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Abstract

Recent work has shown that computation in lan-
guage models may be human-understandable,
with successful efforts to localize and intervene on
both single-unit features and input-output circuits.
Here, we introduce an approach which extends
causal mediation experiments to automatically
identify model components responsible for per-
forming a specific subtask by solely specifying a
set of desiderata, or causal attributes of the model
components executing that subtask. As a proof
of concept, we apply our method to automati-
cally discover shared variable binding circuitry in
LLaMA-13B, which retrieves variable values for
multiple arithmetic tasks. Our method success-
fully localizes variable binding to only 9 attention
heads (of the 1.6k) and one MLP in the final to-
ken’s residual stream.

1. Introduction
Deploying powerful generative AI systems requires con-
fidence in the reliability of their outputs, especially with
respect to certain high stakes behaviors like manipulation
or truthfulness (Carroll et al., 2023; Perez et al., 2022). The
emerging field of mechanistic interpretability seeks to make
model computation human-understandable by explaining
the function of particular model components and locating
groups of model components responsible for performing
certain language tasks. Indeed, recent work has successfully
identify, localize and intervene in model computation (Li
et al., 2022; Burns et al., 2022; Wang et al., 2022; Conmy
et al., 2023).

Here, we introduce an automated approach which extends
activation patching (Meng et al., 2022b; Vig et al., 2020)
to localize components within neural networks (e.g. atten-

*Equal contribution 1Harvard University 2Northeastern
University 3MIT CSAIL. Correspondence to: Xander
Davies <xanderlaserdavies@gmail.com>, Max Nadeau
<mnadeau@college.harvard.edu>.

Workshop on Challenges in Deployable Generative AI at Inter-
national Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

tion heads, MLP layers) that responsible for performing a
specific subtask of model computation. Our method allows
for quickly and automatically localizing computation, while
only requiring to specify desiderata, or causal attributes of
the target computation. As a proof of concept, we apply
our method to automatically discover shared variable bind-
ing circuitry in LLaMA-13B (Touvron et al., 2023), which
retrieves variable values for several arithmetic operations.

Contributions. In this ongoing work, we:

1. Describe a methodology for localizing computation by
enumerating desiderata and learning a binary mask by
performing causal interventions (Section 3, Fig. 1).

2. Present initial results in applying this methodology to
localize shared variable binding circuitry (Section 4,
Fig. 2).

2. Background
Circuit analysis. A deep neural network can be repre-
sented as a directed acyclic graph with specific nodes to
accept inputs, generate outputs, and perform various op-
erations to transform inputs into outputs. Circuit analysis
involves localizing and understanding subgraphs within the
computational graph of a model that are responsible for spe-
cific behaviors, and has had success in both language and
vision models (Olah et al., 2020; Wang et al., 2022; Räukur
et al., 2022; Chan et al., 2022).

Activation Patching. As introduced in (Meng et al.,
2022b), activation patching is a technique that uses causal in-
tervention to identify which submodules’ activations matter
for producing some model output. The process of activa-
tion patching involves running all the layers of a model until
reaching a certain submodule with an original input, denoted
as A, and a corrupted input, denoted as B. The activations
of this specific submodule with input B are then patched
into the corresponding activations of the same submodule
with input A during the forward pass. Next, the patched
activations are fed forward through the rest of the model.
This enables one to assess the role of the specific submodule
in generating an output, by quantifying how much this inter-
vention shifts the model’s output from its original answer on
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y, t Figure 1. Localizing computation with desiderata. The figure depicts training with a single (original, alternate, target) tuple within a
desideratum. We learn a mask w that combines activations from an alternate sequence a into the computation of the model on the input of
the original sequence o such that the output y moves towards the target t.

A. Our approach generalizes activation patching and swaps
activation from multiple alternative input sequence runs
with known target outputs, instead of corrupted sequence
runs, as described in (Meng et al., 2022b).

