
Published as a conference paper at ICLR 2022

STRENGTH OF MINIBATCH NOISE IN SGD

Liu Ziyin∗, Kangqiao Liu∗, Takashi Mori, & Masahito Ueda
The University of Tokyo

ABSTRACT

The noise in stochastic gradient descent (SGD), caused by minibatch sampling,
is poorly understood despite its practical importance in deep learning. This work
presents the first systematic study of the SGD noise and fluctuations close to a
local minimum. We first analyze the SGD noise in linear regression in detail and
then derive a general formula for approximating SGD noise in different types of
minima. For application, our results (1) provide insight into the stability of training
a neural network, (2) suggest that a large learning rate can help generalization
by introducing an implicit regularization, (3) explain why the linear learning rate-
batchsize scaling law fails at a large learning rate or at a small batchsize and (4) can
provide an understanding of how discrete-time nature of SGD affects the recently
discovered power-law phenomenon of SGD.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the simple and efficient optimization algorithm behind the
success of deep learning (Allen-Zhu et al., 2019; Xing et al., 2018; Zhang et al., 2018; Wang et al.,
2020; He and Tao, 2020; Liu et al., 2021; Simsekli et al., 2019; Wu et al., 2020). Minibatch noise, also
known as the SGD noise, is the primary type of noise in the learning dynamics of neural networks.
Practically, minibatch noise is unavoidable because a modern computer’s memory is limited while the
size of the datasets we use is large; this demands the dataset to be split into “minibatches" for training.
At the same time, using minibatch is also a recommended practice because using a smaller batch
size often leads to better generalization performance (Hoffer et al., 2017). Therefore, understanding
minibatch noise in SGD has been one of the primary topics in deep learning theory. Dominantly many
theoretical studies take two approximations: (1) the continuous-time approximation, which takes
the infinitesimal step-size limit; (2) the Hessian approximation, which assumes that the covariance
matrix of the SGD noise is equal to the Hessian H . While these approximations have been shown to
provide some qualitative understanding, the limitation of these approximations is not well understood.
For example, it is still unsure when such approximations are valid, which hinders our capability to
assess the correctness of the results obtained by approximations.

In this work, we fill this gap by deriving analytical formulae for discrete-time SGD with arbitrary
learning rates and exact minibatch noise covariance. In summary, the main contributions are: (1)
we derive the strength and the shape of the minibatch SGD noise in the cases where the noise for
discrete-time SGD is analytically solvable; (2) we show that the SGD noise takes a different form
in different kinds of minima and propose general and more accurate approximations. This work is
organized as follows: Sec. 2 introduces the background. Sec. 3 discusses the related works. Sec. 4
outlines our theoretical results. Sec. 5 derives new approximation formulae for SGD noises. In
Sec. 6, we show how our results can provide practical and theoretical insights to problems relevant to
contemporary machine learning research. For reference, the relationship of this work to the previous
works is shown in Table 1.

2 BACKGROUND

In this section, we introduce the minibatch SGD algorithm. Let {xi, yi}Ni=1 be a training set. We
can define the gradient descent (GD) algorithm for a differentiable loss function L as wt =wt−1 −

λ∇wL(w,{x,y}), where λ is the learning rate and w ∈ RD is the weights of the model. We consider
an additive loss function for applying the minibatch SGD.
Definition 1. A loss function L({xi, yi}

N
i=1,w) is additive if L({xi, yi}

N
i=1,w) =

1
N ∑

N
i=1 `(xi, yi,w) for some differentiable, non-negative function `(⋅).
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Table 1: Summary of related works on the noise and stationary distribution of SGD. This work fills the gap of
the lack of theoretical results for the actual SGD dynamics, which is discrete-time and with minibatch noise.

Setting Artificial Noise Hessian Approximation Noise Minibatch Noise
Continuous-time Sato and Nakagawa (2014); Welling and Teh (2011) Jastrzebski et al. (2018); Zhu et al. (2019) Blanc et al. (2020); Mori et al. (2021)

Mandt et al. (2017); Meng et al. (2020) Wu et al. (2020); Xie et al. (2021)
Discrete-time Yaida (2019); Gitman et al. (2019) Liu et al. (2021) This Work

Liu et al. (2021)

This definition is quite general. Most commonly studied and used loss functions are additive, e.g.,
the mean-square error (MSE) and cross-entropy loss. For an additive loss, the minibatch SGD with
momentum algorithm can be defined.
Definition 2. The minibatch SGD with momentum algorithm by sampling with replacement computes
the update to the parameter w with the following set of equations:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ĝt =
1
S ∑i∈Bt ∇`(xi, yi,wt−1);

mt = µmt−1 + ĝt;

wt =wt−1 − λmt.

(1)

where µ ∈ [0,1) is the momentum hyperparameter, S ∶= ∣Bt∣ is the minibatch size, and the set
Bt = {i1, ...iS} are S i.i.d. random integers sampled uniformly from [1,N].

One can decompose the gradient into a deterministic plus a stochastic term. Note that EB[ĝt] = ∇L
is equal to the gradient for the GD algorithm. We use EB(⋅) to denote the expectation over batches,
and use Ew(⋅) to denote the expectation over the stationary distribution of the model parameters.
Therefore, we can write ĝt = EB[ĝt] + ηt, where ηt ∶= 1

S ∑i∈Bt ∇`(xi, yi,wt−1) − EB[ĝt] is the
noise term; the noise covariance is C(wt) ∶= cov(ηt, ηt). Of central importance to us is the averaged
asymptotic noise covariance C ∶= limt→∞Ewt[C(wt)]. Also, we consider the asymptotic model
fluctuation Σ ∶= limt→∞ cov(wt,wt). Σ gives the strength and shape of the fluctuation of w around
a local minimum and is another quantity of central importance to this work. Throughout this work, C
is called the “noise" and Σ the “fluctuation".

3 RELATED WORKS

Noise and Fluctuation in SGD. Deep learning models are trained with SGD and its variants. To
understand the parameter distribution in deep learning, one needs to understand the stationary
distribution of SGD (Mandt et al., 2017). Sato and Nakagawa (2014) describes the stationary
distribution of stochastic gradient Langevin dynamics using discrete-time Fokker-Planck equation.
Yaida (2019) connects the covariance of parameter Σ to that of the noise C through the fluctuation-
dissipation theorem. When Σ is known, one may obtain by Laplace approximation the stationary
distribution of the model parameter around a local minimum w∗ as N(w∗,Σ). Therefore, knowing
Σ can be of great practical use. For example, it has been used to estimate the local minimum escape
efficiency (Zhu et al., 2019; Liu et al., 2021) and argue that SGD prefers a flatter minimum; it can
also be used to assess parameter uncertainty and prediction uncertainty when a Bayesian prior is
specified (Mandt et al., 2017; Gal and Ghahramani, 2016; Pearce et al., 2020). Empirically, both the
fluctuation and the noise are known to crucially affect the generalization of a deep neural network.
Wu et al. (2020) shows that the strength and shape of the Σ due to the minibatch noise lead to better
generalization of neural networks in comparison to an artificially constructed noise.

