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ABSTRACT

Large Vision-Language Models (LVLMs) exhibit remarkable multimodal ca-
pabilities but frequently produce factually inconsistent hallucinations. While
Contrastive Decoding (CD) methods offer a training-free approach to halluci-
nation mitigation, they operate at the logits level, compromising output coher-
ence and diversity. Through systematic analysis, we show that logits-level sub-
traction disrupts intrinsic language generation mechanisms, requiring restrictive
penalty mechanisms that further limit diversity. We propose Attention Contrastive
Decoding (ACD), which transfers contrastive operations to the attention layer
and employs an Adaptive Subtraction Strategy (ASS) to identify and suppress
hallucination-prone attention patterns. Experiments demonstrate that ACD gen-
erates more coherent content with significantly reduced hallucinations without
requiring penalty mechanisms, effectively leveraging the inherent continuity of
attention mechanisms to advance reliable multimodal generation. Code is avail-
able at https://anonymous.4open.science/r/ACD-00C6.

1 INTRODUCTION

In recent years, the exponential growth of computational capabilities coupled with the rapid ex-
pansion of multimodal datasets has catalyzed the emergence of Large Vision-Language Models
(LVLMs) [Liu et al.| (2023bic; 20244); [Zhu et al.| (2023); |Bai et al.| (2023)); |L1 et al.| (2023al); Driess
et al.| (2023)); |/Achiam et al.| (2023)); (Chowdhery et al.| (2023)); |/Alayrac et al.|(2022). These sophis-
ticated architectures integrate meticulously designed visual encoders with large language models
(LLMs), effectively extending the robust linguistic comprehension and generation capabilities of
LLMs into the domain of multimodal interaction. Such models have demonstrated exceptional per-
formance across image captioning Lin et al.[(2014); L1 et al.|(2023al), visual question answering [Liu
et al.[(2023clb; |2024a); Hudson & Manning| (2019), and complex cross-modal reasoning tasks [Lu
et al.| (2022); |Alayrac et al.| (2022); /Achiam et al.| (2023), thereby establishing a solid technical
foundation for more natural and diversified human-machine interaction paradigms.

Despite significant advances in LVLMs, a critical challenge persists—the “hallucination” phe-
nomenon L1 et al.| (2023b); [Fu et al.| (2023b); [Yue et al.| (2024). These hallucinations manifest as
textual outputs that, while grammatically and semantically coherent, present factual inconsistencies
with the input visual content. Unlike hallucinations in pure text-based LLMs, LVLM hallucinations
exhibit distinct cross-modal characteristics that not only compromise textual quality but also involve
profound semantic inconsistencies between visual and linguistic modalities. Specifically, LVLM
hallucinations typically manifest in three characteristic patterns: (1) generation of responses en-
tirely disconnected from the image content, indicating complete modal disassociation; (2) erroneous
identification of non-existent visual elements (such as colors, quantities, or spatial relationships),
demonstrating flawed visual perception; and (3) inaccurate abstract summarization of visual con-
tent, reflecting semantic reasoning biases. These cross-modal inconsistencies substantially under-
mine model credibility in practical applications and pose significant safety risks in critical domains
such as medical diagnostics and autonomous driving.

Alleviating hallucinations in LVLMs has emerged as a critical research focus, with training-free
Contrastive Decoding (CD) strategies |Li et al.| (2025); |Huo et al.| (2024); Liu et al.| (2024c); |An
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Figure 1: ((a) Visual Contrastive Decoding (VCD). Comparing the output distributions from the
original and distorted inputs. (b) While VCD mitigates hallucination generation, its discrete logits-
level contrastive adjustments adversely affect generation quality, resulting in compromised coher-
ence and fluidity in the produced content.

et al.| (2025); Leng et al.| (2024); [Wang et al.| (2024c)); [Chen et al.| (2024)) representing a prominent
paradigm. These approaches mitigate hallucinations by differentially adjusting token generation
probability distributions through two principal mechanisms: hallucination induction and probability
recalibration. In the hallucination induction framework, several methodological variants have been
proposed. Visual Contrastive Decoding (VCD) [Leng et al.| (2024) artificially amplifies the model’s
reliance on linguistic priors by either introducing Gaussian noise into visual inputs or completely
eliminating visual signals [Liu et al.| (2024c), thereby constructing a hallucination-rich probability
distribution. Similarly, Instructional Contrastive Decoding (ICD) Wang et al.| (2024c)) employs ad-
versarial prompts (e.g., “you are a confused object detector”) to elicit hallucinated outputs. Self-
Introspective Decoding (SID) Huo et al.| (2024) implements strategic masking of high-attention
visual regions during the decoding process, effectively exposing vulnerable areas prone to hallu-
cination generation. The probability recalibration mechanism precisely subtracts this artificially
constructed hallucination distribution from the original generation probability, as illustrated in Fig-
ure[I] (a), effectively suppressing the production of factually inconsistent information and enhancing
the model’s fidelity to visual evidence. This parameter-update-free contrastive mechanism offers a
convenient and theoretically interpretable solution for hallucination mitigation in LVLMs, signif-
icantly enhancing the accuracy and reliability of generated content while preserving the model’s
inherent capabilities.

Despite substantial empirical evidence [Leng et al.| (2024)); Wang et al.| (2024c); Huo et al.| (2024)
demonstrating the efficacy of CD strategies in mitigating LVLM hallucinations, our investigation
reveals that CD approaches significantly compromise generation coherence (manifested as invalid
token outputs) under specific conditions. The fundamental limitation lies in CD’s crude direct sub-
traction operation at the logits layer, which lacks nuanced regulation of the natural language gen-
eration process. Specifically, due to the inherent discontinuity and volatility of logits distributions,
logit-level subtraction forcibly alters vocabulary distribution probabilities, thereby disrupting
the model’s intrinsic language generation mechanisms. This direct intervention inadequately
accounts for contextual dependencies and logical coherence in language generation, resulting in
semantic and structural inconsistencies in generated outputs, as illustrated in Figure[T](b). Our sys-
tematic experimentation with the LLaVA 1.5-7B|Liu et al.|(2023b) model on the CHAIR dataset|Yue
et al.| (2024)), demonstrates that VCD consistently underperforms across multiple evaluation metrics:
CIDEr (measuring description quality), METEOR (assessing semantic comprehension accuracy),
ROUGE-L (quantifying information completeness), and BLEU (evaluating generation precision)
scores significantly trail those of conventional decoding methods. These empirical findings explic-
itly reveal an inherent contradiction in current contrastive decoding paradigms-while logits-level
contrast operations effectively suppress hallucinations, they inevitably degrade linguistic quality
in model outputs, presenting a critical trade-off challenge for LVLM deployment. Concurrently,
probability recalibration mechanisms at the logits level frequently amplify tail token probabilities
due to distribution discontinuities, resulting in incoherent generations. To mitigate this issue, these
strategies typically incorporate penalty mechanisms that filter low-probability tokens. However, our
in-depth analysis indicates that this compensatory mechanism not only fails to adequately resolve
the issue but raises additional challenges. First, penalty mechanisms that mask low-probability
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tokens sacrifice decoding diversity (constraining the model to high-probability tokens exclusively).
This implies that penalty mechanisms function primarily to counteract CD’s adverse effects rather
than addressing the hallucination problem directly. This compensatory processing significantly re-
stricts the richness and creativity of generated content, biasing outputs toward high-frequency, con-
ventional expressions lacking natural linguistic variation and innovation. Second, the intensity cal-
ibration of current penalty mechanisms predominantly relies on heuristic algorithms (utilizing
manually defined thresholds), severely limiting their adaptability and inevitably resulting in invalid
token outputs. In diverse linguistic contexts and tasks, fixed penalty strategies inadequately accom-
modate variable generation requirements and cannot dynamically adjust filtering intensity based on
contextual semantics, further exacerbating the inconsistency and instability of generated outputs.

