 1

Given a domain S/T , an invariant representation inference model G, an intervention model G′, a classifier h,

SRT (c, c′) = Ot(c)− It(c
′)

= E
(x,y)∼T

E
c∼PG

t (C|X=x)
Ph(Y ̸= y | C = c)

− E
(x,y)∼T

E
c′∼PG′

t (C′|X=x)

Ph(Y ̸= y | C′ = c′)

= E
(x,y)∼T

[I(x, y) ∈ supp(S)]

[
E

c∼PG
t (C|X=x)

Ph(Y ̸= y | C = c)

− E
c′∼PG′

t (C′|X=x)

Ph(Y ̸= y | C′ = c′)

]

+ E(x,y)∼T [I(x, y) /∈ supp(S)]

[
E

c∼Ph
t (C|X=x)

PD(Y ̸= K + 1 | C = c)

− E
c′∼Pt(C′|X=x)

Ph(Y ̸= K + 1 | C′ = c′)

]
:= πt∧s(X, Y ) + πt\s(X, Y )

(32)

B.3. Proof of Theorem 2

Given a domain S/T , an invariant representation inference model G, an intervention model G′, a classifier h, for any
probability distribution ρ over h, we define the expected joint error eS/T (x, ρ) and the expected disagreement dS/T (x, ρ)
as

eT (x) := E
h1∼ρ

E
h2∼ρ

(
E

(x,y)∼T
I (h1(x) ̸= y) I (h2(x) ̸= y)

)
(33)

dTX(x) := E
h1∼ρ

E
h2∼ρ

(
E

(x,y)∼TX

I (h1(x) ̸= h2(x))

)
(34)

Then we can decompose the susceptibility risk SRt(c, c
′) as

SRT (c, c′) = Ot(c)− It(c
′)

=
1

2
E

(x,y)∼TX

E
c∼PG

t (C|X=x)

[
E

h1∼ρ
E

h2∼ρ
I[h1(c) ̸= y] + I [h2(c

′) ̸= y]

]
− 1

2
E

(x,y)∼TX

E
c′∼PG′

t (C′|X=x)

[
E

h1∼ρ
E

h2∼ρ
I[h1(c

′) ̸= y] + I [h2(c
′) ̸= y]

]
= E

(x,y)∼TX

E
c∼PG

t (C|X=x)

[
E

h1∼ρ
E

h2∼ρ

I [h1(c) ̸= h2(c)] + 2I [h1(c) ̸= y ∧ h2(c) ̸= y]

2

]
− E

(x,y)∼TX

E
c′∼PG

t (C′|X=x)

[
E

h1∼ρ
E

h2∼ρ

I [h1(c
′) ̸= h2(c

′)] + 2I [h1(x) ̸= y ∧ h2(x) ̸= y]

2

]
=

1

2
(dTX

(c)− dTX
(c′)) + eT (c)− eT (c

′).

(35)

We refer to the technicals in (Germain et al., 2016) by using β divergence, which is formalized as βq(T ∥S) =[
E

(x,y)∼S

(
T (x,y)
S(x,y)

)q] 1
q

, and Hölder’s Inequality, that is
∫
|fg| dµ ≤

(∫
|f |q dµ

) 1
q
(∫
|g|p dµ

) 1
p , where g = 1, q →
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+∞, p→ 1 in this paper. First, we define r = E(x,y)∼T [I(x, y) /∈ supp(S)], then using Hölder’s Inequality, we have

eT (c) = E
(x,y)∼TX

[
E

c∼PG
t (C|X=x)

E
h1∼ρ

E
h2∼ρ

I (h1(c) ̸= y) I (h2(c) ̸= y)

]

= E
(x,y)∼S

(
T (x, y)
S(x, y)

)[
E

c∼PG
t (C|X=x)

E
h1∼ρ

E
h2∼ρ

I (h1(c) ̸= y) I (h2(c) ̸= y)

]

+ E(x,y)∼T [I(x, y) /∈ supp(S)]

