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Abstract

This work studies the low-rank high-order tensor completion problem, which aims to exactly
recover a low-rank order-d (d ≥ 4) tensor from partially observed entries. Recently, tensor
Singular Value Decomposition (t-SVD)-based low-rank tensor completion has gained con-
siderable attention due to its ability to capture the low-rank structure of multidimensional
data. However, existing approaches often rely on the computationally expensive tensor nu-
clear norm (TNN), thereby limiting their scalability for real-world tensors. Leveraging the
low-rank structure under the t-SVD decomposition, we propose an efficient algorithm that
directly estimates the high-order tensor factors—starting from a spectral initialization—via
scaled gradient descent (ScaledGD). Theoretically, we rigorously establish the recovery guar-
antees of the proposed algorithm under mild assumptions, demonstrating that it achieves
linear convergence to the true low-rank tensor at a constant rate that is independent of the
condition number. Numerical experiments on both synthetic and real-world data verify our
results and demonstrate the superiority of our method.

1 Introduction

Tensors, or multidimensional arrays, are a natural representation of a wide range of real-world data, including
color videos, medical images, tomographic images, hyperspectral images, audio data and beyond. Compared
with representation using the vector/matrix structure, tensor provide a more powerful and flexible model
for characterizing the intrinsic structural information underlying multidimensional data and multi-way in-
teractions, and thus make it highly effective across a variety of applications, such as neuroscience (Ahmed
et al., 2020), data mining (Papalexakis et al., 2016), signal processing (Sidiropoulos et al., 2017), and com-
puter vision (Bibi & Ghanem, 2017; Zhang et al., 2021). Nevertheless, in many real-world applications, due
to the defects caused by the signal acquisition process, such as occlusions and sensor failures, tensor data
often suffer from information loss and noise corruptions. This motivates the two common tensor estimation
problems, namely, tensor completion and tensor robust PCA. Tensor completion, which aims to recover the
incomplete tensors from partial observations, has been widely studied in the literature; an incomplete list
of works in this regard includes Liu et al. (2013); Goldfarb & Qin (2014); Zhang & Aeron (2017); Bengua
et al. (2017); Lu et al. (2018); Zhou et al. (2018); Kong et al. (2018); Chen et al. (2019); Yuan et al. (2019);
Lu et al. (2019); Jiang & Ng (2019); Huang et al. (2020); Song et al. (2020); Qin et al. (2022); Wang et al.
(2022); Zhang & Ng (2022); Wang et al. (2023); Li et al. (2024); Qiu et al. (2024).

This problem is well studied in the matrix domain, where the goal is to exactly recover a low-rank matrix from
an incomplete observation (Candès & Recht, 2009; Chen, 2015). However, the tensor extension of matrix
completion is not an easy task because the tensor rank is not well defined. While there exist several different
definitions of tensor rank, each of which has its own limitations. For example, the CANDECOMP/PARAFAC
(CP) rank (Kiers, 2000), defined as the minimum number of factors in rank-one tensor decomposition, is
generally NP-hard to compute and its convex relaxation is intractable (Hillar & Lim, 2013). As an alternative,
the tractable Tucker rank (Tucker, 1966), is defined as a multilinear rank whose components are ranks of
tensor matricization for all modes. Furthermore, as a convex surrogate for the Tucker rank, the sum-of-
nuclear-norms (SNN) is defined as the sum of the nuclear norms of unfolding matrices (Liu et al., 2013). But
it is still suboptimal since SNN is not the tightest convex relaxation of the Tucker rank (Romera-Paredes
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& Pontil, 2013). There are some other definitions of tensor rank, we refer interested readers to Oseledets
(2011) and Zhao et al. (2016) for further pointers.

All the aforementioned tensor decompositions model low-rankness in the original domain. Recently, an
advanced tensor decomposition scheme called tensor singular value decomposition (t-SVD), induced by the
notion of tensor-tensor product (t-product) (Kilmer et al., 2013), has received growing interests. The t-SVD
factorizes a third-order tensor into the t-product of two orthogonal tensors and one f-diagonal tensor (also
called singular value tensor). Accordingly, a new tensor rank called tensor tubal rank is defined as the number
of nonzero singular tubes of the singular value tensor (Kilmer et al., 2013), and a new tensor nuclear norm
has been proposed for low-tubal-rank approximation and applied for tensor completion (Zhang & Aeron,
2017; Lu et al., 2018; 2019; Jiang et al., 2020) and tensor robust PCA (Lu et al., 2020; Lu, 2021). The major
advantage of t-SVD scheme over other tensor decomposition strategies in image processing applications is
its capability to characterize the low-rank structures in the Fourier domain for tensors, especially for those
tensors that have fixed orientation or certain spatial-shifting (Lu et al., 2020; Liu et al., 2020). In order to
deal with high-order tensor data, such as color videos and remote sensing images, Qin et al. (2022) put forth
a generic definition of high-order t-product based on any invertible linear transforms. Numerical examples
have demonstrated its efficacy in tensor completion (Qin et al., 2022; Wang et al., 2023). However, one
major shortcoming of these methods is that they rely on TNN and involve full t-SVD computation in each
iteration, thus the resulting optimization programs are computationally rather expensive to solve, even for
medium size tensors.

Our goal in this paper is to perform tensor completion based on the high-order t-SVD algebraic framework.
Motivated by the recent success of scaled gradient descent (ScaledGD) (Tong et al., 2021; 2022; Wu, 2025),
we propose a scaled gradient descent (ScaledGD) method for high-order tensor completion while maintaining
the low per-iteration computational complexity. Specifically, it first factorizes the low-rank tensor as the
high-order t-product of two factors with smaller sizes. These two factors are then updated by the scaled
gradient descent algorithm that avoids performing high-order t-SVD on a full-sized tensor. Theoretically,
we establish that ScaledGD can achieve linear convergence at a rate independent of the condition number of
the ground truth tensor, as long as the sample complexity is large enough. Experiments on both synthetic
and real-world data show the efficiency and effectiveness of the proposed algorithm.

Outline. Section 2 summarizes related work. Section 3 introduces the fundamental high-order t-SVD
framework. The main model and theory are given in Section 4. We present experimental results in Section 5
and provide concluding remarks in Section 6. All proof details are given in the Appendix.

2 Related Work

Significant efforts have been devoted to understanding nonconvex optimization for low-rank matrix comple-
tion in recent years (Mishra et al., 2012; Tanner & Wei, 2016). To deal with multi-way data, while one could
reshape the tensor into a large-scale matrix and apply matrix completion algorithms, such a preprocessing
inevitably breaks the high-order information of the original tensor and can degrade the recovery performance.
Common tensor decompositions include CP (Kolda & Bader, 2009), Tucker (Tucker, 1966), HOSVD (Lath-
auwer et al., 2000), t-SVD Kilmer et al. (2013); Zhang et al. (2014); Qin et al. (2022), and tensor networks
(e.g., tensor tree, tensor train, tensor ring) (Oseledets, 2011; Ballani & Grasedyck, 2014; Zhao et al., 2016).
Our work rests on the (high-order) t-SVD, which has proven to be highly effective in various image/video
processing applications because it can exploit the low-rank structure in the frequency domain. Under the
t-SVD framework, theoretical guarantee for the exact recovery has been provided for the third-order tensor
completion problem in Zhang & Aeron (2017); Lu et al. (2018), which has been further extended by replac-
ing the Discrete Fourier Transform (DFT) conducted along the third dimension by general choices of the
invertible linear transforms (Lu et al., 2019). For high-order tensor completion, a low t-SVD rank tensor
completion model with theoretical guarantee under the order-d t-SVD framework has been studied in Qin
et al. (2022). While these approaches have been incredibly successful in many applications, an important
shortcoming is that they are not scalable to large-scale tensor data due to the heavy t-SVD computational
overhead required in each iteration.
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To alleviate this issue, decomposition-based approaches have gained considerable attention, which depict the
low-rank structure of a tensor by factorizing it into the t-product of two smaller tensors. Motivated by TNN,
a low-rank tensor factorization method is proposed in Zhou et al. (2018) for solving the third-order tensor
completion problem, and the proposed alternating minimization algorithm is proved to converge to a Karush-
Kuhn-Tucker (KKT) point. Recently, Wu (2025) extended ScaledGD (Tong et al., 2021) to the low-rank
tensor estimation problem under the t-SVD decomposition and provided the theoretical recovery guarantee.
These approaches are only relevant to third-order tensors. Our work can be considered an extension of Wu
(2025) to the high-order tensor completion problem.

3 Notations and Preliminaries

In this paper, we use bold calligraphic letters for tensors, e.g., A, bold uppercase letters for matrices,
e.g., A, bold lowercase letters for vectors, e.g., a, and non-bold letters for scalars, e.g., a. Throughout
this paper, the fields of real number and complex number are denoted as R and C, respectively. For an
order-d tensor A ∈ Rn1×n2×···×nd , its (i1, i2, . . . , id)-th element is represented as Ai1,...,id

. We denote the
horizontal slices of A as A(i1, :, . . . , :). We denote the (i3, . . . , id)-th frontal slice of A as A(:, :, i3, . . . , id),
which is also written as A(i3,...,id). All these frontal slices can be indexed using a single index j, where the
j-th frontal slice Aj , with j = (id − 1)n3 . . . nd−1 + · · · + (i4 − 1)n3 + i3, corresponds to A(i3,...,id). Then
bdiag(A) = diag(A1, A2, . . . , AJ−1, AJ) ∈ Rn1n3...nd×n2n3...nd , where J = n3 · · · nd, is the block diagonal
matrix constructed by all frontal slices.

