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Abstract

Pretrained latent diffusion models have shown strong potential for lossy image com-
pression, owing to their powerful generative priors. Most existing diffusion-based
methods reconstruct images by iteratively denoising from random noise, guided
by compressed latent representations. While these approaches have achieved high
reconstruction quality, their multi-step sampling process incurs substantial compu-
tational overhead. Moreover, they typically require training separate models for
different compression bit-rates, leading to significant training and storage costs. To
address these challenges, we propose a one-step diffusion codec across multiple
bit-rates. termed OSCAR. Specifically, our method views compressed latents as
noisy variants of the original latents, where the level of distortion depends on the
bit-rate. This perspective allows them to be modeled as intermediate states along
a diffusion trajectory. By establishing a mapping from the compression bit-rate
to a pseudo diffusion timestep, we condition a single generative model to support
reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed
latents retain rich structural information, thereby making one-step denoising fea-
sible. Thus, OSCAR replaces iterative sampling with a single denoising pass,
significantly improving inference efficiency. Extensive experiments demonstrate
that OSCAR achieves superior performance in both quantitative and visual quality
metrics. The code and models are available at https://github.com/jp-guo/OSCAR.

1 Introduction
With the explosive growth of multimedia content, the need for efficient transmission and storage of
high-resolution images has become increasingly critical. Traditional image compression has long
relied on manually crafted codecs [53, 7, 11], which tend to falter at very low bit rates (≤ 0.2 bpp),
where blocking and ringing artifacts severely degrade perceptual quality. Recent research has shifted
towards learning-based transform-coding systems [5, 14, 22] that jointly optimize an end-to-end
rate–distortion (R–D) objective [44]. Although these neural codecs generally outperform the hand-
crafted compression algorithms, the focus on minimizing R–D inevitably sacrifices fine-grained
realism at extreme compression bit-rates [9], producing images that appear synthetic or over-smoothed.
In addition, supporting multiple compression bit-rates generally means training multiple models, each
optimized with a rate–distortion loss weighted by a different Lagrange multiplier (λ). Maintaining
one model per λ dramatically inflates both training time and storage requirements.

Recent breakthroughs in diffusion models [45, 24, 46], most notably large-scale text-to-image latent
diffusion models (LDMs) [42], have revealed powerful generative priors that can be repurposed
for a wide range of downstream vision tasks [6, 10, 20]. Building on this insight, diffusion-based
codecs [47, 32, 34] have been proposed for image compression. These models typically perform
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Figure 1: Qualitative comparison. OSCAR is capable of reconstructing complex textures with high
realism. OSCAR effectively reconstructs complex textures with high realism.

quantization in the latent space to enable compression, achieving lower distortion at a given rate than
conventional CNN- or Transformer-based methods. Some works [12] further integrate pretrained
LDMs with a vector-quantization mechanism [51, 17], allowing the compression rate to be prede-
termined via a fixed hyper-encoder. Their practicality, however, is still hindered by two issues: (i)
the multiple denoising iterations are required at inference time, which impose substantial inference
computational overhead; and (ii) achieving multiple bit-rates still requires training separate diffusion
networks. Since diffusion models typically have a larger model size than conventional learned codecs,
this one-model-per-rate strategy further amplifies both training and storage costs. These constraints
limit real-world deployment, particularly in resource-constrained scenarios.

To address the aforementioned challenges, we propose OSCAR, a one-step diffusion codec across
multiple bit-rates. Unlike previous approaches [58, 34, 12] that start from Gaussian noise, we
introduce the concept of pseudo diffusion timestep, bridging the quantization process and the forward
diffusion. This idea is inspired by a classical signal processing result that quantization noise, especially
at higher bit-rates, can be approximated as additive Gaussian noise [8]. Formally, we posit that
the quantized latents z̃ can be decomposed as z̃ =

√
ᾱtz0 +

√
1− ᾱtϵ, where ϵ is approximately

Gaussian noise and statistically independent of z0, ᾱt is the diffusion noise schedule, and t is the
pseudo diffusion timestep that depends on the bit-rate. Under the assumption that ϵ is orthogonal
to z0 in expectation, the expected cosine similarity between z̃ and z0 satisfies E[sim(z̃, z0)] ≈

√
ᾱt

(Please refer to Appendix for a full derivation). To make this relationship more consistent, we adopt
a representation alignment training between z̃ and z0. We empirically observe that this training
paradigm enables their cosine similarity to converge to a fixed value for each bit-rate. Thus, by
matching measured cosine similarities to the theoretical form, each bit-rate r can be directly mapped
to a pseudo diffusion timestep t. Our experiments provide strong support for this modeling, as the
measured distribution of ϵ closely follows the assumed Gaussian distribution.