Hessian Approximation of the Minibatch Noise. However, it is not yet known what form C and
Σ actually take for SGD in a realistic learning setting. Early attempts assume isotropic noise in the
continuous-time limit (Sato and Nakagawa, 2014; Mandt et al., 2017). In this setting, the noise is
an isotropic Gaussian with C ∼ ID, and Σ is known to be proportional to the inverse Hessian H−1.
More recently, the importance of noise structure was realized (Hoffer et al., 2017; Jastrzebski et al.,
2018; Zhu et al., 2019; HaoChen et al., 2020). “Hessian approximation", which assumes C ≈ c0H
for some unknown constant c0, has often been adopted for understanding SGD (see Table 1); this
assumption is often motivated by the fact that C = Jw ≈H , where Jw is the Fisher information matrix
(FIM) (Zhu et al., 2019); the fluctuation can be solved to be isotropic: Σ ∼ ID. However, it is not
known under what conditions the Hessian approximation is valid, while previous works have argued
that it can be very inaccurate (Martens, 2014; Liu et al., 2021; Thomas et al., 2020; Kunstner et al.,
2019). However, Martens (2014) and Kunstner et al. (2019) only focuses on the natural gradient
descent (NGD) setting; Thomas et al. (2020) is closest to ours, but it does not apply to the case with
momentum, a matrix learning rate, or regularization.
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Discrete-time SGD with a Large Learning Rate. Recently, it has been realized that networks
trained at a large learning rate have a dramatically better performance than networks trained with a
vanishing learning rate (lazy training) (Chizat and Bach, 2018). Lewkowycz et al. (2020) shows that
there is a qualitative difference between the lazy training regime and the large learning rate regime;
the performance features two plateaus in testing accuracy in the two regimes, with the large learning
rate regime performing much better. However, the theory regarding discrete-time SGD at a large
learning rate is almost non-existent, and it is also not known what Σ may be when the learning rate is
non-vanishing. Our work also sheds light on the behavior of SGD at a large learning rate. Some other
works also consider discrete-time SGD in a similar setting (Fontaine et al., 2021; Dieuleveut et al.,
2020; Toulis et al., 2017), but the focus is not on deriving analytical formulae or does not deal with
the stationary distribution.

4 SGD NOISE AND FLUCTUATION IN LINEAR REGRESSION

This section derives the shape and strength of SGD noise and fluctuation for linear regression;
concurrent to our work, Kunin et al. (2021) also studies the same problem but with continuous-time
approximation; our result is thus more general. To emphasize the message, we discuss the label noise
case in more detail. The other situations also deserve detailed analysis; we delay such discussion
to the appendix due to space constraints. Notation: S denotes the minibatch size. w ∈ RD is the
model parameter viewed in a vectorized form; λ ∈ R+ denotes a scalar learning rate; when the
learning rate takes the form of a preconditioning matrix, we use Λ ∈ RD×D. A ∈ RD×D denotes the
covariance matrix of the input data. When a matrix X is positive semi-definite, we write X ≥ 0;
throughout, we require Λ ≥ 0. γ ∈ R denotes the weight decay hyperparameter; when the weight
decay hyperparameter is a matrix, we write Γ ∈ RD×D. µ is the momentum hyperparameter in SGD.
For two matrices X,Y , the commutator is defined as [X,Y ] ∶= XY − Y X . Other notations are
introduced in the context.1 The results of this section are numerically verified in Appendix A.

4.1 KEY PREVIOUS RESULTS

When N ≫ S, the following proposition is well-known and gives the exact noise due to minibatch
sampling. See Appendix E.1 for a derivation.
Proposition 1. The noise covariance of SGD as defined in Definition 2 is

C(w) =
1

SN

N

∑
i=1

∇`i(w)∇`i(w)
T
−

1

S
∇L(w)∇L(w)

T, (2)

where the notations `i(w) ∶= l(xi, yi,w) and L(w) ∶= L({xi, yi}
N
i=1,w) are used.

This gradient covariance matrix C is crucial to understand the minibatch noise. The standard
literature often assumes C(w) ≈H(w); however, the following well-known proposition shows that
this approximation can easily break down.
Proposition 2. Let w∗ be the solution such that L(w∗) = 0, then C(w∗) = 0.

Proof. Because `i is non-negative for all i, L(w∗) = 0 implies that `i(w∗) = 0. The differentiability
in turn implies that each ∇`i(w∗) = 0; therefore, C = 0. ◻

This proposition implies that there is no noise if our model can achieve zero training loss (which is
achievable for an overparametrized model). This already suggests that the Hessian approximation
C ∼ H is wrong since the Hessian is unlikely to vanish in any minimum. The fact that the noise
strength vanishes at L = 0 suggests that the SGD noise might at least be proportional to L(w), which
we will show to be true for many cases. The following theorem relates C and Σ of the discrete-time
SGD algorithm with momentum for a matrix learning rate.
Theorem 1. (Liu et al., 2021) Consider running SGD on a quadratic loss function with Hessian H ,
learning rate matrix Λ, momentum µ. Assuming ergodicity, then

(1 − µ)(ΛHΣ +ΣHΛ) −
1 + µ2

1 − µ2
ΛHΣHΛ +

µ

1 − µ2
(ΛHΛHΣ +ΣHΛHΛ) = ΛCΛ. (3)

Propostion 1 and Theorem 1 allow one to solve C and Σ. Equation (3) can be seen as a general
form of the Lyapunov equation (Lyapunov, 1992) and is hard to solve in general (Hammarling, 1982;
Ye et al., 1998; Simoncini, 2016). Solving this analytical equation in settings of machine learning
relevance is one of the main technical contributions of this work.

1We use the word global minimum to refer to the global minimum of the loss function, i.e., where L = 0 and
a local minimum refers to a minimum that has a non-negative loss, i.e., L ≥ 0.
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4.2 RANDOM NOISE IN THE LABEL

We first consider the case when the labels contain noise. The loss function takes the form

L(w) =
1

2N

N

∑
i=1

(wTxi − yi)
2, (4)

where xi ∈ RD are drawn from a zero-mean Gaussian distribution with feature covariance A ∶=

EB[xxT], and yi = uTxi + εi, for some fixed u and εi ∈ R is drawn from a distribution with zero
mean and finite second momentum σ2. We redefine w − u→w and let N →∞ with D held fixed.
The following lemma finds C as a function of Σ.

