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ABSTRACT

The weak-to-strong generalization phenomenon is the driver for important machine
learning applications including highly data-efficient learning and, most recently,
performing superalignment. While decades of research have resulted in numerous
algorithms that produce strong empirical performance, understanding what aspects
of data enable weak-to-strong generalization has been understudied. We propose a
simple data-centric mechanism that characterizes weak-to-strong generalization:
the overlap density. Intuitively, generalization tracks the number of points that con-
tain overlaps, i.e., both easy patterns (learnable by a weak model) and challenging
patterns (only learnable by a stronger model), as with such points, weak predic-
tions can be used to learn challenging patterns by stronger models. We provide a
practical overlap detection algorithm to find such points in datasets and leverage
them to learn, among multiple sources of data, which to query when seeking to
maximize overlap density and thereby enhance weak-to-strong generalization. We
present a theoretical result showing that the generalization benefit is a function of
the overlap density and a regret bound for our data selection algorithm. Empirically,
we validate the mechanism and the overlap detection algorithm on a wide array of
settings.

1 INTRODUCTION

A recurring theme in machine learning is the idea of a less-capable entity (e.g., a weak model or an
individual with limited expertise) supervising a stronger, more capable one (a more powerful or higher-
capacity system). The goal is to enable the stronger entity to generalize beyond the capabilities of its
weaker counterpart—despite relying on its supervision. This idea undergirds classical approaches
(e.g., self-training, co-training) for data-efficient learning that date back fifty years. Most recently,
it drives embryonic attempts to perform superalignment—the process of ensuring systems with
capabilities far beyond those of humans align with human values (Burns et al., 2023).

The typical flavor of works studying weak-to-strong generalization is to introduce techniques that,
given a fixed dataset, can obtain the best performance (i.e., provide a strong model that best generalizes
to an unseen test set). A vast literature has studied thousands of techniques, including entire areas,
such as semi-supervised learning (Zhu & Goldberg, 2022; Ouali et al., 2020), co-training (Blum
& Mitchell, 1998; Ling et al., 2009), pseudolabeling (Lee, 2013; Arazo et al., 2020), self-training
(Scudder, 1965; Amini et al., 2023) student-teacher methods (Matiisen et al., 2020), and more. Much
less attention, however, has been focused on what aspects of the data enable such techniques to
succeed—and how to acquire additional data that further promotes weak-to-strong generalization.

This work focuses on this missing element. We begin by proposing a simple mechanism that captures
the potential for weak-to-strong generalization. This measure, the overlap density, considers the
potential presence of two kinds of patterns (i.e., sets of features or mechanisms for prediction)
within each datapoint: an easy pattern—usable by weak and strong models—and a hard pattern, only
accessible to the strong model. Intuitively, weak models can label points that have both patterns—the
overlapping points—by taking advantage of the weak pattern (but cannot accurately label using the
hard patterns). However, the strong model, using weak predictions obtained on overlapping points,
can learn the harder patterns, and therefore generalize to points only containing these hard patterns.
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Equipped with this intuition, we characterize the notion of overlap and provide theoretical results
building on a recent theoretical framework for generalization (Lang et al., 2024). In practice, however,
overlap points are latent, and it can be difficult to distinguish between points with just an easy pattern
and those with overlaps. To address this challenge, we introduce an approach for identifying points
with overlaps and build on it to obtain an algorithm that can, when presented with multiple sources of
data, estimate which one contains the largest overlap density. This suggests a future course of action
for practitioners focused on maximizing weak-to-strong generalization: rather than focusing on
algorithms, invest in the data—and specifically into obtaining data from sources that are likely to
produce the most overlaps.

Empirically, we first validate the presence of the mechanism in a variety of real-world settings. We
use the tools we proposed to identify points with overlaps. This enables us to control how much data
with overlaps is included. We do so in two important application areas,

• Weak-to-strong generalization via fine-tuning. Here, two pretrained models are used as the weak
and strong models. These have varying capacities, as in Burns et al. (2023),

• Weak supervision. Weak supervision (Ratner et al., 2016; 2018; Fu et al., 2020) is a framework for
efficient data development. Multiple weak sources are combined via a label model, which serves as
the weak model.

In both settings, we observe that scenarios with weak-to-strong generalization indeed correspond to
overlap density. Next, we validate our proposed data source selection algorithm, showing enhanced
data efficiency of pseudolabeled data across various datasets. We also include synthetic experiments
confirming our findings and the effectiveness of our algorithm in controlled settings.

2 RELATED WORK

We give a brief description of related areas. Our work is complementary to many of these, as our
focus is on understanding what forms of data promote weak-to-strong generalization—and how
to obtain more of it—rather than new frameworks or training approaches. Extend related work is
provided in Appendix B.

Self-Training and Data-Efficient Learning. Strategies that attempt to train high-quality models with
less labeled data date back to the infancy of machine learning (Scudder, 1965). This idea has spawned
entire fields, including semi-supervised learning (Zhu & Goldberg, 2022), weak supervision (Ratner
et al., 2016; Shin et al., 2022), self-training (Amini et al., 2023; Wei et al., 2022), and more. The key
distinction between such works and ours is that we are not concerned with improving performance
on benchmark datasets via algorithmic improvements. Instead, we seek to understand what aspects of
data result in stronger performance—and how to obtain more of the data that drives it.

Weak-to-Strong Generalization and Superalignment. A particularly interesting application of
weak-to-strong generalization is that of superalignment. Superalignment, in the narrow sense, is the
notion of aligning a superintelligent system to human values. More broadly, it can be thought of
as aligning any large-scale system at a level of complexity beyond any individual person. As such
systems may be far off into the future, researchers are currently studying proxies, such as smaller large
language models supervising larger and more capable ones (Burns et al., 2023). Recently, several
studies (Lang et al., 2024; Charikar et al., 2024; Somerstep et al., 2024) have proposed theoretical
frameworks to understand weak-to-strong generalization. However, these works have yet to explore
the specific data characteristics that facilitate weak-to-strong generalization. In contrast, our work
provides a concrete characterization of the data that induces weak-to-strong generalization: overlap
density. Building on the theoretical framework from Lang et al. (2024), we derive new theoretical
results that illuminate how overlap density drives weak-to-strong generalization.

3 A SIMPLE DATA MECHANISM FOR WEAK-TO-STRONG GENERALIZATION

Our goal is two-fold. First, we seek to understand what properties of our data provide the possibility
of weak-to-strong generalization. We introduce a simple mechanism (easy-hard overlap), formalize
it, and provide a theoretical result showing that it indeed characterizes generalization.
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Figure 1: Left: overlapping easy and hard patterns in our dataset are the key to weak-to-strong
generalization. Learning from overlapping points, where easy features and hard features coexist,
enables a weak-to-strong model fw2s that can generalize, while fweak is limited to reliably predicting
points with easy patterns. Right: adding more such overlapping points has little influence on the
performance of the weak model, but dramatically improves the performance of the weak-to-strong
model. Adding such points—even a small percentage of the dataset—can push against the limits of
the strong model.

Second, equipped with this mechanism, we wish to understand how to maximize weak-to-strong
generalization. Specifically, under a data budget and with access to multiple sources of data, how can
we prioritize sources that lead to greatest generalization? To address this challenge, we introduce a
simple algorithm that estimates which sources have the greatest overlap density.

3.1 THE OVERLAP DENSITY MECHANISM

We start with an extremely simple theoretical model; afterwards, we will comment on extensions that
are likely to be encountered in real-life data. Nevertheless, perhaps surprisingly, the basic mechanism
often tracks weak-to-strong generalization in real settings.

Setup. We have access to a dataset Dtrain = {(x1, y1), . . . , (xn, yn)}. Here, (x, y) ∼ D,
x ∈ X , y ∈ Y , and D is some distribution. In addition, we have access to a dataset Dw2s =
{xn+1, . . . , xn+m} where we do not have access to any ground-truth labels. We use two models, a
weak model fweak and a strong model fw2s. fweak is trained (or fine-tuned) on Dtrain and used to output
predictions ŷj = fweak(xj) for points xj ∈ Dw2s. fw2s is then trained or fine-tuned on Dw2s with
the predictions provided by fweak. Our goal is to understand in what settings the strong model fw2s
generalizes better than the weak model fweak—despite only being trained on supervision obtained
from fweak.

Assumptions and Notation. For simplicity, we will assume that x = [xeasy, xhard], where xeasy ∈
Rdeasy and xhard ∈ Rdhard (in practice, this is not necessary). Here, xeasy are features producing easy
patterns, learnable by the weak model, while xhard are hard patterns, which cannot be used by the
weak model to obtain accurate predictions. In practice, feature vectors are not a priori decomposed
into such patterns. To address this, we introduce an algorithm to estimate this identification later.

We note that any dataset D can be partitioned into

• Doverlap: points containing both patterns, i.e., overlapping points,
• Dhard only: points that only contain the hard pattern. For convenience, in our simplified model, we

take xeasy = 0 for such points.
• Deasy only: points that only contain the easy pattern. We take xhard = 0 for such points.
• Dneither: points that contain neither pattern.

These four possibilities (we ignore Dneither for simplicity) are illustrated in Fig. 1 (left). This simple
categorization explains the weak-to-strong generalization phenomenon.

After training, fweak has learned the easy pattern, and can therefore make reliable predictions on any
points in Doverlap ∪Deasy only, as these points contain the easy patterns. However, it will not be able to
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Algorithm 1 UCB-Based Data Selection for Maximizing Overlap
1: Input: Data sources D1,D2, . . . ,DK , number of rounds T ≥ K, sample size per round n, weak

model fweak
2: Output: Sampled data set D̄ for weak-to-strong model training, Detected overlap samples Ō
3: Try each data source once, run Overlap Detection Algorithm (Algorithm 2), Initialize D̄, Ō with

the sampled data and detected overlap data.
4: for t = 1 to T do
5: Compute the upper confidence bound (UCB) of overlap density in each source s,

UCBt(s) = |Ō(s)|/|D̄(s)|+
√
2 log T/n̄t(s), where n̄t(s) is # of trials for source s

6: Select the data source that maximizes UCB of overlap density.
7: Run Algorithm 2, update D̄, Ō with the sampled data and detected overlap data.
8: end for
9: Return D̄, Ō

make accurate predictions in Dhard only ∪Dneither. We denote the error rates as ε1 = P(fweak(x) ̸= y |
(x, y) ∈ Doverlap ∪Deasy only) and ε2 = P(fweak(x) ̸= y | (x, y) ∈ Dhard only ∪Dneither). Thus, when
labeling Dw2s, the predictions of fweak will be either reliable (in the first case), or highly unreliable
(in the second case). Then, the labels for dataset D2 (labeled by fweak) are noisy with rates ε1, ε2.

Main assumptions
(A1). For any x ∈ X , the features of x can be decomposed into easy and hard features, i.e.
x = [xeasy, xhard], where xeasy ∈ Rdeasy and xhard ∈ Rdhard .
(A2). The weak model fweak has no access to hard patterns, i.e., for any x = [xeasy, xhard],
fweak(x) = fweak(x̃), where x̃ = [xeasy,0].
(A3). We assume ε1 ≪ ε2, since fweak cannot use hard patterns in Dhard only ∪Dneither.