Variable Binding. Variable binding is the process of asso-
ciating a variable with a specific value, and is a fundamen-
tal concept in symbolic reasoning considered essential for
solving tasks such as natural language understanding and
reasoning (Marcus, 2001). However, it is still a mystery if
and how Large Language Models (LLMs) implement this
process.

Please see Appendix B for additional related work.

3. Using Desiderata to Localize Computation
We discover circuitry responsible for a specific task by enu-
merating properties of such a desired circuitry, and then
learning a binary mask over the model’s parameters which
accords with these properties (Fig. 1). We specify properties
(or desiderata) in terms of causal interventions with a known
target effects, and combine various interventions into a sin-
gle objective function. We then learn a sparse mask on the
targeted model components, such that applying causal inter-
ventions on the masked components alters model behavior
to satisfy the objective function.

Model components. As a first step, we specify our set of
model components. Models can be represented at various
levels of granularity. More granular components is more
computational expensive, but allows for more specific local-
ization of a model behavior. In Section 4, we decompose
LLaMA-13B into a set of attention heads and MLPs, as

opposed to more granular (e.g. splitting by Query, Key, and
Value matrices) or less granular (e.g. grouping into layers)
representations.

Desiderata. Given a computational circuitry with specific
functionality, we define a set of desiderata to enumerate
the effects of various causal interventions on the circuitry.
Each desideratum d corresponds to a set of n 3-tuple, each
of which consists of an original sequence (o), an alternate
sequence (a), and a target value (t). When the activation of
the sought-after circuitry generated with o is replaced with
the corresponding activation generated with a, the model
should output t. The target value (t) is determined based
on the nature of the intervention: it can remain equal to the
output of o (indicating no change in the output is expected),
be altered to match the output of a, or be set to a completely
different third value. We identify and localize submodule
with the desired functionality based on its adherence to the
expected outcomes specified by the desiderata.

Each 3-tuple (o, a, t) contributes to a loss term which mea-
sures how well performing activation patching on a set of
model components {ci} achieves t,

Ld({ci}) =
1

n

∑
(o,a,t)∈d

L({ci}, (o, a, t), y). (1)

Note that some measure of proximity L between the induced
model output y and the target t is needed. Furthermore, one
can combine multiple desideratum into a single objective
function, LD({ci}) =

∑
d∈D Ld({ci}). Desiderata for

the specific case of identifying the value-copying circuitry
involved in variable binding are presented in Fig. 2 and
discussed in Section 4.1.
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Figure 2. Variable Binding Desiderata. Each desideratum is a set of original (o), alternate (a), and target (t) 3-tuples. In the Value
Dependence desideratum, patching should change the output to the alternate’s output; in the Operation Invariance desideratum, patching
should have no effect.

Learning a Binary Mask. In order to find the set of
model components {ci} that minimizes LD({ci}), we use
a continuous relaxation of Equation 1. We define a mask
over the model components by assigning a learnable weight
wi ∈ [0, 1], to each component ci. That is, wi = 0 corre-
sponds to fully patching component ci with its value va from
the sequence a, wi = 1 corresponds to not patching ci, and
0 < wi < 1 corresponds to taking a convex combination of
the ci’s activation value v and the value va

wi · v + (1− wi) · va. (2)

Note that when we patch multiple components of the model,
the value v of a later-layer component will be influenced
by the patching of earlier layers before it itself is combined
with va as above.

We optimize the continuous mask according to LD, which
measures how well the patching intervention defined by
the mask meets our desiderata. We use ℓ0.5 regularization
with tunable strength λ over the mask entries to encourage
patching only a sparse set of model components (Louizos
et al., 2018). Throughout learning, we clamp values between
0 and 1. After training, we round weights to either 0 or 1
to form a binary mask. Empirically, we find that rounding
the mask to become binary typically has little effect on its
ability to satisfy the desiderata, and attribute this to the
regularization for sparsity during training.