To address the limitations of conventional CD methods, we propose an innovative decoding strat-
egy—Attention Contrastive Decoding (ACD). Unlike traditional CD approaches that perform crude
direct subtraction at the logits level, ACD elegantly transposes the contrastive mechanism to the
attention layer while incorporating an Adaptive Subtraction Strategy (ASS), achieving more refined
hallucination control. The cornerstone of ASS lies in its comparative mechanism: by contrast-
ing attention-layer response intensities between original inputs and hallucination-inducing inputs, it
precisely identifies potential hallucination-triggering regions. Based on this assessment, ASS adap-
tively suppresses the model’s attention allocation to hallucination-prone areas, specifically inhibiting
hallucination generation at its source, thereby producing more coherent content. This fine-grained
control mechanism enables the model to maintain linguistic quality while preserving visual infor-
mation accuracy. ACD inherently benefits from operating at the transformer’s attention layer. This
architectural advantage stems from the attention mechanism’s capacity to weight input information
and adjust according to contextual cues, facilitating smooth information flow |Vaswani et al.|(2017);
Castin et al.[(2023). Consequently, attention-based ACD naturally generates more coherent outputs,
thus circumventing the need for penalty terms while preserving generation diversity. This adaptive
contrastive mechanism at the attention level not only precisely localizes and suppresses halluci-
nation sources but also preserves the model’s intrinsic language generation capabilities, offering a
more elegant and effective solution for hallucination mitigation in LVLMs.

In summary, our main contributions are three-fold: (1) We establish that logits-layer subtraction in
Contrastive Decoding fundamentally compromises generation quality, revealing how penalty mech-
anisms fail to resolve invalid token generation while simultaneously restricting output diversity. (2)
We propose Attention Contrastive Decoding (ACD), which relocates contrastive operations from
logits to attention layers, harnessing the inherent continuity of attention mechanisms. Our Adap-
tive Subtraction Strategy (ASS) precisely identifies hallucination-prone attention patterns through
differential visual response analysis. (3) Our empirical evaluation demonstrates ACD’s capacity
to generate more coherent, higher-quality content with significantly reduced hallucinations without
penalty mechanisms, advancing the state-of-the-art in reliable vision-language model decoding.

2 RELATED WORK

2.1 HALLUCINATION IN LVLMS

Research addressing hallucinations in large vision-language models (LVLMs) can be categorized
into three primary approaches. First, contrastive decoding techniques identify and suppress hal-
lucinated content without parameter updates. Representative methods include VCD |Leng et al.
(2024), which contrasts outputs from standard and distorted inputs; ICD Wang et al.|(2024c), which
leverages instruction perturbations; and SID [Huo et al.|(2024), which strategically removes atten-
tion patches. Advanced variants such as HALC |Chen et al.| (2024)), VaLiD [Wang et al.[ (2024b),
CMVED [Li et al.| (2025)), PAI Liu et al.| (2024c), and AGLA |An et al.| (2025) further refine these
techniques through targeted attention manipulation and visual component modification. Second,
fine-tuning and optimization strategies employ curated datasets to mitigate hallucinations. These ap-
proaches incorporate negative data|Liu et al.|(2023a)), counterfactual data Yu et al.[(2024), and dataset
purification Wang et al.|(2024c)). Frameworks including HALVA [Sarkar et al.| (2024), HACL Jiang
et al.| (2024a), PerturboLLaVA [Chen et al.| (2025)), and PATCH |Shang et al.| (2024)) implement con-
trastive learning and feature integration, while HIO |[Lyu et al.| (2024), Octopus |Suo et al.| (2025),
OPA |Yang et al.| (2025b), TL-DPO |Yoon et al.| (2025)), and VASparse |[Zhuang et al.| (2025)) utilize
reinforcement learning and attention sparsification to address specific hallucination patterns. Third,
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Figure 2: Overview of our method. (a) The ACD approach ingeniously transfers contrastive ad-
justments from the discrete logits layer to the continuous attention layer, achieving superior hal-
lucination mitigation while enhancing the coherence of generated content. (b) Concurrent with
Adaptive Attention Contrastive Decoding, we introduce Attention Subtraction Strategy (ASS). The
ASS strategy precisely identifies potential hallucination-prone regions by comparing attention re-
sponse intensities between the original input and hallucination-inducing input, thereby selectively
suppressing the sources of hallucination generation at their origin.

methods focusing on visual feature representation enhancement include DeCo |Wang et al.| (2024a),
VTI|Liu et al.{(2024b)), and VDGD |Ghosh et al.|(2024)), which enrich feature detail and stability. Ad-
ditionally, ProjectAway Jiang et al.|(2024b), TAME |Tang et al.|(2025a), OPERA Huang et al.|(2024),
VAR |Jiang et al.|(20235)), FarSight Tang et al.|(2025b), Nullu|Yang et al.[(2025a), and ClearSight|Yin
et al.| (2025) manipulate attention mechanisms and feature spaces to suppress hallucinations through
orthogonal projection, dynamic modification, and guided visual processing.

2.2 CONTRASTIVE DECODING IN HALLUCINATION

Contrastive Decoding (CD) methods provide an elegant, training-free approach to mitigating hallu-
cinations in LVLMs without parameter optimization. These strategies reduce hallucination gener-
ation by contrastively adjusting token probability distributions through two key mechanisms: hal-
lucination induction and probability adjustment. Representative works include VCD |Leng et al.
(2024), which injects Gaussian noise into visual inputs to construct hallucination-rich distribu-
tions; ICD Wang et al.| (2024c), which employs negative prompts to induce hallucinations; and
SID|Huo et al.|(2024), which strategically masks high-attention regions to expose model vulnerabil-
ities. Advanced variants include HALC |Chen et al.| (2024)) with automatic hallucination correction,
VaLiD [Wang et al.|(2024b) comparing early-layer outputs, CMVED [Li et al.| (2025 masking cross-
modal attention, PAI [Liu et al.| (2024c) removing visual components entirely, and AGLA |An et al.
(2025) emphasizing critical regions through image-text matching models. Despite demonstrated
efficacy in hallucination mitigation, conventional CD strategies operate exclusively at the logits dis-
tribution level, substantially compromising output coherence and diminishing generative diversity.

3 METHOD

3.1 PRELIMINARY

Vanilla Decoding. We formalize a general LVLM, denoted as 6, comprised of three principal com-
ponents: a vision encoder, a vision-text interface, and a large language model (LLM) decoder. The
operational pipeline begins with the vision encoder processing an input image v to extract visual em-
beddings. These embeddings are subsequently transformed by the vision-text interface (e.g., linear
projection matrices [Liu et al.| (2023cfb)) or Q-former |Bai et al.| (2023); |Li et al.| (2023a)) to achieve
modality alignment with the textual query x. The aligned multimodal representation is then fed to
the LLM decoder, which autoregressively generates textual output y according to:

Yt ~ p@(yt|vvxay<t)7 p@(yt|v7x7y<t) X exp (IOgita(yt|UvﬁUay<t)) ) (1)
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where, y; represents the ¢-th token of y, while y., refers to the sequence of tokens generated prior
to t-th step. The function logit, is the logit distribution function. The attention mechanism within
each decoder head is formulated as:

-
Attention(Q, K) = Softmax (Q\I/{a > , 2)

where, Q@ € REXP and K € REY*P are the query matrix and the key matrix, respectively, D
represents the dimension, and L denotes the length of the sequence. During inference, to optimize
computational efficiency, the model maintains a key-value cache storing K and V' from previous
decoding steps, thereby avoiding redundant calculations. Consequently, the attention computation
for the ¢-th decoding step is expressed as:

Attention(gs, K <;) = Softmax wK, 3)
qt, A<t \/a ;

where g, is the query for the current decoding step, and K <; represents the keys up to and including
step .

Contrastive Decoding. CD mitigates hallucination through differential adjustment of token genera-
tion probabilities, employing two fundamental mechanisms: hallucination induction and probability
recalibration. Within the hallucination induction framework, several methodological variants have
emerged: VCD [Leng et al.| (2024) induces controlled hallucinations by either introducing Gaussian
noise into visual inputs or completely eliminating visual signals [Liu et al.| (2024c) (denoted as v');
ICD |Wang et al.| (2024c) constructs adversarial prompts (') to elicit hallucinations; while SID [Huo
et al.|(2024) implements strategic masking of high-attention visual regions during the decoding pro-
cess (also representable as v'). Subsequently, a new contrastive probability distribution is computed
by leveraging the differences between these two distributions. This contrastive distribution, denoted
as Pcq, is defined as:

Ped (y | 0,0, 2') = softmax [(1 + a) logity (y | v, ) —alogity (y | v',2")], )

where larger « values indicate a stronger amplification of differences between the two distributions
(o = 0 degenerates to Vanilla decoding). A fundamental limitation in Equation [4] is its uniform
penalization mechanism that indiscriminately penalizes all outputs from distorted inputs, disregard-
ing their potential linguistic validity and reasoning coherence. This approach risks suppressing
legitimate outputs while potentially promoting implausible generations. Consequently, effective CD
frameworks require implementing an plausibility constraint that dynamically calibrates penalization
intensity based on confidence metrics derived from original input distributions.