Generalizing Beyond the Weak Model. Next, model fw2s is trained on dataset Dw2s with its noisy
labels. Since fw2s, by assumption, has the capacity to learn the hard pattern, it can do so in the
presence of noise as well. This is a well-known observation (Natarajan et al., 2013). Crucially,
however, since the noise level ε2 for Dhard only is typically severe, fw2s can only learn hard patterns
from points in Doverlap. As a result, the sample complexity for learning these hard patterns are given
by |Doverlap|—and not the entire dataset size m.

At test time, fw2s has learned the easy patterns, and so will have a similar error rate as fweak, but,
unlike fweak, will have a much smaller error rate on the hard patterns. We illustrate this idea in a
synthetic scenario in Figure 1 (right). Here, we observe three regimes. First, when there are very
few overlaps (left), the weak-to-strong model may struggle to learn the hard pattern, potentially
compromising even its ability to predict easy ones. Afterwards, as the proportion of overlap points
increases, the weak-to-strong model begins to dramatically improve, correctly predicting on easy
points while simultaneously learning the hard patterns. Finally, the weak-to-strong model’s accuracy
approaches that of the strong model trained on true labels (right-most region).

3.2 DATA SELECTION FOR MAXIMUM OVERLAP DENSITY

A direct application of our proposed mechanism is data source selection. Specifically, we consider the
following common scenario. We have access to multiple sources of data, which we call D1, . . . ,DK .
Given a limited budget to obtain unlabeled data points from these sources, which ones should we
prioritize? Clearly, to maximize weak-to-strong generalization, we should target the sources Di with
the largest overlap density. However, we face two challenges: (C1) we do not know a priori which
sources have this property, and, (C2) even with access to data from these sources, overlaps are latent.
That is, it is not clear how to distinguish between points in Doverlap and points in Deasy only—as weak
and strong models are both capable of accurate predictions on such points.

We propose Algorithm 1 to address these two challenges. For C1, we leverage stochastic bandit
algorithms (Lattimore & Szepesvári, 2020), which balance exploration and exploitation. Here, data
sources act as arms, and their average reward correspond to overlap density. Using the UCB (Upper
Confidence Bound) algorithm (Auer, 2002), we explore underutilized data sources while exploiting
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Algorithm 2 Overlap Detection Algorithm
1: Input: Pseudolabeled dataset Dw2s, weak model fweak
2: Output: Overlap dataset, Doverlap
3: Step 1: Separate Hard-only Points Using Confidence Scores
4: Calculate confidence scores {ci}|Dw2s|

i=1 , where ci = argmaxj P(fweak(xi) = j).

5: Identify hard-only points with threshold τhard =ChangePointDetection
(
{ci}|Dw2s|

i=1

)
:

• Dhard only = {xi ∈ Dw2s | ci ≤ τhard} # Low confidence
• Dnon-hard only = Dw2s \Dhard only # High confidence

6: Step 2: Identify Overlapping Points from Dnon-hard only
7: Calculate overlap scores si = max{|xT

i xhard||xhard∈Dhard only} for each xi ∈ Dnon-hard only

8: Identify overlap points with threshold τoverlap =ChangePointDetection
(
{si}

|Dnon-hard only|
i=1

)
:

• Doverlap = {xi ∈ Dnon-hard only|si ≥ τoverlap} # High overlap scores
9: return Doverlap

those with high overlap density. Each data source Ds has an overlap density os, influenced by noise
from the sampling process and overlap detection. Initially, we sample each source once. In subsequent
iterations, we choose the source with the highest UCB. This is computed as the sum of the estimated
overlap density and a confidence radius that promotes exploration (Algorithm A1).

To estimate the overlap densities, we must address C2. We propose an overlap detection algorithm
(Algorithm 2) based on two insights from our data model in Section 3.1, i.e. x = [xeasy, xhard].

1. Weak models are less confident on hard-only points because they lacks access to hard features.
2. Overlap points are more closely aligned with hard-only points than easy-only points are.

We provide theoretical support for these in Section 4.2. Based on these, we use confidence scores
to separate hard-only data points first, and then use the absolute values of inner products as overlap
scores to distinguish overlap points from easy-only points. In Algorithm 2, we first identify hard-only
points by thresholding weak model confidence scores, split the dataset, and detect overlap points
using inner products to distinguish them from easy-only points. We determine thresholds using a
change point detection technique (Sen & Srivastava, 1975). The intuitions underlying our algorithms
are empirically validated in the experiments in Section 5.1, where our overlap detection algorithm
effectively isolates overlap points, leading to improved generalization.

4 THEORETICAL ANALYSIS

We introduce a theoretical result showing that weak-to-strong generalization is governed by the
overlap density. Afterwards, we provide and interpret theoretical guarantees for our overlap detection
and data source selection algorithms.

4.1 WEAK-TO-STRONG GENERALIZATION VIA OVERLAP EXPANSION

We build off of the framework in Lang et al. (2024), where generalization is governed by an
expansion property. Specifically, we show that the weak-to-strong model can correct the weak
model’s pseudolabels on hard data points Dhard only, since the pseudolabels produced by the weak
model are (relatively) accurate on overlapping points and the strong model can learn hard patterns
that address hard data points. We first introduce the relevant definitions and outline our setup.
Definition 1 (Expansion). (Lang et al., 2024) Fix sets A,B ⊂ X and a neighborhood function N .
We say the distribution Px satisfies (c, q)-expansion on (A,B) if for all sets U ⊂ B with P(U |B) > q,
P(N (U)|A) > cP(U |B).
Definition 2 (η-robust). (Lang et al., 2024) For a classifier f and a point x, define r(f, x) =
P(f(x′) ̸= f(x)|x′ ∈ N (x)) as the probability of label disagreement between x and its neighbor
x′. A classifier f is η-robust at x if r(f, x) ≤ η. The set of η-robust points for f is Rη(f) = {x :
r(f, x) ≤ η}.
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Problem Setup. We use the setup described in Section 3.1. Additionally, let Si represent the dataset
whose labels are class i, Sgood

i be the correctly pseudolabeled subset of Si, and Sbad
i the incorrectly

pseudolabeled subset of Si. With a little abuse of notation, we denote the true labeling function
as y. Our goal is to show how overlap density translates into the strong model’s generalization on
points in Dhard only via the expansion property. Our key assumption is that the data distribution and
the weak-to-strong model behavior on Sgood

i ∩Doverlap expands through the neighborhood structure
to Sbad

i ∩Dhard only, where the weak model struggles with hard patterns, relying on robustness. This
assumption captures the intuition that the strong model can learn patterns usable for predicting the
hard points from the overlap points. We state a simplified version of the theorem first; the full version
is in the Appendix D.1.

Theorem 4.1. Suppose P satisfies (c, q) expansion on (Sbad
i ∩Dhard only, S

good
i ∩Doverlap) for some

c > 0. Consider an arbitrary η-robust classifier fw2s such that P(fw2s(x) ̸= fweak(x) at x|Si ∩
Doverlap) ≤ 1− q − ε1. Then, the classifier fw2s, fw2s satisfies the following error bound:

err(fw2s, y|Si∩Dhard only) ≤ err(fw2s, fweak|Si ∩Dhard only) + ε2

− 2cε2(1− err(fw2s, fweak|Sgood
i ∩Doverlap)− P(Rη(fw2s)

c|Sgood
i ∩Doverlap))

The full statement and proof are provided in Appendix D.1, and additional coverage expansion result
is provided in Appendix D.2. We note that the bound is highly dependent on the neighborhood
function N which determines the parameters c and q. To understand the role of q, suppose that for
any fixed q ∈ (0, 1), c is optimal (i.e. any smaller value of c fails the expansion criterion). Then,
increasing q will cause c to increase as well, but we have a constraint q ≤ 1− P(fw2s(x) ̸= fweak(x)
at x|Si ∩Doverlap)− ε1 from η-robust condition, which subsequently constrains c as well.

This bound demonstrates that weak-to-strong generalization is achievable as long as the over-
lap density expands to a sufficient extent (i.e., large c), the error rate in estimating the correct
overlap density is low

(
i.e., small err(fw2s, fweak|Sgood

i ∩Doverlap)
)

,and fw2s is adversarially robust(
i.e. small P(Rη(fw2s)

c|Sgood
i ∩Doverlap)

)
. Specifically, when fw2s exactly replicates fweak, we

have err(fw2s, y|Si ∩Dhard only) = ε2. We aim for a tighter bound than this. Pseudolabel correction is
provably achieved when the right-hand side is less than ε2, and the improvement of the bound over
ε2 can be quantified as

ρ = 2cε2

(
1− err(fw2s, fweak|Sgood

i ∩Doverlap)− P(Rη(fw2s)
c|Sgood

i ∩Doverlap)
)

− err(fw2s, fweak|Si ∩Dhard only).

This result largely follows from the framework in Lang et al. (2024); the upshot is that the overlap
density mechanism is consistent with existing frameworks for weak-to-strong generalization. How-
ever, as we shall soon see, it offers a critical advantage: it permits us to operate with a data-centric
perspective that enables users to improve weak-to-strong generalization.

4.2 THEORETICAL GUARANTEES FOR OVERLAP DETECTION AND DATA SELECTION

Equipped with the previous result, we provide a theoretical guarantee of our overlap detection
algorithm under a Gaussian mixture assumption. We derive a regret bound of our UCB-based data
selection algorithm for overlap density maximization.

Overlap Detection. We provide a theoretical guarantee for the overlap score under the assumptions
described in Section 3.1, i.e. x = [xeasy, xhard], where xeasy ∈ Rdeasy and xhard ∈ Rdhard . Let x̃ =
g(x) = [xeasy,0] represent the input vector for the weak model, where hard features from x are zeroed
out. More detailed setup specific to this section is described in Appendix D.3. For x ∈ Dhard only,
x̃ = [0,0], so the weak model prediction probability is fweak(x) = σ(θ⊤x̃) = σ(0) = 0.5, which
corresponds to the minimum confidence score. This ensures the perfect accuracy of detecting hard-
only points using Algorithm 2 with τhard = 0.5. Next, we aim to separate overlap points from
easy-only points. Under the Gaussian mixture assumption in D.3, we have xeasy only ∼ N(µeasy, cI),
and xoverlap ∼ N(µoverlap, cI), where µoverlap = [µ̃easy, µ̃hard]

⊤, µeasy = [µ̃easy, 0]
⊤. To show the

effectiveness of overlap separation from easy-only points in Algorithm 2, we demonstrate that
x⊤

overlapxhard only and x⊤
easy onlyxhard only exhibit a distributionally distinguishable gap.
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Figure 2: Overlap density versus performance in weak-to-strong generalization with LLMs. Red lines
show strong ceiling model accuracies, blue dashed lines represent weak model test accuracies, and
W2S lines represent the accuracies of strong models trained on pseudolabeled data with a controlled
proportion of overlap density. In general, the strong model’s improvement over the weak model
tracks the overlap proportion, suggesting that the overlap density is indeed an important mechanism
for generalization. We can observe three different regimes of weak-to-strong generalization in our
experiments: a low overlap regime, where the overlap density is insufficient for effective weak-
to-strong generalization (here, few points contain overlaps, so choosing to rely on a large overlap
proportion translates to a small train set), a medium overlap regime, where the overlap density
improves generalization but still yields performance close to that of the weak model, and a high-
overlap regime, where the strong model’s performance approaches that of the true strong model due
to sufficient overlap points.