We further illustrate this perspective in Fig. 2(a), where the quantized latent features can be interpreted
as the intermediate diffusion states along diffusion trajectories. Remarkably, even under extreme
compression, the cosine similarity between z̃ and z0 stabilizes to a high value once representation
alignment is applied. This suggests that the z̃ retains rich structural information and is amenable to
one-step denoising. Since each bit-rate corresponds to a distinct pseudo timestep, the reconstruction
process can be unified: A single diffusion model can denoise quantized latents at different compression
bit-rates in one pass, conditioned on their respective pseudo diffusion timesteps. As shown in Fig. 2(b),
OSCAR achieves a strong quality–efficiency tradeoff. Furthermore, Fig. 1 shows that OSCAR can
faithfully restore fine textures and perceptually coherent details at low bit-rates.

Our main contributions are summarized as follows:
• We propose a novel and efficient one-step diffusion codec OSCAR, which reconstructs

compressed latents into high-quality images in a single denoising step. Unlike existing
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(a) Illustration of mapping between bit-rates and timesteps (b) BD-Rate comparison on Kodak dataset.

Figure 2: Left: Our method bridges quantization and diffusion by mapping bit-rates to pseudo
diffusion timesteps. Right: BD-rates measured by DISTS [16], with circle radius indicating multiply-
accumulate operations (MACs). OSCAR achieves a favorable quality-efficiency tradeoff.

diffusion codecs that require multiple iterative steps, our approach enables rapid and high-
fidelity decoding. To the best of our knowledge, this is the first work to explore one-step
diffusion for image compression.

• We propose a unified network design that supports compression at multiple bit-rates. By
bridging quantization and forward diffusion, our approach enables a single generative model
to handle diverse bit-rates without the need to train separate models. This unified design
reduces storage requirements and simplifies training.

• Through extensive experiments, we demonstrate that OSCAR exhibits clear advantages over
traditional codecs and learning-based methods in both quantitative metrics and visual quality.
Moreover, it achieves competitive performance compared to multi-step diffusion codecs,
while operating orders of magnitude faster.

2 Related Work

2.1 Neural Image Compression

Deep learning has enabled neural image compression methods to outperform traditional codecs such
as JPEG [53], BPG [7], and VVC [11]. Pioneering work [4] introduced end-to-end autoencoders
for learned compression, followed by efforts [5, 38, 14, 22] to jointly optimize rate and distortion
through improved latent representations. Yet, distortion-based losses (e.g., MSE) often lead to
distribution shifts between reconstructed and natural images [9], motivating research [3, 23, 1] to
enhance perceptual quality. HiFiC [37] explores the integration of GANs [19] with compression. MS-
ILLM [39] improves reconstruction quality through improved discriminator design. Other methods
leverage textual semantics [30], causal modeling [21], or decoding-time guidance [1] to further boost
perceptual fidelity. However, the aforementioned methods typically require training separate models
for each bit-rate, which results in substantial overhead.

To address the inefficiency of training separate models for each bit-rate, recent research has explored
adaptive compression strategies that enable flexible bit-rate control. In particular, progressive
compression [50, 36, 59] has attracted significant interest for its ability to produce scalable bitstreams.
DPICT [31] encodes latent features into trit-plane bitstreams, allowing fine-grained scalability.
CTC [26] extends this idea by introducing context-based trit-plane coding. Meanwhile, variable-rate
approaches [13, 54] have demonstrated effectiveness by dynamically adjusting scalar parameters or
employing conditional convolutions to accommodate diverse quality levels. Despite their flexibility,
these methods tend to suffer from notable quality degradation at very low bit-rates.