Vhead (y<t) = {yt eV ‘Do (yt | 'U,{E,y<t) > 5muf}Xp9 (w | vaay<t)}7 (5)
Ped (yt | 'U,'U/,.’EI) = 07 if Yt ¢ Vhead (y<t) )

where V is the output vocabulary of LVLMs and § is a hyperparameter in [0, 1] for controlling the
truncation of the next token distribution. Larger [ indicates more aggressive truncation, keeping
only high-probability tokens. Combining the CD and the plausibility constraint, we obtain the full
formulation:

yr ~ softmax [(1 + «) logity (y¢ | v, 2, y<) —alogity (g | V', 2, y<t)],

. (6)
subject to  y; € Vhead (Y<t) -

3.2 ATTENTION CONTRASTIVE DECODING (ACD)

Traditional CD methods, as formulated in Equation [6] mitigate hallucinations through direct sub-
traction operations at the logits layer. However, this approach operating in discontinuous and volatile
probability spaces significantly compromises language generation quality. To address this funda-
mental limitation, ACD strategically transposes the contrastive mechanism from the logits distri-
bution layer to the attention layer within the Transformer architecture of the LVLM decoder, with
the comprehensive methodological framework illustrated in Figure |2l Specifically, during the ¢-th
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decoding step, the model computes parallel attention distributions under two distinct input config-
urations. For the original visual input and hallucination-inducing input conditions, the respective
attention distributions are formally defined as:

KcleanT ) KnoisyT
Aglean — Softmax (qti/tg) ;AP = Softmax (qt:/tg> ’ @)

where ¢; denotes the query vector for the current decoding step, and K<¢*"T and K Z‘Z”yTrepresent
the key matrix caches computed using original inputs and hallucination-inducing inputs, respec-
tively. In contrast to traditional CD methods that perform direct subtraction operations at the logits
layer, ACD applies the contrastive mechanism at the attention layer:

APCP = (14 a)Afieen — o ASS(Afte, A7), ®

where ASS(-) represents our proposed Adaptive Subtraction Strategy, designed to precisely identify
and modulate attention distributions potentially conducive to hallucination generation.

3.3 ADAPTIVE SUBTRACTION STRATEGY (ASS)

The Adaptive Subtraction Strategy (ASS) constitutes the principal innovation of our ACD method-
ology. This mechanism functions by comparative analysis of attention response intensities be-
tween original visual inputs and hallucination-inducing inputs, thereby precisely identifying po-
tential hallucination-triggering regions. Based on this sophisticated assessment, ASS adaptively
suppresses the model’s attention allocation to hallucination-prone areas, effectively inhibiting hal-
lucination generation at its source. Specifically, the ASS mechanism is implemented through the
following procedure:

My = I(A§lea™ — APV < (), AACD = (1 4 ) ASe™™ — AT © M, 9)

where I(-) denotes the indicator function, returning 1 when the condition is satisfied and 0 otherwise;
©® represents element-wise multiplication. The theoretical foundation of this masking mechanism is
as follows:

* WhenAglean — A7**Y > 0, it indicates that in hallucination-inducing inputs, the model’s
attention allocation undergoes a shift, resulting in semantic information loss in the corre-
sponding region. In such instances, we preserve the original attention distribution without
applying subtraction operations to maintain semantic integrity.

» WhenAglean — A% < (), it signifies that the model allocates disproportionate attention
to incorrect regions in hallucination-inducing inputs, potentially precipitating hallucina-
tion generation. In these cases, we implement subtraction operations to suppress these
hallucination-prone attention allocations.

Unlike traditional CD methodologies that necessitate the application of penalty mechanisms as for-
mulated in Equation 5} ACD inherently generates more coherent outputs due to its intrinsic distri-
butional smoothness at the attention layer, thus eliminating the requirement for additional penalty
terms while preserving generation diversity. The complete decoding procedure is formally detailed
in Algorithm|[C]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Following established evaluation protocols from prior work|Leng et al.|(2024)); [Huo et al.| (2024);|An
et al.| (2025), we assess our method’s efficacy across standard benchmarks. Comprehensive details
regarding datasets and evaluation metrics are provided in Appendix D]

Benchmarks. POPE [Li et al| (2023b): A binary classification framework (20,000+ QA pairs)
assessing object hallucination through yes/no questions with random, popular, and adversarial sam-
pling strategies. Performance measured via Accuracy, Precision, Recall, and F1. MME [Fu et al.
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(2023a): Comprehensive evaluation across 14 subtasks spanning perception (object existence, color,
position) and cognition (reasoning, computation). Each image features complementary yes/no ques-
tions evaluated through accuracy metrics. CHAIR |Yue et al.|(2024)): Quantifies hallucination using
image annotations rather than lexical similarity. Primary metrics include CHAIRs (sentence-level),
CHAIRI (instance-level), and recall for measuring semantic comprehensiveness. LLaVA-Bench
(In-the-Wild) Liu et al.|(2023b): Evaluates generalization through 24 challenging images (memes,
paintings, sketches) with 60 questions. Performance assessed by GPT-5|OpenAl (2025) on factual
accuracy and descriptive richness.

Implementation Details. We evaluate the effectiveness of our proposed ACD on several estab-
lished LVLMs, including LLaVA-1.5 [Liu et al|(2023b) (7B and 13B) with MLP projection layers
and Qwen-VL (7B) Bai et al.| (2023) with g-former projection layers. Inference experiments for
LLaVA-1.5-7B and Qwen-VL(7B) were conducted on a single NVIDIA RTX 3090 GPU, while
LLaVA-1.5-13B was evaluated on a single NVIDIA A6000 GPU. The hyperparameter o was set
to 0.15 throughout all experiments. To demonstrate the efficacy of our approach, we compare
ACD against classical CD strategies designed for hallucination mitigation in LVLMs, including
VCD |Leng et al.| (2024), ICD [Wang et al.| (2024c), and SID |Huo et al.| (2024).We further incor-
porate our Attention Contrastive Decoding methodology into established contrastive frameworks,
evaluating its efficacy across diverse hallucination-prone scenarios while eliminating dependency
on restrictive penalty mechanisms. Throughout all experiments, we maintain consistent configura-
tion parameters and employ sampling as the default decoding strategy.

4.2 EXPERIMENTAL RESULTS

Experiments on CHAIR. Unlike the binary response paradigms (yes/no) characteristic of POPE
and MME evaluations, the CHAIR dataset presents a substantially more challenging benchmark
requiring detailed descriptive generation, which inherently increases susceptibility to hallucination
phenomena. As demonstrated in Table [T} our proposed methodology consistently improves per-
formance across various contrastive decoding-induced hallucination metrics. Specifically, ACD ef-
fectively reduces object hallucinations in generated captions, as evidenced by lower CHAIRS and
CHAIRI scores. Concurrently, ACD enhances the detailedness of the generated captions, as indi-
cated by higher Recall scores. These results demonstrate that ACD achieves an optimal balance be-
tween factual accuracy and descriptive richness in open-ended caption generation. This performance
advantage derives from the attention-layer contrastive adjustment mechanism and ASS introduced
in Sections and which collectively enable more precise visual-linguistic alignment while
preserving narrative coherence.