Theorem 4.2. Given the above setup, E[x⊤
overlapxhard only] − E[x⊤

easy onlyxhard only] = ∥µhard∥22. Fur-
thermore, we have

P
(
x⊤

overlapxhard only ≤ x⊤
easy onlyxhard only

)
≤ exp

(
−min

(
3 ∥µhard∥42

16dc2 + 18c ∥µhard∥22
,
∥µhard∥22

8c

))
.

This result shows the average gap ∥µhard∥22 between x⊤
overlapxhard only and x⊤

easy onlyxhard only and the
bound on the probability that the overlap score of an easy-only point exceeds that of an overlap point.
The error bound result implies that the accuracy of the overlap detection algorithm deteriorates as the
noise level c and dimension d increase. The proof is provided in Appendix D.3.

Data Selection. We provide a regret bound for our data selection algorithm (Algorithm 1), which
quantifies the gap in overlap density between selecting the optimal data source in every round and
using our algorithm, which balances exploration and exploitation through the UCB algorithm. Let
o(s) = P(Doverlap|Ds) be the population overlap density of source s, ōt(s) = |Ōt(s)|/|D̄t(s)| be
the empirical overlap density of source s at round t, and o∗ = maxs o(s) be the optimal overlap
density. The following theorem establishes an upper bound on the expected average regret at round t,
E[o∗ − ōt].

Theorem 4.3. E[o∗ − ōt] ≤ O
(√

K log T/t
)

, where K is the number of data sources, T is the
total number of rounds.

For the details, refer to Appendix D.4. This result shows that the gap between the optimal and the
empirical overlap ratio obtained with Algorithm 1 decreases at a rate of O

(√
log T/T

)
in T . This

implies that E[ōT ]→ o∗(T ) as T →∞.
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5 EXPERIMENTS

We first validate the role of the data overlap mechanism in weak-to-strong generalization, examining
two cases: large language models following the setup of Burns et al. (2023) and the weak supervision
setting, where the weak model is a label model, often a probabilistic graphical model. Next, we
evaluate the effectiveness of our UCB-based data selection strategy from Algorithm 1. Afterwards,
we confirm our theoretical claims in a controlled setting, showing that the performance gains
from overlap density primarily benefit hard-only data points, and that our data selection algorithm
maximizes overlap density, improving weak-to-strong generalization. Our code is available at
https://github.com/SprocketLab/datacentric_w2s.

5.1 WEAK-TO-STRONG GENERALIZATION VIA OVERLAP DENSITY MECHANISM

We follow the approach in Burns et al. (2023), where the goal is to use large language models
as proxies for weak agents supervising superintelligent agents. Our hypothesis is that the overlap
density mechanism elicits weak-to-strong generalization in this setting. We anticipate that a higher
overlap density generally enhances the performance of weak-to-strong models. Additionally, we
hypothesize the existence of three regimes of weak-to-strong generalization from datasets can be
observed depending on the amount of overlap data points in the dataset and the noise level of overlap
detection.

• Low overlap regime: Insufficient overlap points or overly noisy detection hinder weak-to-strong
generalization, leading to performance worse than fweak.

• Medium overlap regime: Adequate overlap points and moderate noise levels enable weak-to-
strong generalization, resulting in performance comparable to, or slightly better than, fweak.

• High overlap regime: Sufficient overlap points with minimal noise in overlap detection induce
strong weak-to-strong generalization, with performance approaching fstrong.

Setup and Procedure. We split the original training data into two subsets, Dtrain and Dw2s. The weak
models are trained on Dtrain and then generate weak labels for Dw2s. The weak-to-strong models
are subsequently trained on Dw2s using these weak labels. Using the overlap detection algorithm
(Algorithm 2), we identified subsets D̂overlap and D̂nonoverlap, and sampled ncontrolled data points to
control overlap density between 0% and 100%, creating the dataset Dcontrolled,α, where α denotes the
overlap ratio. The weak-to-strong (W2S) models were then trained on Dcontrolled,α. Crucially, if the
total quantity of overlap points is small (i.e., because the overlap density is small), building a dataset
whose ratio is high translates into fewer overall points for training. Details on the distribution of
detected easy-only, hard-only, and overlap points can be found in Appendix E.

For the language model experiments, we followed the setup described in EleutherAI (2021), which
replicates Burns et al. (2023). We used the Qwen1.5 0.5B model as the weak model and the Llama3
8B model as the strong model. We used linear probing based on the observation in Appendix D.2 of
Burns et al. (2023) that linear probing results often align with those from full fine-tuning. We used
19 datasets from EleutherAI (2021). For the weak supervision setting, we used 9 datasets from the
WRENCH weak supervision benchmark (Zhang et al., 2021). We used Snorkel (Ratner et al., 2018)
as the label model (weak model), and a 4-layer MLP was used as the strong model.

Results. Figure 2 presents the results of this experiment. As expected, we observe that the strong
model performance improves as the overlap proportion increases, providing evidence for the overlap
density mechanism’s role in weak-to-strong generalization. Also, we were able to observe three
regimes of weak-to-strong generalization by our overlap detection method. We showcased each
case in LLM and weak supervision settings, respectively. Full experimental results are provided in
Appendix F.1. Additionally, the ablation study on model architecture in the weak supervision setting
is presented in Appendix F.5, and the transferability study in Appendix F.6.

5.2 DATA SOURCE SELECTION VIA OVERLAP DETECTION

Next, we validate our data selection procedure instantiated in Algorithm 1. We hypothesize that the
UCB-based overlap maximization strategy leads to better weak-to-strong generalization by identifying
the optimal data source given multiple sources with varying overlap densities.
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Figure 3: Data selection results with Algorithm 1 for Amazon Polarity and DREAM datasets. We
report the average of 20 repeated experiments with different seeds. We observe that the data source
selection procedure, based on overlap density estimation, can produce enhancements over random
sampling across data sources.

Setup and Procedure. We used a similar setup and datasets as in the large language model experi-
ments. Overlap density in the training sets was identified using our proposed method (Algorithm 2),
and the weak-to-strong training dataset was split into D1 and D2 with overlap densities of 0.9 and
0.1, respectively. With these two data sources, we ran Algorithm 1 and compared its performance to
random sampling. The number of rounds was set to T = 25.

Results. The results are presented in Figure 3. We observe that the UCB-based overlap maximization
algorithm can lead to better weak-to-strong generalization. We note that we do not always expect to
obtain results such as those in Figure 3. Indeed, if there simply are very few overlap points—or if the
procedure for identifying them is very noisy — we will not observe these types of results—or any
type of weak-to-strong generalization. Full experimental results are provided in Appendix F.2.

5.3 SYNTHETIC EXPERIMENTS

We verify our overlap density mechanism and data selection algorithm in fully controllable settings.

5.3.1 OVERLAP DENSITY MECHANISM

We validate the claim that overlap density enhances the performance of a weak-to-strong model on
hard data points, while the weak model exhibits random accuracy on those same points.

Setup and Procedure. We simulate weak-to-strong generalization using a simple mixture of
Gaussians setup with logistic regression models, as described in Section 3. In this setup, the hard
features are intentionally blocked (set to 0) for the weak models to mimic the common scenario where
weak models lack access to these features. Full details are provided in Appendix E. The weak model
fweak is trained on a dataset Dtrain and generates pseudolabels for Dw2s. The weak-to-strong model
fw2s is then trained on Dw2s using these pseudolabels and evaluated on Dtest. We set neasy = 100 and
nhard = 100, incrementing noverlap by 5 in each iteration. The performance of the weak-to-strong
model is assessed on easy-only, hard-only, and overlap data points in the test set, respectively.

Results. Figure 4 illustrates how accuracy varies with the overlap ratio across easy-only, hard-only,
and overlap data points. As expected, the most substantial performance improvement over the weak
pseudolabeler occurs on the hard-only data points. On the easy-only data, the weak-to-strong model
initially underperforms compared to the weak model due to label noise. However, as the overlap
density increases, the weak-to-strong model’s performance approaches that of the weak model. On
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Figure 4: Accuracy in each data region in synthetic experiments. As expected, the performance gain
mainly comes from hard data points as the overlap density increases.
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Figure 5: Synthetic data selection experiment. Our algorithm demonstrates better data efficiency than
random sampling by consistently identifying the data source with the highest overlap density.

overlap data points, the weak-to-strong model also starts off performing worse due to similar label
noise, but as it learns hard patterns, it eventually outperforms the weak model.

5.3.2 DATA SOURCE SELECTION

We validate the claim that the algorithm effectively identifies data sources with higher overlap density
and progressively maximizes it with each round, leading to improved weak-to-strong generalization.

Setup. We set K = 5 data sources, each characterized by different overlap densities: [0.1, 0.15, 0.2,
0.05, 0.8]. For the nonoverlap distribution, we assumed that the half of the nonoverlap distribution is
easy-only, and the rest half is hard-only. We compare our data source selection algorithm against
random sampling and an oracle setting, where data are always sampled from the data source with the
optmal overlap density. In each round, 100 data points were sampled from the selected data source,
with the total number of rounds set to T = 50.

Results. Figure 5 presents the experimental results. As the rounds progress, our algorithm increas-
ingly identifies the optimal data source, achieving better weak-to-strong generalization compared to
random sampling. Additional experimental results on easy-only and hard-only training are provided
in Appendix F.3, along with a sensitivity analysis for overlap detection noise in Appendix F.4.

6 CONCLUSION

We studied a data-centric mechanism that explains weak-to-strong generalization. This mechanism
is centered on easy-hard overlaps: points where weak models leverage easy patterns for accurate
labeling, while strong models learn hard patterns to generalize to hard-only points. We studied this
idea conceptually, theoretically, and empirically; the latter in multiple popular settings. Finally, we
introduced algorithms for identifying overlapping points and determining, given a limited data budget,
which data sources should be queried to maximize weak-to-strong generalization.

Our study was limited to a simple version of what is likely to be a more complex mechanism in
many realistic settings. We are interested in extending this work in several directions. These include
allowing more complex patterns (multiple levels of overlapping difficulties), further theoretical results,
and studying additional variations for the overlap identification procedure.
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APPENDIX

The appendix contains additional details, proofs, and experimental results. The glossary (Appendix
A) contains a convenient reminder of our terminology. Appendix B provides more related works and
discussion about the relationship between our work and related papers. In Appendix C, we describe
the details of our algorithms and discuss their implementations. Appendix D provides the proofs
of theorems that appeared in Section 4. Finally, we provide additional details and analysis of the
experiments in Appendix E and present further experimental results in Appendix F.

A GLOSSARY

The glossary is given in Table A1.