Lemma 1. (Covariance matrix for SGD noise in the label) Let N →∞ and the model be updated
according to Eq. (1) with loss function in Eq. (4). Then,

C =
1

S
(AΣA +Tr[AΣ]A + σ2A). (5)

The model fluctuation can be obtained using this lemma.

Theorem 2. (Fluctuation of model parameters with random noise in the label) Let the assumptions
be the same as in Lemma 1 and [Λ,A] = 0. Then,

Σ =
σ2

S
(1 +

κµ

S
)ΛG−1

µ , (6)

where κµ ∶=
Tr[ΛAG−1

µ ]
1− 1

STr[ΛAG−1
µ ] with Gµ ∶= 2(1 − µ)ID − (

1−µ
1+µ +

1
S
)ΛA.

Remark. This result is numerically validated in Appendix A. The subscript µ refers to momentum.
To obtain results for vanilla SGD, one can set µ = 0, which has the effect of reducing Gµ → G =

2ID − (1 + 1
S
)ΛA. From now on, we focus on the case when µ = 0 for notational simplicity, but we

note that the results for momentum can be likewise studied. The assumption [Λ,A] = 0 is not too
strong because this condition holds for a scalar learning rate and common second-order methods
such as Newton’s method.

If σ2 = 0, then Σ = 0. This means that when there is no label noise, the model parameter has a
vanishing stationary fluctuation, which corroborates Proposition 2. When a scalar learning rate λ≪ 1
and 1 ≪ S, we have

Σ ≈
λσ2

2S
ID, (7)

which is the result one would expect from the continuous-time theory with the Hessian approximation
(Liu et al., 2021; Xie et al., 2021; Zhu et al., 2019), except for a correction factor of σ2. Therefore, a
Hessian approximation fails to account for the randomness in the data of strength σ2. We provide a
systematic and detailed comparison with the Hessian approximation in Table 2 of Appendix B.

Moreover, it is worth comparing the exact result in Theorem 2 with Eq. (7) in the regime of non-
vanishing learning rate and small batch size. One notices two differences: (1) an anisotropic
enhancement, appearing in the matrix Gµ and taking the form −λ(1 + 1/S)A; compared with the
result in Liu et al. (2021), this term is due to the compound effect of using a large learning rate
and a small batchsize; (2) an isotropic enhancement term κ, which causes the overall magnitude
of fluctuations to increase; this term does not appear in the previous works that are based on the
Hessian approximation and is due to the minibatch sampling process alone. As the numerical
example in Appendix A shows, at large batch size, the discrete-time nature of SGD is the leading
source of fluctuation; at small batch size, the isotropic enhancement becomes the dominant source of
fluctuation. Therefore, the minibatch sampling process causes two different kinds of enhancement to
the fluctuation, potentially increasing the exploration power of SGD at initialization but reducing the
convergence speed.

Now, combining Theorem 2 and Lemma 1, one can obtain an explicit form of the noise covariance.

Theorem 3. The noise covariance matrix of minibatch SGD with random noise in the label is

C =
σ2

S
A +

σ2

S2
(1 +

κµ

S
)(ΛAG−1

µ +Tr[ΛAG−1
µ ]ID)A. (8)
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By definition, C = J is the FIM. The Hessian approximation, in sharp contrast, can only account
for the term in orange. A significant modification containing both anisotropic and isotropic (up
to Hessian) is required to fully understand SGD noise, even in this simple example. Additionally,
comparing this result with the training loss (127), one can find that the noise covariance contains one
term that is proportional to the training loss. In fact, we will derive in Sec. 5 that containing a term
proportional to training loss is a general feature of the SGD noise. We also study the case when the
input is contaminated with noise. Interestingly, the result is the same with the label noise case with
σ2 replaced by a more complicated term of the form Tr[AK−1BU]. We thus omit this part from the
main text. A detailed discussion can be found in Appendix E.3.1. In the next section, we study the
effect of regularization on SGD noise and fluctuation.

4.3 LEARNING WITH REGULARIZATION

Now, we show that regularization also causes a unique SGD noise. The loss function for Γ − L2

regularized linear regression is

LΓ(w) =
1

2N

N

∑
i=1

[(w − u)Txi]
2
+

1

2
wTΓw =

1

2
(w − u)TA(w − u) +

1

2
wTΓw, (9)

where Γ is a symmetric matrix; conventionally, one set Γ = γID with a scalar γ > 0. For conciseness,
we assume that there is no noise in the label, namely yi = uTxi with a constant vector u. One
important quantity in this case will be uuT ∶= U . The noise for this form of regularization can be
calculated but takes a complicated form.
Proposition 3. (Noise covariance matrix for learning with L2 regularization) Let the algorithm be
updated according to Eq. (1) on loss function (9) with N →∞ and [A,Γ] = 0. Then,

C =
1

S
(AΣA +Tr[AΣ]A +Tr[Γ′TAΓ′U]A + ΓA′UA′Γ) , (10)

where A′ ∶=K−1A, Γ′ ∶=K−1Γ with K ∶= A + Γ.

Notice that the last term ΓA′UA′Γ in C is unique to the regularization-based noise: it is rank-1
because U is rank-1. This term is due to the mismatch between the regularization and the minimum of
the original loss. Also, note that the term Tr[AΣ] is proportional to the training loss. Define the test
loss to be Ltest ∶= limt→∞Ewt[

1
2
(wt − u)TA(wt − u)], we can prove the following theorem. We

will show that one intriguing feature of discrete-time SGD is that the weight decay can be negative.
Theorem 4. (Test loss and model fluctuation for L2 regularization) Let the assumptions be the same
as in Proposition 3. Then

Ltest =
λ

2S
(Tr[AK−2Γ2U]κ + r) +

1

2
Tr[AK−2Γ2U], (11)

where κ ∶= Tr[A2K−1G−1]
1− λSTr[A2K−1G−1] , r ∶= Tr[A3K−3Γ2G−1U]

1− λSTr[A2K−1G−1] , with G ∶= 2ID − λ (K + 1
S
K−1A2). Moreover,

let [Γ, U] = 0, then

Σ =
λ

S
Tr[AK−2Γ2U] (1 +

λκ

S
)AK−1G−1

+
λ

S
(A2K−2Γ2U +

λr

S
A)K−1G−1. (12)

This result is numerically validated in Appendix A. The test loss (11) has an interesting consequence.
One can show that there exist situations where the optimal Γ is negative.2 When discussing the test
loss, we make the convention that if wt diverges, then Ltest = ∞.
Corollary 1. Let γ∗ = arg minγ Ltest. There exist a, λ and S such that γ∗ < 0.