Experiments on LLaVA-Bench-Wild. Following established protocols in prior research Leng et al.
(2024); Huo et al.|(2024); An et al.[(2025)), we employed a strong LVLM for evaluation, specifically
utilizing SOTA GPT-5|0OpenAl(2025) as an independent assessor to evaluate both accuracy and de-
tail comprehensiveness. As demonstrated in Table |2} our proposed ACD methodology consistently
outperforms the VCD approach across all evaluation dimensions. For LLaVA-1.5, ACD achieved
accuracy improvements of 1.59 points and detail enhancements of 0.65 points; similarly, for Qwen-
VL, we observed accuracy gains of 1.71 points and detail improvements of 0.96 points. Notably,
these performance enhancements manifest across diverse task categories (Conversational, Detailed,
and Complex), with the most substantial improvements consistently observed in the Detail category.
This performance pattern suggests that ACD’s attention-layer contrastive mechanism and adaptive
subtraction strategy effectively enhance the model’s capacity to attend to fine-grained visual infor-
mation while simultaneously suppressing attention to non-existent or hallucinated regions, thereby
significantly improving comprehensive perception capabilities. The empirical results confirm that
smoothing contrastive adjustments at the attention layer rather than at logits enables more nuanced
visual-linguistic alignment with greater fidelity to the actual visual content.

Experiments on POPE. We evaluated the integration of our ACD methodology with various
hallucination-inducing scenarios, as presented in Table f] Experimental results demonstrate that
our approach achieves performance parity with conventional CD techniques while eliminating the
necessity for auxiliary penalty term constraints, simultaneously producing more coherent textual
outputs. Upon further analysis, we discovered that the POPE dataset’s benchmark exhibits inherent
limitations due to its binary (yes/no) question structure, which constrains the generation of nu-
anced, gradient responses. Consequently, while our algorithm does not demonstrate pronounced
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Table 1: Results of CHAIR hallucination evaluation for the open-ended caption generation task.

Model LLaVA Qwen-VL
Decoding Chairs | Chair; | Recallt Chairg | Chairl Recall 1
Regular 54.1 18.5 73.4 50.5 15.0 71.1
TTVCDh | 518 162 7 768 | 475 137 715
+ACD 51.0 14.3 78.3 47.0 12.5 72.1
T TICD | 521 155 7 767 | 481 131 696
+ACD 50.2 13.9 78.5 46.5 12.6 71.9
T SID | 505 141 7 782 1 460 127 725
+ACD 49.6 13.3 79.4 45.0 11.1 73.6

Table 2: Results of GPT-5 evaluation on the LLaVA-Bench-Wild Table 3: Results from Com-

dataset. prehensive Evaluation on
the MME Benchmark.

Cony Detail Complex Total Method Perception Cognition

Acc. Detail Acc. Detail Acc. Detail Acc. Detail ~_Regular| 1440.0 ~ 294.6
VCD 1475.4 284.3
VCD 467 367 450 567 3.88 488 430 475  ,ACD| 14977 2985

+ACD 6.83 3.71 7.50 7.33 3.97 521 589 540  ICD | 14642 2872

+ACD | 1488.6 290.3
Qwen VL VCD 5.61 391 555 553 5.13 498 540 4.85 “SID [ 14314 " 3917

+ACD 747 458 820 7.56 6.02 542 7.11 5.81 +ACD | 1518.7 299.1

Model Decoding

LLaVA-1.5

advantages on this particular dataset, it exhibits statistically significant performance improvements
on more sophisticated tasks requiring elaborate response generation, such as CHAIR and LLaVA-
Bench evaluations, thereby validating its efficacy in complex multimodal reasoning scenarios.

Experiments on MME. As evidenced in Table[3] our ACD method achieves superior performance
compared to the original VCD across mean metrics for person perception and recognition tasks,
demonstrating its efficacy in mitigating hallucinations while enhancing the general capabilities of
LVLM:s. Notably, despite the MME benchmark’s binary evaluation protocol (yes/no without inter-
mediate response options), its comprehensive structure—encompassing 14 distinct subtasks across
perception domains (object existence, color attribution, spatial positioning) and cognition functions
(logical reasoning, computational inference)—presents sufficiently challenging and diverse evalua-
tion scenarios to effectively highlight the advantages of our proposed methodology. The breadth and
complexity of these assessment criteria provide robust validation for our approach’s superiority in
maintaining factual consistency while preserving model versatility.

4.3  ABLATION STUDY AND ANALYSIS

Coherence Analysis. To rigorously evaluate ACD’s coherence efficacy, we employed the CHAIR
dataset—a challenging benchmark requiring detailed descriptive generation rather than the binary
responses (yes/no) characteristic of POPE and MME evaluations. As illustrated in Table[5] the VCD
method exhibits suboptimal performance across all generation quality assessment metrics relative to
conventional decoding approaches, suggesting that its logits-level visual contrastive mechanism fun-
damentally compromises textual coherence. In contrast, our proposed ACD methodology not only
preserves coherence levels comparable to conventional decoding but also demonstrates modest yet
consistent enhancements in CIDEr, BLEU-4, METEOR, and ROUGE-L metrics. These empirical
findings provide compelling evidence for ACD’s dual capability: simultaneously mitigating hallu-
cinations while maintaining—and in certain aspects, enhancing—language generation quality. This
balanced performance establishes ACD’s particular efficacy for high-fidelity multimodal generation
tasks where both factual accuracy and linguistic coherence are essential requirements.

Impact of Penalty Terms and ASS on CD. Using the canonical Contrastive Decoding implemen-
tation,VCD, as our experimental baseline, Table@demonstrates that while CD methods achieve sub-
stantial hallucination mitigation compared to conventional decoding strategies, the removal of the
adaptive penalty term results in significant performance degradation. This deterioration stems from
the inherent mechanism of the adaptive penalty component, which filters low-probability tokens in
the distribution tail—effectively limiting the diversity of generated content rather than specifically
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Table 4: Experimental results on the three POPE subsets derived from MSCOCO with LLaVA-
1.5 (7B) and Qwen-VL (7B).

Model LLaVA-1.5
Setting Random Popular Adversarial
Decoding | Acc Precision Recall F1 | Acc Precision Recall F1 | Acc Precision Recall F1

Model Qwen-VL
Setting Random Popular Adversarial

Decoding | Acc Precision Recall F1 | Acc Precision Recall F1 | Acc Precision Recall F1
Regular [84.4 954 725 824|841 943 72.6 82.0(822 899 72.6 80.3

Table 5: Evaluation Results of Co-  Table 6: Impact of Penalty Terms Table 7: Ablation Study
herence Across Different Decod- and ASS on VCD. of o in ACD.
ing Strategies.

Method Chairs | Chair; | Recall? a [Chairs | Chair; | Recallt
Method baseline  VCD +ACD Regular 54.1 18.5 73.4 0.05]  53.1 165 714
CIDEr 0.266 0.231 0.266 V€D 51.8 162 76.8 01| 525 152 77.6
BLEU-4 0094 0054  0.09 _VCDW/OPen. | 534 _ _ 176 _ 749 0.15] 510 14.3 78.3
METEOR 0.360 0.301 0.361 +ACD W/O Pen. 51.0 14.3 78.3 0.2 51.8 14.8 77.4
ROUGE-L 0.365 0.324 0.368 FACDW/OASS|” 521 ~ ~ 156 774 025 521 15.6 77.0

targeting hallucination reduction. Our proposed ACD methodology maintains robust hallucination
mitigation capabilities without relying on an adaptive penalty term, thereby preserving generation
quality while avoiding the diversity constraints imposed by traditional CD approaches. Concur-
rently, we validate the efficacy of the Adaptive Subtraction Strategy (ASS). Empirical evidence
demonstrates that performance metrics deteriorate significantly when the ASS mechanism is dis-
abled, as illustrated in Table [6] These findings underscore the critical role of adaptive subtraction
in precisely suppressing hallucinatory components while preserving the model’s factual generation
capabilities.

Effect of o in ACD. To rigorously assess the impact of the amplification coefficient a in Equa-
tion [8—which modulates the contrastive intensity between distributions derived from pristine and
perturbed visual inputs—we conducted a comprehensive ablation study across multiple o values
according to the formulation in Equation 3. As evidenced in Table [/} our experiments reveal that
o = 0.15 yields optimal performance, establishing a critical hyperparameter threshold for effec-
tively balancing contrastive signal strength while maintaining generation quality.