The Frobenius and infinity norms of a tensor A are defined as ∥A∥F =
√∑

i1,...,id
|Ai1,...,id

|2 and ∥A∥∞ =
maxi1,...,id

|Ai1,...,id
|, respectively. The spectral norm of a matrix A is denoted as ∥A∥ = maxi σi(A), where

σi(A)’s are the singular values of A. In particular, we use σmin and σmax to denote the minimum and
maximum singular value of a matrix, respectively. The matrix nuclear norm of A is ∥A∥∗ =

∑
i σi(A). It

is often convenient to unfold a tensor into a matrix. A mode-k unfolding of a tensor A ∈ Rn1×n2×···×nd is
defined as unfoldk(A) = A(k) ∈ Rnk×(n1...nk−1nk+1...nd), and the reverse of this process is called mode-k
folding, such that foldk(A(k)) = A. The conjugate transpose of a matrix A ∈ Cn1×n2 is denoted by A∗. The
n×n identity matrix is denoted by In. We denote a∨b = max{a, b}, a∧b = min{a, b}, and [a] := {1, 2, . . . , a}.
Further, f(n) ≳ g(n) (resp., f(n) ≲ g(n)) means |f(n)|/|g(n)| ≥ c (resp., |f(n)|/|g(n)| ≤ c) for some constant
c > 0 when n is sufficiently large.
Definition 1 (mode-k product (Kolda & Bader, 2009)). The mode-k product of a tensor A ∈ Rn1×n2×···×nd

with a matrix M ∈ Rp×nk is a tensor whose mode-k unfolding is M multiplied with the mode-k unfolding
of A, i.e.,

A ×k M := fold(MA(k)),

where fold(MA(k)) ∈ Rn1×···×nk−1×p×nk+1×···×nd .
Definition 2 (Facewise product (Qin et al., 2022)). The facewise product of two order-d tensors A ∈
Rn1×p×n3×···×nd and B ∈ Rp×n2×n3×···×nd is a tensor C = A△B ∈ Rn1×n2×n3×···×nd , where each frontal
slice of C is the matrix multiplication of the corresponding frontal slices of A and B, i.e.,

C(i3,...,id) = A(i3,...,id)B(i3,...,id)

for ik ∈ [nk], k = 3, . . . , d.

Before introducing the order-d t-product, we define the linear transform L(·) : Rn1×n2×···×nd →
Cn1×n2×···×nd associated with a set of invertible matrices {Uk ∈ Cnk×nk }d

k=3 with inverse mapping L−1(·)
as AL := L(A) = A×3 Un3 ×· · ·×d Und

and L−1(A) := A×d U−1
nd

×· · ·×3 U−1
n3

satisfying L−1(L(A)) = A.
In this work, the transform matrices {Unk

}d
k=3 of L are assumed to satisfy

(U∗
nd

⊗ U∗
nd−1

⊗ · · · ⊗ U∗
n3

) · (Und
⊗ Und−1 ⊗ · · · ⊗ Un3)

= (Und
⊗ Und−1 ⊗ · · · ⊗ Un3) · (U∗

nd
⊗ U∗

nd−1
⊗ · · · ⊗ U∗

n3
)

= ℓIn3...nd
, (1)
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where ⊗ denotes the Kronecker product and ℓ > 0 is specific scale factor corresponding to the transform.
For example, ℓ = n3 · · · nd for discrete fourier transform (DFT) matrices, since U∗

nk
Unk

= nkInk
, and ℓ = 1

for discrete cosine transform (DCT) matrices, since U∗
nk

Unk
= Ink

, k = 3, . . . , d.
Definition 3 (t-product (Qin et al., 2022)). Let A ∈ Rn1×p×n3×···×nd and B ∈ Rp×n2×n3×···×nd , then the
t-product C := A ∗L B under the invertible transform L is defined as

C := A ∗L B = L−1(L(A)△L(B)). (2)

Definition 4 (Conjugate transpose (Qin et al., 2022)). The conjugate transpose of a tensor A ∈
Cn1×n2×n3×···×nd is the tensor AT ∈ Cn2×n1×n3×···×nd such that AT (:, :, i3, . . . , id) = (A(:, :, i3, . . . , id))∗ for
all ik ∈ [nk], k = 3, . . . , d.
Definition 5 (Identity tensor (Qin et al., 2022)). The order-d identity tensor In ∈ Rn×n×n3×···×nd is the
tensor such that IL(:, :, i3, . . . , id) = In for ik ∈ [nk], k = 3, . . . , d.
Definition 6 (Orthogonal tensor (Qin et al., 2022)). A tensor Q ∈ Cn×n×n3×···×nd is orthogonal if Q ∗L
QT = QT ∗L Q = In.
Definition 7 (f-diagonal tensor (Qin et al., 2022)). A tensor A ∈ Rn1×n2×···×nd is called f-diagonal if all
the frontal slices of A are diagonal matrices.
Definition 8 (Tensor inverse). For an arbitrary tensor A ∈ Rr×r×n3×···×nd , its inverse is defined as a
tensor A−1 ∈ Rr×r×n3×···×nd which satisfies A ∗L A−1 = A−1 ∗L A = Ir. The set of invertible tensors in
Rr×r×n3×···×nd is denoted by GL(r).
Definition 9 (Tensor ℓ2,∞-norm). The tensor ℓ2,∞-norm of A ∈ Rn1×n2×···×nd is defined as ∥A∥2,∞ =
maxi1 ∥A(i1, :, :, . . . , :)∥F .
Theorem 1 (tensor singular value decomposition (t-SVD) (Qin et al., 2022)). For any order-d tensor
A ∈ Rn1×n2×···×nd , it can be decomposed as

A = U ∗L S ∗L VT , (3)

where U ∈ Rn1×n1×n3×···×nd and V ∈ Rn2×n2×n3×···×nd are orthogonal tensors, and S ∈ Rn1×n2×n3×···×nd

is a rectangular f-diagonal tensor.

One can obtain t-SVD efficiently by performing matrix SVDs in the transformed domain as shown in Al-
gorithm 1. The entries on the diagonal of the first frontal slice S(:, :, 1, . . . , 1) of S have the decreasing
property, i.e., S1,1,1,...,1 ≥ S2,2,1,...,1 ≥ · · · ≥ Sn′,n′,1,...,1, where n′ = min{n1, n2}. The diagonal entries of
SL(:, :, i3, . . . , id) correspond to the singular values of AL(:, :, i3, . . . , id).
Definition 10 (Tensor multi-rank (Qin et al., 2022)). The multi-rank of a tensor A ∈ Rn1×n2×···×nd with
respect to the invertible transforms L is a vector r ∈ Rn3···nd , in which the i-th element of r equals to the
rank of the i-th block of bdiag(AL).
Definition 11 (t-SVD rank (Qin et al., 2022)). Let A = U ∗L S ∗L VT be the t-SVD of A, its t-SVD rank
rankt-SVD(A) is defined as

rankt-SVD(A) = #{i : S(i, i, :, . . . , :) ̸= 0},

where # denotes the cardinality of a set.
Definition 12 (tensor nuclear norm (Qin et al., 2022)). Let A ∈ Rn1×n2×···×nd , the tensor nuclear norm of
A is defined as

∥A∥⊛,L := 1
ℓ

n3∑
i3=1

· · ·
nd∑

id=1
∥AL(:, :, i3, . . . , id)∥∗,

where ∥ · ∥∗ denotes the nuclear norm of a matrix.

4 Main Results

In this section, we introduce ScaledGD for high-order tensor completion and establish its performance guar-
antee.
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Algorithm 1 t-SVD for order-d tensors (Qin et al., 2022)
Input: A ∈ Rn1×n2×···×nd and the corresponding matrices {Unk

}d
k=3 of invertible transform L.

1: AL = L(A).
2: Compute each frontal slice of UL, SL and VL from AL by
3: for i3 ∈ [n3], . . . , id ∈ [nd] do
4: [U , S, V ] = SVD(AL(:, :, i3, . . . , id)),
5: UL(:, :, i3, . . . , id) = U , SL(:, :, i3, . . . , id) = S, VL(:, :, i3, . . . , id) = V .
6: end for
7: U = L−1(UL), S = L−1(SL), V = L−1(VL).

Output: t-SVD components U , S and V such that A = U ∗L S ∗L VT .

4.1 Problem Formulation

Suppose that the ground truth t-SVD rank-r tensor X ⋆ ∈ Rn1×n2×···×nd admits the following compact
t-SVD decomposition X ⋆ = U⋆ ∗L S⋆ ∗L VT

⋆ , where U⋆ ∈ Rn1×r×n3×···×nd , V⋆ ∈ Rn2×r×n3×···×nd , and
S⋆ ∈ Rr×r×n3×···×nd . We define its top-r tensor factors as

L⋆ = U⋆ ∗L S
1
2
⋆ and R⋆ = V⋆ ∗L S

1
2
⋆

so that X ⋆ = L⋆ ∗L RT
⋆ . Here, the “square root” of a tensor A, denoted by A

1
2 , is obtained by setting

A
1
2 := B = L−1(BL), where the (i3, . . . , id)-th frontal slice of BL as BL(:, :, i3, . . . , id) = (AL(:, :, i3, . . . , id)) 1

2

for all ik ∈ [nk], k = 3, . . . , d.

Assume that we have observed a subset Ω of the entries of X ⋆, denoted by PΩ(X ⋆), where PΩ(·) represents
a linear operator such that

[PΩ(X )]i1,...,id
=

{
X i1,...,id

, if (i1, . . . , id) ∈ Ω,
0, otherwise.

Here, Ω is generated according to the Bernoulli model in the sense that Ω = {(i1, . . . , id)|δi1...id
= 1}, where

δi1...id
’s are independent and identically distributed (i.i.d.) variables taking value one with probability p.