4. Variable Binding
We apply our method (Section 3) to locate circuitry respon-
sible for retrieving variable values when computing simple
arithmetic expressions like those in Fig. 2. We use LLaMA-
13B, a 40-layer, decoder-only transformer language model,
trained on a diverse data set (Touvron et al., 2023). We

hypothesize that there exist components of LLaMA-13B
that, in order to complete sequences like those appearing in
Fig. 2, copy the value previously assigned to the variable x
into the final token’s residual stream. We further hypothe-
size that the x’s value is then combined with y’s value to
compute the desired expression.

We design desiderata to search specifically for this value-
copying circuitry. Throughout, we only evaluate accuracy
of models based on whether their prediction of the first digit
of the answer value is correct; we ensure a diverse set of
targets to avoid degenerate solutions. Code to replicate our
results is available in a public repository.1

4.1. Variable Binding Desiderata

We propose two desiderata to isolate this hypothesized value-
copying circuitry:2

1. Value Dependence (VD; Fig. 2, top). Patching our
target circuitry with its activations from alternate se-
quences containing different x values should control
which value is copied into the final residual stream.
Accordingly, such patching should change the model’s
output to match the output of the alternate sequences.

2. Operation Invariance (OI; Fig. 2, bottom). Since we
are looking for circuitry shared across arithmetic op-
erations, the specific operation being performed in the
expression should not affect the behavior of the value-
copying circuitry, as it should copy the same variable
value regardless of the operation. We therefore form
alternate sequences with a flipped operation (either ad-

1https://anonymous.4open.science/r/anima_
submission-D770/README.md

2We note that additional desideratum are possible.
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VD Acc. (+, -) OI Acc. (+, -) VD Acc. (×) OI Acc. (+, ×) # Patched
Original Model 18% 91% 11% 93% 0
Incomplete Desiderata (VD) 93% 11% 82% 13% 10
Full Desiderata (VD & OI) 84% 82% 84% 91% 10

Table 1. Accuracy of patching experiments. Learning the patching mask according to an incomplete set of desiderata (only using the
Value Dependence desideratum as presented in the second row) fails to localize our target computation (Operation Invariance accuracy
suffers for all the tested operation indicated in parenthesis). Using both desiderata (Full Desiderata. third row) successfully causes Value
Dependence behavior while maintaining Operation Invariance. Interestingly, the learnt patching mask achieves high accuracy also for
operation that was not included in the training set. For all cases, accuracy is calculated on held-out test set.

dition or subtraction), with a target value equals to the
output value of the corresponding original sequence.

4.2. Binary Mask Details

We consider all MLPs and attention heads (1640 models’
components in total) and learn a binary mask as described in
Section 3. We only perform patching to each component’s
contribution to the final-token residual stream, as that is
where we expect the value-copying circuitry to be active. We
use two-digit variable values with addition and subtraction
operations for defining both VD and OI sequences. We
use the logit difference between the original and alternate
answers as the proximity measure. For the VD task, we
intend to maximize the logit difference, whereas, for the OI
task, we aim to minimize it.

We created a dataset comprising VD and OI sequences, with
a total of 90/90 train/test examples, such that the first digit
of the expected answer is uniformly drawn from [1, 9]. We
use the Adam optimizer (Kingma & Ba, 2017) with a learn-
ing rate of 0.01, and alternate between taking gradient steps
from the VD loss and the OI loss to save memory. For all ex-
periments described below we use a sparsity regularization
weight of λ = 0.03. In Appendix A we present additional
results with different experimental settings such as varying
λ and the numbers of patched attention heads.

5. Results
According to our desiderata, we have identified a set of ten
components, comprising nine attention heads and one MLP,
that execute variable binding. We patch heads according to
this ten-component mask and evaluate the model’s accuracy
on a held-out set of VD and OI problems. On VD scenarios,
accuracy measures how often the model outputs the answer
from the alternative sequence. On OI scenarios, accuracy
measures how often the model outputs the answer from the
original sequence. We expect a mask that finds heads corre-
sponding to the value copying subtask of variable binding
to achieve high accuracy in both VD and OI.