2.2 Diffusion Models
Diffusion models are powerful generative frameworks that transform random noise into coherent
data through a multi-step denoising process [24]. Denoising Diffusion Implicit Models (DDIM) [46]
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Figure 3: Overview of OSCAR. Given an input image, the VAE encoder first maps it to the
latent space. The latent is then processed by a bit-rate-specific hyper-encoder and quantized via
the corresponding codebook. During decompression, the bit-rate is mapped to a pseudo diffusion
timestep, and the quantized features are denoised by a U-Net conditioned on this timestep to recover
the latent. Finally, the VAE decoder reconstructs the image from the restored latent.

accelerate this process without compromising quality, influencing many subsequent advances. Latent
Diffusion Models (LDMs) further improve efficiency by operating in a compressed latent space.
Stable Diffusion (SD) [42] advances the LDM architecture into a scalable text-to-image system,
enabling flexible multimodal conditioning while maintaining strong image fidelity. In our work, we
build on SD to benefit from its strong image generation capabilities.

Beyond image synthesis, diffusion models have also been explored in image compression [57, 40].
Early work [24] explored diffusion-based compression through reverse channel coding, with an
emphasis on rate-distortion trade-offs. Follow-up studies [47] extended this line by applying the
technique to lossy transmission of Gaussian samples. Recent approaches further leverage large-scale
pretrained diffusion models to enhance performance [52]. CDC [58] replaces the VAE decoder
with a conditional diffusion model, reconstructing images via reverse diffusion conditioned on a
learned content latent. PerCo [12] adopts a VQ-VAE-style codebook for discrete representation and
incorporates global textual descriptions to guide the iterative decoding process. DiffEIC [34] uses a
lightweight control module to guide a frozen diffusion model with compressed content. While these
models achieve strong results, their multi-step denoising process remains computationally expensive.
Improving sampling efficiency is therefore essential for practical diffusion-based image compression.

3 Method
3.1 Preliminaries: One-Step Latent Diffusion Model
Latent Diffusion Models (LDMs) [42] operate in a lower-dimensional latent space rather than pixel
space, enabling more efficient training and generation. The forward diffusion process perturbs a clean
latent variable z by injecting Gaussian noise. At timestep t, the corrupted latent is given by:

zt =
√
ᾱtz+

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (1)

where the noise schedule is encoded as ᾱt =
∏t
i=1(1 − βi), and βi is the variance. The reverse

process aims to progressively recover the original latent through a learned denoising network [24, 46],
typically implemented as a U-Net [43] structure in LDMs. Standard diffusion models perform
multi-step denoising via a Markov chain, where each reverse step is modeled as:

pθ(zt−1|zt) = N (zt−1 | µθ(zt, t), βtI), (2)
with µθ derived from a neural noise estimator ϵθ(zt, t). In the one-step variant, a single denoising
pass directly estimates the clean latent ẑ0 from a noisy input zt:

ẑ0 =
(
zt −

√
1− ᾱt ϵθ(zt, t)

)
/
√
ᾱt. (3)

This formulation enables efficient reconstruction by collapsing the multi-step diffusion process into a
single inference step. By viewing quantized latent features as intermediate diffusion states, our model
leverages this formulation to efficiently recover clean latent representations.

3.2 OSCAR Overview
An overview of our OSCAR is shown in Fig. 3, and the corresponding pseudocode is provided in
the Appendix. The training of OSCAR consists of two stages. In the first stage, we train multiple
bit-rate-specific hyper-encoders to align the quantized latent representations z̃ with the original latents
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z0. We empirically find that the cosine similarity between z̃ and z0 stabilizes after this stage, allowing

us to construct a mapping function f̂
ϕ

R→t(·) that bridges bit-rates and pseudo diffusion timesteps,
where R is the predefined bit-rate set. In the second stage, we jointly fine-tune the SD U-Net and all
hyper-encoders to improve reconstruction fidelity. Since our compression and decompression are
entirely performed in the latent space, we freeze the parameters of the SD VAE during training.

At inference time, the OSCAR pipeline can be divided into two phases: compression and decom-
pression. During compression, given an input image I and the desired bit-rate r ∈ R, we first obtain
its latent representation z0 via the frozen VAE encoder Eθ. The latent is then quantized using a
bit-rate-specific hyper-encoder Qϕ to produce the quantized latent representation z̃:

z0 = Eθ(I), z̃ = Qϕ(z0; r). (4)
During decompression, we interpret z̃ as the intermediate diffusion state. A pseudo diffusion timestep
is assigned for each bit-rate, and the denoising network DN θ (i.e., the SD U-Net) restores fine-grained
latent details to produce ẑ0. The reconstructed latent is subsequently decoded by the VAE decoder
to obtain the final image. We denote the full reconstruction pipeline—including the hyper-encoder,
denoising network, and decoder—as a generator Gϕ,θ. The reconstructed latent features and image
can thus be expressed as:

ẑ0 = DN θ(z̃; f̂
ϕ

R→t(r)), Î = Gϕ,θ(z0). (5)

3.3 Stage 1: Learning Quantization Hyper-Encoders
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Figure 4: Distribution and QQ-plot of residual
noise ϵ in Eq. (11) before and after representation
alignment. Top: red line is the standard Gaussian
distribution; blue histogram is the measured distri-
bution. Bottom: red line is the theoretical quantile
line; blue dots are the measured values.