In this setting, we denote that Ω ∼ Ber(p). The problem of tensor completion is to recover the underlying
low t-SVD rank tensor X from the partial observations PΩ(X ⋆). To estimate X ⋆ more efficiently, we
parameterize X = L ∗L RT by two low-rank factors L ∈ Rn1×r×n3×···×nd and R ∈ Rn2×r×n3×···×nd as in
Tong et al. (2021); Wu (2025) and solve the following optimization problem:

min
L∈Rn1×r×n3×···×nd

R∈Rn2×r×n3×···×nd

f(L, R) = 1
2p

∥PΩ(L ∗L RT − X ⋆)∥2
F . (4)

Obviously, the tensor completion problem is ill-posed without imposing additional constraints on the low-
rank tensor X ⋆, which are crucial in determining the performance of the proposed algorithm. We first
introduce the incoherence parameter of the tensor X ⋆.
Definition 13 (Incoherence). For X ⋆ ∈ Rn1×n2×···×nd with t-SVD rank r, assume that it has the skinny
t-SVD X ⋆ = U⋆ ∗L S⋆ ∗L VT

⋆ . Then X ⋆ is said to satisfy the tensor incoherence conditions with parameter
µ if

max
i1∈[n1]

∥UT
⋆ ∗L e̊

(i1)
1 ∥F ≤

√
µr

n1ℓ
and max

i2∈[n2]
∥VT

⋆ ∗L e̊
(i2)
2 ∥F ≤

√
µr

n2ℓ
. (5)

Here, e̊(i1)
1 is the order-d tensor mode-1 basis of size n1 × 1 × n3 × · · · × nd with its (i1, 1, 1, . . . , 1)-th entry

equaling to 1 and the rest equaling to 0, and e̊
(i2)
2 := (̊e(i2)

1 )T is the mode-2 basis.
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Next, for X ⋆ = U⋆ ∗L S⋆ ∗L VT
⋆ with multi-rank r, we define the following two important singular values of

tensor X ⋆ as

σ̄1(X ⋆) = max{[SL]i,i,i3,...,id
|[SL]i,i,i3,...,id

> 0, i ≤ min{n1, n2}, ik ∈ [nk], k = 3, . . . , d}
and σ̄sr

(X ⋆) = min{[SL]i,i,i3,...,id
|[SL]i,i,i3,...,id

> 0, i ≤ min{n1, n2}, ik ∈ [nk], k = 3, . . . , d},

where sr =
∑n3···nd

k=1 rk. Then the condition number κ of X ⋆ is defined as

κ := σ̄1(X ⋆)/σ̄sr
(X ⋆).

4.2 Proposed Algorithm

To minimize (4), our ScaledGD algorithm consists of two parts: (a) Spectral initialization and (b) Scaled
gradient updates. We start with initializing L and R by setting L0 = U0 ∗L S

1
2
0 and R0 = V0 ∗L S

1
2
0 , where

U0 ∗L S0 ∗L VT
0 is the best t-SVD rank-r approximation of 1

p PΩ(X ⋆). Next, we update the tensor factors
iteratively along the scaled gradient directions:

Lt+1 = Lt − η∇Lf(Lt, Rt) ∗L (RT
t ∗L Rt)−1,

Rt+1 = Rt − η∇Rf(Lt, Rt) ∗L (LT
t ∗L Lt)−1, (6)

where η > 0 is the learning rate and ∇Lf(Lt, Rt) (resp., ∇Rf(Lt, Rt)) denotes the gradient of f with
respect to Lt (resp., Rt) at the t-th iteration. To guarantee good performance from partial observations,
the underlying low-rank tensor X ⋆ needs to be incoherent (cf. Definition 13) to avoid ill-posedness. Similar
to the matrix case (Chen & Wainwright, 2015), we trim the all the horizontal slices of L and R after the
gradient update. To be specific, we introduce the scaled projection as follows (Tong et al., 2021; Wu, 2025):

PB

( [
L̃
R̃

] )
=

[
L
R

]
,

where B > 0 is the projection radius, and

L(i, :, . . . , :) =
(

1 ∧ B
√

n1∥L̃(i, :, . . . , :) ∗L R̃
T

∥F

)
L̃(i, :, . . . , :), i ∈ [n1],

and R(j, :, . . . , :) =
(

1 ∧ B
√

n2∥R̃(j, :, . . . , :) ∗L L̃
T

∥F

)
R̃(j, :, . . . , :), j ∈ [n2]. (7)

We now present our ScaledGD algorithm for high-order tensor completion in Algorithm 2.

Theoretical guarantees. The following theorem states that ScaledGD converges linearly at a constant
rate as long as the sample size is sufficiently large. In the following, we denote n(1) := max{n1, n2} and
n(2) := min{n1, n2}.

Theorem 2. Suppose that X ⋆ is µ-incoherent, and that p satisfies p ≥ C( 1
ℓ ∨ µrκ4ℓ)µr log(n(1)ℓ)/n(2) for

some sufficiently large constant C. Set the projection radius as B = CB

√
µr
ℓ σ̄1(X ⋆) for some constant

CB ≥ 1.02. If the step size obeys 0 < η ≤ 2/3, then with high probability, for all t ≥ 0, the iterates of
ScaledGD in (9) satisfy

dist(F t, F⋆) ≤ (1 − 0.6η)t0.02σ̄sr
(X ⋆) and ∥Lt ∗L RT

t − X ⋆∥F ≤ (1 − 0.6η)t0.03σ̄sr
(X ⋆).

Theorem 2 establishes that the distance dist(F t, F⋆) contracts linearly at a constant rate, as long as the
sample probability satisfies p ≳ ( 1

ℓ ∨µrκ4ℓ)µr log(n(1)ℓ)/n(2). To reach ϵ-accuracy, i.e., ∥Lt ∗LRT
t −X ⋆∥F ≤

ϵσ̄sr (X ⋆), ScaledGD takes at most O(log(1/ϵ)) iterations, which is independent of κ.
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Algorithm 2 ScaledGD for order-d tensor completion with spectral initialization
Input: Partially observed data tensor PΩ(X ⋆), the corresponding matrices {Unk

}d
k=3 of invertible transform

L, the t-SVD rank r, learning rate η, and maximum number of iterations T .
Spectral initialization: Let U0 ∗L S0 ∗L VT

0 be the top-r t-SVD of 1
p PΩ(X ⋆), and set

[
L0
R0

]
= PB

( [
U0 ∗L S

1
2
0

V0 ∗L S
1
2
0

] )
. (8)

Scaled gradient updates: for t = 0, 1, . . . , T − 1 do[
Lt+1
Rt+1

]
= PB

( [
Lt − η

p PΩ(Lt ∗L RT
t − X ⋆) ∗L Rt ∗L (RT

t ∗L Rt)−1

Rt − η
p PΩ(Lt ∗L RT

t − X ⋆)T ∗L Lt ∗L (LT
t ∗L Lt)−1

] )
. (9)

Output: The recovered low-rank tensor X T = LT ∗L RT
T .

4.3 Proof Outline

In this section, we sketch the proof of our main theorem. First of all, to track the progress of ScaledGD
throughout the entire trajectory, we use the same distance metric as in Wu (2025) to resolve the ambiguity
in the t-SVD decomposition.

Definition 14 (Distance metric). Let F =
[

L
R

]
∈ R(n1+n2)×r×n3×···×nd and F⋆ =

[
L⋆

R⋆

]
∈

R(n1+n2)×r×n3×···×nd , denote

dist(F , F⋆) =
√

inf
Q∈GL(r)

∥(L ∗L Q − L⋆) ∗L S
1
2
⋆ ∥2

F + ∥(R ∗L Q−T − R⋆) ∗L S
1
2
⋆ ∥2

F . (10)

If the infimum is attained at the argument Q, it is called the optimal alignment tensor between F and F⋆.

We start with the following lemma that ensures the scaled projection in (7) satisfies both non-expansiveness
and incoherence under the scaled metric.
Lemma 3. Suppose that X ⋆ is µ-incoherent, and dist(F̃ , F⋆) ≤ ϵ√

ℓ
σ̄sr (X ⋆) for some ϵ < 1. Set B ≥

(1 + ϵ)
√

µr
ℓ σ̄1(X ⋆), then PB(F̃) satisfies the non-expansiveness

dist(PB(F̃), F⋆) ≤ dist(F̃ , F⋆),

and the incoherence condition
√

n1∥L ∗L RT ∥2,∞ ∨
√

n2∥R ∗L LT ∥2,∞ ≤ B.

Our next lemma states that as long as the sample complexity is large enough and the parameter B is set
properly, the local convergence of Algorithm 2 is guaranteed.
Lemma 4. Suppose that X ⋆ is µ-incoherent, and p ≥ C( 1

ℓ ∨ µrκ4ℓ)µr log(n(1)ℓ)/n(2) for some sufficiently
large constant C. Set the projection radius as B = CB

√
µr
ℓ σ̄1(X ⋆) for some constant CB ≥ 1.02. Under

an event G which happens with high probability (i.e., at least 1 − c1(n1 ∨ n2)c2), if the t-th iterate satisfies
dist(F t, F⋆) ≤ 0.02√

ℓ
σ̄sr (X ⋆), and the incoherence condition

√
n1∥Lt ∗L RT

t ∥2,∞ ∨
√

n2∥Rt ∗L LT
t ∥2,∞ ≤ B,

then ∥Lt ∗LRT
t −X ⋆∥F ≤ 1.5dist(F t, F⋆). In addition, if the step size obeys 0 < η ≤ 2/3, then the (t+1)-th

iterate F t+1 of the ScaledGD method in (9) of Algorithm 2 satisfies

dist(F t+1, F⋆) ≤ (1 − 0.6η)dist(F t, F⋆),

7
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and the incoherence condition
√

n1∥Lt+1 ∗L RT
t+1∥2,∞ ∨

√
n2∥Rt+1 ∗L LT

t+1∥2,∞ ≤ B.