5 CONCLUSION

This paper addresses the challenge of balancing hallucination mitigation with output quality in
LVLMs. We identified how existing Contrastive Decoding approaches compromise generation co-
herence through logits-layer operations that necessitate restrictive penalty mechanisms. Our At-
tention Contrastive Decoding framework shifts contrastive operations to the attention layer, where
inherent smoothness promotes coherent generation, while the Adaptive Subtraction Strategy dynam-
ically suppresses hallucination-prone attention patterns. Evaluations confirm ACD produces more
coherent and factually accurate outputs without sacrificing diversity, resolving the quality-accuracy
trade-off of prior approaches. By addressing hallucinations at their attentional source rather than
through post-hoc adjustment, ACD enhances LVLM reliability for critical real-world applications.
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A APPENDIX OVERVIEW

This appendix provides comprehensive supplementary information that complements the main
manuscript, elaborating on methodological details, evaluation frameworks, and experimental analy-
ses. Each section offers in-depth exploration of specific aspects of our Attention Contrastive Decod-
ing (ACD) approach:

* More Related Work (Section [B): Presents an extensive review of Large Vision-Language
Models (LVLMs), their architectural components, applications, and the persistent challenge
of hallucination phenomena.

* Decoding Procedure (Section [C): Delineates the algorithmic implementation of ACD,
elucidating how dual attention caches enable fine-grained intervention at the attention layer
to mitigate hallucinations while preserving linguistic coherence.

* Benchmarks and Evaluation Metric Details (Section [D): Explicates our comprehensive
evaluation framework encompassing four distinct datasets (CHAIR, LLaVA-Bench, POPE,
MME) with their corresponding metrics for systematic assessment of hallucination mitiga-
tion.

* The Use of Large Language Models (Section [E): Clarifies the auxiliary role of LLMs in
enhancing linguistic accuracy and coherence, while emphasizing that core research com-
ponents were executed independently by the authors.

¢ Ethics Statement (Section @: Articulates our commitment to rigorous ethical standards,
data anonymization protocols, and the societal implications of improved LVLM reliability
in critical domains.

* Reproducibility Statement (Section [G): Documents our adherence to reproducibility
principles, including public release of code and comprehensive experimental configura-
tions.

+ Comparison of Inference Speeds (Section [H): Presents benchmarking results demon-
strating ACD’s computational efficiency relative to baseline and VCD methods.

* MME Full Set Results (Section [I): Reports comprehensive evaluations across the com-
plete MME benchmark suite, highlighting ACD’s consistent enhancement of perception,
recognition, and complex reasoning capabilities.

* Effect of VCD when LVLMs Scale Up (Section [J): Examines the scalability of our ap-
proach across different parameter configurations, demonstrating that ACD’s benefits am-
plify with larger model capacities.

* Effect of Different Sampling Strategies (Section [K): Analyzes how various decoding

approaches affect the balance between output determinism and diversity, with empirical
evidence of ACD’s consistent hallucination mitigation across all strategies.

* The Preprocessing Method of ACD (Section [L): Investigates normalization techniques
for addressing attention scale disparities, with empirical validation of Temperature-scaled
normalization’s superiority.

* Case Studies (Section [M): Presents illustrative examples of hallucination corrections
achieved by our method, visually demonstrating improved coherence and factual accuracy.

* Prompt for GPT-5 Evaluation (Section|N): Details the evaluation methodology employ-
ing GPT-5 as an automatic assessor for open-ended generation quality.

B MORE RELATED WORK

B.1 LARGE VISION-LANGUAGE MODELS

Large Vision-Language Models (LVLMs)Liu et al.| (2023bzc; [2024a); Zhu et al.| (2023); Bai et al.
(2023)); L1 et al.|(2023a)); Driess et al.|(2023);|Achiam et al.[(2023));(Chowdhery et al.| (2023)); Alayrac
et al.[(2022) have emerged as a pivotal research direction, effectively bridging computer vision and
natural language processing paradigms. These models demonstrate exceptional capabilities across
diverse multimodal tasks, including image captioningLin et al. (2014); |Li et al.| (2023a)), visual
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question answering (VQA)Liu et al.| (2023cibj, [2024a); Hudson & Manning| (2019), and sophisti-
cated multimodal reasoningLu et al.| (2022); |Alayrac et al.| (2022); |/Achiam et al.| (2023). Modern
LVLM architectures typically integrate visual encoders [Tong et al.| (2024) with feature projection
modules [Liu et al.| (2023c} 2024a)); Zhu et al| (2023) that interface with large language models
(LLMs) Radford et al.|(2018])); |Devlin et al.|(2019); Brown et al. (2020); Raffel et al.| (2020); |Stien-
non et al.| (2020); Chowdhery et al.[(2023); [Thoppilan et al.|(2022);|Achiam et al.[(2023)), creating a
unified embedding space where visual and textual representations converge to enable sophisticated
cross-modal understanding. Despite significant advances in LVLMs, hallucination phenomena |L1
et al.| (2023b)); Fu et al.| (2023b)); Yue et al.| (2024)—wherein models generate content fundamentally
i i ith vi i i iti the challenge of
hallucination mitigation in contemporary LVLMs, aiming to enhance their reliability and expand
their applicability across diverse domains.

C DECODING PROCEDURE

During practical decoding, the ACD method maintains dual attention caches: an original cache and
a hallucination cache. The specific algorithm is as follows:

Algorithm 1 Generating Text with ACD Strategy

1: Input: Image v, text query x, hallucination induction method
2: Output: Generated text y
: Initialize y as an empty sequence
4 fort=1,2,...,T do
5: Compute q: = Query(v, x,y<¢)
6:  Compute the clean attention A§** = Softmax (g, K< T /v/d)
7
8

Compute the noisy attention A} = Softmax (g; K HOISYT /Vd)
Generate the mask M; = I( Aclwn _ Ammy <0)

9:  Apply the ASS strategy: AP = (1 4+ a) A — o AT © M,
10: Use AA D to compute the output dlstrlbutlon Po(Ye|v, T, y<t)

11: Sample to obtain the next token y,

12: Update the attention caches K&¢"; and K237,
13: end for

14: Return y

At each decoding step, ACD computes attention distributions for both original and hallucination-
inducing inputs, subsequently applying the ASS strategy to identify and suppress attention alloca-
tions potentially conducive to hallucination generation. This fine-grained intervention at the atten-
tion layer enables the model to maintain linguistic coherence and diversity while effectively miti-
gating hallucinations. In contrast to traditional CD methods, ACD eliminates the necessity for Vyeuq
penalty mechanisms as formulated in Equation [3] to filter low-probability tokens, as its attention-
layer intervention inherently prevents invalid token generation. This characteristic allows ACD to
reduce hallucinations while preserving content quality and diversity. The fundamental advantage of
ACD lies in its exploitation of the inherent smoothness and structural continuity of the Transformer
attention mechanism, enabling the model to precisely localize and suppress hallucination sources
while maintaining generation quality. This approach provides a more reliable decoding solution
for practical LVLM applications, effectively balancing hallucination mitigation with output quality
preservation.