The proof shows that when the learning rate is sufficiently large, only negative weight decay is
allowed. This agrees with the argument in Liu et al. (2021) that discrete-time SGD introduces an
implicit L2 regularization that favors small norm solutions. A too-large learning rate requires a
negative weight decay because a large learning rate already over-regularizes the model and one needs

2Some readers might argue that discussing test loss is meaningless when N →∞; however, this criticism
does not apply because the size of the training set is not the only factor that affects generalization. In fact, this
section’s crucial message is that using a large learning rate affects the generalization by implicitly regularizing
the model and, if one over-regularizes, one needs to offset this effect.
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to introduce an explicit negative weight decay to offset this over-regularization effect of SGD. This is
a piece of direct evidence that using a large learning rate can help regularize the models. It has been
hypothesized that the dynamics of SGD implicitly regularizes neural networks such that the training
favors simpler solutions (Kalimeris et al., 2019). Our result suggests one new mechanism for such a
regularization.

5 NOISE STRUCTURE FOR GENERIC SETTINGS

The results in the previous sections suggest that (1) the SGD noises differ for different kinds of
situations, and (2) SGD noise contains a term proportional to the training loss in general. These two
facts motivate us to derive the noise covariance differently for different kinds of minima. Let f(w, x)
denote the output of the model for a given input x ∈ RD. Here, we consider a more general case;
f(w, x) may be any differentiable function, e.g., a non-linear deep neural network. The number of
parameters in the model is denoted by P , and hence w ∈ RP . For a training dataset {xi, yi}i=1,2,...,N ,
the loss function with a L2 regularization is given by

LΓ(w) = L0(w) +
1

2
wTΓw, (13)

where L0(w) = 1
N ∑

N
i=1 `(f(w, xi), yi) is the loss function without regularization, and H0 is the

Hessian of L0. We focus on the MSE loss `(f(w, xi), yi) = [f(w, xi) − yi]
2/2. Our result crucially

relies on the following two assumptions, which relate to the conditions of different kinds of local
minima.
Assumption 1. (Fluctuation decays with batch size) Σ is proportional to S−1, i.e. Σ = O(S−1).

This is justified by the results in all the related works (Liu et al., 2021; Xie et al., 2021; Meng et al.,
2020; Mori et al., 2021), where Σ is found to be O(S−1).
Assumption 2. (Weak homogeneity) ∣L − `i∣ is small; in particular, it is of order o(L).

This assumption amounts to assuming that the current training loss L reflects the actual level of
approximation for each data point well. In fact, since L ≥ 0, one can easily show that ∣L− `i∣ = O(L).
Here, we require a slightly stronger condition for a more clean expression, when ∣L − `i∣ = O(L)
we can still get a similar expression but with some constant that hinders the clarity. Relaxing this
condition can be an important and interesting future work. The above two conditions allow us to state
our general theorem formally.
Theorem 5. Let the training loss be LΓ = L0 +

1
2
wTΓw and the models be optimized with SGD in

the neighborhood of a local minimum w∗. Then,

C(w) =
2L0(w)

S
H0(w) −

1

S
∇LΓ(w)∇LΓ(w)

T
+ o(L0). (14)

The noise takes different forms for different kinds of local minima.
Corollary 2. Omitting the terms of order o(L0), when Γ ≠ 0,

C =
2L0(w

∗)
S

H0(w
∗
) −

1

S
Γw∗w∗TΓ +O(S−2

) +O(∣w −w∗
∣
2
). (15)

When Γ = 0 and L0(w
∗) ≠ 0,

C =
2L0(w

∗)
S

H0(w
∗
) +O(S−2

) +O(∣w −w∗
∣
2
). (16)

When Γ = 0 and L0(w
∗) = 0,

C =
1

S
(Tr[H0(w

∗
)Σ]ID −H0(w

∗
)Σ)H0(w

∗
) +O(S−2

) +O(∣w −w∗
∣
2
). (17)

Remark. Assumption 2 can be replaced by a weaker but more technical assumption called the
“decoupling assumption", which has been used in recent works to derive the continuous-time distri-
bution of SGD (Mori et al., 2021; Wojtowytsch, 2021). The Hessian approximation was invoked in
most of the literature without considering the conditions of its applicability (Jastrzebski et al., 2018;
Zhu et al., 2019; Liu et al., 2021; Wu et al., 2020; Xie et al., 2021). Our result does provide such
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conditions for applicability. As indicated by the two assumptions, this theorem is applicable when
the batch size is not too small and when the local minimum has a loss close to 0. The reason for
the failure of the Hessian approximation is that, while the FIM is equal to the expected Hessian
J = E[H], there is no reason to expect the expected Hessian to be close to the actual Hessian of the
minimum.

The proof is given in Appendix C. Two crucial messages this corollary delivers are (1) the SGD
noise is different in strength and shape in different kinds of local minima and that they need to be
analyzed differently; (2) the SGD noise contains a term that is proportional to the training loss L0 in
general. Recently, it has been experimentally demonstrated that the SGD noise is indeed proportional
to the training loss in realistic deep neural network settings, both when the loss function is MSE
and cross-entropy (Mori et al., 2021); our result offers a theoretical justification. The previous
works all treat all the minima as if the noise is similar (Jastrzebski et al., 2018; Zhu et al., 2019;
Liu et al., 2021; Wu et al., 2020; Xie et al., 2021), which can lead to inaccurate or even incorrect
understanding. For example, Theorem 3.2 in Xie et al. (2021) predicts a high escape probability from
a sharp local or global minimum. However, this is incorrect because a model at a global minimum has
zero probability of escaping due to a vanishing gradient. In contrast, the escape rate results derived
in Mori et al. (2021) correctly differentiate the local and global minima. We also note that these
general formulae are consistent with the exact solutions we obtained in the previous section than the
Hessian approximation. For example, the dependence of the noise strength on the training loss in
Theorem 2, and the rank-1 noise of regularization are all reflected in these formulae. In contrast, the
simple Hessian approximation misses these crucial distinctions. Lastly, combining Theorem 5 with
Theorem 1, one can also find the fluctuation.
Corollary 3. Let the noise be as in Theorem 5, and omit the terms of order O(S−2) and
O(∣w −w∗∣2). Then, when Γ ≠ 0 and when Λ, H0(w

∗) and Γ commute with each other, Pr′Σ =

1
S

Λ
1−µ(2L0H0 − Γw∗w∗TΓ)(H0 + Γ)+ [2ID − Λ

1+µ(H0 + Γ)]
−1

. When Γ = 0 and L0(w
∗) ≠ 0,

PrΣ = 2L0

S(1−µ)PrΛ (2ID − Λ
1+µH0)

−1
. When Γ = 0 and L0(w

∗) = 0, PrΣ = 0. Here the superscript
+ is the Moore-Penrose pseudo inverse, Pr ∶= diag(1, . . . ,1,0, . . . ,0) is the projection operator with
r non-zero entries, r ≤ D is the rank of the Hessian H0, and r′ ≤ D is the rank of H0 + Γ. For the
null space H0, Σ can be arbitrary.