As long as we can find an initialization that is close to the ground truth and satisfies the incoherence
condition, Lemma 4 ensures that the iterates of ScaledGD remain incoherent and converge linearly. Such an
initialization can be ensured via the spectral method, as stated below.
Lemma 5. Suppose that X ⋆ is µ-incoherent, then with high probability, the spectral initialization before

projection F̃0 :=
[

U0 ∗L S
1
2
0

V0 ∗L S
1
2
0

]
in (8) satisfies

dist(F̃0, F⋆) ≤ c
(µr log(n(1)ℓ)

p
√

n1n2ℓ
+

√
µr log(n(1)ℓ)

n(2)pℓ

)
5
√

sr

ℓ
κσ̄sr (X ⋆).

Therefore, as long as p ≥ Cµrsrκ2 log(n(1)ℓ)/(n(2)ℓ
2) for some sufficiently large constant C, the initial

distance satisfies dist(F̃0, F⋆) ≤ 0.02√
ℓ

σ̄sr
(X ⋆). One can then invoke Lemma 3 to see that F0 = PB(F̃0)

meets the conditions required in Lemma 4 due to the non-expansiveness and incoherence properties of the
projection operator. The proofs of the three supporting lemmas can be found in the Appendix.

5 Numerical Experiments

In this section, we present several experimental results on both synthetic and real data.

5.1 Synthetic Data Experiments

First, we verify the theoretical guarantee of order-d tensor completion in Theorem 2 through numeri-
cal simulations. In this experiment, we adopt Discrete Fourier Transform (DFT) and Discrete Cosine
Transform (DCT) as the two invertible linear transforms. In order to generate the ground truth tensor
X ⋆ ∈ Rn×n×n3×···×nd with rankt-SVD(X ⋆) = r, we first generate an n × r × n3 × · · · × nd tensor with i.i.d.
random signs, and take its r left singular tensors as U⋆, and similarly for V⋆. We then set the diagonal
entries in each frontal slice of the f-diagonal tensor S⋆,L ∈ Rr×r×n3×···×nd to be linearly distributed from 1
to 1/κ. In this way, the low-rank tensor generated by X ⋆ = U⋆ ∗L S⋆ ∗L VT

⋆ will have the specified condition
number κ and t-SVD rank r. In our experiment, we set d = 4, n = 100, n3 = n4 = 50 and r = 10. Then we
randomly sample pn2n3n4 elements with probability p = 0.4 from X ⋆ to construct the known observations.
The observation is Y = PΩ(X ⋆ + W), where Wi1,i2,i3,i4 ∼ N (0, σ2

w) composed of i.i.d. Gaussian entries.

We compare the iteration complexity of ScaledGD against vanilla gradient descent (GD) with the same
spectral initialization, and we use the following update rule of vanilla GD as

Lt+1 = Lt − ηGD∇Lf(Lt, Rt) and Rt+1 = Rt − ηGD∇Rf(Lt, Rt),

where ηGD = η/σ̄1(X ⋆). We perform the scaled gradient updates without projections.

Figure 1 depicts the speeds of convergence for ScaledGD and vanilla GD under different step sizes in the
noiseless setting, i.e., W = 0, where we run both algorithms for at most 300 iterations (the algorithm is
terminated if the relative error exceeds 102) and plot the relative reconstruction error ∥X T − X ⋆∥F /∥X ⋆∥F

after these 300 iterations. It can be seen that even when the step size of vanilla GD is tuned to achieve its
best performance, ScaledGD still performs much better than vanilla GD. Hence, we will fix η = 0.5 for the
rest of the comparisons between ScaledGD and vanilla GD.

Figure 2 shows the relative reconstruction error ∥X t − X ⋆∥F /∥X ⋆∥F of the two algorithms with respect to
the iteration count and running time (in seconds) under different condition numbers κ = 1, 5, 10, 20 for the
two transforms. This experiment verifies our theoretical finding that ScaledGD converges rapidly at a rate
independent of κ, and this rate is the same as the one for vanilla GD under perfect conditioning κ = 1. Given

8
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(b) DCT

Figure 1: The relative errors of ScaledGD and vanilla GD after 300 iterations with respect to different step
sizes η from 0.1 to 1.2 under different condition numbers κ = 1, 5, 10, 20 with n = 100, r = 10, and p = 0.4.
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Figure 2: The relative errors of ScaledGD and vanilla GD with respect to (a/c) the iteration count and (b/d)
run time (in seconds) under different condition numbers κ = 1, 5, 10, 20 with n = 100, r = 10, and p = 0.4.

that ScaledGD adds little overhead to the gradient computation, ScaledGD runs slightly slower than vanilla
GD κ = 1. However, the convergence rate of vanilla GD collapses quickly when κ is even at a moderate
level. It then turns out that ScaledGD carries over to the run time when κ > 1.

Next, we move to show that ScaledGD is robust to small additive noise. We denote the signal-to-noise
ratio as SNR := 10 log10

∥X ⋆∥2
F

n2n3n4σ2
w

in dB. We plot the relative error ∥X t − X ⋆∥F /∥X ⋆∥F with respect to
the iteration count t in Figure 3 under κ = 10 and various SNR = 40, 60, 80dB. We can see that ScaledGD
converges much faster than vanilla GD and its convergence speed is not influenced by the noise levels.

9



Under review as submission to TMLR

0 100 200 300 400 500 600 700 800 900 1000

Iteration count

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 e

rr
o
r

(a) DFT

0 100 200 300 400 500 600 700 800 900 1000

Iteration count

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 e

rr
o
r

(b) DCT

Figure 3: The relative errors of ScaledGD and vanilla GD with respect to the iteration count under signal-
to-noise ratios SNR = 40, 60, 80dB with n = 100, κ = 10, r = 10, and p = 0.4.

Table 1: The PSNR, FSIM values and running time (in seconds) for StarPlus dataset.

Methods SR = 10% SR = 20% SR = 30%
PSNR FSIM Time PSNR FSIM Time PSNR FSIM Time

HTNN-DFT 44.91 0.936 1945.0 45.63 0.943 1915.9 46.42 0.950 1812.7
HTNN-DCT 44.86 0.936 1997.2 45.57 0.943 1939.6 46.36 0.950 1817.4

ScaledGD-DFT 44.17 0.933 400.9 43.93 0.938 401.2 44.29 0.943 401.1
ScaledGD-DCT 44.16 0.932 513.4 43.92 0.938 518.2 44.28 0.943 518.2

5.2 Real Data Experiments

In this subsection, we compare the performance of ScaledGD with a tensor completion model that minimizes
the order-d TNN (HTNN) (Qin et al., 2022) using the StarPlus fMRI dataset 1, which was collected Carnegie
Mellon University’s Center for Cognitive Brain Imaging. We again use two different linear transforms for
ScaledGD, i.e., DFT and DCT. The corresponding methods of ScaledGD are called ScaledGD-DFT and
ScaledGD-DCT for short. The StarPlus fMRI dataset includes 6 subjects with 80 trials for every single
subject. Each trial is composed of a series of fMRI scans over a period of 16 time intervals spaced out
over 500 milliseconds, where the subject is either reading a sentence or viewing a picture. The fMRI scan
taken at each time slot consists of 8 axial slices with dimensions of 64 × 64 pixels. We orient the tensor
such that the the trials are indexed in the second dimension, resulting in X ⋆ ∈ R64×480×64×8×16. We then
add white Gaussian noise W with Wi1,...,i5 ∼ N (0,

∥X ⋆∥2
F

104n1...n5
) to the tensor X ⋆, which results in SNR of

10 log10
∥X ⋆∥2

F

∥W∥2
F

= 40dB. The sampling ratio (SR) is set to be SR = [10%, 20%, 30%]. The t-SVD rank r

in ScaledGD is set to be 10. To evaluate the tensor completion performance between the approximated
tensor X̂ and the original one X ⋆, we adopt two metrics, namely, the Peak Signal-to-Noise Ratio (PSNR2)
and the feature similarity (FSIM) (Zhang et al., 2011) (We also use the structural similarity (SSIM) (Wang
et al., 2004) as the evaluation metric, and it is 1 for all the methods). It can be inferred from Table 1 that
ScaledGD consumes less than a quarter of the computational time of HTNN but can achieve comparable
performance to HTNN, which suggests an appealing paradigm for large-scale datasets.

6 Conclusion

In this paper, we proposed a scaled gradient descent (ScaledGD) algorithm for high-order tensor completion
based upon the high-order t-SVD framework. The proposed algorithm has provable exact recovery and linear
convergence guarantees, leading to a highly scalable approach especially when the ground truth tensor is

1https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
2PSNR = 10 log10(n1 × · · · × nd∥X ⋆∥2

∞/∥X ⋆ − X̂ ∥2
F ).
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ill-conditioned. Extensive experimental results on synthetic and real data demonstrated the superiority of
our method.
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A Proof of Main Result

In this section, we provide detailed proofs of the main result in Theorem 2. We first give some definitions
and properties which will be used in the proofs.

A.1 Technical Lemmas

This section gathers several technical lemmas that will be used in the proofs. We use bold calligraphic letters
with arrows on top to denote tensor columns of size n1 × 1 × n3 × · · · × nd, e.g., −→

A. We define the ℓ∞,2-norm
and ℓ2♢∞-norm of a tensor A ∈ Rn1×···×nd as

∥A∥∞,2 = max{max
i1

∥A(i1, :, . . . , :)∥F , max
i2

∥A(:, i2, . . . , :)∥F },
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and ∥A∥2♢∞ = maxi1,i3,...,id
∥A(i1, :, i3, . . . , id)∥F , respectively. The spectral norm of A ∈ Rn1×···×nd is

defined as ∥A∥ = ∥bdiag(AL)∥.