Symbol Definition
n Total number of samples
X Feature space
Y Label space
y(·) Underlying labeling function
D Data distribution
Deasy only Set of data points that only contain the easy patterns
Dhard only Set of data points that only contain the hard patterns
Doverlap Set of data points containing both easy and hard patterns
Dtrain Labeled training set for weak model
Dw2s Unlabeled or pseudolabeled training set for weak-to-strong models
Dcontrolled,α Sampled dataset from Dw2s with the controlled overlap ratio as α
fweak Weak model
fstrong Strong model fine-tuned with true labels
fw2s Weak-to-strong model (Strong model fine-tuned with pseudolabels generated by

weak model)
ε1 Error rate of weak model in easy-only and overlap, P(fweak(x) ̸= y | (x, y) ∈

Doverlap ∪Deasy only)
ε2 Error rate of weak model in hard-only points, P(fweak(x) ̸= y | (x, y) ∈

Dhard only ∪Dneither)
Si Covered data points of class i
Sgood
i Correctly pseudolabeled data points of class i

Sbad
i Incorrectly pseudolabeled data points of class i

Ti Uncovered data points of class i
o(s) Overlap density for a specific data source s
o∗ Best overlap density of all the data sources
ot(s) Empirical overlap density of data source s at round t
T Number of data selection rounds
Di i-th data source
D̄ Sampled data from data sources
Ō Detected overlap points in D̄
D̄t(s) Sampled data from data source s up to round t
Ōt(s) Detected overlap points sampled from data source s up to round t

Table A1: Glossary

B EXTENDED RELATED WORK

Theory of Weak-To-Strong Generalization. Several theoretical approaches have been proposed to
explain weak-to-strong generalization, reflecting growing interest in this area of research. Somerstep
et al. (2024) frame weak-to-strong generalization as a transfer learning problem, where latent
knowledge from weak models is transferred to strong models. They propose label refinement to
address the limitations of naive fine-tuning on pseudolabels, i.e. naive fine-tuning often leads to the
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strong model replicating the errors of the weak models. Charikar et al. (2024) present a theoretical
framework rooted in convex analysis to explain weak-to-strong generalization. They suggest that
the disagreements between strong models and weak models’ pseudolabels predicts weak-to-strong
generalization performance. This aligns with our theory, where a strong model trained on overlap
density corrects pseudolabels on hard data points. Finally, Lang et al. (2024) introduce a framework
that explains pseudolabel correction and coverage expansion based on the expansion property and
model robustness. We specifically characterize where such expansions occur and provide both
theoretical and empirical validation of how they lead to weak-to-strong generalization.

Evaluating the Difficulty of Data Points. The idea that certain points are more difficult than others
has a long history. There are several ways to define hardness in supervised learning alone. These
include closeness to the decision boundary, as in active learning (Dasgupta et al., 2005; Hanneke,
2014), low-confidence points, as in selective classification (El-Yaniv & Wiener, 2010; Geifman &
El-Yaniv, 2017), points (or sets of points) with high values of the loss function, and heuristic rules
applied to the data (Sun et al., 2024). Agarwal et al. (2022) assess sample difficulty by examining the
variance of gradients during training. Baldock et al. (2021) employ deep neural networks, operating
under the intuition that difficult samples are more likely to be predicted in higher layers when using
linear probing at each layer. Seedat et al. (2024) provide a comprehensive survey and taxonomy of
data hardness characterization, along with a benchmark for comparing different methods. However,
none of these studies address overlapping data points, which contain both easy and hard patterns and
could be crucial for understanding weak-to-strong generalization.

Data Valuation. A large number of works have studied ways to understand the impact of each
point in a training dataset on the performance of the resulting model. These include approaches via
influence functions Koh & Liang (2017), Shapley values Ghorbani & Zou (2019), and other methods
Karr et al. (2006); Yoon et al. (2020). The main difference between these works and ours is that
we are less concerned with any single point and model training in general, but with an overall data
mechanism that is relevant to the weak-to-strong generalization setting.

Data Curation and Selection Selecting subsets of data to achieve better performance with less
data has been extensively studied, particularly in the context of foundation model training. Xie et al.
(2023) introduce Data Selection with Importance Resampling (DSIR), which selects pretraining
data for language models by estimating importance weights in a reduced feature space, aligning the
selected data distribution with a desired target distribution. Similarly, Ankner et al. (2024) use the
perplexity of smaller models to curate pretraining datasets, while Wettig et al. (2024) employ quality
qualifiers to assign scores and steer data curation process. Xia et al. (2024) use influence functions to
curate instruction-tuning datasets. Finally, Li et al. (2024) present DataComp for Language Models
(DCLM), a benchmark designed to evaluate dataset curation strategies within a general data curation
pipeline for pretraining large language models. Our overlap detection process aligns with the broader
theme of data curation but is specifically tailored to the context of weak-to-strong generalization.

In a more general context, Campi & Garatti (2023) introduce a theoretical framework for compression
functions in learning, laying the foundation for data selection methods. Building on this framework,
Paccagnan et al. (2024) propose Pick2Learn (P2L) meta-algorithmic framework, which iteratively
selects data subsets until a specified appropriateness criterion is satisfied, producing a compressed
dataset that preserves most of the relevant information. While the concept of overlap density bears a
conceptual resemblance to the output of the P2L algorithm—both aim to identify data subsets that
generalize effectively, overlap density explicitly addresses the noise inherent in pseudolabels generated
by weak supervisors, making it particularly suited for weak-to-strong generalization. Nonetheless,
P2L algorithm could potentially be adapted for overlap detection, provided an appropriate criterion
for overlap identification is defined within its framework.

C ALGORITHM DETAILS

We provide the detailed version of Algorithm 1 in Algorithm A1, and discuss details of Algorithm 2.

Threshold selection. For the thresholds in Algorithm 2, we used a change point detection algorithm,
specifically the binary segmentation method (Sen & Srivastava, 1975), applied to the sorted confidence
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Algorithm A1 UCB-Based Data Selection for Maximizing Overlap (Detailed)
1: Input: Data sources D1,D2, . . . ,DK , the number of rounds: T ≥ K, sample size per round: n,

weak model: fweak
2: Output: Sampled data set D̄ for weak-to-strong model training, Detected overlap samples Ō
3: Initialization: D̄ = ∅, Ō = ∅
4: # Try each data source once
5: for t = 1 to K do
6: k ← t, Sample n points St(k) = {x1, . . . , xn} from Dk

7: Do pseudolabeling of samples using the weak model: St(k)← {(x, fweak(x)) | x ∈ St(k)}
8: Initialize D̄t(k)← St(k), Update D̄ ← D̄ ∪ St(k)
9: Detect overlap points Ot(k) in S̄t(k) using Algorithm 2, initialize Ōt(k) ← Ot(k), Ō ←

Ot(k).
10: Initialize choice count: n̄t(k)← 1
11: end for
12:
13: # Choose data source in each round based on UCB (Upper Confidence Bound)
14: for t = K + 1 to T do
15: For each k = 1 to K do

16: Compute UCB score: UCBt(k)←
|Ōt−1(k)|
|D̄t−1(k)|

+

√
2 log T

n̄t(k)

17: Select data source: k∗ ← argmaxk UCBt(k)
18: Sample n points St(k) = {x1, . . . , xn} from Dk

19: Label new samples using fweak and do pseudolabeling with fweak
20: Detect overlap points Ot(k) in S̄t(k) using Algorithm 2
21: D̄t(k

∗)← D̄t−1(k
∗) ∪ S, D̄t(k)← D̄t−1(k) for k ̸= k∗, D̄ ← D̄ ∪ S

22: Ōt(k
∗)← Ōt−1(k

∗) ∪O, Ōt(k)← Ōt−1(k) for k ̸= k∗, Ō ← Ō ∪O
23: Increment choice count: n̄t(k

∗)← n̄t−1(k
∗) + 1,n̄t(k)← n̄t−1(k) for k ̸= k∗

24: end for
25: Return D̄, Ō

and overlap scores. The implementation used the ruptures Python package (Truong et al., 2020).
Change point detection methods identify points where statistical properties of a data sequence shift.
In our approach, we assume that the distributions of confidence scores and overlap scores vary across
hard-only, easy-only, and overlap regions, allowing the change point detection method to identify
these differences. Alternatively, segmentation methods like K-means clustering could also be used
for this purpose.

Overlap scoring. While we provide a theory for inner product scores and taking maximum as
our algorithm to identify overlap density, we used the absolute value of the cosine similarity in
large language model experiments and weak supervision experiments after testing various statistics
like mean, median, 75th percentile, and Euclidean distance instead of the inner product. The core
intuition is that overlap points are closer in distribution to hard-only points than to easy-only points.
We anticipate other measures could capture this intuition, with influence functions (Koh & Liang,
2017) being a promising alternative for future work. Additionally, when using neural networks, we
computed overlap points from the last layer activations rather than the inputs, as this provided clearer
signals in practice.

D THEORY DETAILS

D.1 PROOF OF THEOREM 4.1

We provide a theoretical result building off Lang et al. (2024). The main idea is that the strong model
can generalize better by learning from overlap data points, which leads to the expansion property and
pseudolabel correction phenomenon in Lang et al. (2024). We begin by adopting the definitions from
Lang et al. (2024).
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Notations. Let x denote a random variable with distribution D, and x represent its realizations.
We assume the existence of a ground-truth labeler y : X → Y = 1, . . . , k and a weak model
(pseudolabeler) fweak : X → Y∪{∅}, which assigns to each x either a label from Y or the abstention
symbol ∅.

Define S = {x | fweak(x) ̸= ∅} as the covered subset of X (the set with pseudolabels), and
T = {x | fweak(x) = ∅} = X \ S as the uncovered subset. Training occurs on the pseudolabeled
source subset S, and evaluation spans both S and the uncovered target T . Let {Xi} be a partition ofX
where the ground-truth label is constant in each Xi (e.g., Xi = {x | y(x) = i}). We use this partition
for convenience, but our results generalize to other partitions. S and T are partitioned into Si = S∩Xi

and Ti = T ∩ Xi, respectively. Finally, each Si is divided into correctly pseudolabeled examples
Sgood
i = {x ∈ Si | fweak(x) = y(x)} and incorrectly pseudolabeled examples Sbad

i = Si \ Sgood
i .

Definitions. For two classifiers f, g : X → Y and a set U ⊂ X , we define err(f, g|U) as the
probability of disagreement between f and g conditioned on x ∈ U , i.e., P(f(x) ̸= g(x) | x ∈ U).
The probability is over x ∼ D, which we often omit for simplicity. We focus on classifiers that
minimize the error on the non-abstaining weak labels within the strong model hypothesis class F ,
i.e., approximate solutions to argminf∈F err(f, fweak|S). Our goal is to derive upper bounds on the
error err(f, y|D), which represents the classifier’s error on the true labels on some D ⊂ X .
Definition 3 (Neighborhood). (Lang et al., 2024) Let N be a neighborhood function that maps each
point x to a set of points N (x) ⊂ X that we call the neighborhood of x. We will assume that N
satisfies x ∈ N (x′) ⇐⇒ x′ ∈ N (x), i.e., that the neighborhoods are symmetric. We can extend
N to a function of sets as N (A) =

⋃
x∈AN (x). Examples to keep in mind are N (x) = {x′ :

||φ(x)−φ(x′)|| ≤ r} for some representation φ : X → Rd, or, in the case of text inputs x, the set of
fluent paraphrases of x. However, our results work with any definition of N .
Definition 4 (Example graph). (Lang et al., 2024) Let G = (X , E) be a graph with nodes representing
elements of X (assumed to be finite but possibly very large), where two nodes (x, x′) are connected if
x ∈ N (x′) (or equivalently, x′ ∈ N (x)), with edge weight w(x, x′) = P(x)P(x′)1[x ∈ N (x′)].
Definition 5 (η-robust neighborhood size). (Lang et al., 2024) For sets A,U ⊂ X , the size of
the η-robust neighborhood of U in A is: P1−η(U,A) := minV⊂X {P(V |A) : w(V,U) ≥ (1 −
η)w(N (U), U)}.
Definition 6 (Expansion). (Lang et al., 2024) Fix sets A,B ⊂ X . We say the distribution Px satisfies
(c, q)-expansion on (A,B) if for all sets U ⊂ B with P(U |B) > q, P(N (U)|A) > cP(U |B).
Definition 7 (Expansion of a set collection). (Lang et al., 2024) A collectionM of subsets of B
satisfies (c, q)-expansion on (A,B) if for all U ∈M with P(U |B) > q, P(N (U)|A) > cP(U |B).
Definition 8 (Robust expansion). (Lang et al., 2024) A collectionM satisfies (c, q, η)-robust ex-
pansion on (A,B) if for all U ∈ M with P (U |B) > q, P1−η(U,A) > cP(U |B). This recovers
Definition 7 when η = 0.
Lemma D.1 (Lang et al. (2024)). For a set A ⊂ X and classifier f , if Ex∼D|A,x′∼N (x)[f(x) ̸=
f(x′)] ≤ γ for some γ > 0, then for any η > 0, P(ĞRη(f)|A) ≤ γ

η .