[
E

c∼PG
t (C|X=x)

E
h1∼ρ

E
h2∼ρ

I (h1(c) ̸= y) I (h2(c) ̸= y)

]
≤ lim

q→∞
(βq(T ∥S)eS(c)) + reT \S(c),

(36)

eT (c
′) ≤ lim

q→∞
βq(T ∥S)eS(c′) + ret\s(c

′) (37)

Rewrite r(et\s(c)− et\s(c
′)) as πt\s(X, Y ) Then we have

SRT (c, c′) <
1

2
(dTX

(c)− dTX
(c′))

+ lim
q→∞

βq(T ∥S)(eS(c)− eS(c
′))

+ πt\s(X, Y )

(38)

Then we can get the result of Theorem 2.

B.4. Proof of Corollary 1

First, we introduce the PAC-Bayesian theorem (Catoni, 2007), which gives the usual bound on the empirical risk.

Lemma 2. For domain S/T , any set of votersH , any prior γ overH, any risk R : H → [0, 1] , any real number c > 0,
with a probability at least 1− δ over the choice of {(xi, yi)}ni=1 ∼ T , we have for all ρ onH :

E
(x,y)∼S/T

E
h∼ρ

R(ρ,x, y)

≤ c

1− e−c

[
1

n

n∑
i=1

E
h∼ρ

R(ρ,xi, yi) +
KL(ρ∥γ) + ln 1

δ

n× c

]
.

(39)

Following the same setting of lemma 2, we have: with prior γC, a probability at least 1− δ over Dt = {(xi)}nt

i=1 ∼ TX,

∀ρ onH,dTX
(ρ, c) ≤ c

1− e−c

[
dDt

(ρ, c) +
2KL(ρ∥γC) + ln 1

δ

nt × c

]
,

eS(ρ, c) ≤
c

1− e−c

[
eDs(ρ, c) +

2KL(ρ∥γC) + ln 1
δ

ns × c

]
,

(40)

with prior γC′ , a probability at least 1− δ over Ds = {(xi, yi)}ns

i=1 ∼ S,

∀ρ onH,dTX
(ρ, c′) ≤ c

1− e−c

[
dDt

(ρ, c′) +
2KL(ρ∥γC′) + ln 1

δ

nt × c

]
,

eS(ρ, c
′) ≤ c

1− e−c

[
eDs(ρ, c

′) +
2KL(ρ∥γC′) + ln 1

δ

ns × c

]
,

(41)

Then, we obtain the following generalization bound defined with respect to the empirical estimates of the target disagreement
and the source joint error: with a probability at least 1− δ over Ds = {(xi, yi)}ns

i=1 ∼ TX and Dt = {(xi)}nt

i=1 ∼ TX, let
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b′ = b
1−e−b β∞(T ∥S), and c′ = c

1−e−c , ∀ρ onH,

SRT (c, c′) ≤ c′

2
(dDt(c)− dDt(c

′)) + b′(eDs(c)− eDs(c
′))

+RU
S (X, Y ) +

(
c′

mt × c
+

b′

ms × b

)(
2KL(ρ∥γC) + ln

2

δ

)
−
(

c′

mt × c
+

b′

ms × b

)(
2KL(ρ∥γC′) + ln

2

δ

)
=

c′

2
(dDt

(c)− dDt
(c′)) + b′(eDs

(c)− eDs
(c′)) +RU

S (X, Y )

+ 2

(
c′

mt × c
+

b′

ms × b

)
(KL(ρ∥γC) + KL(γC′∥ρ))

(42)

Therefore, we can narrow the error between SRT (c) and SRDt
(c) by minimizing (KL(ρ∥γC) + KL(γC′∥ρ)), then with a

non-informative prior γ := N (µγ , σ
2
γ) , the produced Gaussian N (µc, σ

2
c), we have

min
µc,σc

(
lim

σγ→∞
KL
(
N
(
µc, σ

2
c

)
∥N

(
µγ , σ

2
γ

)))
⇒ min

µc,σc

(
lim

σγ→∞

(
log

σγ

σc
+

σ2
c + (µc − µγ)

2

2σ2
γ

− 1

2

))

⇒min
σc

(
lim

σγ→∞

(
log

σγ

σ1

))
⇒ min

σc

(− log σc) .