A.1.1 Tensor Algebra

We begin with introducing some relevant algebraic properties of t-SVD. Based on the assumption (1), we
have the following properties:

∥A∥F = 1√
ℓ
∥bdiag(AL)∥F and ⟨A, B⟩ = 1

ℓ
⟨bdiag(AL), bdiag(BL)⟩. (11)

Definition 15. Let M ∈ Rn1×···×nd with rankt-SVD(M) = r and its skinny t-SVD be M = U ∗L S ∗L VT .
Define T by the set

T = {U ∗L ZT + W ∗L VT |Z ∈ Rn2×r×n3×···×nd , W ∈ Rn1×r×n3×···×nd}, (12)

and by T ⊥ its orthogonal complement.
Lemma 6. Let A ∈ Rn1×n2×n3×···×nd and B ∈ Rn4×n2×n3×···×nd be two tensors, then

∥A ∗L BT ∥∞ ≤
√

ℓ∥A∥2,∞∥B∥2,∞.

Proof. By the definition of the high-order t-product, we have

∥A ∗L BT ∥∞ = max
i1,i2

∥
n2∑

j=1
A(i1, j, :, . . . , :) ∗L B(i2, j, :, . . . , :)T ∥∞

≤ max
i1,i2

∥
n2∑

j=1
A(i1, j, :, . . . , :) ∗L B(i2, j, :, . . . , :)T ∥F

≤ max
i1,i2

n2∑
j=1

∥A(i1, j, :, . . . , :) ∗L B(i2, j, :, . . . , :)T ∥F

= max
i1,i2

n2∑
j=1

1√
ℓ
∥bdiag(AL(i1, j, :, . . . , :)) · bdiag(BL(i2, j, :, . . . , :)T )∥F .

Notice that each frontal slice of AL(i1, j, :, . . . , :) and BL(i2, j, :, . . . , :) are just scalars, thus both
bdiag(AL(i1, j, :, . . . , :)) ∈ Cn3...nd×n3...nd and bdiag(BL(i2, j, :, . . . , :)T ) ∈ Cn3...nd×n3...nd are diagonal ma-
trices. Hence

∥A ∗L BT ∥∞ ≤ max
i1,i2

n2∑
j=1

1√
ℓ
∥bdiag(AL(i1, j, :, . . . , :))∥F ∥bdiag(BL(i2, j, :, . . . , :)T )∥F

= max
i1,i2

n2∑
j=1

√
ℓ∥bdiag(A(i1, j, :, . . . , :))∥F ∥bdiag(B(i2, j, :, . . . , :))∥F

≤ max
i1,i2

√
ℓ∥A(i1, :, . . . , :)∥F ∥B(i2, :, . . . , :)∥F

≤
√

ℓ∥A∥2,∞∥B∥2,∞.

Lemma 7. Let A ∈ Rn1×n2×n3×···×nd and B ∈ Rn4×n2×n3×···×nd be two tensors. Assume the multi-rank of
B is r and let sr =

∑n3···nd

k=1 rk, then

∥A ∗L B∥F ≥ ∥A∥F σ̄sr
(B) and ∥A ∗L B∥F ≤ ∥A∥F ∥B∥.

Moreover,

∥A ∗L B∥2,∞ ≥ ∥A∥2,∞σ̄sr
(B) and ∥A ∗L B∥2,∞ ≤ ∥A∥2,∞∥B∥.

Proof. The proof is identical to that for Lemma 10 of Wu (2025).

14



Under review as submission to TMLR

A.1.2 Distance Metric

Lemma 8. Fix any factor tensor F =
[

L
R

]
∈ R(n1+n2)×r×n3×···×nd . Suppose that

dist(F , F⋆) <
1√
ℓ
σ̄sr

(X ⋆), (13)

then the optimal alignment tensor Q between F and F⋆ exists.

Proof. Given the condition (13), one knows that there must exist a tensor Q̃ ∈ GL(r) such that∥∥∥(
bdiag(L(L)) · bdiag(L(Q̃)) − bdiag(L(L⋆))

)
· bdiag(L(S− 1

2
⋆ )) · bdiag(L(S⋆))

∥∥∥2

F

+
∥∥∥(

bdiag(L(R)) · bdiag(L(Q̃
−T

)) − bdiag(L(R⋆))
)

· bdiag(L(S− 1
2

⋆ )) · bdiag(L(S⋆))
∥∥∥2

F

=ℓ(∥(L ∗L Q̃ − L⋆) ∗L S
1
2
⋆ ∥2

F + ∥(R ∗L Q̃
−T

− R⋆) ∗L S
1
2
⋆ ∥2

F )
≤ϵ2σ̄2

sr
(X ⋆)

for some ϵ obeying 0 < ϵ < 1. In light of the relation ∥AB∥F ≥ ∥A∥F σmin(B),∥∥∥(
bdiag(L(L)) · bdiag(L(Q̃)) − bdiag(L(L⋆))

)
· bdiag(L(S− 1

2
⋆ ))

∥∥∥2

F

+
∥∥∥(

bdiag(L(R)) · bdiag(L(Q̃
−T

)) − bdiag(L(R⋆))
)

· bdiag(L(S− 1
2

⋆ ))
∥∥∥2

F
≤ ϵ2.

It further implies that∥∥∥(
bdiag(L(L)) · bdiag(L(Q̃)) − bdiag(L(L⋆))

)
· bdiag(L(S− 1

2
⋆ ))

∥∥∥
∨

∥∥∥(
bdiag(L(R)) · bdiag(L(Q̃

−T
)) − bdiag(L(R⋆))

)
· bdiag(L(S− 1

2
⋆ ))

∥∥∥ ≤ ϵ.

The rest of the proof is the same as the one in Tong et al. (2021, Lemma 22).

Further, following the proof in Tong et al. (2021, Lemma 24), we connect the distance metric dist(F , F⋆)
to the Frobenius norm in Lemma 9.

Lemma 9. For any factor tensor F =
[

L
R

]
∈ R(n1+n2)×r×n3×···×nd , the distance between F and F⋆ satisfies

dist(F , F⋆) ≤
(√

2 + 1
) 1

2 ∥L ∗L RT − X ⋆∥F .

A.1.3 Tensor Perturbation Bounds

Following the proof in Lemma 19 of Wu (2025), we have the following bound.
Lemma 10. For any L ∈ Rn1×r×n3×···×nd , R ∈ Rn2×r×n3×···×nd , denote L△ := L−L⋆ and R△ := R−R⋆,
then

∥L ∗L RT − X ⋆∥F ≤ ∥L△ ∗L RT
⋆ ∥F + ∥L⋆ ∗L RT

△∥F + ∥L△ ∗L RT
△∥F

≤
(

1 + 1
2(∥L△ ∗L S− 1

2
⋆ ∥ ∨ ∥R△ ∗L S− 1

2
⋆ ∥)

)
(

∥L△ ∗L S
1
2
⋆ ∥F + ∥R△ ∗L S

1
2
⋆ ∥F

)
.

15
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A.2 Proof of Lemma 3

Lemma 11 (Tong et al. (2021), Claim 5). For tensor columns −→
A,

−→
A⋆ ∈ Rn1×1×n3×···×nd and λ ≥

∥
−→
A⋆∥F /∥

−→
A∥F , it holds that

∥(1 ∧ λ)−→A −
−→
A⋆∥F ≤ ∥

−→
A −

−→
A⋆∥F .

Denote the optimal alignment tensor between F̃ and F⋆ as Q̃, whose existence is guaranteed by Lemma 8.

Let PB(F̃) =
[

L̃
R̃

]
, by the definition of dist(PB(F̃), F⋆), we have

dist2(PB(F̃), F⋆) ≤
n1∑

i=1
∥L(i, :, . . . , :) ∗L Q̃ ∗L S

1
2
⋆ − (L⋆ ∗L S

1
2
⋆ )(i, :, . . . , :)∥2

F

+
n2∑

j=1
∥R(j, :, . . . , :) ∗L Q̃

−T
∗L S

1
2
⋆ − (R⋆ ∗L S

1
2
⋆ )(j, :, . . . , :)∥2

F . (14)

Recall that the condition dist(F̃ , F⋆) ≤ ϵ√
ℓ
σ̄sr

(X ⋆) implies

∥(L̃ ∗L Q̃ − L⋆) ∗L S− 1
2

⋆ ∥ ∨ ∥(R̃ ∗L Q̃
−T

− R⋆) ∗L S− 1
2

⋆ ∥ ≤ ϵ.

Combining this with R⋆ ∗L S− 1
2

⋆ = V⋆, we arrive at

∥L̃(i, :, . . . , :) ∗L R̃
T

∥F ≤ ∥L̃(i, :, . . . , :) ∗L Q̃ ∗L S
1
2
⋆ ∥F ∥R̃ ∗L Q̃

−T
∗L S− 1

2
⋆ ∥

≤ ∥L̃(i, :, . . . , :) ∗L Q̃ ∗L S
1
2
⋆ ∥F

(
∥V⋆∥ + ∥(R̃ ∗L Q̃

−T
− R⋆) ∗L S− 1

2
⋆ ∥

)
≤ (1 + ϵ)∥L̃(i, :, . . . , :) ∗L Q̃ ∗L S

1
2
⋆ ∥F .

In addition, the µ-incoherence of X ⋆ yields

√
n1∥(L⋆ ∗L S

1
2
⋆ )(i, :, . . . , :)∥F ≤

√
n1∥U⋆∥2,∞∥S⋆∥ ≤

√
µr

ℓ
σ̄1(X ⋆) ≤ B

1 + ϵ
,

where the last inequality follows from the choice of B. Taking the above two relations to reach

B
√

n1∥L̃(i, :, . . . , :) ∗L R̃
T

∥F

≥ ∥(L⋆ ∗L S
1
2
⋆ )(i, :, . . . , :)∥F

∥L̃(i, :, . . . , :) ∗L Q̃ ∗L S
1
2
⋆ ∥F

.