Bit-rate-specific hyper-encoders. While latent
features benefit from low spatial resolution and
are well-suited for compression, they still re-
quire significant storage, as they encapsulate
high-dimensional semantic information [42, 41].
To address this, we apply hyper-encoders to
quantize the latent representations. Given an
input image, OSCAR first uses the Stable Dif-
fusion (SD) VAE encoder to extract the latent
representation z0. This step reduces spatial res-
olution (e.g., a 1024×1024 image yields a latent
of shape 4×128×128). To further compress
z0 ∈ R4×h×w, we employ a lightweight hyper-
encoder that downsamples and quantizes it into
zq ∈ RM×h′×w′

, where M is the dimension
of the quantization space. Specifically for the
architecture, the front-end of the hyper-encoder
consists of several residual blocks, followed by a
vector quantization (VQ) codebook. With down-
sampling ratio s and codebook size V , the resulting bit-rate is bpp = log2 V/64s

2. For decoding, the
back-end module of the hyper-encoder upsamples zq and projects it back to the original latent space,
yielding the quantized latent feature z̃ ∈ R4×h×w. The back-end module employs attention layers
and additional residual blocks to enhance reconstruction quality. We provide the detailed architecture,
along with the training and inference algorithms, in the Appendix.

Quantized latent representation alignment. The goal of the first training stage is to align the quan-
tized latent features with the original latent representations. Since downsampling and quantization in
the hyper-encoder inevitably discard fine-grained details, we instead focus on preserving structural
information by aligning the direction of latent vectors. To this end, we train hyper-encoders using
cosine similarity as the quantized latent feature alignment loss:

Lrsim(ϕ) := −Ez0

[
1

N

N∑
n=1

sim
(
z
(n)
0 ,Qϕ(z

(n)
0 ; r)

)]
, (6)

where N is the number of vectors in z0 and r is the desired compression bit-rate. As in VQ-VAE [51],
since vector-quantization (VQ) operation is non-differentiable, the VQ loss is defined as:

LVQ(ϕ) := Ez0

[
∥ sg(z0)− zq∥22 + ∥z0 − zq ∥22

]
, (7)

where sg is the stop-gradient operation, and zq is the mapping of z0 to its nearest codebook entry.
Following the method in [17], we adopt an exponential moving average (EMA) update for the
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codebook, which enhances training stability and eliminates the need for the first term in Eq. (11).
Thus, the overall representation alignment objective is:

Lrrepa(ϕ) := Lrsim(ϕ) + LVQ(ϕ). (8)
We argue that representation alignment is critical for modeling compressed latents as intermediate
diffusion states (We will elaborate on this in Section 3.4). To support this, we compare the measured
additive noise before and after training. As shown in Fig. 4, prior to training, the residual noise
exhibits no clear structure and resembles a uniform distribution within the range of −2.5 to 2.5.
The corresponding quantile-quantile plots (QQ-plots) [56] deviate substantially from the theoretical
Gaussian line. This indicates that the latents prior to alignment contain only unstructured noise. In
contrast, after training, the residual noise closely follows a Gaussian distribution, and the QQ-plots
align well with the theoretical line, indicating that the residuals become statistically well-behaved.

3.4 Stage 2: Unified Training for One-Step Reconstruction

Bridging quantization and forward diffusion. Once the hyper-encoders have stabilized, we
empirically observe that the cosine similarity between z̃ and z0 remains stable throughout the
remainder of training (Please refer to Appendix). This allows us to establish an empirical mapping
function between compression bit-rate r and cosine similarity.