Good and bad edges. (Lang et al., 2024) For a classifier f , a set U ⊂ X , and x′ ∈ U , x ∈ N (U),
the pair (x, x′) is bad if f(x) ̸= f(x′); otherwise, it is good. Let Ñ (U) be the subset of N (U)

reachable by good edges. That is, Ñ (x′) = {x ∈ N (x′) : (x, x′) good} and Ñ (A) = ∪x′∈AÑ (x′).
The dependence of Ñ on f is omitted for notational simplicity. If f is η-robust on all points in U ,
then bad edges account for little of the weight betweenN (U) and U in the example graph (Definition
4). Thus, if robust expansion is large and f is η-robust on U , the neighborhood Ñ (U) reachable by
good edges must also be large.
Lemma D.2 (Lang et al. (2024)). For any set U ⊂ X where f satisfies r(f, x) ≤ η for all x ∈ U

(i.e., U ⊂ Rη(f)), we have: w(Ñ (U), U) ≥ (1− η)w(N (U), U).

Expanding set family. (Lang et al., 2024) Let F be the hypothesis class of the strong model, y
the ground-truth function, and B ⊂ X . For each f ∈ F , define the mistake set U(B, f) = {x ∈ B :
f(x) ̸= y(x)}. Then, the family of η-robust mistake sets is:

Mη(B,F) = {Rη(f) ∩ U(B, f) : f ∈ F}.
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Similarly, define the family of η-robust non-mistake sets as:

M′
η(B,F) = {Rη(f) ∩ (B \ U(B, f)) : f ∈ F}.

Problem Setup. Suppose the input space can be partitioned into easy, hard, and overlapping points,
i.e. X = Deasy only ∪Dhard only ∪Doverlap. We assume that the pseudolabeler’s accuracy is the same in
the easy and overlapping regions (Deasy only and Doverlap), and is higher in these regions compared to
the hard region (Dhard only). Specifically, we have:

ε1 = P(y(x) ̸= fweak(x)|Si ∩Deasy only) = P(y(x) ̸= fweak(x)|Si ∩Doverlap)

ε2 = P(y(x) ̸= fweak(x)|Si ∩Dhard only) ≥ ε1

We assume that 0 < ε1 ≤ ε2 ≤ 0.5. Further, denote the proportion of partitions as

p
(easy)
i = P(Deasy only|Si)

p
(hard)
i = P(Dhard only|Si)

p
(overlap)
i = P(Doverlap|Si)

Our goal is to show how the overlap density can make strong model perform better in p
(hard)
i based

on (robust) expansion property. Our main assumption isM′
η(S

good
i ∩Doverlap,F) satisfies (c, q, η)

robust expansion on (Sbad
i ∩Dhard only, S

good
i ∩Doverlap). It captures our intuition that strong model

can learn something useful for hard data points from overlap data points.

In this setup, the trivial error bound obtained by perfectly mimicking the weak pseudolabeler is

err(f, y|Si) = (p
(easy)
i + p

(overlap)
i )ε1 + p

(hard)
i ε2.

We claim that err(f, y|Si ∩Dhard only) < ε2 when the expansion coefficient c — representing general-
ization from overlap density to hard density — is large, the model error rate in the overlap density is
low, and the model exhibits sufficient robustness. Consequently, the large amount of weak-to-strong
generalization can be attributed to p

(hard)
i (ε2 − err(f, y|Si ∩Dhard only)), as observed in our synthetic

experiments.

Our proof follows a similar structure to Lang et al. (2024).

Define
Mi = {x ∈ Si : f(x) ̸= y(x)}

Ei = {x ∈ Si : f(x) ̸= fweak(x)}

Ui = Si\Mi

Vi = Rη(f) ∩ Ui ∩ Sgood
i ∩Doverlap

Note that Vi ⊂ Ui. The following lemma shows that Vi expands.

Lemma D.3. Suppose an arbitrary classifier f satisfies P(f(x) ̸= fweak(x) or f not η-robust at
x|Si ∩Doverlap) ≤ 1− q − ε1. Then, P(Vi|Sgood

i ∩Doverlap) > q.

Proof. Suppose for a contradiction that P(Vi|Sgood
i ∩Doverlap) ≤ q. Then by definition of Vi,

P(Vi|Sgood
i ∩Doverlap) = 1− P(V̄i|Sgood

i ∩Doverlap)

= 1− P(V̄i ∩ Sgood
i ∩Doverlap|Sgood

i ∩Doverlap)

= 1− P((Si\Mi) ∩Rη)
c ∩ Sgood

i ∩Doverlap|Sgood
i ∩Doverlap)

= 1− P((Mi ∩ Sgood
i ∩Doverlap) ∪Rη(f)

c|Sgood
i ∩Doverlap)
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Fix an arbitrary x ∈ Mi ∩ Sgood
i ∩ Doverlap. By definition of Mi, f(x) ̸= y(x). By definition of

Sgood
i , fweak(x) = y(x). Therefore, f(x) ̸= fweak(x), thus x ∈ Ei. Since this holds for an arbitrary

x ∈Mi ∩ Sgood
i ∩Doverlap, Mi ∩ Sgood

i ∩Doverlap ⊂ Ei. Thus,

P(Vi|Sgood
i ∩Doverlap) = 1− P((Mi ∩ Sgood

i ∩Doverlap) ∪Rη(f)
c|Sgood

i ∩Doverlap)

≥ 1− P(Ei ∪Rη(f)
c|Sgood

i ∩Doverlap)

= 1− 1

1− ε1
P(Ei ∪Rη(f)

c ∩ Sgood
i ∩Doverlap|Si ∩Doverlap)

≥ 1− 1

1− ε1
(1− q − ε1) ∵ by assumption

=
q

1− ε1
> q ∵ since 0 < ε1 ≤ 0.5

Lemma D.4. Under the condition of Lemma D.3,

P(Ui|Sbad
i ∩Dhard only) ≥ cP(Vi|Sgood

i ∩Doverlap)

.

Since M′
η(S

good
i ∩ Doverlap,F) satisfies (c, q, η) robust expansion on (Sbad

i ∩ Dhard only, S
good
i ∩

Doverlap), we have

P1−η(Vi, S
bad
i ∩Dhard only) ≥ cP(Vi|Sgood

i ∩Doverlap)

by the previous lemma. Also, by Lemma D.2,

P(Ñ (Vi)|Sbad
i ∩Dhard only) ≥ P1−η(Vi, S

bad
i ∩Dhard only)

Fix an arbitrary x ∈ Ñ (Vi). By definition of Ñ (Vi), there exists x′ ∈ Vi such that f(x) = f(x′).
Since x′ ∈ Vi ⊂ Ui, x′ ∈ Mi, thus we have that f(x) = f(x′) = y(x′). And, y(x) = y(x′) since
x and x′ are both in Si. This shows f(x) = y(x), thus x /∈ Mi, so x ∈ Ui = Si\Mi. Since x was
arbitrary, Ñ (Vi) ⊂ Ui. This implies

P(Ui|Sbad
i ∩Dhard only) ≥ P(Ñ (Vi)|Sbad

i ∩Dhard only),

thus
P(Ui|Sbad

i ∩Dhard only) ≥ cP(Vi|Sgood
i ∩Doverlap).

We borrow the following lemma from Lang et al. (2024) directly.

Lemma D.5 (Lang et al. (2024)). Ei ⊃ (Mi ∩ Sgood
i ) ∪ (Ui ∩ Sbad

i ).

The above lemma implies

Ei ∩Dhard only ⊃ (Mi ∩ Sgood
i ∩Dhard only) ∪ (Ui ∩ Sbad

i ∩Dhard only).

Now we state the formal version of Theorem 4.1 and provide the proof. Theorem 4.1 is obtained by
setting η = 0, q = 0, thus P(Rη(f)

c|Sgood
i ∩Doverlap) = 0.

Theorem D.1 (Formal version of Theorem 4.1). SupposeM′
η(S

good
i ∩Doverlap,F) satisfies (c, q, η)-

robust expansion on (Sbad
i ∩ Dhard only, S

good
i ∩ Doverlap) for some c > 0 and η ≥ 0. Consider an

arbitrary classifier f such that P(f(x) ̸= fweak(x) or f not η-robust at x|Si ∩Doverlap) ≤ 1− q− ε1.
then f satisfies the following error bound:

err(f, y|Si ∩Dhard only) ≤ err(f, fweak|Si ∩Dhard only) + ε2

− 2cε2(1− err(f, fweak|Sgood
i ∩Doverlap)− P(Rη(f)

c|Sgood
i ∩Doverlap))
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Proof. By Lemma D.5 and using P(Sgood
i |Si ∩Dhard only) = 1− ε2, we have

P(Ei|Si ∩Dhard only) ≥ P (Mi|Sgood
i ∩Dhard only)(1− ε2) + P (Ui|Sbad

i ∩Dhard)ε2

Applying Lemma D.4,

P(Ei|Si ∩Dhard only) ≥ P(Mi|Sgood
i ∩Dhard only)(1− ε2) + cε2P(Vi|Sgood

i ∩Doverlap) (1)

Applying Lemma D.4 again,

P(Ui|Si ∩Dhard only) = ε2P(Ui|Sbad
i ∩Dhard only) + (1− ε2)P(Ui|Sgood

i ∩Dhard only)

≥ cε2P(Vi|Sgood
i ∩Doverlap) + (1− ε2)P(Ui|Sgood

i ∩Dhard only)

then we have

P(Ui|Sgood
i ∩Dhard only) ≤

1

1− ε2

(
P(Ui|Si ∩Dhard only)− cε2P(Vi|Sgood

i ∩Doverlap)
)

Combining this with Ui = Si\Mi,

P(Mi|Sgood
i ∩Dhard only) = 1− P(Ui|Sgood

i ∩Dhard only)

≥ 1− 1

1− ε2

(
P(Ui|Si ∩Dhard only)− cε2P(Vi|Sgood

i ∩Doverlap)
)

Plugging this into 1, we have

P(Ei|Si ∩Dhard only) ≥ 1− ε2 − P(Ui|Si ∩Dhard only) + 2cε2P(Vi|Sgood
i ∩Doverlap)

≥ 1− ε2 − (1− P(Mi|Si ∩Dhard only)) + 2cε2P(Vi|Sgood
i ∩Doverlap)

= P(Mi|Si ∩Dhard only))− ε2 + 2cε2P(Ui ∩Rη(f)|Sgood
i ∩Doverlap)

= P(Mi|Si ∩Dhard only))− ε2 + 2cε2

(
1− P(Mi ∪Rη(f)

c|Sgood
i ∩Doverlap)