(43)

Finally, we can minimize SRT (c) by adding Eq. 14, which is the result of Corollary 1.

B.5. Proof of Proposition 2

According to the definition of the KL divergence and the Mutual Information I(·; ·), we can easily rewrite Pr(Y = k|C,E =
et/s) = Pr(Y = k | C) as:

KL(P (Y = k | C,E)∥P (Y = k | C))

= P (Y = k | C,E) log

(
P (Y = k | C,E)

P (Y = k | C)

)
= 0

= p(C,E, Y = k) log

(
p(Y = k,E | C)

p(Y = k | C)p(E | C)

)
= I(Y = k; e | C)

(44)

Based on I(Y = k; e | C) = 0, we have

I(Y ;C|et) = I(Y ;C) = I(Y ;C|es) (45)

Based on the transmissibility of I(·; ·), I(Y ;C|et) = I(Y ;C|es) can be achieved by:

max I(C, es;C, et) (46)

Finally, given the universal data generation causal model M , M : C,E → X, the causal representation model G,
G : X→ C, we reach

max
G

I(G(M(C, es));G(M(C, et)))

⇒ max
G

I(G(xs);G(xt))
(47)

Then we can get the result of Proposition 2.
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C. Related Works & Our Innovations
In this section, we review the progress of OSDA prediction tasks, including:

First, adversarial learning-based algorithms. OSBP (Saito et al., 2018) first introduces the concept of domain adversarial
learning into OSDA. Unlike UDA, OSBP sets a fixed threshold t for separating unknown class samples and employs
gradient reversal to achieve a min-max adversarial optimization between the feature extractor and classifier. PGL (Luo
et al., 2020) proposed a Progressive Graph Learning framework based on OSBP, which integrates graph neural networks
trained in context to mitigate potential conditional shifts. Recently, ANNA (Li et al., 2023) considered the unknown class
information embedded in the background features of known class samples, then introduced causal unbiased learning and
domain alignment on top of OSBP.

Second, score-based algorithms. Separate to Adapt (STA) (Liu et al., 2019) generates weights to reject target samples
belonging to unknown classes while balancing their importance in feature distribution alignment. Inspired by STA’s
approach, (Shermin et al., 2020) introduced a weighting module based on the similarity between target samples and source
domain classes to find an appropriate threshold for each sample. ROS (Bucci et al., 2020) utilizes rotational invariance to
improve source domain models and proposes entropy- and confidence-based regularization scores to distinguish unknown
class samples. UAN (You et al., 2019) proposed a transferability criterion to quantify sample-level transferability, aiming to
discover the common label set and the label sets private to each domain. GATE (Chen et al., 2022) introduced a generic
incremental classifier that adaptively learns the ”unknown” threshold by minimizing open-set entropy.

Third, pseudo-label-based alignment strategies. OSLPP (Wang et al., 2024) calculates class means and uses them to assign
pseudo-labels to target domain samples, while target samples that are ”far from” all known class means are recognized
as unknown classes. This approach faces two main issues: first, the inaccurate definition of ”far from” and second,
the failure to identify unknown class samples that are similar but distinct from known classes. DCC proposes Domain
Consensus Clustering for universal domain adaptation, using semantical and sample-level consensus to effectively separate
and distinguish common classes from private ones. OVANet proposes a universal domain adaptation method that learns
an open-set threshold from source data via one-vs-all classifiers and adapts it to the target domain by minimizing class
entropy. UADAL addresses open-set domain adaptation with unknown-aware adversarial learning, aligning known classes
while segregating unknowns in feature space. Recently, GLC (Qu et al., 2023) generated positive prototypes using the
Top-K most reliable samples for each class and then applied a clustering algorithm to the remaining samples to create
specific negative prototypes. The class of a sample is determined by comparing its distance to both positive and negative
prototypes. The computational complexity of this method is proportional to the number of known classes, which reduces
learning efficiency on large datasets. Inspired by GLC, we propose a simpler and more efficient approach to pseudo-label
generation, called the Virtual Multi-unknown-categories Prototype (VMP) pseudo-labeling strategy. The difference is we
exclude all known-class positive samples and cluster only the remaining negative samples (i.e., those not belonging to any
known class). Besides, unlike one-vs-all strategies requiring C clustering operations per epoch (C = the number of known
classes), COSDA achieves comparable performance with only one clustering per epoch.