F̂
ϕ

sim(r) := Ez0

[
1

N

N∑
n=1

sim
(
z
(n)
0 ,Qϕ

(
z
(n)
0 ; r

))]
(9)

≈ 1

|D|N
∑
z0∼D

∑
n

sim
(
z
(n)
0 ,Qϕ

(
z
(n)
0 ; r

))
, (10)

where D is the training set. We hypothesize that the quantized latent z̃ corresponds to a diffusion state
along a trajectory, where each bit-rate can be associated with a specific diffusion timestep. Formally,
we posit that z̃ can be decomposed as:

z̃ =
√
ᾱtz0 +

√
1− ᾱt ϵ, (11)

where ᾱt ∈ [0, 1] is the pseudo diffusion coefficient determined solely by the compression bit-rate,
and ϵ̂ ∼ N (0, I) is assumed to be orthogonal to z0. Under this assumption, the expected cosine
similarity between z̃ and z0 is:

Gsim(t) := Eϵ̂∼N (0,I)

[
sim

(√
ᾱtz0 +

√
1− ᾱt ϵ̂, z0

)]
≈

√
ᾱt. (12)

By matching the empirically measured cosine similarities to this theoretical form, we can infer the
corresponding pseudo diffusion timestep t for each bit-rate r:

f̂
ϕ

R→t(r) := argmint∈{1,··· ,T} |Gsim(t)− F̂
ϕ

sim(r)|, (13)
where T is the maximum diffusion step, R is the predefined bit-rate set. Figure 4 provides
strong empirical support for our modeling. With an appropriate pseudo diffusion timestep t,
ϵ̂ = (z̃−

√
ᾱtz0) /

√
1− ᾱt closely approximates the Gaussian distribution.

Unified fine-tuning across multiple bit-rates. Remarkably, even under highly compressed condi-
tions, the cosine similarity between z̃ and z0 consistently stabilizes at a high level after the first-stage
training (Please refer to Appendix). This indicates that the quantized latents still preserve rich
structural information, making single-step reconstruction feasible. Leveraging the mapping func-

tion f̂
ϕ

R→t(·), we assign each bit-rate a corresponding pseudo diffusion timestep, enabling a shared
diffusion backbone to support reconstruction across all bit-rates.

Specifically, given the predefined bit-rate set R, we fine-tune all the corresponding hyper-encoders
and apply LoRA [25] to update the diffusion model. The overall loss combines a representation
alignment loss Lrrepa, a perceptual loss Lper, and an adversarial loss LG :

L(ϕ, θ) := Er∼R
[
Lrrepa(ϕ) + λ1Lper(ϕ, θ) + λ2LG(ϕ, θ)

]
. (14)

The alignment loss Lrepa preserves structural consistency between the quantized and original latents.
The perceptual loss Lper includes MSE and DISTS [16] terms. Following the practice of [15], we
additionally use the Sobel operator to extract the edge of the image and measure the corresponding
edge-aware DISTS loss:

Lper(ϕ, θ) := EI∼D

[
L2(I, Î) + LDISTS(I, Î) + LEA-DISTS(S(I),S(Î))

]
, (15)
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Figure 5: Evaluation of OSCAR and other compression codecs on Kodak, DIV2K-Val, and CLIC2020.

where Î = Gϕ,θ(z0), S(·) is the Sobel operator. Finally, we introduce a discriminator Dψ and adopt a
GAN loss [3] in latent space to encourage realism of the reconstructed image:

LG(ϕ, θ) := −E [logDψ(ẑ0)] , LD(ψ) := −E [log(1−Dψ(ẑ0))]− E [logDψ(ẑ0)] , (16)

where ẑ0 = DN θ(Qϕ(z0; r), f̂
ϕ

R→t(r)) is the reconstructed latent representation.

4 Experiments

4.1 Experimental Settings

Datasets and evaluation metrics. We curate the training data from DF2K, which combines 800
images from DIV2K [2], 2,650 from Flickr2K [48], and an additional subset from LSDIR [33],
resulting in 88,441 high-quality images in total. For evaluation, we benchmark OSCAR on three
standard datasets: Kodak [18] (24 natural images, 768×512), DIV2K-val [2] (100 images), and
CLIC2020 [49] (428 images), where all DIV2K-val and CLIC2020 images are center-cropped to
1024×1024. We adopt both full- and no-reference metrics, including LPIPS [60], DISTS [16],
MUSIQ [27], and CLIPIQA [55], to comprehensively assess perceptual and subjective quality.