D BENCHMARKS AND EVALUATION METRIC DETAILS

This section delineates the comprehensive evaluation framework employed in our experimental anal-
ysis, encompassing four distinct benchmark datasets and their corresponding evaluation protocols
designed to systematically assess hallucination mitigation efficacy across varied visual reasoning
paradigms.
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D.1 CHAIR

CHAIR |Yue et al.| (2024) (Caption Hallucination Assessment with Image Relevance) quantifies ob-
ject hallucination severity in generated image descriptions. Unlike conventional metrics that evaluate
image descriptions through lexical or syntactic similarity, CHAIR directly leverages image annota-
tion metadata to identify hallucination instances, thereby measuring semantic consistency between
generated descriptions and actual visual content with greater precision. The CHAIR framework
comprises two complementary metrics:

* C'HAIR; (sentence-level): Measures the proportion of generated sentences containing at
least one hallucinated object

 CHAIR; (instance-level): Quantifies the ratio of hallucinated object mentions to total
object mentions across all generated descriptions

Additionally, recall serves as a complementary metric to evaluate semantic comprehensiveness, mea-
suring the proportion of ground-truth objects successfully captured in the generated descriptions.
This methodological approach circumvents potential biases inherent in purely linguistic matching
techniques, offering enhanced sensitivity in hallucination detection while revealing semantic fidelity
deficiencies that might remain undetected through traditional evaluation frameworks.

|{ Captions with hallucinated objects}|
HAIR; = 10
¢ R |{All captions}| (10)

|{Hallucinated objects}|
CHAIR; = : : 11
[{All mentioned objects}| an

|[{ Accurate objects}|

Recall =
cea |[{Ground-truth objects}|

(12)

D.2 LLAVA-BENCH (IN-THE-WILD)

LLaVA-Bench (In-the-Wild) [Liu et al.| (2023b) encompasses diverse challenging visual scenarios
including indoor/outdoor environments, internet memes, paintings, sketches, and various artistic
or abstract imagery typically underrepresented in standard training distributions. This benchmark
deliberately introduces distributional shifts to assess model generalization capabilities across chal-
lenging visual contexts. The dataset comprises 24 distinct images with 60 corresponding questions,
each image accompanied by meticulously crafted comprehensive descriptions and multiple targeted
questions. Following an instruction-following evaluation paradigm, models receive visual inputs
paired with natural language instructions requiring appropriate responses. The assessment protocol
incorporates questions spanning fundamental visual comprehension to complex inferential reason-
ing. Given the absence of standardized ground truth evaluations, we employ GPT-5|0OpenAl|(2025)),
currently the most advanced Large Vision-Language Model available, as an automatic evaluator for
generated descriptions. Through carefully engineered prompting (illustrated in Figure 1), the evalua-
tion assesses model outputs along two critical dimensions: (1) Accuracy—measuring semantic con-
sistency between generated descriptions and visual content; and (2) Detailedness—quantifying the
richness and comprehensiveness of visual details captured in model-generated descriptions. This au-
tomated evaluation methodology enables consistent assessment of model performance across chal-
lenging out-of-distribution visual scenarios.

D.3 POPE

POPE [Li et al.| (2023b) (Polling-based Object Presence Evaluation) formalizes the assessment of
object hallucination as a binary classification task by prompting LVLMs with yes/no questions re-
garding object presence in images. Each evaluation sample consists of a triplet containing an image,
corresponding question, and ground-truth answer. The framework constructs both positive and nega-
tive question instances with varying difficulty levels through three distinct sampling strategies: Ran-
dom sampling—selecting arbitrarily from objects absent in the image; Popular sampling—selecting

16



Under review as a conference paper at ICLR 2026

the top é most frequent objects across the dataset that are absent from the current image; and Adver-
sarial sampling—selecting the top k absent objects ranked by co-occurrence frequency with objects
present in the image. Our POPE evaluation dataset incorporates over 20,000 question-answer pairs
constructed from MSCOCO |Lin et al.|(2014), A-OKVQA [Schwenk et al.|(2022)), and GQA Hudson
& Manning| (2019) datasets. Within the POPE evaluation framework, model responses are con-
strained to binary ”Yes” or "No” outputs, effectively transforming object hallucination detection
into a standard binary classification problem. Consequently, we employ established classification
metrics—Accuracy, Precision, Recall, and F1-score—to quantitatively assess model performance.
These metrics are formally defined as:

Accuracy = TP+TN (13)
Y= TPYTN+FP+FN’
TP
Precision = ——— 14
recision TP+ FP’ (14)
TP
Recall = —— 15
T TPy EN (15

Fl 2 - Precision - Recall (16)
-score =
Precision + Recall ’

where TP, TN, FP, and F'N denote true positive, true negative, false positive, and false negative
classifications, respectively. Accuracy quantifies the proportion of correct predictions across all
instances; Precision measures the model’s ability to avoid false positives when identifying present
objects; Recall assesses the model’s capacity to identify all actually present objects; and F'1 — score
provides a harmonic mean of Precision and Recall, offering a comprehensive performance metric
that balances both dimensions of classification quality.

D.4 MME

MME Fu et al|(2023a) (Multimodal Model Evaluation) constitutes a comprehensive benchmark for
multimodal large language model assessment, encompassing 14 distinct subtasks categorized into
perceptual domains (object existence, quantification, color identification, spatial relationships) and
cognitive domains (commonsense reasoning, numerical computation, text translation). To facilitate
quantitative assessment, MME employs a standardized binary response format analogous to POPE,
requiring ”Yes/No” responses. A distinctive characteristic of this framework is its complementary
instruction design—each visual input is paired with dual instructions, one requiring an affirmative
response and the other a negative response based on ground truth. For evaluation metrics, MME
implements an accuracy-based assessment methodology similar to POPE, calculating performance
based on correct classification across individual instructions.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) served an auxiliary function in this work, enhancing linguistic ac-
curacy, fluency, and coherence. These models assisted in identifying and rectifying grammatical
errors, providing more precise lexical selections, and optimizing structural organization and logical
progression to ensure greater clarity and readability. It is important to note that LLMs were not
utilized for retrieval and discovery processes (e.g., identifying related work) or research ideation
generation. These critical components were executed independently by the authors without compu-
tational linguistic assistance.

F ETHICS STATEMENT

The proposed Attention Contrastive Decoding (ACD) methodology, designed to enhance reliability
and coherence in Large Vision-Language Models (LVLMs), adheres to rigorous ethical standards
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Table 8: A comparison of inference speed and GPU memory usage for different methods applied to
the LLaVA-v1.5 model on POPE subset benchmark.

Method Total Time GPU-Memory Latency/Example

baseline 13:46 14.7G 0.276s
VCD 26:51 15.8G 0.537s
~ +ACD  24:37 ] 15.3¢ 0.493s

throughout all experimental procedures. Our research utilized publicly accessible datasets with ap-
propriate anonymization protocols in compliance with established data ethics guidelines. We imple-
mented deliberate measures to mitigate model bias and ensure equitable performance across diverse
contexts. To facilitate scientific transparency and reproducibility, we have released our experimental
codebase publicly, enabling independent verification and extension of our findings by the research
community. The societal implications of this work are potentially significant, as ACD demonstrably
reduces hallucination generation, thereby enhancing the accuracy and reliability of automated con-
tent generation. Such improvements could yield substantial benefits in critical domains including
healthcare diagnostics and educational applications where factual precision is paramount.

G REPRODUCIBILITY STATEMENT

This research strictly adheres to reproducibility principles fundamental to scientific advancement.
All experiments were conducted using publicly accessible benchmark datasets, with comprehen-
sive implementation details of the proposed Attention Contrastive Decoding (ACD) methodology
provided. Our codebase, including configuration files and execution scripts with detailed repro-
duction instructions, is publicly available in our open-source repository (https://anonymous.
4open.science/r/ACD-00C6). To facilitate thorough replication, we have meticulously doc-
umented all experimental configurations, hyperparameters, optimization protocols, and computa-
tional resource specifications. This documentation encompasses training environments, inference
procedures, and evaluation methodologies, thereby enabling independent verification of our em-
pirical findings. This transparency not only supports validation of our reported results but also
establishes a foundation for future extensions and applications of the ACD approach across various
multimodal generation tasks.

H COMPARISON OF INFERENCE SPEEDS

To evaluate the computational efficiency of our method, we benchmarked the LLaVA-v1.5 model
on the POPE subset of MSCOCO random benchmark. All experiments were conducted on a server
equipped with a single NVIDIA RTX 3090 24GB GPU. As demonstrated in Table[8] the CD method
approximately doubles the runtime compared to conventional decoding while maintaining similar
memory utilization. Compared to VCD, our proposed ACD framework demonstrates enhanced
hallucination mitigation capabilities while maintaining computational efficiency. ACD achieves re-
duced memory footprint and inference latency by computing attention exclusively for hallucination-
prone inputs, thereby avoiding the computation of hidden state outputs that VCD necessitates. This
targeted computational approach enables our method to achieve superior performance without in-
troducing additional computational or memory overhead, resulting in a more efficient solution for
hallucination mitigation in vision-language models.