In summary, recent improvements in OSDA mainly focused on three streams of the research: enhancing the learning of
source domain knowledge, providing boundaries to distinguish unknown class samples, and aligning the distributions of
known class categories across domains. Our proposed COSDA advances these three areas. First, regarding the source model
learning, we introduce a causal susceptibility risk to guide the model in learning essential causal features and derive its
learning upper bound for the OSDA task. Second, regarding the separating unknown classes, we propose VMCP, which
obtains multiple virtual unknown class prototypes by performing K-means clustering on the global target domain samples
and excluding potential known class prototypes. We then assign pseudo labels to target domain samples based on similarity.
Finally, regarding the alignment of known categories, we propose a cross-domain class-level contrastive learning method
based on pseudo-labels, which aligns the class-level feature differences between the source and target domains.

D. Details for Experiments.
D.1. Benchmark Dataset Settings.

Extensive experiments are conducted on three benchmarks following the standard setting (Qu et al., 2023; Bucci et al.,
2020). 1) Office-Home (Venkateswara et al., 2017), a dataset across four distinct domains: Art (Ar), Clipart (Cl), Product
(Pr), and Real World (Rw) with the first 25 categories as the known, while the subsequent 40 classes as the unknown; 2)
Office-31 (Wang et al., 2019), another dataset spanning three domains: Amazon (A), Dslr (D), and Webcam (W), with the
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first 10 classes as the known and the last 11 classes as the unknown; 3) Image-CLEF (Li et al., 2023), a database with four
domains and 12 shared common classes. The first 6 classes are utilized as the known and the rest as the unknown.

Dataset #domains #K #U #images

Office-Home 4 25 40 15,500
Office-31 3 10 11 4,652
Image-CLEF 4 6 6 600

Table 5. Dataset details for open-set domain adaptation.

D.2. Baselines

Baselines. The baselines include i) adversarial-learning methods, i.e., OSBP (Saito et al., 2018), PGL (Luo et al., 2020),
ANNA (Li et al., 2023), ii) score-based methods, i.e., STA (Liu et al., 2019), ROS (Bucci et al., 2020), UAN (You et al.,
2019), GATE (Chen et al., 2022), iii) pseudo-label-based alignment methods, i.e., DADO (Fang et al., 2020), DCC (Li et al.,
2021), OVANet (Saito, 2021). OSLPP (Wang et al., 2024), GLC (Qu et al., 2023), UPUK (Wan et al., 2024), USDAP (Shao
et al., 2024).

D.3. Evaluation Metrics

Following the main OSDA stream (Bucci et al., 2020; Qu et al., 2023; Saito et al., 2018; Li et al., 2023), we utilize four
widely used measures, i.e., accuracy of the unknown class (UNK), normalized accuracy for the known classes only (OS∗),
normalized accuracy for all classes(OS) and harmonic mean accuracy (HOS).

UNK =
1

NK+1 E
(x,y)∼DK+1

t

I(h(x) = y), (48)

OS* =
1

K

K∑
k=1

1

Nk E
(x,y)∼Dk+1

t

I(h(x) = y), (49)

OS =
1

K + 1

K+1∑
k=1

1

Nk E
(x,y)∼Dk+1

t

I(h(x) = y), (50)

HOS =
2× OS∗ × UNK

OS∗ + UNK
. (51)

with Di
t being the set of target samples in the i-th class, and h() the classifier. HOS is regarded as the most equitable

evaluation criterion. It strikes a balance between assessing the performance of the methods on both known and unknown
class samples.