)
≥ P(Mi|Si ∩Dhard only)) + (2c− 1)ε2

− 2cε2

(
P(Mi|Sgood

i ∩Doverlap) + P(Rη(f)
c|Sgood

i ∩Doverlap)
)

Note that err(f, fweak|Si∩Dhard only) = P(Ei|Si∩Dhard only), and err(f, y|Si∩Dhard only) = P(Mi|Si∩
Dhard only). Plugging in those terms and rearranging leads to

err(f, y|Si ∩Dhard only) ≤ err(f, fweak|Si ∩Dhard only) + (1− 2c)ε2

+ 2cε2err(f, y|Sgood
i ∩Doverlap) + 2cε2P(Rη(f)

c|Sgood
i ∩Doverlap)

= err(f, fweak|Si ∩Dhard only) + (1− 2c)ε2

+ 2cε2err(f, fweak|Sgood
i ∩Doverlap) + 2cε2P(Rη(f)

c|Sgood
i ∩Doverlap)

= err(f, fweak|Si ∩Dhard only) + ε2

− 2cε2(1− err(f, fweak|Sgood
i ∩Doverlap)− P(Rη(f)

c|Sgood
i ∩Doverlap))
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D.2 COVERAGE EXPANSION BY OVERLAP DENSITY

Theorem D.2. SupposeMη(Ti ∩Dhard only,F) satisfies (c, q, η)-robust expansion on (Sgood
i , Ti ∩

Dhard only) for some c > 0. Fix an arbitrary classifier f : X → Y . The error of f on Ti ∩Dhard only is
bounded by:

err(f, y|Ti ∩ Dhard) ≤ P(Rη(f)
c|Ti ∩Dhard only) + max

(
q,

err(f, fweak|Si ∩Doverlap)

c(1− ε1)

)
Proof. Again, the proof follows the similar steps to Lang et al. (2024). Define Mi = {x : f(x) ̸=
y(x)} ∩ Ti ∩ Dhard only as the set of mistakes of f in Ti ∩ Dhard only, and let Ui = Mi ∩ Rη(f).
Let Ei = {x ∈ Si ∩ Doverlap} be the set of points in Si ∩ Doverlap where f disagrees with the
weak labels. Since we have err(f, fweak|Si ∩ Doverlap) = P(Ei|Si) and err(f, y|Ti ∩ Dhard only) =
P(Mi|Ti ∩Dhard only) ≤ P(Ui|Ti ∩Dhard only)+P(Rη(f)

c|Ti ∩Dhard only) by union bound, it suffices
to bound P(Rη(f)

c|Ti ∩ Dhard only). Since Ui ⊂ Rη(f), we have P(Ñ (Ui)|Sgood
i ∩ Doverlap) ≥

P1−η(Ui, S
good
i ∩Doverlap) by Lemma D.2. Also, Ui ∈ Mη(Ti,F) by definition. Then, P(Ui|Ti ∩

Dhard only) > q and (c, q, η)-robust expansion implies

P(Ñ (Ui)|Sgood
i ∩Doverlap) ≥ P1−η(Ui, S

good
i ∩Doverlap) > cP(Ui|Ti ∩Dhard only).

We proceed in two cases.

Case 1: P(Ui|Ti ∩ Dhard only) ≤ q. In this case, we directly obtain err(f, y|Ti ∩ Dhard only) =
P(Mi|Ti∩Dhard only) ≤ P(Rη(f)

c|Ti∩Dhard only)+P(Ui|Ti∩Dhard only) ≤ P(Rη(f)
c|Ti∩Dhard only)+

q.

Case 2: P(Ui|Ti ∩ Dhard only) > q. In this case, by the assumption that (Sgood
i ∩ Doverlap, Ti ∩

Dhard only) satisfy (c, q, η)-robust expansion and PÑ (Ui)|Sgood
i ∩Doverlap) > cP(Ui|Ti ∩Dhard only),

we have

P(Ñ (Ui) ∩ Sgood
i ∩Doverlap|Si ∩Doverlap) = (1− ε1)P(Ñ (Ui) ∩ |Sgood

i ∩Doverlap)

≥ (1− ε1)cP(Ui|Ti ∩Dhard only).

Suppose x ∈ Ñ (Ui) ∩ Sgood
i ∩ Doverlap. By the definition of Ñ (Ui), there exists a point x′ ∈ Ui

reachable from x by a good edge, such that f(x) = f(x′). Then, since x ∈ Sgood
i , fweak(x) = y(x) =

y(x′). Also, since x′ ∈Mi, y(x′) ̸= f(x′) = f(x). Thus, f(x) ̸= fweak(x), which implies x ∈ Ei.
This leads to

err(f, fweak|Si∩Doverlap) = P(Ei|Si∩Doverlap) ≥ P(Ñ (Ui)∩Sgood
i |Si) ≥ c(1−ε1)P(Ui|Ti∩Dhard only),

Rearranging the inequality, we have

err(f, y|Ti ∩ Dhard) ≤ P(Rη(f)
c|Ti ∩Dhard only) +

err(f, fweak|Si ∩Doverlap)

c(1− ε1)

D.3 PROOF OF THEOREM 4.2

Setup We extend the setup in Section 3. We consider label-conditioned Gaussian mixtures as

follows. We denote mean parameters as µoverlap =

[
µ̃easy
µ̃hard

]
, where µ̃easy ∈ Rdeasy and µ̃hard ∈ Rdhard .

We set µeasy =

[
µ̃easy
0

]
, µhard =

[
0

µ̃hard

]
, to instantiate the distribution of overlap, easy-only and

hard-only data points. We set up a common covariance Σ = c

[
Ieasy 0
0 Ihard

]
where Ieasy and Ihard are

identity matrices. The distribution of input x follows Gaussian mixtures

P(x|y = 1) = πeasyN(µeasy,Σ) + πhardN(µhard,Σ) + πoverlapN(µoverlap,Σ)
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P(x|y = −1) = πeasyN(−µeasy,Σ) + πhardN(−µhard,Σ) + πoverlapN(−µoverlap,Σ),

where πeasy ≥ 0, πhard ≥ 0, πoverlap ≥ 0, πeasy + πhard + πoverlap = 1. Assuming P(y = 1) = P(y =
−1) = 0.5, Deasy only, Dhard only, Doverlap only can be described as

Deasy only ∼
1

2
N(−µeasy,Σ) +

1

2
N(µeasy,Σ)

Dhard only ∼
1

2
N(−µhard,Σ) +

1

2
N(µhard,Σ)

Doverlap ∼
1

2
N(−µoverlap,Σ) +

1

2
N(µoverlap,Σ)

Lemma D.6. 1√
1−y
≤ e

y
2(1−y) for 0 < y < 1.

Proof. Consider function f(y) = ln( 1√
1−y

)− y
2(1−y) = −

1
2 ln(1− y)− y

2(1−y) . It suffices to show

f(y) ≤ 0, which implies 1√
1−y
≤ e

y
2(1−y) by taking the exponential. First, we can derive

f ′(y) =
1

2(1− y)
− 1

2(1− y)2

= − y

2(1− y)2

Thus, we can see f ′(y) < 0 for 0 < y < 1. Also, we have f(0) = 0. Then, since f(0) = 0 and f is
decreasing for 0 < y < 1, f(y) ≤ 0.

Lemma D.7. Suppose X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2). Then, X1X2 − µ1µ2 ∼ SE(ν2, b),

where SE represents a subexponetial with parameters ν2 = µ2
1σ

2
2 + µ2

2σ
2
1 +

4
3σ

2
1σ

2
2 , b = 1

2σ1σ2
.

Proof. We can write
X1 = µ1 + σ1Z1

X2 = µ2 + σ2Z2,

where Z1, Z2 ∼ N(0, 1). Then, X1X2−µ1µ2 = µ1σ2Z2+µ2σ1Z1+σ1σ2Z1Z2. Let A = µ1σ2Z2+
µ2σ1Z1. Since A ∼ N(0, µ2

1σ
2
2 + µ2

2σ
2
1), A is subgaussian with variance proxy σ2

A = µ2
1σ

2
2 + µ2

2σ
2
1 .

This implies A ∼ SE(ν2A, bA) for any bA > 0, where ν2A = µ2
1σ

2
2 + µ2

2σ
2
1 . We choose bA = 2σ1σ2.

Next, let B = σ1σ2Z1Z2. We can obtain MGF of B as

E[eλB ] =
1√

1− (λσ1σ2)2
, for |λ| < 1

σ1σ2
.

Especially, for |λ| < 1
2σ1σ2

, we can bound the MGF using the inequality in Lemma D.6 with
y = (λσ1σ2)

2. Thus,

E[eλB ] ≤ exp

(
(λσ1σ2)

2

2(1− (λσ1σ2)2)

)
.

For |λ| < 1
2σ1σ2

, we have (λσ1σ2)
2 < 1

4 , so 1− (λσ1σ2)
2 > 3

4 . Therefore,

E[eλX ] ≤ exp

(
2

3
(λσ1σ2)

2

)
.

By comparing it with the MGF bound for any subexponential random variable Y ,

E[eλY ] ≤ exp

(
λ2ν2

2

)
, for |λ| < 1

b
,

we identify the subexponential parameters for B as ν2B = 4
3 (σ1σ2)

2, bB = 2σ1σ2. Since A ∼
SE(ν2A, bA), B ∼ SE(ν2B , bB), we have

X1X2 − µ1µ2 ∼ SE
(
ν2A + ν2B ,max(bA, bB)

)
by the additivity of subexponential. Thus, we have

X1X2 − µ1µ2 ∼ SE(µ2
1σ

2
2 + µ2

2σ
2
1 +

4

3
σ2
1σ

2
2 , 2σ1σ2)
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Proof of Theorem 4.2. Let xdiff = xoverlap − xeasy only so that

E[xoverlap⊤xhard only]− E[xeasy only⊤xhard only] = E[x⊤
diffxhard only].

This difference distribution will follow xdiff ∼ N(µoverlap − µeasy only, 2cI) = N(µhard, 2cI). Let
z = (xdiff)i(xhard only)i. Then, x⊤

easy onlyxhard only =
∑d

i=1 zi. Since

(xdiff)i ∼ N((µhard)i, 2c)

(xhard only)i ∼ N((µhard)i, c),

we have zi ∼ SE

(
3c(µhard)

2
i +

8

3
c2, 4c

)
by Lemma D.7. By additivity,

x⊤
diffxhard only =

d∑
i=1

zi ∼ SE

(
8

3
dc2 + 3c ∥µhard∥22 , 4c

)
.

The concentration inequality then follows directly from the standard concentration inequality for
subexponential distributions (Wainwright, 2019). We have

P
(
x⊤

overlapxhard only − x⊤
easy onlyxhard only ≤ ∥µhard∥22 − t

)
≤ exp

(
−min(

t2

2ν2
,
t

2b
)

)
,

where ν2 = 8
3dc

2 + 3c ∥µhard∥22 and b = 4c. By plugging in t = ∥µhard∥22, we can obtain the average
error rate bound

P
(
x⊤

overlapxhard only ≤ x⊤
easy onlyxhard only

)
≤ exp

(
−min

(
∥µhard∥42

16
3 dc2 + 6c ∥µhard∥22

,
∥µhard∥22

8c

))
.