6 APPLICATIONS

One major advantage of analytical solutions is that they can be applied in a simple “plug-in" manner
by the practitioners or theorists to analyze new problems they encounter. In this section, we briefly
outline a few examples where the proposed theories can be relevant.

6.1 HIGH-DIMENSIONAL REGRESSION

We first apply our result to the high-dimensional regression problem and show how over-and-
underparametrization might play a role in determining the minibatch noise. Here, we take N,D →∞

with the ratio α ∶= N/D held fixed. The loss function is L(w) = 1
2N ∑

N
i=1 (wTxi − yi)

2
. As in the

standard literature (Hastie et al., 2019), we assume the existence of label noise: yi = uTxi + εi, with
Var[εi] = σ2. A key difference between our setting and the standard high-dimensional setting is
that, in the standard setting (Hastie et al., 2019), one uses the GD algorithm with vanishing learning
rate λ instead of the minibatch SGD algorithm with a non-vanishing learning rate. Tackling the
high-dimensional regression problem with non-vanishing λ and a minibatch noise is another main
technical contribution of this work. In this setting, we can obtain the following result on the noise
covariance matrix.
Proposition 4. Let Â = 1

N ∑
N
i xix

T
i and suppose assumptions 1 and 2 hold. With fixed S, λ, then

C = 1
S
(Tr[ÂΣ]ID − ÂΣ) Â +max{0, σ

2

S
(1 − 1

α
)} Â.

We note that this proposition follows from Theorem 5, showing an important theoretical application
of our general theory. An interesting observation is that one Σ-independent term proportional to σ2

emerges in the underparametrized regime (α > 1). However, for the overparametrized regime, the
noise is completely dependent on Σ, which is a sign that the stationary solution has no fluctuation.
This shows that the degree of underparametrization also plays a distinctive role in the fluctuation. In
fact, one can prove the following theorem, which is verified in Appendix A.2.

7



Published as a conference paper at ICLR 2022

Figure 1: Realistic learning settings with neural networks and logistic regression. Left: Variance of training loss
of a neural network with width d and tanh activation on the MNIST dataset. We see that the variance explodes
after d ≥ 200. In contrast, rescaling the learning rate by 1/d results in a constant noise level in training. This
suggests that the stability condition we derived for high-dimension regression is also useful for understanding
deep learning. Middle: Stability of Adam with the same setting. Adam also experiences a similar stability
problem when the model width increases. Right: Logistic regression on MNIST trained with SGD; with λ = 1.5,
S = 32. We see that the optimal performance is also achieved at negative weight decay strength γ, suggesting
that a large learning rate can indeed introduce effective regularization.

Theorem 6. When a stationary solution exists for w, we have Tr[ÂΣ] = max{0, λσ
2

S
(1 − 1

α
) κ̂},

where κ̂ ∶= Tr[Ĝ−1Â]
1− λSTr[Ĝ−1Â] with Ĝ ∶= 2ID − λ (1 − 1

S
) Â.

6.2 IMPLICATION FOR NEURAL NETWORK TRAINING

It is commonly believed that the high-dimensional linear regression problem can be a minimal model
for deep learning. Taking this stance, Theorem 6 suggests a technique for training neural networks.
For SGD to converge, a positive semi-definite Σ must exist; however, Σ ≥ 0 if and only if κ̂ ≥ 0.
From κ̂ > 0, we have ∑Di=1

1
2/λai−1+1/S < S, where ai are the eigenvalues of Â. This means that each

summand should have the order of D/S. Thus the upper bound of λ should have the order of 2S/aD,
where a is the typical value of ai’s. One implication of the dependence on the dimension is that the
stability of a neural network trained with SGD may strongly depend on its width d, and one may
rescale the learning rate according to the width to stabilize neural network training. See Figure 1-Left
and Middle. We train a two-layer tanh neural network on MNIST and plot the variance of its training
loss in the first epoch with fixed λ = 0.5. We see that, when d ≥ 200, the training starts to destabilize,
and the training loss begins to fluctuate dramatically. When rescaling the learning rate by 1/d, we see
that the variance of the training loss is successfully kept roughly constant across all d. This suggests
a training technique worth being explored by practitioners in the field. In Figure 1-Middle, we also
use Adam for training the same network and find a similar stabilizing trick to work for Adam.

6.3 A NATURAL LEARNING EXAMPLE WITH NEGATIVE WEIGHT DECAY

Sec. 4.3 shows that a too-large learning rate introduces an effective L2 regularization that can be
corrected by setting the weight decay to be negative. This effect can be observed in more realistic
learning settings. We train a logistic regressor on the MNIST dataset with a large learning rate (of
order O(1)). Figure 1-Right confirms that, at a large learning rate, the optimal weight decay can
indeed be negative. This agrees with our argument that using a large learning rate can effectively
regularize the training.

6.4 SECOND-ORDER METHODS

Understanding stochastic second-order methods (including the adaptive gradient methods) is also
important for deep learning (Agarwal et al., 2017; Zhang and Liu, 2021; Martens, 2014; Kunstner
et al., 2019). In this section, we apply our theory to two standard second-order methods: damped
Newton’s method (DNM) and natural gradient descent (NGD). We provide more accurate results
than those derived in Liu et al. (2021). The derivations are given in Appendix D.2. For DNM, the
preconditioning learning rate matrix is defined as Λ ∶= λA−1. The model fluctuation is shown to
be proportional to the inverse of the Hessian: Σ = λσ2

gS−λDA
−1, where g ∶= 2(1 − µ) − (

1−µ
1+µ +

1
S
)λ.

The main difference with the previous results is that the fluctuation now depends explicitly on the
dimension D, and implies a stability condition: S ≥ λD/g, corroborating the stability condition
we derived above. For NGD, the preconditioning matrix is defined by the inverse of the Fisher
information that Λ ∶= λ

S
J(w)−1 = λ

S
C−1. We show that Σ = λ

2
( 1

1+D
1

1+µ +
1

1−µ
1
S
)A−1 is one

solution when σ = 0, which also contains a correction related to D compared to the result in Liu
et al. (2021) which is Σ = λ

2
( 1

1+µ +
1

1−µ
1
S
)A−1. A consequence is that J ∼ Σ−1. The surprising

8



Published as a conference paper at ICLR 2022

fact is that the stability of both NGD and DNM now crucially depends on D; combining with the
results in Sec. 6.1, this suggests that the dimension of the problem may crucially affect the stability
and performance of the minibatch-based algorithms. This result also implies that some features we
derived are shared across many algorithms that depend on minibatch noise and that our results may
be relevant to a broad class of optimization algorithms other than SGD.