I MME FULL SET RESULTS

As illustrated in Figure[3] we conducted comprehensive evaluations using the complete MME bench-
mark suite to assess the impact on general capabilities of Large Vision-Language Models (LVLMs).
We present results from LLaVA-1.5 as representative among models exhibiting comparable perfor-
mance trajectories. Notably, our ACD methodology demonstrates consistent enhancement across
perception and recognition tasks when compared to the original VCD approach. The improvements
are particularly pronounced in complex reasoning domains, with substantial gains observed in Com-
mon Sense Reasoning, Optical Character Recognition (OCR), and Text Translation tasks. These
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Table 9: An ablation study of different sampling strategies.

Sampling Strategy VCD w. ACD Chairs ] Chair; | Recallt
Greedy No 51.6 15.3 774
Yes 50.5 14.1 79.2
Sampling No 51.8 16.2 76.8
Yes 51.0 14.3 78.3
Top P No 51.8 16.3 76.5
Yes 51.0 14.3 78.4
Top K No 524 17.6 75.9
Yes 51.6 15.2 77.1
No 51.8 16.0 77.1
Top K+Temperature 0.5 Yes 50.9 143 791

Table 10: The preprocessing method of ACD.

Method Chairs | Chair; | Recallt
Direct Subtraction 52.7 16.2 77.8
Layer-scaled 51.6 14.7 78.9
" Temperature-scaled ~ 51.0 143 783

results suggest that our attention-based contrastive mechanism not only preserves essential visual
understanding capabilities but significantly enhances performance on cognitively demanding tasks
while effectively mitigating hallucination tendencies.
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Figure 3: MME full set results on LLaVA-1.5

J EFFECT OF VCD WHEN LVLMS ScALE Up

To investigate the scalability and generalizability of our proposed ACD approach, we conducted
comprehensive evaluations using LVLMs of different parameter sizes. Table [[T] presents the com-
parative performance of the standard VCD against our proposed ACD method on the LLaVA-1.5
architecture with both 7B and 13B parameter configurations. The experimental results demonstrate
that ACD consistently outperforms the baseline VCD approach across all evaluation metrics and
model scales. For the 7B parameter configuration, ACD yields substantial improvements in accuracy
across all categories, with particularly notable gains in conversational (+2.16) and detail-oriented
(+3.00) tasks. Similarly, for the 13B parameter configuration, we observe even more pronounced
enhancements, with accuracy improvements of +2.40 in conversational tasks and +2.98 in detail-
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Table 11: Experimental evaluation of GPT-5 was conducted on the LLaVA-Bench-Wild dataset
using LLaVA-1.5 architectures with 7B and 13B parameter configurations.

Conv Detail Complex Total
Acc. Detail Acc. Detail Acc. Detail Acc. Detail
VCD 4.67 3.67 4.50 5.67 3.88 4.88 4.30 4.75
+ACD 6.83 3.71 7.50 7.33 3.97 5.21 5.89 5.40
VCD 5.32 4.50 5.25 6.10 4.92 5.30 5.10 5.85
+ACD 7.72 4.90 8.23 7.88 5.00 5.80 6.70 6.25

Model Decoding

LLaVA-1.5(7B)

LLaVA-1.5(13B)

oriented scenarios. Importantly, the performance gap between VCD and ACD remains consistent or
even widens as model size increases, suggesting that the benefits of our approach are not diminished
but rather amplified with larger model capacities. This pattern is particularly evident in the total
accuracy metrics, where ACD improves performance by +1.59 and +1.60 percentage points for the
7B and 13B models, respectively. These findings strongly indicate that ACD significantly enhances
performance across all model configurations, further substantiating its robustness independent of
model scale. The consistent improvements across different parameter sizes demonstrate that our
proposed method addresses fundamental limitations in vision-language reasoning that persist even
as models grow in capacity, highlighting the complementary nature of our approach to architectural
scaling.

K EFFECT OF DIFFERENT SAMPLING STRATEGIES

In the text generation process of large vision-language models (LVLMs), decoding strategies crit-
ically determine the balance between output determinism and diversity. Greedy search, which in-
variably selects the token with maximum conditional probability at each step, produces consistent
outputs but suffers from limited diversity. To introduce stochasticity, direct sampling draws from the
complete probability distribution, enhancing diversity but remaining susceptible to interference from
low-probability noise tokens. To achieve an optimal equilibrium, top-k sampling preserves only the
k highest-probability candidate tokens for sampling, thereby mitigating the influence of extremely
low-probability terms. Extending this approach, top-p sampling (nucleus sampling) dynamically
determines the candidate set size by establishing a cumulative probability threshold p, allowing the
sampling scope to adapt to the probability distribution’s steepness and thus more flexibly balancing
coherence and diversity. Building upon these methods, combining top-k sampling with temperature
scaling amplifies the advantage of high-probability tokens by rescaling the distribution, maintaining
top-k constraints while simultaneously enhancing generation stability and determinism. Beyond di-
rect sampling, we conducted an ablation study employing various decoding strategies on the CHAIR
dataset using LLaVA-1.5. The results presented in Table [0 demonstrate that ACD consistently miti-
gates hallucinations across all implemented decoding strategies.

L THE PREPROCESSING METHOD OF ACD

For our ACD method, which employs an attention-level contrastive adjustment mechanism, potential
scale disparities in attention necessitate appropriate normalization preprocessing. We investigated
multiple normalization techniques, specifically Layer-scaled and Temperature-scaled approaches.
Empirical evaluation using LLaVA-1.5 on the CHAIR dataset reveals that, as demonstrated in Ta-
ble[I0] the Temperature-scaled method yields superior performance, indicating its enhanced capac-
ity to equilibrate attention scales of varying magnitudes, thereby effectively mitigating hallucination
generation. These findings suggest that Temperature-scaled normalization offers significant advan-
tages in improving model generation stability and semantic coherence, particularly when processing
complex vision-language multimodal tasks where precise control of attention distribution optimizes
generation quality.
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M CASE STUDIES

Case studies on the chair and LLaVA-bench are presented to illustrate the effectiveness of our ap-
proach. Figuref4]5] [6] and[7]provides instances of hallucination corrections achieved by our method
ACD. From a perceptual standpoint, our method generates more coherent and diverse content while
offering supplemental examples of the enhancements brought by our proposed ACD in bolstering
the general perception and recognition abilities of LVLMs.

N PRrROMPT FOR GPT-5 EVALUATION

To evaluate open-ended generation, we employ GPT-5 to assess the accuracy and detailedness of
LVLMSs’ responses. The specific configurations are delineated in Figure [§]

Describe this photo in detail

GT: The image features a dining table with four bowls filled
with various types of food. The bowls are placed in a row, with
each bowl containing different types of food. The first bowl on
the left contains a mix of fruits, including bananas and
strawberries. The second bowl, located in the middle, has a soup
with broccoli and carrots. The third bowl on the right is filled
with grapes, and the fourth bowl on the far right has a salad. In
addition to the bowls, there are a few carrots scattered around
the table, with some placed near the middle bowl and others
near the rightmost bowl. The table setting creates an inviting
atmosphere for a meal or gathering.

Baseline: The image features a dining table with three bowls filled with a variety of fruits and
vegetables. The bowls are placed in a line, with each bowl containing different types of food. The
first bowl on the left contains a mix of fruits and vegetables, including bananas, apples, and
carrots. The second bowl, in the middle, is filled with a combination of grapes and broccoli. The
third bow! on the right is filled with a mix of fruits and vegetables, such as strawberries, carrots,
and apples. In addition to the bowls, there is a spoon placed on the table, likely for serving the
food. The arrangement of the bowls creates an inviting and healthy display of food options.

VCD: The image features a dining table with three bowls filled with various fruits and
vegetables. The bowls are placed in a row, with each bowl containing different types of food. The
fruits and vegetables in the bowls include apples, bananas, and carrots. In addition to the bowls,
there are a few carrots scattered around the table, some of which are placed near the edge of
the table. The table setting creates an inviting and healthy atmosphere, perfect for enjoying a meal
with friends or family.

+ACD : The image displays a dining table with four distinct bowls placed on it, each holding
various vegetables and fruits. One of the bowls contains bananas and strawberries, while another
has sliced bananas in cream. There is also a bowl! with broccoli and carrots, along with two others
that contain grape and apple slices. The table has an enticing assortment of foods that showcase a
balance of healthy ingredients.