D.4 PROOF OF THEOREM 4.3

Proof. Recall that o(s) = P(Doverlap|Ds) is the population overlap density of data source s, ōt =
|V̄t(s)|
|D̄t(s)|

is the empirical overlap density at round t, and o∗ = maxs o(s) is the optimal overlap density.

Define rt(s) =
√

2 log T
nt(s)

, where nt(s) denotes the number of times data source s has been chosen up
to round t. We first show that

P (|ōt(s)− o(s)| ≥ rt(s)) ≤ 2T−2.

Here, t is a random variable, thus we cannot apply Hoeffding’s inequality directly. Instead, we

replace t with some fixed round j first. Define v̄j(s) =
|V̄j(s)|
|D̄j(s)|

, which represents the average overlap

ratio at the data source Ds from the first j rounds (j ≤ T ). Since j is fixed and 0 ≤ v̄j(s) ≤ 1, by
Hoeffding’s inequality, we obtain

P (|v̄j(s)− o(s)| ≥ rj(s)) ≤ 2T−4.

Define the event E = {∀s ∈ [K],∀j ≤ T, |v̄j(s)− o(s)| ≥ rj(s)}. Then, by the union bound, we
have

P[E ] ≤
K∑
s=1

T∑
j=1

P (|v̄j(s)− o(s)| ≥ rj(s)) ≤
K∑
s=1

T∑
j=1

2T−4 = 2KT−3 ≤ 2T−2.

Thus, for the random variable nt(s), it holds that

P (|ōt(s)− o(s)| ≥ rt(s)) ≤ 2T−2.

Define the regret associated with the choice of source Ds as ∆(s) := o∗ − o(s) and the contribution
of data source Ds to the accumulated regret at round t as R(t, s) = nt(s)∆(s). The total regret is
then given by R(t) =

∑K
s=1 R(t, s) = t(o∗ − ōt).
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Suppose |ōt(s)− o(s)| ≥ rt(s), which is an event in Ec. According to the algorithm, UCBt(st) ≥
UCBt(s

∗), where s∗ denotes the index of the optimal source and where st denotes the data source
chosen at round t. Trivially, we also have UCBt(s

∗) ≥ o(s∗). Thus, we have

o(st) + 2rt(st) ≥ ōt(st) + rt(st) = UCBt(st) ≥ UCBt(s
∗) ≥ o(s∗),

which implies

∆(st) = o(s∗)− o(st) ≤ 2rt(st) = 2

√
2 log T

nt(st)
.

From this, we can obtain

R(t) =

K∑
s=1

R(t, s)

=

K∑
s=1

nt(s)∆(s)

=

K∑
s=1

nt(s)2
√

2 log T/nt(s)

=

K∑
s=1

2
√
2nt(s) log T

= 2K
√
log T

K∑
s=1

1

K

√
2nt(s)

≤ 2K
√
log T

√√√√ 1

K

K∑
s=1

nt(s) ∵ Jensen’s inequality

= 2K
√
log T

√
t

K

= 2
√
Kt log T

We have the final result from this.

E[R(t)] = P(E)E[R(t)|E ] + P(Ec)E[R(t)|Ec]
≤ 2T−2 ∗ T + P(Ec)E[R(t)|Ec] ∵ R(T ) ≤ T trivially

≤ 2T−1 + (1− 2T−2)2
√

Kt log T ∵ plugging in the previous result

= O(
√
Kt log T )

It follows that

E[o∗ − ōt] = E[R(T )/t] ≤ O

(√
K log T

t

)
.

E EXPERIMENT DETAILS

Real datasets. In our language model experiments, we used a subset of datasets in EleutherAI
(2021), which includes ANLI-R2 (Nie et al., 2020), CoLA (Warstadt et al., 2018), DREAM (Sun
et al., 2019), MC-TACO (Ben Zhou & Roth, 2019), HelleSwag (Zellers et al., 2019), MultiRC
(Khashabi et al., 2018), PAWS (Zhang et al., 2019), PICa (Yang et al., 2022), QuAIL (Rogers et al.,
2020), QUARTZ (Tafjord et al., "2019"), Social IQa Sap et al. (2019), SST2 (Socher et al., 2013),
WiC(Pilehvar & Camacho-Collados, 2019), Tweet Sentiment Naji (2012), Anthropic HH-RLHF
(Ganguli et al., 2022), SciQ (Welbl et al., 2017), CosmosQA (Huang et al., 2019), BoolQ (Clark et al.,
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2019), and the Amazon Polarity (Zhang et al., 2015) datasets. The training dataset was divided into
the weak model training data, Dtrain, and the weak-to-strong model training data, Dw2s. We sampled
ntrain = 10, 000, nval = 1, 000, and ntest = 5, 000 for the training, validation, and test datasets,
respectively, for datasets with larger splits than the specified sizes, in accordance with the default
parameters provided in https://github.com/EleutherAI/w2s.

In Wrench experiments, we used a subset of Wrench benchmark(Zhang et al., 2021), which includes
CDR, Census, Commercial, iMDb, Mushroom, SMS, Spambase, Tennis, Yelp, and Youtube datasets.

Dataset sizes Table A2, A3 show dataset sizes, the sizes of detected easy-only, hard-only, and
overlap sizes, and ncontrolled that is used for overlap mechanism experiments in Section 5.1.

Table A2: Summary of data statistics from Section 5.3.1. The mean and standard deviation are
calculated from 20 repeated experiments, each using different random seeds.

Dataset ntrain ntest nw2s ncontrolled |D̄easy only| |D̄hard only| |D̄overlap| Sample size per round

amazon_polarity 5000 5000 5000 1150 ± 105 744 ± 94 407 ± 29 3850 ± 105 73 ± 3
anli-r2 5000 668 5000 1404 ± 45 1734 ± 40 1863 ± 39 1404 ± 45 72 ± 2
anthropic_hh 5000 5000 5000 1976 ± 62 296 ± 13 2729 ± 69 1976 ± 62 54 ± 2
boolq 3053 2474 3053 1483 ± 27 595 ± 35 922 ± 40 1537 ± 52 56 ± 1
cola 2028 644 2028 568 ± 45 126 ± 34 442 ± 21 1461 ± 45 27 ± 1
cosmos_qa 5000 2646 5000 2376 ± 62 615 ± 84 1994 ± 46 2392 ± 89 78 ± 2
dream 2541 1984 2541 1037 ± 45 261 ± 13 777 ± 42 1504 ± 45 43 ± 1
hellaswag 5000 5000 5000 1545 ± 52 499 ± 32 2957 ± 49 1545 ± 52 39 ± 2
mc_taco 2698 2458 2698 1250 ± 61 756 ± 50 693 ± 43 1250 ± 61 49 ± 2
multirc 5000 4150 5000 1763 ± 57 1267 ± 70 1970 ± 31 1763 ± 57 66 ± 3
paws 5000 5000 5000 663 ± 43 1808 ± 57 2529 ± 42 663 ± 43 51 ± 1
piqa 5000 1832 5000 1591 ± 51 627 ± 33 2783 ± 26 1591 ± 51 59 ± 1
quail 4613 2148 4613 1724 ± 61 890 ± 65 2000 ± 43 1724 ± 61 60 ± 2
quartz 833 764 833 347 ± 34 302 ± 37 185 ± 13 347 ± 34 12 ± 1
sciq 4837 2980 4837 2240 ± 44 831 ± 49 1767 ± 53 2240 ± 44 82 ± 2
social_i_qa 5000 1888 5000 1578 ± 51 998 ± 40 2424 ± 36 1578 ± 51 60 ± 2
sst2 5000 856 5000 1876 ± 48 984 ± 49 892 ± 16 3125 ± 48 95 ± 2
twitter-sentiment 5000 5000 5000 2173 ± 69 880 ± 36 1293 ± 50 2827 ± 69 98 ± 1
wic 2214 638 2214 1073 ± 31 325 ± 36 813 ± 34 1076 ± 34 37 ± 1

Table A3: Summary of data statistics from Section 5.3.1. The mean and standard deviation are
calculated from 20 repeated experiments, each using different random seeds.

Dataset ntrain ntest nw2s ncontrolled |D̄easy only| |D̄hard only| |D̄overlap|
cdr 4215 4673 4215 1108 ± 63 191 ± 37 2916 ± 67 1108 ± 63
census 5041 16281 5042 1629 ± 66 280 ± 69 1349 ± 30 3413 ± 66
commercial 32065 7496 32065 8988 ± 934 2216 ± 835 6773 ± 616 23077 ± 934
imdb 10000 2500 10000 2469 ± 688 630 ± 425 4885 ± 3004 4485 ± 2621
sms 2285 500 2286 662 ± 107 117 ± 39 1507 ± 113 662 ± 107
spambase 1840 461 1840 633 ± 34 102 ± 26 531 ± 24 1207 ± 34
tennis 3479 1098 3480 754 ± 688 680 ± 706 77 ± 40 2723 ± 693
yelp 15200 3800 15200 5721 ± 485 1160 ±414 4934 ± 1387 9106 ± 1246
youtube 793 250 793 341 ± 28 54 ± 21 290 ± 24 449 ± 34
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Synthetic datasets. Synthetic datasets in Section 5.3 are genarated with Gaussian mixture dis-

tribution. We first sample mean parameters µoverlap =

[
µ̃easy
µ̃hard

]
from uniform distribution, where

µ̃easy ∈ Rdeasy and µ̃hard ∈ Rdhard . We set µeasy =

[
µ̃easy
0

]
, µhard =

[
0

µ̃hard

]
, to simulate

data points with easy+hard (overlap), easy, hard patterns. Similarly, we set up the covariances

Σeasy = Σhard = Σoverlap = c

[
Ieasy 0
0 Ihard

]
, Ieasy and Ihard being identity matrices. We used c = 5,

deasy = dhard = 20 in synthetic experiments. Labels (Y) are sampled from {−1, 1} uniformly. The
distribution of input X follows Gaussian mixtures

P (X|Y = 1) ∼ πeasyN(µeasy,Σeasy) + πhardN(µhard,Σhard) + πoverlapN(µoverlap,Σoverlap)

P (X|Y = −1) ∼ πeasyN(−µeasy,Σeasy) + πhardN(−µhard,Σhard) + πoverlapN(−µoverlap,Σoverlap),

where πeasy ≥ 0, πhard ≥ 0, πoverlap ≥ 0, πeasy + πhard + πoverlap = 1. We control parameters
πeasy, πhard, πoverlap to see how they affect the weak to strong generalization.

We fixed neasy = nhard = 100 and increase 5 overlap data points each time. We trained weak-to-strong
model on overlap data points only.

Computing resources We used a GPU cluster with 8 NVIDIA A100 SXM2 40GB HBM2 NV-
LINK, 2x Intel® Xeon Cascade Lake 5218 (2.3GHz) Processor (24-Core), 16x 32 GB ECC REG
DDR4-2933 RAM.