6.5 FAILURE OF THE λ − S SCALING LAW

One well-known technique in deep learning training is that one can scale λ linearly as one increases
the batch size S to achieve high-efficiency training without hindering the generalization performance;
however, it is known that this scaling law fails when the learning rate is too large, or the batch size is
too small (Goyal et al., 2017). In Hoffer et al. (2017), this scaling law is established on the ground
that Σ ∼ λ/S. However, our result in Theorem 2 suggests the reason for the failure even for the
simple setting of linear regression. Recall that the exact Σ takes the form:

Σ =
λσ2

S
(1 +

κµ

S
)G−1

µ

for a scalar λ. One notices that the leading term is indeed proportional to λ/S. However, the
discrete-time SGD results in a second-order correction in S, and the term proportional to 1/S2 does
not contain a corresponding λ; this explains the failure of the scaling law in small S, where the
second-order contribution of S becomes significant. To understand the failure at large λ, we need to
look at the term Gµ:

Gµ = 2(1 − µ)ID − (λ
1 − µ

1 + µ
+
λ

S
)A.

One notices that the second term contains a part that only depends on λ but not on S. This part is
negligible compared to the first term when λ is small; however, it becomes significant as the second
term approaches the first term. Therefore, increasing λ changes this part of the fluctuation, and the
scaling law no more holds if λ is large.

6.6 POWER LAW TAIL IN DISCRETE-TIME SGD

Figure 2: Comparison of the pro-
posed theory with the continuous-
time theory on the SGD station-
ary distribution for aλ = 1. The
proposed theory agrees with the
experiment exactly.

It has recently been discovered that the SGD noise causes a heavy-
tail distribution (Simsekli et al., 2019; 2020), with a tail decaying
like a power law with tail index β (Hodgkinson and Mahoney,
2020). In continuous-time, the stationary distribution has been
found to obey a Student’s t-like distribution, p(w) ∼ L−(1+β)/2 ∼

(σ2 + aw2)
−(1+β)/2

(Meng et al., 2020; Mori et al., 2021; Wo-
jtowytsch, 2021). However, this result is only established for
continuous-time approximations to SGD and one does not know
what affects the exponent β for discrete-time SGD. Our result in
Theorem 2 can serve as a tool to find the discrete-time correction
to the tail index of the stationary distribution. In Appendix D.3, we
show that the tail index of discrete-time SGD in 1d can be estimated
as β(λ,S) = 2S

aλ
− S. A clear discrete-time contribution is −(S + 1)

which depends only on the batch size, while 2S
aλ
+1 is the tail index in the continuous-time limit (Mori

et al., 2021). See Figure 2; the proposed formula agrees with the experiment. Knowing the tail index
β is important for understanding the SGD dynamics because β is equal to the smallest moment of
w that diverges. For example, when β ≤ 4, then the kurtosis of w diverges, and one expects to see
outliers of w very often during training; when β ≤ 2, then the second moment of w diverges, and
one does not expect w to converge in the minimum under consideration. Our result suggests that the
discrete-time dynamics always leads to a heavier tail than the continuous-time theory expects, and
therefore is more unstable.

7 OUTLOOK

In this work, we have presented a systematic analysis with a focus on exactly solvable results to
promote our fundamental understanding of SGD. One major limitation is that we have only focused
on studying the asymptotic behavior of SGD in local minimum. For example, Ziyin et al. (2022)
showed that SGD can converge to a local maximum when the learning rate is large. One important
future step is thus to understand the SGD noise beyond a strongly convex landscape.
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Figure 3: Left: 1d experiments with label noise. The parameters are set to be a = 1.5 and λ = 1.
Right: Experiments with L2 regularization with weight decay strength γ. The parameters are set to
be a = 1, λ = 0.5, S = 1. This is the standard case with a vanishing optimal γ. The vertical lines show
where our theory predicts a divergence.

(a) a = 1, S = 10 (b) S = 50 (c) S = 10

Figure 4: Comparison between theoretical predictions and experiments. (a) 1d experiment. We plot
Σ as an increasing function of λ. We see that the continuous-time approximation fails to predict the
divergence at a learning rate and the prediction in Liu et al. (2021) severely underestimates the model
fluctuation. In contrast, our result is accurate throughout the entire range of learning rates. (b)-(c) 2d
experiments. The straight line shows where the proposed theory predicts a divergence in the variance,
which agrees with experiment exactly. The Hessian has eigenvalues 1 and 0.5, and λ = 1.5. For a
large batch size, the discrete-time Hessian approximation is quite accurate; for a small S, the Hessian
approximation underestimates the overall strength of the fluctuation. In contrast, the continuous-time
result is both inaccurate in shape and in strength.

A EXPERIMENTS

A.1 LABEL NOISE AND REGULARIZATION

Theorem 2 can be verified empirically. We run 1d experiment in Figure 4(a) and high dimensional
experiments in Figures 4(b)-(c), where we choose D = 2 for visualization. We see that the continuous
Hessian approximation fails badly for both large and small batch sizes. When the batch size is
large, both the discrete-time Hessian approximation and our solution give a accurate estimate of the
shape and the spread of the distribution. This suggests that when the batch size is large, discreteness
is the determining factor of the fluctuation. When the batch size is small, the discrete Hessian
approximation severely underestimates the strength of the noise. This reflects the fact that the
isotropic noise enhancement is dominant at a small batch size.

In Figure 3-Left, we run a 1d experiment with λ = 1, N = 10000 and σ2 = 0.25. Comparing the
predicted Σ, we see that the proposed theory agrees with the experiment across all ranges of S.
The continuous theory with the Hessian approximation fails almost everywhere, while the recently
proposed discrete theory with the Hessian approximation underestimates the fluctuation when S
is small. In Figure 3-Right, we plot a standard case where the optimal regularization strength γ is
vanishing.

Now, we validate the existence of the optimal negative weight decay as predicted by our formula. For
illustration, we plot in Figure 5 the test loss (11) for a 1d example while varying either S or λ. The
orange vertical lines show the place where the theory predicts a divergence in the test loss. We also
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Figure 5: 1d experiments with L2 regularization with weight decay strength γ. The parameters are
set to be a = 4, λ = 1, S = 64. This shows a case where the optimal γ is negative. The vertical lines
show where our theory predicts a divergence.