Implementation details. Our approach builds upon Stable Diffusion 2.1 [42], which comprises
approximately 965.9M parameters. During the first training phase (Section 3.3), we optimize all
hyper-encoders in parallel using the Adam optimizer [28], with a fixed learning rate of 2×10−5 and a
batch size of 64. Training is conducted for 10,000 iterations on a single NVIDIA RTX A6000 GPU.
The training converges stably, producing generalized representations across compression levels.

In the second stage, we train our model with the AdamW optimizer [35], setting the learning rate
to 5×10−5, weight decay to 1×10−5, and batch size to 64 for both OSCAR and the discriminator.
We apply LoRA [25] with a rank of 16 for efficient fine-tuning. The discriminator follows the same
training protocol as OSCAR. The perceptual loss weight λ1 is set to 1, and the adversarial loss weight
λ2 is 5×10−3. This stage is trained for 150,000 iterations using eight NVIDIA RTX A6000 GPUs.
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Figure 6: Visual comparison across different bit-rates. HQ denotes the original high-quality patch. The
number in parentheses indicates the bpp used for compression. OSCAR yields clean reconstructions
while preserving intricate structural and textural details.

4.2 Main Results

Compared methods. We benchmark OSCAR against four representative categories of image
codecs: 1) Traditional methods: BPG [7] and VVC [11], which serve as hand-crafted baselines. 2)
Learning-based single-rate codecs: HiFiC [37] uses conditional GANs to balance rate, distortion,
and perceptual quality, while MS-ILLM [39] enhances local realism via spatially-aware adversarial
training. 3) Learning-based multi-rate codecs: DPICT [31] and CTC [26] both adopt tri-plane
coding for flexible rate control. 4) Diffusion-based codecs: CDC [58] and DiffEIC [34] are optimized
for the rate-distortion objective, while PerCo [12] adopts vector quantization. Both DiffEIC and
PerCo build upon the same pretrained Stable Diffusion 2.1 model as ours. We retrain PerCo using the
open source implementation PerCo (SD) [29]. Each requires a separate model per bit-rate. For HiFiC
and CDC, we additionally retrain them on our dataset at lower bit-rates.

Quantitative results. The quantitative comparisons on the Kodak, DIV2K-Val, and CLIC2020
datasets are summarized in Fig. 5. OSCAR consistently outperforms all listed baselines across a
range of evaluation metrics and compression rates. Among multi-step diffusion methods, we include
PerCo, which also employs a codebook quantization strategy similar to ours. Further comparisons
with other multi-step baselines are provided in the appendix. OSCAR’s strong results on perceptual
metrics such as LPIPS and DISTS highlight its ability to preserve fine details and achieve high
perceptual fidelity, while its performance on no-reference metrics like CLIPIQA further confirms the
visual quality of the reconstructions.

Discussion of the trend of RD-curves. The RD-curves of OSCAR are not strictly convex, as the
bitrate is jointly determined by both the downsampling ratio of the hyper-encoder and the size of
the codebook. When the bitrate changes, the effects introduced by these two factors may not vary
consistently. Nevertheless, our method maintains smooth transitions between adjacent bitrates without
noticeable performance drops, while still achieving strong results at low bitrates.
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(a) Qualitative comparison under different ablation settings at 0.0937 bpp.
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(b) Quantitative results on the Kodak dataset under different ablation settings.

Figure 7: Ablation study on key components. RePA denotes representation alignment, and w/o
t-mapping refers to using random mapping between bit-rates and time-steps.
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Figure 8: Ablation study on RePA and generalization to unseen bitrates.

Qualitative results. As shown in Fig. 6, traditional, learning-based, and diffusion-based codecs
generally preserve the coarse structure of the image but suffer from noticeable quality degradation,
such as blurring, texture loss, color shifts, and visible artifacts. For instance, wall textures often
appear overly smooth, while fine structures such as window frames, door edges, and decorative
patterns are frequently distorted or lost. In contrast, OSCAR preserves such details with high fidelity,
maintaining both material realism and structural consistency with the original image. Overall, it
achieves a highly favorable rate-distortion trade-off, ensuring that compressed outputs retain both
excellent perceptual quality and faithful structural integrity. We provide more results in the appendix.

4.3 Ablation Studies

Mapping bit-rates to pseudo diffusion timesteps. In our method, each compression bit-rate is
associated with a pseudo diffusion timestep through a learned mapping function. To evaluate its
effectiveness, we compare this design to a baseline that randomly assigns timesteps. As shown
in Fig. 7a, removing the calibrated mapping leads to noticeable visual degradation—reconstructed
images fail to preserve the original shape and structure. This degradation is further reflected in Fig. 7b,
which shows consistent performance drops across all evaluation metrics and bit-rates.