27



Published as a conference paper at ICLR 2025

0.0 0.5 1.0
Overlap Density

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

amazon_polarity

0.0 0.5 1.0
Overlap Density

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

anli-r2

0.0 0.5 1.0
Overlap Density

0.500

0.505

0.510

0.515

0.520

Ac
cu

ra
cy

anthropic_hh

0.0 0.5 1.0
Overlap Density

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

boolq

0.0 0.5 1.0
Overlap Density

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

cola

0.0 0.5 1.0
Overlap Density

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

cosmos_qa

0.0 0.5 1.0
Overlap Density

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

dream

0.0 0.5 1.0
Overlap Density

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

hellaswag

0.0 0.5 1.0
Overlap Density

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

mc_taco

0.0 0.5 1.0
Overlap Density

0.65

0.70

0.75

Ac
cu

ra
cy

multirc

0.0 0.5 1.0
Overlap Density

0.60

0.65

0.70

Ac
cu

ra
cy

paws

0.0 0.5 1.0
Overlap Density

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

piqa

0.0 0.5 1.0
Overlap Density

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

quail

0.0 0.5 1.0
Overlap Density

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

quartz

0.0 0.5 1.0
Overlap Density

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

sciq

0.0 0.5 1.0
Overlap Density

0.550

0.575

0.600

0.625

0.650

Ac
cu

ra
cy

social_i_qa

0.0 0.5 1.0
Overlap Density

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

sst2

0.0 0.5 1.0
Overlap Density

0.675

0.700

0.725

0.750

0.775

0.800

Ac
cu

ra
cy

twitter-sentiment

0.0 0.5 1.0
Overlap Density

0.550

0.575

0.600

0.625

0.650

Ac
cu

ra
cy

wic

Weak Strong Full W2S Controlled W2S

Figure A1: Overlap density versus performance in weak-to-hard generalization with large language
models. The red lines represent the accuracies of strong models trained on true labels, while the blue
dashed lines indicate the accuracies of weak models on the test set. The green dashed lines (Full W2S)
show the accuracies of weak-to-strong models trained on the entire pseudolabeled dataset. Lastly,
the Controlled W2S lines represent the accuracies of strong models trained on data with a controlled
proportion of overlap density. In general, the strong model’s improvement over the weak model
tracks the overlap proportion, suggesting that the overlap density is indeed an important mechanism
for generalization.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPLETE RESULTS FROM SECTION 5.1

Figure A1 presents the full experimental results for the 19 LLM datasets and Figure A2 presents the
full experimental results for 9 weak supervision datasets in Section 5.2.
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Figure A2: Overlap density mechanism in weak supervision. The red lines represent the accuracies of strong
models trained on true labels, while the blue dashed lines indicate the accuracies of weak models on the test
set. The green dashed lines (Full W2S) show the accuracies of weak-to-strong models trained on the entire
pseudolabeled dataset. Lastly, the Controlled W2S lines represent the accuracies of strong models trained on
data with a controlled proportion of overlap density. In many tasks, the strong model (a 4-layer MLP) surpasses
the accuracy of the weak model (the label model) as the overlap density ratio increases. Notably, the Controlled
W2S model uses less data compared to the Full WS setting to manage the overlap density proportion.
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Figure A3: Data selection experiments with Algorithm 1.

F.2 COMPLETE RESULTS FROM SECTION 5.2

Figures A3, A4, A5, and A6 present the full experimental results for the 19 datasets discussed in
Section 5.2.
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Figure A4: Data selection experiments with Algorithm 1 (Continued).
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Figure A5: Data selection experiments with Algorithm 1 (Continued).
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Figure A6: Data selection experiments with Algorithm 1 (Continued).
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Figure A7: Ablation on the easy-only and hard-only density. Note that the y-axis represents the
average accuracy across the easy, hard, and overlap data points. As expected, increasing easy-only
and hard-only data points does not lead to weak-to-strong generalization.
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Figure A8: Accuracy in each data region in easy-only data controlled synthetic experiments. As
expected, increasing the number of easy-only data points does not improve the accuracy of W2S
model in hard-only data points (middle).
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Figure A9: Accuracy in each data region in hard-onlydata controlled synthetic experiments. As
expected, increasing the number of hard-only data points does not improve the performance of the
W2S model due to the high error rate of pseudolabels in hard-only data points.

F.3 SYNTHETIC EXPERIMENT ON EASY-ONLY AND HARD-ONLY DENSITY

To demonstrate that overlap density is essential for weak-to-strong generalization, we perform an
ablation study focusing on easy-only and hard-only densities. We hypothesize that easy-only and
hard-only points do not lead to weak-to-strong generalization.

Setup. We follow the experimental setup described in Section 5.3.1, with modifications to the
number of easy-only, hard-only, and overlap data points. In the easy-only ratio ablation, we train
the weak-to-strong model exclusively on easy-only points. We fix the number of hard-only points at
100 and overlap points at 10, then incrementally add 5 easy-only points at each step. Similarly, in
the hard-only ratio ablation, we train the model exclusively on hard-only points, with the number of
easy-only points fixed at 100 and overlap points at 10, while adding 5 hard-only points at each step.

Results. Figure A7 presents the average accuracy results in ablation experiments, and Figure A8,
A9 show the decomposed views of the accuracy. The results indicate that increasing the number of
easy-only points fails to achieve weak-to-strong generalization, as these points do not contribute
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information to the hard-only data region, as shown in Figure A8 (middle). Meanwhile, increasing
the number of hard-only points also fails, as the severe label noise impairs the learning of the
weak-to-strong model.

35



Published as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4
Overlap Ratio

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Mixed noise

Weak Model
Strong Model
W2S ( = 0.0)
W2S ( = 0.1)
W2S ( = 0.2)
W2S ( = 0.3)

0.0 0.1 0.2 0.3 0.4
Overlap Ratio

Easy noise

Weak Model
Strong Model
W2S ( = 0.0)
W2S ( = 0.1)
W2S ( = 0.2)
W2S ( = 0.3)

0.0 0.1 0.2 0.3 0.4
Overlap Ratio

Hard noise
Weak Model
Strong Model
W2S ( = 0.0)
W2S ( = 0.1)
W2S ( = 0.2)
W2S ( = 0.3)

Figure A10: Average accuracy for each noise type.
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Figure A11: Accuracy in each data region for the easy noise type (N1).

0.0 0.1 0.2 0.3 0.4
Overlap Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) Easy Accuracy

Weak Model
Strong Model
W2S ( = 0.0)
W2S ( = 0.1)
W2S ( = 0.2)
W2S ( = 0.3)

0.0 0.1 0.2 0.3 0.4
Overlap Ratio

(b) Hard Accuracy
Weak Model
Strong Model
W2S ( = 0.0)
W2S ( = 0.1)
W2S ( = 0.2)
W2S ( = 0.3)

0.0 0.1 0.2 0.3 0.4
Overlap Ratio

(c) Overlap Accuracy

Weak Model
Strong Model
W2S ( = 0.0)
W2S ( = 0.1)
W2S ( = 0.2)
W2S ( = 0.3)

Hard noise

Figure A12: Accuracy in each data region for the hard noise type (N2).

F.4 SYNTHETIC EXPERIMENT ON THE NOISE IN OVERLAP DETECTION

In the main synthetic experiment in Section 5.3, we trained a weak-to-strong model exclusively on
overlap data points, under the assumption that our overlap detection algorithm is perfect. However,
in practice, the overlap detection algorithm may introduce noise. In this section, we investigate the
impact of noisy overlap detection on model performance in a fully controllabel experiment setup.

Setup. The experimental setup follows the description in Section 5.3.1 , with specific modifications
to the weak-to-strong model’s training data points. We examine three noise scenarios characterized
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Figure A13: Accuracy in each data region for the hard noise type (N3).

by the overlap detection error rate ϵ. These scenarios are as follows: (1) Mixed noise: Half of
the errors select easy-only points, and the other half select hard-only points; (2) Easy noise: All
errors select easy-only points; (3) Hard noise: All errors select hard-only points. The number of
data points in the weak-to-strong model training set is similarly distributed as before. Starting with
neasy = 100, nhard = 500, noverlap = 10, we increment noverlap by 10 each time. Accordingly, the
weak-to-strong model’s training data is derived from the following distributions:

• (N1) Easy noise: ϵnoverlap easy points + (1− ϵ)noverlap overlap points
• (N2) Hard noise: ϵnoverlap hard points + (1− ϵ)noverlap overlap points

• (N3) Mixed noise:
ϵnoverlap

2
easy points +

ϵnoverlap

2
hard points + (1− ϵ) overlap points

Results. Figure A10 presents the overall accuracy for each noise type, while Figure A11, A12, A13
show the decomposed accuracy for each noise type. We can observe Mixed noise and hard noise
deteriorates data efficiency on overlap ratio as expected. Hard noise, purely adding randomly labeled
hard points, significantly drops data efficiency of overlap data points. Interestingly, while easy noise
has minimal impact at low error rates, it significantly degrades performance when the error rate is
high (ϵ ≥ 0.3). This degradation is due to the model assigning higher weights to easy features under
high easy noise conditions, leading the weak-to-strong model to over-rely on these features at high
error rates.
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Figure A14: Overlap density mechanism in weak supervision with XGBoost as the weak-to-strong model. The
red lines represent the accuracies of strong models trained on true labels, while the blue dashed lines indicate
the accuracies of weak models on the test set. The green dashed lines (Full W2S) show the accuracies of
weak-to-strong models trained on the entire pseudolabeled dataset. Lastly, the Controlled W2S lines represent
the accuracies of strong models trained on data with a controlled proportion of overlap density.

F.5 OVERLAP DENSITY MECHANISM WITHOUT NEURAL NETWORKS

One might assume that the overlap density mechanism is primarily a feature of deep neural network
architectures, given that our experiments mainly use deep neural networks as strong models. While
deep neural networks offer useful representations, we demonstrate that the overlap density mechanism
can also be shown even without the use of neural networks.

Setup. We adopt the same weak supervision experiment setup as in Section 5.1, except that we use
raw inputs for the overlap detection algorithm and XGBoost (Chen & Guestrin, 2016) as the strong
model.

Results. Figure A14 presents the experimental results. Although the outcomes appear noisier due
to the less powerful representations, which lead to a noisier overlap detection algorithm, we can still
observe that the overlap density mechanism is effective—improvements in the weak-to-strong model
correspond with increases in overlap density.

38



Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
0.50

0.55

0.60

0.65

0.70
cdr

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0
0.60

0.65

0.70

0.75

0.80

0.85
census

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

commercial

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75
imdb

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1.0
sms

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

0.90

0.95
spambase

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

tennis

Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

yelp
Weak
Strong
Full W2S
Controlled W2S

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

youtube

Weak
Strong
Full W2S
Controlled W2S

Overlap Density

Ac
cu

ra
cy

Figure A15: Overlap density mechanism in weak supervision with XGBoost as the weak-to-strong model
and transferred overlap points from 4-layer ReLU networks. The red lines represent the accuracies of strong
models trained on true labels, while the blue dashed lines indicate the accuracies of weak models on the test
set. The green dashed lines (Full W2S) show the accuracies of weak-to-strong models trained on the entire
pseudolabeled dataset. Lastly, the Controlled W2S lines represent the accuracies of strong models trained on
data with a controlled proportion of overlap density.

F.6 TRANSFERABILITY OF DETECTED OVERLAP DENSITY

Since overlap detection relies on the model’s representation, one might assume that overlap points are
model-dependent — different weak models and weak-to-strong models would have different overlap
points. However, we hypothesize that the overlap property is a latent property of data and therefore
the detected overlap points are transferable across models.

Setup. We use the same setup as in Section 5.1, except that overlap/non-overlap points are detected
using a 4-layer DNN trained on pseudolabels in Dw2s. and then the weak-to-strong model evaluation
is performed with XGBoost after training it on Dw2s.

Results. Figure A15 shows the experimental results. We can observe a similar trend to that in
Section 5.1, supporting our hypothesis.
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