Figure 6: High-dimensional linear regression. We see that the predicted fluctuation coefficient agrees
with the experiment well. The slight deviation is due to a finite training time and finite N and D. On
the other hand, a naive Hessian approximation results in a qualitatively wrong result.

plot a standard case where the optimal γ is close to 0 in Appendix A. Also, we note that the proposed
theory agrees better with the experiment.

A.2 HIGH-DIMENSIONAL REGRESSION

See Figure 6-Left. We vary N with D = 1000 held fixed. We set λ = 0.01 and S = 32. We see that
the agreement between the theory and experiment is good, even for this modest dimension number D.
The vertical line shows where the over-to-underparametrization transition takes place. As expected,
there is no fluctuation when α < 1, and the fluctuation gradually increases as α →∞. On the other
hand, the Hessian approximation gives a wrong picture, predicting fluctuation to rise when there is
no fluctuation and predicting a constant fluctuation just when the fluctuation starts to rise.
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Table 2: Comparison with previous results. For notational conciseness, we compare the case when
all the relevant matrices commute. The model fluctuation Σ, the expected training loss Ltrain

and the expected test loss Ltest calculated by continuous- and discrete-time theories with Hessian
approximation C ≈H are presented. Exact solutions to these quantities obtained in the present work
are shown in the rightmost column.

Hessian Approximation Exact Solution

Cts-time Approximation D-time Solution This Work

Σ Σ Σ

Label Noise λ
2S
ID

λ
S
(2ID − λA)−1 λσ2

S
(1 + λκ

S
) [2ID − λ (1 + 1

S
)A]−1

Input Noise λ
2S
ID

λ
S
(2ID − λK)−1 λTr[AK−1BU]

S
(1 + λκ′

S
) [2ID − λ (1 + 1

S
)K]−1

L2 Regularization λ
2S
ID

λ
S
(2ID − λK)−1 Eq. (12)

Ltrain Ltrain Ltrain

Label Noise λ
4S

Tr[A] + 1
2
σ2 Eq. (20) σ2

2
(1 + λκ

S
)

Input Noise λ
4S

Tr[K] + 1
2
Tr[AK−1BU] Eq. (28) 1

2
Tr[AK−1BU] (1 + λ

S
κ′)

L2 Regularization λ
4S

Tr[K] + 1
2
Tr[AK−1ΓU] Eq. (37) Eq. (151)

Ltest Ltest Ltest

Label Noise λ
4S

Tr[A] λ
2S

Tr[A(2ID − λA)−1] λσ2

2S
κ

Input Noise λ
4S

Tr[A] + 1
2
Tr[B′TAB′U] Eq. (29) λ

2S
Tr[AK−1BU]κ′ + 1

2
Tr[B′TAB′U]

L2 Regularization λ
4S

Tr[A] + 1
2
Tr[AK−2Γ2U] Eq. (38) Eq. (11)

B COMPARISON WITH CONVENTIONAL HESSIAN APPROXIMATION

We compare our results for the three cases with the results obtained with the conventional Hessian
approximation of the noise covariance, i.e., C ≈H , where H is the Hessian of the loss function. We
summarize the analytical results for a special case in Table 2.

B.1 LABEL NOISE

We first consider discrete-time dynamics with the Hessian approximation. The matrix equation is

ΣA +AΣ − λAΣA =
λ

S
A. (18)

Compared with the exact result (3), it is a large-S limit up to the constant σ2. This constant factor is
ignored during the approximation that J(w) ∶= EB[∇l∇lT] ≈ EB[∇∇Tl] ∶=H(w), which is exact
only when l({xi},w) is a negative log likelihood function of w. Solving the matrix equation yields

Σ =
λ

S
(2ID − λA)

−1. (19)

The training loss and the test loss are

Ltrain =
λ

2S
Tr[A(2ID − λA)

−1
] +

1

2
σ2, (20)

Ltest =
λ

2S
Tr[A(2ID − λA)

−1
]. (21)

On the other hand, by taking the large-S limit directly from the exact equation (3), the factor σ2 is
present:

ΣA +AΣ − λAΣA =
λ

S
σ2A. (22)

For the continuous-time limit with the Hessian approximation, the matrix equation is

ΣA +AΣ =
λ

S
A, (23)

which is the small-λ limit up to the factor σ2. The variance is

Σ =
λ

2S
ID. (24)
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The training and the test error are

Ltrain =
λ

4S
Tr[A] +

1

2
σ2, (25)

Ltest =
λ

4S
Tr[A]. (26)

Again, taking the small-λ limit directly from the exact result (3) shows the presence of the factor σ2

on the right hand side of the matrix equation.

B.2 INPUT NOISE

The case with the input noise is similar to the label noise. This can be understood if we replace
A by K and σ2 by Tr[AK−1BU]. The model parameter variance resulting from the discrete-time
dynamics under the Hessian approximation is

Σ =
λ

S
(2ID − λK)

−1. (27)

The training and the test error are

Ltrain =
λ

2S
Tr[K(2ID − λK)

−1
] +

1

2
Tr[AK−1BU], (28)

Ltest =
λ

2S
Tr[A(2ID − λK)

−1
] +

1

2
Tr[B′TAB′U]. (29)

The large-S limit from the exact matrix equation (144) results in a prefactor Tr[AK−1BU] in the
fluctuation:

Σ =
λ

S
Tr[AK−1BU](2ID − λK)

−1. (30)

For the continuous-time limit, we take λ→ 0. The Hessian approximation gives

Σ =
λ

2S
ID, (31)

Ltrain =
λ

4S
Tr[K] +

1

2
Tr[AK−1BU], (32)

Ltest =
λ

4S
Tr[A] +

1

2
Tr[B′TAB′U]. (33)

The large-S limit again produces a prefactor Tr[AK−1BU].

B.3 L2 REGULARIZATION

For learning with regularization, there is a more difference between the Hessian approximation and
the limit taken directly from the exact theory. We first adopt the Hessian approximation for the
discrete-time dynamics. The matrix equation is

ΣK +KΣ − λKΣK =
λ

S
K, (34)

which is similar to the previous subsection. However, it is different from the large-S limit of the exact
matrix equation (154):

ΣK +KΣ − λKΣK =
λ

S
(Tr[AK−2Γ2U]A +AK−1ΓUΓK−1A) . (35)

This significant difference suggests that the conventional Fisher-to-Hessian approximation J ≈ H
fails badly. The fluctuation, the training loss, and the test loss with the Hessian approximation are

Σ =
λ

S
(2ID − λK)

−1, (36)

Ltrain =
λ

2S
Tr[K(2ID − λK)

−1
] +

1

2
Tr[AK−1ΓU], (37)

Ltest =
λ

2S
Tr[A(2ID − λK)

−1
] +

1

2
Tr[AK−2Γ2U], (38)
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while the large-S limit of the exact theory yields