Representation alignment. To validate the effectiveness of representation alignment, we compare
the residual term in Eq. (11) with and without alignment. As shown in Fig. 8a, the aligned model
produces residuals that closely match the standard Gaussian, whereas the unaligned one shows large
deviations. Cosine similarity between quantized and original latents is also notably higher with
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Figure 9: PSNR and FID results on Kodak, DIV2K-val, and CLIC2020 datasets. The yellow dashed
line indicates reconstruction by VAE encoding and decoding without compression.
alignment training. Figure 7b further demonstrates the effectiveness of alignment through both visual
and quantitative comparisons, showing that removing it leads to substantial performance degradation.

OSCAR training loss functions. OSCAR incorporates multiple loss functions during training to
enhance performance. To assess the impact of key components, we perform ablation studies on
the edge-aware DISTS loss and GAN loss. As shown in Fig. 7a, removing either loss leads to a
noticeable reduction in visual detail. Figure 7b further shows performance degradation, particularly
on non-reference metrics, indicating their importance for perceptual quality.

Generalization to unseen bitrates. For each predefined bitrate, OSCAR employs an individual
hyper-encoder for compression, resulting in a set of fixed-rate models. Nevertheless, we demonstrate
that OSCAR exhibits strong generalization capability to unseen bitrates. Specifically, for a new
bitrate, we continue training for 15k iterations under the same settings as before, except that in each
iteration, the bitrate is sampled from the new one with a probability of 0.5 and from the existing set
with a probability of 0.5. As shown in Fig. 8b, the new bitrate can be effectively learned with only
minor performance degradation on the previously trained bitrates.

PSNR and FID results. We present the PSNR and FID performance of state-of-the-art codecs in
Fig. 9. In addition to the compared baselines, we further include IPIC [57] and DDCM [40], whose
results on PSNR and FID are highly competitive. For FID evaluation, we report results only on the
CLIC2020 dataset, as the other two datasets contain too few images for statistically stable estimation.

Diffusion-based codecs generally underperform traditional methods in terms of PSNR. This is mainly
due to the inherent limitation of VAEs, which struggle to achieve pixel-wise accurate reconstruction.
As indicated by the yellow dashed line in the figure, the reconstruction from a VAE (without
compression) can even yield lower PSNR than traditional codecs at higher bitrates. Despite these
challenges, OSCAR demonstrates competitive performance among multi-step diffusion-based codecs.

5 Conclusion

We propose OSCAR, a one-step diffusion codec that supports compression across multiple bit-rates
within a unified network. By modeling quantized latents as intermediate diffusion states and mapping
bit-rates to pseudo diffusion timesteps, OSCAR achieves efficient single-pass reconstruction through
a shared generative backbone. This work establishes a novel pathway for efficient, practical, and
high-fidelity diffusion-based image compression in real-world applications. Extensive experiments
demonstrate the superiority of OSCAR over recent leading methods.
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Justification: The abstract and introduction clearly state the core contributions and match
the technical scope and experimental findings of the paper.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: The main experimental settings are described in detail, and additional imple-
mentation specifics (e.g., training schedules or architectural diagrams) are included in the
appendix. We will further ensure full reproducibility in the final version and code release.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes. We will provide open access to both the code and the data, along with
detailed instructions in the supplemental material to enable faithful reproduction of the main
experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all relevant training and test details, including dataset
splits, hyperparameters, optimizer settings, and how these were selected. This information
is provided either in the main text or in the appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars or standard deviations where appropriate, and
includes sufficient statistical information to support the robustness of the experimental
claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the compute resources used for
all experiments, including GPU type, memory, and training/inference time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms with the NeurIPS Code of Ethics. It does not
involve human subjects, personally identifiable information, or any foreseeable negative
societal impacts.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive and negative societal impacts of
the proposed work.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of models or datasets with high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets used in the paper are properly credited, and their licenses
and terms of use have been explicitly acknowledged and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All newly introduced assets, including models and code, are well documented,
and documentation will be provided alongside the released materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve human participants, and therefore no ethical risk or
IRB approval is applicable.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methodology or experimental pipeline.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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