We can then apply Lemma 11 with −→
A := L̃(i, :, . . . , :) ∗L Q̃ ∗L S

1
2
⋆ , −→

A⋆ := (L⋆ ∗L S
1
2
⋆ )(i, :, . . . , :), and

λ := B
√

n1∥L̃(i,:,...,:)∗LR̃
T

∥F

to obtain

∥L(i, :, . . . , :) ∗L Q̃ ∗L S
1
2
⋆ − (L⋆ ∗L S

1
2
⋆ )(i, :, . . . , :)∥2

F

=
∥∥∥(

1 ∧ B
√

n1∥L̃(i, :, . . . , :) ∗L R̃
T

∥F

)
L̃(i, :, . . . , :) ∗L Q̃ ∗L S

1
2
⋆ − (L⋆ ∗L S

1
2
⋆ )(i, :, . . . , :)

∥∥∥2

F

≤∥L̃(i, :, . . . , :) ∗L Q̃ ∗L S
1
2
⋆ − (L⋆ ∗L S

1
2
⋆ )(i, :, . . . , :)∥2

F .

Following a similar argument for R, we conclude that

dist2(PB(F̃), F⋆) ≤
n1∑

i=1
∥L̃(i, :, . . . , :) ∗L Q̃ ∗L S

1
2
⋆ − (L⋆ ∗L S

1
2
⋆ )(i, :, . . . , :)∥2

F

+
n2∑

j=1
∥R̃(j, :, . . . , :) ∗L Q̃

−T
∗L S

1
2
⋆ − (R⋆ ∗L S

1
2
⋆ )(j, :, . . . , :)∥2

F ≤ dist2(F̃ , F⋆).
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We move on to the incoherence condition. For any i ∈ [n1], one has

∥L(i, :, . . . , :) ∗L RT ∥2
F

=
n2∑

j=1
∥L(i, :, . . . , :) ∗L R(j, :, . . . , :)T ∥2

F

=
n2∑

j=1

(
1 ∧ B

√
n1∥L̃(i, :, . . . , :) ∗L R̃

T
∥F

)2
∥L̃(i, :, . . . , :) ∗L R̃(j, :, . . . , :)T ∥2

F

(
1 ∧ B

√
n2∥R̃(j, :, . . . , :) ∗L L̃

T
∥F

)2

(i)
≤

(
1 ∧ B

√
n1∥L̃(i, :, . . . , :) ∗L R̃

T
∥F

)2 n2∑
j=1

∥L̃(i, :, . . . , :) ∗L R̃(j, :, . . . , :)T ∥2
F

=
(

1 ∧ B
√

n1∥L̃(i, :, . . . , :) ∗L R̃
T

∥F

)2
∥L̃(i, :, . . . , :) ∗L R̃

T
∥2

F

(ii)
≤ B2

n1
,

where (i) follows from 1 ∧ B
√

n2∥R̃(j,:,...,:)∗LL̃
T

∥F

≤ 1, and (ii) follows from 1 ∧ B
√

n1∥L̃(i,:,...,:)∗LR̃
T

∥F

≤
B

√
n1∥L̃(i,:,...,:)∗LR̃

T
∥F

. Similarly, one can also have ∥R(j, :, . . . , :) ∗L LT ∥2
F ≤ B2

n2
. Combining these two

bounds completes the proof.

A.3 Proof of Lemma 4

We gather several useful inequalities regarding the operator PΩ(·) for the Bernoulli observation model.
Lemma 12 (Qin et al. (2022), Lemma VI.8). Suppose that Z ∈ Rn1×···×nd is fixed, and Ω ∼ Ber(p). Then
with high probability,

∥(p−1PΩ − In1)(Z)∥ ≤ c
( log(n(1)ℓ)

p
∥Z∥∞ +

√
log(n(1)ℓ)

p
∥Z∥∞,2

)
,

for some numerical constant c > 0.
Lemma 13 (Wang et al. (2023), Lemma 11). Suppose that Z ∈ Rn1×···×nd is fixed, and Ω ∼ Ber(p). Then
with high probability,

∥(p−1PΩ − In1)(Z)∥ ≤ c

√
n(1)ℓ log(n(1)ℓ)

p
∥Z∥∞,

for some numerical constant c > 0.

Next, following the proof of Lemma 10 in Zheng & Lafferty (2016), we have the restricted strong convexity
and smoothness of the observation operator for tensors in T .
Lemma 14. Suppose that A, B ∈ T are fixed tensors and Ω ∼ Ber(p). Then with high probability,

p(1 − ϵ)∥A∥2
F ≤ ∥PΩ(A)∥2

F ≤ p(1 + ϵ)∥A∥2
F . (15)

Consequently,

|p−1⟨PΩ(A), PΩ(B)⟩ − ⟨A, B⟩| ≤ ϵ∥A∥F ∥B∥F , (16)

provided that p ≥ cϵ−2µr log(n(1)ℓ)/(n(2)ℓ) for some numerical constant c > 0.

We then have the following simple corollary.

17
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Corollary 15. Suppose that X ⋆ is µ-incoherent, and p ≳ µr log(n(1)ℓ)/(n(2)ℓ). Then with high probability,

|⟨(p−1PΩ − In1)(L⋆ ∗L RT
A + LA ∗L RT

⋆ ), L⋆ ∗L RT
B + LB ∗L RT

⋆ ⟩|

≤ c

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L⋆ ∗L RT

A + LA ∗L RT
⋆ ∥F ∥L⋆ ∗L RT

B + LB ∗L RT
⋆ ∥F ,

simultaneously for all LA, LB ∈ Rn1×r×n3×···×nd and RA, RB ∈ Rn2×r×n3×···×nd , where c > 0 is some
numerical constant.
Lemma 16. Suppose that p ≳ log(n(1)ℓ)/n(2). Then with high probability,

|⟨(p−1PΩ − In1)(LA ∗L RT
A), LB ∗L RT

B⟩|

≤ cℓ
3
2

√
n(1) log(n(1)ℓ)

p(
∥LA∥2♢∞∥LB∥F ∧ ∥LA∥F ∥LB∥2♢∞

)(
∥RA∥2♢∞∥RB∥F ∧ ∥RA∥F ∥RB∥2♢∞

)
,

simultaneously for all LA, LB ∈ Rn1×r×n3×···×nd and RA, RB ∈ Rn2×r×n3×···×nd , where c > 0 is some
universal constant.

Proof. First, for any A, B, we have

|⟨A, B⟩| = 1
ℓ

|⟨bdiag(AL), bdiag(BL)⟩| ≤ 1
ℓ

∥bdiag(AL)∥∥bdiag(BL)∥∗ = ∥A∥∥B∥⊛,L.

Hence,

|p−1⟨PΩ(LA ∗L RT
A), PΩ(LB ∗L RT

B)⟩ − ⟨LA ∗L RT
A, LB ∗L RT

B⟩|
=|⟨(p−1PΩ − In1)(J ),

(
(LA ∗L RT

A) ◦ (LB ∗L RT
B)

)
⟩|

≤∥(p−1PΩ − In1)(J )∥∥(LA ∗L RT
A) ◦ (LB ∗L RT

B)∥⊛,L, (17)

where J denotes tensor with all-one entries and ◦ denotes the Hadamard (elementwise) product. Following
Lemma 13, let ϵ = c

√
n(1)ℓ log(n(1)ℓ)

p , then with high probability, we have

∥(p−1PΩ − In1)(J )∥ ≤ ϵ,

provided that p ≥ c log(n(1)ℓ)/n(2). Given the definition of tensor nuclear norm, we have

∥(LA ∗L RT
A) ◦ (LB ∗L RT

B)∥⊛,L

= 1
ℓ

n3∑
i3=1

· · ·
nd∑

id=1
∥(LA,L(:, :, i3, . . . , id)RA,L(:, :, i3, . . . , id)T ) ◦ (LB,L(:, :, i3, . . . , id)RB,L(:, :, i3, . . . , id)T )∥∗,

where we denote LA,L = L(LA) (similarly for LB,L, RA,L and RB,L), and we can decompose each term
above into sum of rank one matrices as follows:

(LA,L(:, :, i3, . . . , id)RA,L(:, :, i3, . . . , id)T ) ◦ (LB,L(:, :, i3, . . . , id)RB,L(:, :, i3, . . . , id)T )

=
( r∑

i2=1
LA,L(:, i2, i3, . . . , id)RA,L(:, i2, i3, . . . , id)T

)
◦

( r∑
i2=1

LB,L(:, i2, i3, . . . , id)RB,L(:, i2, i3, . . . , id)T
)

=
r∑

i2=1

r∑
i′

2=1

(
LA,L(:, i2, i3, . . . , id) ◦ LB,L(:, i′

2, i3, . . . , id)
)

·
(
RA,L(:, i2, i3, . . . , id) ◦ RB,L(:, i′

2, i3, . . . , id)
)T

.