D.4. Additional Benchmark Experiments Results

Table 6 shows the comparison results of Office-Home.

D.5. Details for Synthetic Numerical Experiment

In this section, we conduct two synthetic experiments to evaluate the effectiveness of Susceptibility risk.

Synthetic Numerical Experiment

The effectiveness of susceptibility risk is demonstrated by examining whether it can learn the essential causal relationships.
To this end, in the first synthetic experiment, we designed a synthetic data generator based on Fig. 3 and created a sample set
{X, Y }, where X is generated from three causal factors C and a spurious association factor S. The generation process of X
is as follows:
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Table 6. Comparison results (%) of Office-Home. (Best in bold and second best in underline)

Average Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→PrMethod OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP (Saito et al., 2018) 64.1 66.3 64.7 50.2 61.1 55.1 71.8 59.8 65.2 79.3 67.5 72.9 59.4 70.3 64.3 67.0 62.7 64.7
STAsum (Liu et al., 2019) 63.4 62.6 61.9 50.8 63.4 56.3 68.7 59.7 63.7 81.1 50.5 62.1 53.0 63.9 57.9 61.4 63.5 62.5
STAmax (Liu et al., 2019) 61.8 63.3 61.6 46.0 72.3 55.8 68.0 48.4 54.0 78.6 60.4 68.3 51.4 65.0 57.4 61.8 59.1 60.4
UAN (You et al., 2019) 75.2 0.0 0.1 62.4 0.0 0.0 81.1 0.0 0.0 88.2 0.1 0.2 70.5 0.0 0.0 74.0 0.1 0.2
PGL (Luo et al., 2020) 76.1 25.0 35.2 63.3 19.1 29.3 78.9 32.1 45.6 87.7 40.9 55.8 85.9 5.3 10.0 73.9 24.5 36.8
ROS (Bucci et al., 2020) 61.6 72.4 66.2 50.6 74.1 60.1 68.4 70.3 69.3 75.8 77.2 76.5 53.6 65.5 58.9 59.8 71.6 65.2
DAOD (Fang et al., 2020) 69.6 50.2 57.6 72.6 51.8 60.5 55.3 57.9 56.6 78.2 62.6 69.5 59.1 61.7 60.4 70.8 52.6 60.4
DCC (Li et al., 2021) - - 61.7 - - 56.1 - - 67.5 - - 66.7 - - 49.6 - - 66.5
OVANet (Saito, 2021) - - 64.0 - - 58.6 - - 66.3 - - 69.9 - - 62.0 - - 65.2
GATE (Chen et al., 2022) - - 69.0 - - 63.8 - - 70.5 - - 75.8 - - 66.4 - - 67.9
ANNA (Li et al., 2023) 65.6 76.7 70.7 61.4 78.7 69.0 68.3 79.9 73.7 74.1 79.7 76.8 58.0 73.1 64.7 64.2 73.6 68.6
GLC (Qu et al., 2023) - - 69.8 - - 65.3 - - 74.2 - - 79.0 - - 60.4 - - 71.6
OSLPP (Wang et al., 2024) 63.8 71.7 67.0 55.9 67.1 61.0 72.5 73.1 72.8 80.1 69.4 74.3 49.6 79.0 60.9 61.6 73.3 66.9
UPUK (Wan et al., 2024) 61.6 79.7 69.2 49.0 64.8 55.8 68.1 88.0 76.7 71.5 86.6 78.4 61.3 72.6 66.4 66.5 81.6 73.1
USDAP (Shao et al., 2024) - - 69.6 - - 66.7 - - 75.3 - - 76.2 - - 60.7 - - 70.0
GLC++ (Qu et al., 2024) - - 70.2 - - 65.4 - - 73.8 - - 78.0 - - 61.5 - - 71.9