Figure 4: More examples from CHAIR of our proposed ACD for hallucination corrections. Hallu-
cinated parts from LVLM’s decoding are highlighted in red.
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Describe this photo in detail

GT: The image features a man standing next to a large
elephant, both of them in a natural setting. The man is holding a
hat in his hand, and the elephant is reaching out to take the hat
from him. The elephant's trunk is extended towards the man,
creating a unique and captivating moment between the two. The
man appears to be enjoying the interaction with the elephant,
and the scene captures the essence of a close encounter with
these majestic creatures.

Baseline: The image features a man standing next to a large elephant, both of them in an outdoor
setting. The man is wearing a hat and appears to be feeding the elephant, while the elephant is
eating from a hat held by the man. The elephant is positioned on the right side of the man, and
they are both standing close to each other. In the background, there is a bench located on the left
side of the scene, and a potted plant can be seen in the middle of the image. The overall atmosphere
of the scene suggests a friendly interaction between the man and the elephant.

VCD: The image captures an intriguing scene featuring an old elephant walking into the water
next to a man. The elephant is putting its trunk into its mouth, walking through the water.
The water appears to be deep, up to the elephant's sides. There are at least two people present
in the scene one near the far left of the image and another one near the middle right side. A hat
can be spotted close to the top left corner of the frame, while an ironing board is positioned in the
middle foreground, indicating that someone may have recently been ironing nearby. A
backpack rests near the middle of the image and a spoon can be seen near the elephant,
potentially being used for feeding.

+ACD : The image features a man standing next to a large elephant, with the elephant's trunk
reaching up to the man's hat. The man is wearing a green shirt and appears to be feeding the
elephant. The elephant is positioned on the right side of the man, occupying a significant portion of
the scene. In the background, there is a bench located on the left side of the image, and a potted
plant can be seen in the middle of the scene. The overall atmosphere suggests a close encounter
with the majestic animal..

Figure 5: More examples from CHAIR of our proposed ACD for hallucination corrections. Hallu-
cinated parts from LVLM’s decoding are highlighted in red.

22



Under review as a conference paper at ICLR 2026

Describe this photo in detail

GPT-5: The photo shows the contents of a well-stocked
refrigerator shelf viewed straight on. Center back: a white
plastic gallon of milk with a red cap. Right side: several
containers of yogurt. There’s a tall white tub behind, a
smaller cup stacked on a yogurt cup below it, and nutrition
labels visible. In front-right, a clear clamshell of blueberries
B EME sits on the shelf. Left side: a clear clamshell of strawberries
e On the lower shelf area, with bright red berries and green
tops visible. Resting on top of that clamshell is an opened
plastic bag of baby carrots with a purple-and-orange label.
4 ==V Middle foreground: a light-green, stackable

lunchbox or food container with rounded corners; on top of it lies a blue package, possibly tortillas or flatbreads.
Back left: a couple of lidded tubs, likely dips or spreads (one may be hummus), with another short container
partly hidden behind them. Overall impression: fresh produce (strawberries, blueberries, carrots) and dairy (milk,
Greek yogurts) organized in clear containers, with neutral white refrigerator walls and bright, even lighting.

Baseline: The image displays a well-stocked refrigerator filled with various food items. Inside the refrigerator,
there are bottles, including milk, juice, and other beverages. Some of the bottles are placed on the top shelf,
while others are located on the middle and bottom shelves. In addition to the bottles, the refrigerator also
contains several fruits, such as strawberries and blueberries. The strawberries are placed on the bottom shelf,
while the blueberries are scattered throughout the refrigerator. The refrigerator is also filled with carrots,
which are located on the middle shelf. Overall, the refrigerator is well-organized and stocked with a variety of
food items, making it an inviting and convenient space for meal preparation.

VCD: The image displays an open refrigerator filled with a variety of food items. Inside the refrigerator, there
are multiple carrots placed in different sections, with some located near the top, middle, and bottom of the
fridge. A carton of yogurt can be seen on the right side of the refrigerator, while a bottle is positioned on the left
side. In addition to the food items, there are two strawberries placed on the left side of the refrigerator, adding
a touch of color to the scene. The refrigerator is well-stocked with various foods, making it a convenient place to
store and access nutritious meals.

+ACD: The image displays an open refrigerator filled with various food items and beverages. Inside the
refrigerator, there are multiple bottles, some of which are placed on the shelves, while others are standing upright.
The bottles vary in size and shape, and they are arranged in different positions within the refrigerator. In addition
to the bottles, the refrigerator also contains a few bowls, with one placed on the top shelf and another on the
middle shelf. There are also a couple of carrots stored in the refrigerator, one on the bottom shelf and another on
the middle shelf. The refrigerator is well-stocked with a variety of food items and beverages, making it a
convenient place to store and access groceries.

Figure 6: More examples from LLaVA-Bench of our proposed ACD for hallucination corrections.
Hallucinated parts from LVLM’s decoding are highlighted in red.
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Describe this photo in detail
GPT-5: The photo shows a busy multilane highway at
night, viewed from above. Two wide carriageways
curve through the frame from bottom left toward the
upper right, separated by a narrow, planted median.
Traffic is heavy in both directions: dense streams of
white headlights on the left side and red taillights on the
right, creating a ribbon of bright, colorful dots and short
light trails. \ehicles range from sedans and SUVs to a.
few buses and trucks packed bumper-to-bumper in some stretches.Streetlights line the road on tall poles,
casting warm pools of light onto the asphalt. On the far right edge is a darker strip of trees and utility poles,
with a sidewalk and scattered pedestrians or cyclists near bus stops lit by small shelters. To the far left, an
adjacent service road runs parallel with lighter traffic. The overall scene conveys the energy and congestion
of an urban evening rush hour

Baseline: The image depicts a busy highway at night, filled with heavy traffic. The highway is surrounded
by trees, adding to the scenery. There are numerous cars of various sizes and colors, all moving in the same
direction. Some cars are closer to the foreground, while others are further away, creating a sense of depth in
the scene. The traffic appears to be moving smoothly, despite the high volume of vehicles. The highway is
well-lit, with streetlights illuminating the area, making it easier for drivers to navigate the busy roads.

VCD: The image depicts a bustling highway filled with heavy traffic, including numerous cars and trucks.
The highway is a busy four-lane road, with traffic in both directions. The traffic is dense, with cars and trucks
occupying the lanes, and some vehicles are stopped or moving at a slow pace. In addition to the vehicles,
there are several pedestrians visible in the scene, walking along the side of the highway or crossing the road.
Traffic lights can be seen at various points along the highway, indicating the presence of intersections and
ensuring the safe flow of traffic.

+ACD: The image depicts a busy highway at night, filled with a large number of cars traveling in both
directions. The highway is surrounded by trees, adding to the scenery. The traffic is dense, with cars
occupying almost every lane, and some vehicles are positioned closer to the center of the highway. There are
multiple traffic lights visible in the scene, ensuring the smooth flow of traffic. Some of these traffic lights are
located near the center of the highway, while others are positioned closer to the edges. The overall atmosphere
of the image is bustling and filled with activity, as people commute through the city at night.

Figure 7: More examples from LLaVA-Bench of our proposed ACD for hallucination corrections.
Hallucinated parts from LVLM’s decoding are highlighted in red.
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Description:
Al that scores image description accuracy and detailedness.

Instructions:

You are an Al designed to evaluate and score the performance of two Al assistants in
describing a given image. Your primary focus is on the accuracy and detailedness of
their descriptions. You will assess the accuracy by checking for hallucinations - any part
of the description that is inconsistent with the image content. For detailedness, you will
consider how rich the response is in necessary details, excluding any hallucinated parts.
You will provide scores on a scale from 1 to 10 for each assistant separately, based on
these criteria. After scoring, you will offer an explanation for your evaluation, ensuring
it is free from bias and not influenced by the order of presentation of the responses.

Input format:

[Assistant 1]
{Response 1}
[End of Assistant 1]

[Assistant 2]
{Response 2}
[End of Assistant 2]

Output format:

Accuracy:
Scores of the two answers:
Reason:

Detailedness:
Scores of the two answers:
Reason:

- J

Figure 8: The configuration to build an image-description evaluator with GPT-5.
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