18
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So one can upper bound the nuclear norm via

∥(LA ∗L RT
A) ◦ (LB ∗L RT

B)∥⊛,L

≤
n3∑

i3=1
· · ·

nd∑
id=1

r∑
i2=1

r∑
i′

2=1

1
ℓ

∥∥∥(
LA,L(:, i2, i3, . . . , id) ◦ LB,L(:, i′

2, i3, . . . , id)
)

·
(
RA,L(:, i2, i3, . . . , id) ◦ RB,L(:, i′

2, i3, . . . , id)
)T

∥∥∥
∗

=
n3∑

i3=1
· · ·

nd∑
id=1

r∑
i2=1

r∑
i′

2=1

1
ℓ

∥∥∥LA,L(:, i2, i3, . . . , id) ◦ LB,L(:, i′
2, i3, . . . , id)

∥∥∥
2

∥∥∥RA,L(:, i2, i3, . . . , id) ◦ RB,L(:, i′
2, i3, . . . , id)

∥∥∥
2

=
n3∑

i3=1
· · ·

nd∑
id=1

r∑
i2=1

r∑
i′

2=1

1
ℓ

√√√√ n1∑
i1=1

|(LA,L)i1,i2,i3,...,id
|2|(LB,L)i1,i′

2,i3,...,id
|2

√√√√ n2∑
i1=1

|(RA,L)i1,i2,i3,...,id
|2|(RB,L)i1,i′

2,i3,...,id
|2,

where we replace nuclear norm by vector ℓ2 norms in the third line because the summands are all rank one
matrices. Now apply Cauchy-Schwarz inequality twice to obtain

∥(LA ∗L RT
A) ◦ (LB ∗L RT

B)∥⊛,L

≤
n3∑

i3=1
· · ·

nd∑
id=1

1
ℓ

√√√√ r∑
i2=1

r∑
i′

2=1

n1∑
i1=1

|(LA,L)i1,i2,i3,...,id
|2|(LB,L)i1,i′

2,i3,...,id
|2

√√√√ r∑
i2=1

r∑
i′

2=1

n2∑
i1=1

|(RA,L)i1,i2,i3,...,id
|2|(RB,L)i1,i′

2,i3,...,id
|2

=
n3∑

i3=1
· · ·

nd∑
id=1

1
ℓ

√√√√ n1∑
i1=1

∥LA,L(i1, :, i3, . . . , id)∥2
2∥LB,L(i1, :, i3, . . . , id)∥2

2√√√√ n2∑
i1=1

∥RA,L(i1, :, i3, . . . , id)∥2
2∥RB,L(i1, :, i3, . . . , id)∥2

2

≤ℓ

√√√√ n3∑
i3=1

· · ·
nd∑

id=1

n1∑
i1=1

∥LA(i1, :, i3, . . . , id)∥2
2∥LB(i1, :, i3, . . . , id)∥2

2√√√√ n3∑
i3=1

· · ·
nd∑

id=1

n2∑
i1=1

∥RA(i1, :, i3, . . . , id)∥2
2∥RB(i1, :, i3, . . . , id)∥2

2

≤ℓ
(

∥LA∥2♢∞∥LB∥F ∧ ∥LA∥F ∥LB∥2♢∞

)(
∥RA∥2♢∞∥RB∥F ∧ ∥RA∥F ∥RB∥2♢∞

)
. (18)

Putting (17) and (18) together, we have

|p−1⟨PΩ(LA ∗L RT
A), PΩ(LB ∗L RT

B)⟩ − ⟨LA ∗L RT
A, LB ∗L RT

B⟩|

≤cℓ
3
2

√
n(1) log(n(1)ℓ)

p(
∥LA∥2♢∞∥LB∥F ∧ ∥LA∥F ∥LB∥2♢∞

)(
∥RA∥2♢∞∥RB∥F ∧ ∥RA∥F ∥RB∥2♢∞

)
.

Now we prove Lemma 4. First, define the event G as the intersection of the events that the bounds in
Corollary 15 and Lemma 16 hold. The rest of the proof is under the assumption that G holds, which
happens with high probability. By the condition dist(F t, F⋆) ≤ 0.02√

ℓ
σ̄sr

(X ⋆) and Lemma 8, one knows that
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Qt exists. For notational convenience, we denote L♯ := Lt ∗L Qt, R♯ := Rt ∗L Q−T
t , L△ := L♯ − L⋆, and

R△ := R♯ − R⋆, and ϵ := 0.02. In addition, denote F̃ t+1 as the update before projection as

F̃ t+1 :=
[

L̃t+1
R̃t+1

]
=

[
Lt − η

p PΩ(Lt ∗L RT
t − X ⋆) ∗L Rt ∗L (RT

t ∗L Rt)−1

Rt − η
p PΩ(Lt ∗L RT

t − X ⋆)T ∗L Lt ∗L (LT
t ∗L Lt)−1

]
,

and therefore F t+1 = PB(F̃ t+1). Note that in view of Lemma 3, it suffices to prove the following relation

dist(F̃ t+1, F⋆) ≤ (1 − 0.6η)dist(F t, F⋆) (19)

because the second conclusion is a simple consequence of Lemma 10 as

∥Lt ∗L RT
t − X ⋆∥F ≤ (1 + ϵ)(∥L△ ∗L S

1
2
⋆ ∥F + ∥R△ ∗L S

1
2
⋆ ∥F )

≤ (1 + ϵ)
√

2dist(F t, F⋆)
≤ 1.5dist(F t, F⋆), (20)

where we used a + b ≤
√

2(a2 + b2) in the second row. In what follows, we focus on proving (19). We begin
by listing a few easy consequences under the assumed conditions.

Lemma 17. Under conditions dist(F t, F⋆) ≤ ϵ√
ℓ
σ̄sr (X ⋆) and √

n1∥L♯ ∗L RT
♯ ∥2,∞ ∨ √

n2∥R♯ ∗L LT
♯ ∥2,∞ ≤

CB

√
µr
ℓ σ̄1(X ⋆), we have

∥L△ ∗L S− 1
2

⋆ ∥ ∨ ∥R△ ∗L S− 1
2

⋆ ∥ ≤ ϵ; (21a)

∥R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ∥ ≤ 1

1 − ϵ
; (21b)

∥S
1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥ ≤ 1

(1 − ϵ)2 ; (21c)

√
n1∥L♯ ∗L S

1
2
⋆ ∥2,∞ ∨

√
n2∥R♯ ∗L S

1
2
⋆ ∥2,∞ ≤ CB

1 − ϵ

√
µr

ℓ
σ̄1(X ⋆); (21d)

√
n1∥L♯ ∗L S− 1

2
⋆ ∥2,∞ ∨

√
n2∥R♯ ∗L S− 1

2
⋆ ∥2,∞ ≤ CBκ

1 − ϵ

√
µr

ℓ
; (21e)

√
n1∥L△ ∗L S

1
2
⋆ ∥2,∞ ∨

√
n2∥R△ ∗L S

1
2
⋆ ∥2,∞ ≤ (1 + CB

1 − ϵ
)
√

µr

ℓ
σ̄1(X ⋆). (21f)

Now we are ready to prove (19), which follows the exact same steps as in Lemma 5 of Wu (2025). By the
definition of dist(F̃ t+1, F⋆), we have

dist2(F̃ t+1, F⋆) ≤ ∥(L̃t+1 ∗L Qt − L⋆) ∗L S
1
2
⋆ ∥2

F + ∥(R̃t+1 ∗L Q−T
t − R⋆) ∗L S

1
2
⋆ ∥2

F . (22)

Plugging in the update rule (9) and the decomposition L♯ ∗L RT
♯ − X ⋆ = L△ ∗L RT

♯ + L⋆ ∗L RT
△ to obtain

(L̃t+1 ∗L Qt − L⋆) ∗L S
1
2
⋆

=
(

L♯ − ηp−1PΩ(L♯ ∗L RT
♯ − X ⋆) ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 − L⋆

)
∗L S

1
2
⋆

=(1 − η)L△ ∗L S
1
2
⋆ − ηL⋆ ∗L RT

△ ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆

− η(p−1PΩ − In1)(L♯ ∗L RT
♯ − X ⋆) ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ .
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This allows us to expand the square of the first term in (22) as

∥(L̃t+1 ∗L Qt − L⋆) ∗L S
1
2
⋆ ∥2

F

=∥(1 − η)L△ ∗L S
1
2
⋆ − ηL⋆ ∗L RT

△ ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ∥2

F

− 2η(1 − η)⟨L△ ∗L S
1
2
⋆ , (p−1PΩ − In1)(L♯ ∗L RT

♯ − X ⋆) ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ⟩

+ 2η2⟨L⋆ ∗L RT
△ ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ,

(p−1PΩ − In1)(L♯ ∗L RT
♯ − X ⋆) ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ⟩

+ η2∥(p−1PΩ − In1)(L♯ ∗L RT
♯ − X ⋆) ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥2

F

:=P1 − P2 + P3 + P4.

Bound of P1. This term can be controlled as Equation 38 in Wu (2025) as follows.

P1 ≤
(

(1 − η)2 + 2ϵ

1 − ϵ
η(1 − η)

)
∥L△ ∗L S

1
2
⋆ ∥2

F + 2ϵ + ϵ2

(1 − ϵ)2 η2∥R△ ∗L S
1
2
⋆ ∥2

F .

Bound of P2. Using the decomposition L♯ ∗LRT
♯ −X ⋆ = L△ ∗LRT

⋆ +L♯ ∗LRT
△ and applying the triangle

inequality to obtain

|P2| = 2η(1 − η)
∣∣∣⟨L△ ∗L S

1
2
⋆ , (p−1PΩ − In1)(L♯ ∗L RT

♯ − X ⋆) ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ⟩

∣∣∣
≤ 2η(1 − η)

(∣∣∣⟨L△ ∗L S
1
2
⋆ , (p−1PΩ − In1)(L△ ∗L RT

⋆ ) ∗L R⋆ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ⟩

∣∣∣
+

∣∣∣⟨L△ ∗L S
1
2
⋆ , (p−1PΩ − In1)(L△ ∗L RT

⋆ ) ∗L R△ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ⟩

∣∣∣
+

∣∣∣⟨L△ ∗L S
1
2
⋆ , (p−1PΩ − In1)(L♯ ∗L RT

△) ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ⟩

∣∣∣)
:= 2η(1 − η)(P2,1 + P2,2 + P2,3).