Ours 69.4 74.4 71.7 70.0 71.0 70.5 73.9 76.0 74.9 80.3 79.5 79.9 57.9 74.0 65.0 68.8 76.0 72.2

Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→PrMethod OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP 72.0 69.2 70.6 59.1 68.1 63.2 44.5 66.3 53.2 76.2 71.7 73.9 66.1 67.3 66.7 48.0 63.0 54.5 76.3 68.6 72.3
STAsum 69.8 63.2 66.3 55.4 73.7 63.1 44.7 71.5 55.0 78.1 63.3 69.7 67.9 62.3 65.0 51.4 57.9 54.2 77.9 58.0 66.4
STAmax 67.0 66.7 66.8 54.2 72.4 61.9 44.2 67.1 53.2 76.2 64.3 69.5 67.5 66.7 67.1 49.9 61.1 54.5 77.1 55.4 64.5
UAN 80.6 0.1 0.2 73.7 0.0 0.0 59.1 0.0 0.0 84.0 0.1 0.2 77.5 0.1 0.2 66.2 0.0 0.0 85.0 0.1 0.1
PGL 70.2 33.8 45.6 73.7 34.7 47.2 59.2 38.4 46.6 84.8 27.6 41.6 81.5 6.1 11.4 68.8 0.0 0.0 84.8 38.0 52.5
ROS 65.3 72.2 68.6 57.3 64.3 60.6 46.5 71.2 56.3 70.8 78.4 74.4 67.0 70.8 68.8 51.5 73.0 60.4 72.0 80.0 75.7
DADO 77.8 57.0 65.8 71.3 50.5 59.1 58.4 42.8 49.4 81.8 50.6 62.5 66.7 43.3 52.5 60.0 36.6 45.5 84.1 34.7 49.1
DCC - - 64.0 - - 55.8 - - 53.0 - - 70.5 - - 61.6 - - 57.2 - - 71.9
OVANet - - 68.6 - - 59.8 - - 53.4 - - 69.3 - - 68.7 - - 59.6 - - 66.7
GATE - - 71.7 - - 67.3 - - 61.5 - - 76.0 - - 70.4 - - 61.8 - - 75.1
ANNA 66.9 80.2 73.0 63.0 70.3 66.5 54.6 74.8 63.1 74.3 78.9 76.6 66.1 77.3 71.3 59.7 73.1 65.7 76.4 81.0 78.7
GLC - - 74.7 - - 63.7 - - 63.2 - - 75.8 - - 67.1 - - 64.3 - - 77.8
OSLPP 67.2 73.9 70.4 54.6 76.2 63.6 53.1 67.1 59.3 77.0 71.2 74.0 60.8 75.0 67.2 54.4 64.3 59.0 78.4 70.8 74.4
UPU 71.6 84.8 77.6 55.9 85.6 67.6 45.4 70.2 55.1 73.9 83.9 78.6 56.7 84.1 67.8 49.3 74.6 59.4 69.5 80.0 74.4
USDAP - - 72.6 - - 64.5 - - 64.6 - - 76.5 - - 65.5 - - 64.3 - - 78.0
GLC++ - - 74.7 - - 64.2 - - 65.3 - - 76.0 - - 67.7 - - 66.0 - - 77.8

Ours 76.4 75.8 76.1 62.1 74.4 67.8 58.5 70.0 63.7 73.3 79.5 76.3 66.9 74.0 70.3 63.4 64.9 64.1 81.1 77.3 79.1

S 𝑌𝐂
𝜆𝑝𝑠𝑐𝜆𝑝𝑠𝑟

noise

𝛽

noise

𝛽

Figure 8. Causal graph for Synthetic Data Generation: Y ⊥ S | C

Cpsc = Y ⊕ B(λpsc) + βN (0, 1),

Cmean = Mean({Cpsc}),
S = λpsrCmean ∗ 1d + βN (0, 1),

X = MLP({{Cpsc}, S}).