We observe that the models’ components identified by our
method exhibit high accuracy in both tasks, as indicated in

Table 1 (first and second columns). We further test these
components on VD problems involving a multiplication
operation instead of addition or subtraction, and on OI prob-
lems involving swapping between addition and multiplica-
tion. Surprisingly, we find that the accuracy remains high
in these scenarios, despite not including multiplication dur-
ing training (see Table 1, third and fourth columns). This
indicates that these ten components indeed serve as the cir-
cuitry that copies variable values to the final residual stream
(before the model operates on them); these components suc-
cessfully cause the model’s output to change in the case that
one of the bound values changes, but not in the case that
the operation in the equation changes, even when testing an
operation that was not include in training.

We also find that including both desiderata is crucial for
locating this circuitry; with only the VD desideratum, the
identified heads successfully alter model behavior in the
VD scenario, but also affect the model’s output in the OI
scenario (see Table 1, second row). When both desiderata
are included in the loss, the masked components are mostly
attention heads in the middle of the model;3 whereas when
only using the first desideratum, the masked components
form a cluster of late-layer MLPs4. A possible explana-
tion for this is that using only the VD desideratum, the
mask includes model components that write the computed
final value of the expression to the residual stream, whereas
adding the second desideratum encourages the mask to find
the value-copying circuitry.

6. Conclusion
In this paper, we proposed a new approach to localizing
model components responsible for performing a specific
task, using a set of causal behavior desiderata. Our method
localize 10 components responsible for copying variable
values in LLaMA-13B. We plan to compare it with existing
localization methods (Meng et al., 2022a; Conmy et al.,
2023) and to expend it to additional tasks.

3Heads 11.11, 12.0, 12.7, 15.11, 15.25, 17.17, 18.11, 18.18,
19.20, and MLP 27.

4MLPs 18, 27, 28, 29, 30, 31, 32, 33, 35, and 36.
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Figure 3. Evaluating masks of various numbers of heads on
held-out VD and OI problems. Each vertical pair of datapoints
corresponds to a mask learned by a training run with a different
value of λ, the sparsity regularization weight. With too few compo-
nents patched, the model does not score well at Value Dependence.
We interpret this as indicating that not enough of the value-copying
heads have been patched.

A. Varying regularization strength
We vary the regularization strength λ in order to learn masks
with varying numbers of heads. We find that setting the reg-
ularization so that the masks learns approximately 10 model
subcomponents is the approximate minimum number that
can score highly for held-out Value Dependence accuracy
and Operation Invariance accuracy, and so we use that set-
ting for the main results of our paper. We also show further
that removing the Operation Invariance desideratum causes
the mask to score poorly on that criterion.

B. Related Work
Previous work has developed automated approaches to lo-
calizing computation (Conmy et al., 2023; Geiger et al.,
2022; Wu et al., 2023). Our work varies from Conmy et al.
(2023) in learning a mask and considering a broader class
of ablations (patches to change behavior, instead of just
preserve). Our work shares features with recent work from
Geiger et al. (2023) and Wu et al. (2023), but differs in
attempting to isolate shared computation common in mul-
tiple input-output circuits as opposed to understanding full
input-output circuits.

Figure 4. Transfer to accuracy on multiplication problems. This
graph depicts the same masks as Fig. 3 (which were trained on
sequences involving only addition and subtraction), but evaluated
on all-multiplication Value Dependence problems, and addition-
to-multiplication (and vice versa) Operation Invariance problems.
Similarly to Fig. 3, VD accuracy is low with too few heads patched.

Figure 5. Varying regularization strength with incomplete
desiderata. This graph demonstrates learning a mask with only
the Value Dependence desideratum. Again, each vertical pair of
datapoints corresponds to a mask learned by a training run with
a different value of λ, the sparsity regularization weight. Unlike
when the mask is optimized according to both desiderata, these
masks fail to achieve high accuracies on both Operation Invariance
and Value dependence at the same time, as discussed in Section 4.
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