For the first term P2,1, we can invoke Corollary 15 to obtain

P2,1 ≤ C1

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L△ ∗L RT

⋆ ∥F ∥L△ ∗L S⋆ ∗L (RT
♯ ∗L R♯)−1 ∗L RT

⋆ ∥F

≤ C1

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L△ ∗L S

1
2
⋆ ∥F ∥S− 1

2
⋆ ∗L RT

⋆ ∥

∥L△ ∗L S
1
2
⋆ ∥F ∥S

1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥∥S− 1

2
⋆ ∗L RT

⋆ ∥

= C1

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L△ ∗L S

1
2
⋆ ∥2

F ∥S
1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥

≤ C1

(1 − ϵ)2

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L△ ∗L S

1
2
⋆ ∥2

F ,
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where the last inequality uses (21c). For the first term P2,2, we can invoke Lemma 16 with LA := L△ ∗L S
1
2
⋆ ,

RA := R⋆ ∗L S− 1
2

⋆ , LB := L△ ∗L S
1
2
⋆ , RB := R△ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ to obtain

P2,2 ≤ C2ℓ
3
2

√
n(1) log(n(1)ℓ)

p
∥L△ ∗L S

1
2
⋆ ∥2♢∞∥L△ ∗L S

1
2
⋆ ∥F

∥R⋆ ∗L S− 1
2

⋆ ∥2♢∞∥R△ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ∥F

≤ C2ℓ
3
2

√
n(1) log(n(1)ℓ)

p
∥L△ ∗L S

1
2
⋆ ∥2,∞∥L△ ∗L S

1
2
⋆ ∥F

∥R⋆ ∗L S− 1
2

⋆ ∥2,∞∥R△ ∗L S− 1
2

⋆ ∥F ∥S
1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥.

Similarly, we can bound P2,3 as

P2,3 ≤ C2ℓ
3
2

√
n(1) log(n(1)ℓ)

p
∥L♯ ∗L S− 1

2
⋆ ∥2,∞∥L△ ∗L S

1
2
⋆ ∥F

∥R△ ∗L S
1
2
⋆ ∥F ∥R♯ ∗L S− 1

2
⋆ ∥2,∞∥S

1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥.

Utilizing the consequences in Lemma 17, we have

P2,2 ≤ C2µrκ

(1 − ϵ)2

(
1 + CB

1 − ϵ

)√
ℓ log(n(1)ℓ)

n(2)p
∥L△ ∗L S

1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F ;

P2,3 ≤ C2C2
Bµrκ2

(1 − ϵ)4

√
ℓ log(n(1)ℓ)

n(2)p
∥L△ ∗L S

1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F .

We then combine the bounds for P2,1, P2,2 and P2,3 to arrive at

P2 ≤ 2η(1 − η)
( C1

(1 − ϵ)2

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L△ ∗L S

1
2
⋆ ∥2

F

+ C2µrκ

(1 − ϵ)2

(
1 + CB

1 − ϵ
+ C2

Bκ

(1 − ϵ)2

)√
ℓ log(n(1)ℓ)

n(2)p
∥L△ ∗L S

1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F

)
= 2η(1 − η)

(
ν1∥L△ ∗L S

1
2
⋆ ∥2

F + ν2∥L△ ∗L S
1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F

)
≤ η(1 − η)

(
(2ν1 + ν2)∥L△ ∗L S

1
2
⋆ ∥2

F + ν2∥R△ ∗L S
1
2
⋆ ∥2

F

)
,

where we denote

ν1 := C1

(1 − ϵ)2

√
µr log(n(1)ℓ)

pn(2)ℓ
and ν2 := C2µrκ

(1 − ϵ)2

(
1 + CB

1 − ϵ
+ C2

Bκ

(1 − ϵ)2

)√
ℓ log(n(1)ℓ)

n(2)p
.

Bound of P3. For the term P3, we first have

|P3| ≤ 2η2
(∣∣∣⟨L⋆ ∗L RT

△ ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ,

(p−1PΩ − In1)(L△ ∗L RT
♯ ) ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ⟩

∣∣∣
+

∣∣∣⟨L⋆ ∗L RT
△ ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ,

(p−1PΩ − In1)(L⋆ ∗L RT
△) ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ⟩

∣∣∣)
:= 2η2(P3,1 + P3,2).
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We invoke Lemma 16 to bound P3,1 as

P3,1 ≤ C2ℓ
3
2

√
n(1) log(n(1)ℓ)

p
∥L△ ∗L S

1
2
⋆ ∥F ∥L⋆ ∗L S− 1

2
⋆ ∥2♢∞

∥R♯ ∗L S− 1
2

⋆ ∥2♢∞∥R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L RT
♯ ∗L R△ ∗L S

1
2
⋆ ∥F

≤ C2ℓ
3
2

√
n(1) log(n(1)ℓ)

p
∥L△ ∗L S

1
2
⋆ ∥F ∥L⋆ ∗L S− 1

2
⋆ ∥2,∞

∥R♯ ∗L S− 1
2

⋆ ∥2,∞∥R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ∥2∥R△ ∗L S

1
2
⋆ ∥F

≤ C2CBµrκ

(1 − ϵ)3

√
ℓ log(n(1)ℓ)

n(2)p
∥L△ ∗L S

1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F .

For P3,2, we again invoke Corollary 15 to obtain

P3,2 ≤ C1

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L⋆ ∗L RT

△∥F ∥L⋆ ∗L RT
△ ∗L R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S⋆ ∗L (RT
♯ ∗L R♯)−1 ∗L RT

♯ ∥F

≤ C1

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L⋆ ∗L RT

△∥2
F ∥R♯ ∗L (RT

♯ ∗L R♯)−1 ∗L S
1
2
⋆ ∥2

≤ C1

(1 − ϵ)2

√
µr log(n(1)ℓ)

pn(2)ℓ
∥R△ ∗L S

1
2
⋆ ∥2

F .

Combining the bounds for P3,1 and P3,2 to arrive at

|P3| ≤ 2η2
( C1

(1 − ϵ)2

√
µr log(n(1)ℓ)

pn(2)ℓ
∥R△ ∗L S

1
2
⋆ ∥2

F + C2CBµrκ

(1 − ϵ)3

√
ℓ log(n(1)ℓ)

n(2)p
∥L△ ∗L S

1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F

)
≤ 2η2

(
ν1∥R△ ∗L S

1
2
⋆ ∥2

F + ν2∥L△ ∗L S
1
2
⋆ ∥F ∥R△ ∗L S

1
2
⋆ ∥F

)
≤ η2

(
ν2∥L△ ∗L S

1
2
⋆ ∥2

F + (2ν1 + ν2)∥R△ ∗L S
1
2
⋆ ∥F

)
.

Bound of P4. Moving to the term P4, we have√
P4 = η∥(p−1PΩ − In1)(L♯ ∗L RT

♯ − X ⋆) ∗L R♯ ∗L (RT
♯ ∗L R♯)−1 ∗L S

1
2
⋆ ∥F

≤ η
(∣∣∣⟨(p−1PΩ − In1)(L△ ∗L RT

⋆ ), L̃ ∗L S
1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L RT
⋆ ⟩

∣∣∣
+

∣∣∣⟨(p−1PΩ − In1)(L△ ∗L RT
⋆ ), L̃ ∗L S

1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L RT
△⟩

∣∣∣
+

∣∣∣⟨(p−1PΩ − In1)(L♯ ∗L RT
△), L̃ ∗L S

1
2
⋆ ∗L (RT

♯ ∗L R♯)−1 ∗L RT
♯ ⟩

∣∣∣
:= η(P4,1 + P4,2 + P4,3),

where we have used the variational representation of the Frobenius norm for some L̃ ∈ Rn1×r×n3×···×nd

obeying ∥L̃∥F ≤ 1. Note that the decomposition of
√
P4 is extremely similar to that of P2, thus we can

follow a similar argument to control these terms as

P4,1 ≤ C1

(1 − ϵ)2

√
µr log(n(1)ℓ)

pn(2)ℓ
∥L△ ∗L S

1
2
⋆ ∥F ;

P4,2 ≤ C2µrκ

(1 − ϵ)2

(
1 + CB

1 − ϵ

)√
ℓ log(n(1)ℓ)

n(2)p
∥R△ ∗L S

1
2
⋆ ∥F ;

P4,3 ≤ C2C2
Bµrκ2

(1 − ϵ)4

√
ℓ log(n(1)ℓ)

n(2)p
∥R△ ∗L S

1
2
⋆ ∥F .
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Hence, √
P4 ≤ η(ν1∥L△ ∗L S

1
2
⋆ ∥F + ν2∥R△ ∗L S

1
2
⋆ ∥F ).

We omit the rest of the proof since it is identical to the one for Lemma 5 of Wu (2025).

A.4 Proof of Lemma 5

Following the proof of Lemma 6 in Wu (2025), we have

dist(F̃0, F⋆) ≤ 5
√

sr

ℓ
∥p−1PΩ(X ⋆) − X ⋆∥.

Using Lemma 12, we know that

∥(p−1PΩ − In1)(X ⋆)∥ ≤ c
( log(n(1)ℓ)

p
∥X ⋆∥∞ +

√
log(n(1)ℓ)

p
∥X ⋆∥∞,2

)
,

holds with high probability. The proof is finished by applying Lemma 6 and Lemma 7 and plugging the
following bounds from incoherence assumption of X⋆:

∥X ⋆∥∞ ≤
√

ℓ∥U⋆∥2,∞∥S⋆∥∥V⋆∥2,∞ ≤ µr√
n1n2ℓ

κσ̄sr
(X ⋆);

∥X ⋆∥∞,2 ≤ ∥U⋆∥2,∞∥S⋆∥∥V⋆∥ ∨ ∥U⋆∥∥S⋆∥∥V⋆∥2,∞ ≤
√

µr

n(2)ℓ
κσ̄sr

(X ⋆).
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