(52)

In Eq. (52), to test whether susceptibility risk can focus on more essential causal information, we use a parameter λpsc
to distinguish the importance of causal factors. When λpsc is closer to 0 or 1, the causal association is stronger to Y;
Conversely, the closer λpsc is to 0.5, the weaker the causal association is. β represents the noise intensity in the data. We set
λpsc = {0.15, 0.25, 0.35} and β = {0.1, 0.4, 0.7, 1.1}. Besides, λpsr denotes the spurious degree. When λpsr gets higher,
the spurious correlation is stronger in data X . We set d = 64 and λpsr = {0.1, 0.4, 0.7}. Then we develop a non-linear
function to generate X from [C0.15, C0.25, C0.35, S]. We use distance correlation to evaluate the correlation between learned
representation and these factors. A higher distance correlation indicates a better representation of factors. We provided an
ablation study to demonstrate the efficiency of susceptibility risk by comparing it with vanilla empirical risk.

In Fig. 4(a), we varied the level of spuriousness and computed the distance correlation between the learned representations
and four factors. It can be observed that susceptibility risk achieved a higher distance correlation with critical causal

20



COSDA: Counterfactual-based Susceptibility Risk Framework for Open-Set Domain Adaptation

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

S p u r i o u s0 . 3 5p s c� =0 . 2 5p s c� =0 . 1 5p s c� =

F a c t o r s

Dis
tan

ce 
Co

rre
lati

on

               
   
  

0 . 1p s r� =
0 . 4p s r� =
0 . 7p s r� =

S p u r i o u s0 . 3 5p s c� =0 . 2 5p s c� = 0 . 2 5p s c� =
F a c t o r s

Dis
tan

ce 
Co

rre
lati

on

 � = 1 . 1   
 � = 0 . 7
 � = 0 . 4
 � = 0 . 1
0 . 1 5p s c� =

( a ) ( b )
Figure 9. (a) Results of different spurious degree, and (b) Results of Suscepetibility risk ( yellow ) and Vanilla risk ( orange )

4: disassemble circuit board 3: disassemble foam 2: disassemble fan 0: disassemble outer shell1: disassemble outer shell5: leaving workbench6: refrigerator

Figure 10. Examples of each class in Image-ADAR, where label 6-7 are unknown categories, and label 0-5 are shared categories.

factors, while the distance correlation with spurious factors showed only a slight increase as spuriousness increased. This
demonstrates that our evaluator consistently focuses on critical causal factors under varying spurious levels. In Fig. 4(b), we
generated data with different levels of perturbation by varying β and compared the performance of the Susceptibility risk
evaluator with that of a standard empirical risk evaluator. For critical causal factors (λpsc = 0.15), our method achieved
a higher distance Correlation than the standard risk. For factors with lower causal relevance (λpsc = 0.25, λpsc = 0.35),
our method comparatively avoided overemphasis. Furthermore, for spurious factors, our method yielded a lower distance
correlation compared to the standard risk. These results verified that by incorporating susceptibility risk evaluation, models
can reduce the learning of spurious correlations and maintain a focus on critical causal factors.

Action Recognition in Appliance Disassembly under OSDA. To evaluate the practical applicability of the proposed
method, we selected appliance disassembly action recognition as a concrete problem. Disassembly actions are complex, with
similar backgrounds in images, and involve a significant number of unknown actions and unknown parts, which severely
degrade the performance of traditional supervised learning models. The open-set domain adaptation setup used in this paper
aligns with the challenges faced in action recognition during appliance disassembly at the test stage. Thus, we constructed
a custom Image dataset for Appliance Disassembly Action Recognition, Image-ADAR, for this task and compared the
performance of COSDA with several baseline methods.

The dataset was collected in a disassembly factory, where each collection environment represents a distinct domain, labeled
as domains A, B, and C. After data processing, each domain consists of 7 classes, including five shared classes and two
unknown classes. The source domain includes only the five shared classes, while the target domain encompasses all
categories. The objects being disassembled are air conditioners, with the shared classes being disassembling the outer shell,
disassembling the evaporator, disassembling foam, and disassembling the circuit board. The two unknown classes are action
unknown (leaving the workbench) and object unknown (refrigerator). Each class contains between 150 and 450 image
samples. In line with standard experimental settings, the OS*, UNK, and HOS classification metrics were used, and the
experimental parameters were consistent with the Office-31 configuration. The results are presented in Tab. 8.

We compared our method with the classical baseline, OSBP, and the state-of-the-art OSDA method, ANNA. The results show
that our method achieved the best performance of OS∗, UNK, HOS. Notably, COSDA achieves significant improvements
over the baselines on the C→ A task, with a 20.6% increase in OS∗, a 40.5% increase in UNK, and a 38.9% increase in
HOS, demonstrating the effectiveness of our proposed method.
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Table 7. Dataset details for Image-ADAR.
Dataset #domain name #K #U #images

A 5 2 1,573
B 5 2 1,951Image-ADAR
C 5 2 1,823

Table 8. Comparison results (%) of Image-ADAR. (Best in bold and second best in underline)

A→B A→C B→A B→C C→A C→B AverageMethod OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP (Saito et al., 2018) 56.1 79.8 65.9 74.9 73.5 74.2 73.1 62.5 67.4 52.4 37.6 43.8 44.2 14.2 21.5 29.9 41.5 34.7 55.1 51.5 51.2
ANNA (Li et al., 2023) 63.4 77.3 69.7 74.4 66.1 70.0 82.3 77.0 79.6 54.8 34.9 42.6 48.6 16.0 24.1 24.5 60.3 34.9 58.0 55.3 53.5

Ours 66.9 74.6 70.5 73.8 89.2 80.7 62.3 65.4 63.8 33.3 57.7 42.3 71.2 56.5 63.0 50.1 63.5 56.0 59.6 67.8 62.7

D.6. Qualitative Results

Trade-off Analysis. To investigate how the parameters in Eq. (25) affect the performance of COSDA, we define λs =
{0.1, 0.2, 0.5, 0.8, 1.0} and λexo = {0.1, 0.2, 0.5, 0.8, 1.0}. For each dataset, we select the final sub-task for parameter
sensitivity analysis. As shown in Fig. 6, COSDA fluctuates between 93.8 and 94.8 on the P-I (Image-CLEF) task. On the
Rw-Pr (Office-Home) task, COSDA shows a performance range of 77.8 to 78.8. This indicates that the proposed algorithm
demonstrates strong parameter stability across both large and small datasets.

Feature-level Analysis. To intuitively demonstrate the effectiveness of our method, we compare the features extracted by
the baseline algorithm and our approach with the t-SNE 1. As shown in Fig. 6(a)(b), on the Office-31 dataset, our method
achieves a more compact clustering of class features. On the Office-Home dataset, which has a higher openness, the baseline
is mixed with known class features with many unknown class features, as indicated by gray points overlapping with blue or
red points. In contrast, in Figure (d), our method better identifies the decision boundary between known and unknown classes.
Loss Convergence Analysis. Fig. 11 depicts the loss convergence trends on the test sets of the dslr→ amazon (Office-31)
and Art→ Product (Office-Home) tasks. Overall, the model achieves sufficient fitting within iterations without overfitting.
Specifically, in both tasks, the sharp decline in Lt reflects a significant improvement in target domain classification accuracy
driven by pseudo-labeling. Meanwhile, Ls, representing source domain classification accuracy, exhibits a slight downward
trend in the dslr→ amazon task but remains relatively stable in the Art→ Product task. Finally, Lexo, which represents
feature alignment, shows a gradual downward trend throughout the training process.
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Figure 11. Loss convergence on dslr → amazon (left) and Art → Product (right)

1https://github.com/mxl1990/tsne-pytorch
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