Σ =
λ

S
Tr[AK−2Γ2U]AK−1

(2ID − λK)
−1
+
λ

S
A2K−3Γ2

(2ID − λK)
−1U, (39)

Ltrain =
λ

2S
Tr[AK−2Γ2U]Tr[A(2ID − λK)

−1
] +

λ

2S
Tr[A2K−2Γ2

(2ID − λK)
−1U]

+
1

2
Tr[AK−1ΓU], (40)

Ltest =
λ

2S
Tr[AK−2Γ2U]Tr[A(2ID − λK)

−1
] +

λ

2S
Tr[A3K−3Γ2

(2ID − λK)
−1U]

+
1

2
Tr[AK−2Γ2U]. (41)

The continuous-time results are obtained by taking the small-λ limit on Eqs. (36)-(38) for the Hessian
approximation and on Eqs. (39)-(41) for the limiting cases of the exact theory. Specifically, for the
Hessian approximation, we have

Σ =
λ

2S
ID, (42)

Ltrain =
λ

4S
Tr[K] +

1

2
Tr[AK−1ΓU], (43)

Ltest =
λ

4S
Tr[A] +

1

2
Tr[AK−2Γ2U]. (44)

The small-λ limit of the exact theory yields

Σ =
λ

2S
Tr[AK−2Γ2U]AK−1

+
λ

2S
A2K−3Γ2U, (45)

Ltrain =
λ

4S
Tr[AK−2Γ2U]Tr[A] +

λ

4S
Tr[A2K−2Γ2U] +

1

2
Tr[AK−1ΓU], (46)

Ltest =
λ

4S
Tr[AK−2Γ2U]Tr[A] +

λ

4S
Tr[A3K−3Γ2U] +

1

2
Tr[AK−2Γ2U]. (47)
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C PROOF OF THE GENERAL FORMULA

C.1 PROOF OF THEOREM 5 AND COROLLARY 2

We restate the theorem.
Theorem 7. Let the training loss be LΓ = L0 +

1
2
wTΓw and the models be optimized with SGD in

the neighborhood of a local minimum w∗. When Γ ≠ 0, the noise covariance is given by

C =
2L0(w

∗)
S

H0(w
∗
) −

1

S
Γw∗w∗TΓ +O(S−2

) +O(∣w −w∗
∣
2
). (48)

When Γ = 0 and L0(w
∗) ≠ 0,

C =
2L0(w

∗)
S

H0(w
∗
) +O(S−2

) +O(∣w −w∗
∣
2
). (49)

When Γ = 0 and L0(w
∗) = 0,

C =
1

S
(Tr[H0(w

∗
)Σ]ID −H0(w

∗
)Σ)H0(w

∗
) +O(S−2

) +O(∣w −w∗
∣
2
). (50)

Proof. We will use the following shorthand notations: `i ∶= `(f(w, xi), yi), `′i ∶=
∂`i
∂f

, `′′i ∶=
∂2`i
∂f2 .

The Hessian of the loss function without regularization H0(w) = ∇∇TL0(w) is given by

H0(w) =
1

N

N

∑
i=1

`′′i ∇f(w, xi)∇f(w, xi)
T
+

1

N

N

∑
i=1

`′i∇∇
Tf(w, xi). (51)

The last term of Eq. (51) can be ignored when L0 ≪ 1, since

∥
1

N

N

∑
i=1

`′i∇∇
Tf(w, xi)∥

F

≤ (
1

N

N

∑
i=1

(`′i)
2
)

1/2
(

1

N

N

∑
i=1

∥∇∇
Tf(w, xi)∥

2
F)

1/2

= ⟨`′2⟩1/2 (
1

N

N

∑
i=1

∥∇∇
Tf(w, xi)∥

2
F)

1
2

,

=
√

2L0(w)(
1

N

N

∑
i=1

∥∇∇
Tf(w, xi)∥

2
F)

1
2

,

where ∥ ⋅ ∥F stands for the Frobenius norm3, and we have defined the variable ⟨`′2⟩ ∶= 1
N ∑

N
i=1(`

′
i)

2.
Since `′′i = 1 for the mean-square error, we obtain

H0(w) =
1

N

N

∑
i=1

∇f(w, xi)∇f(w, xi)
T
+O (

√
L0) (52)

near a minimum. The Hessian with regularization HΓ(w) = ∇∇TLΓ(w) is just given by H0(w)+Γ.

On the other hand, the SGD noise covariance C(w) is given by Eq. (2). By assumption 2, the SGD
noise covariance is directly related to the Hessian:

C(w) =
⟨`′2⟩
SN

N

∑
i=1

∇f(w, xi)∇f(w, xi)
T
−

1

S
∇LΓ(w)∇LΓ(w)

T

+
2

SN

N

∑
i=1

(`i −L0)∇f(w, xi)∇f(w, xi)
T

=
2L0(w)

S
H0(w) −

1

S
∇LΓ(w)∇LΓ(w)

T
+ o(L0). (53)

This finishes the proof. ◻

3In the linear regression problem, the last term of Eq. (51) does not exist since ∇∇Tf(w, xi) = 0.
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Now we prove Corollary 2.

Proof. Near a minimum w∗ of the full loss LΓ(w), we have

∇LΓ(w) =H0(w
∗
)(w −w∗

) + Γw∗
+O(∣w −w∗

∣
2
), (54)

within the approximation LΓ(w) = LΓ(w
∗)+(1/2)(w−w∗)THΓ(w

∗)(w−w∗)T+O(∣w−w∗∣2).
Equations (14) and (54) give the SGD noise covariance near a minimum of LΓ(w).

Now it is worth discussing two different cases separately: (1) with regularization and (2) without
regularization. We first discuss the case when regularization is present. In this case, the regularization
Γ is not small enough, and the SGD noise covariance is not proportional to the Hessian. Near a local
or global minimum w ≈w∗, the first term of the right-hand side of Eq. (54) is negligible, and hence
we obtain

Ew[C(w)] =
2L0(w

∗)
S

H0(w
∗
) −

1

S
Γw∗w∗TΓ

+Ew [
1

S
H0(w

∗
)(w −w∗

)(w −w∗
)
TH0(w

∗
)] +O(∣w −w∗

∣
2
)

=
2L0(w

∗)
S

H0(w
∗
) −

1

S
Γw∗w∗TΓ +O(S−2

) +O(∣w −w∗
∣
2
). (55)

where we have used the fact that E[w] = w∗. The SGD noise does not vanish even at a global
minimum of LΓ(w). Note that this also agrees with the exact result derived in Sec. 4.3: together with
an anisotropic noise that is proportional to the Hessian, a rank-1 noise proportional to the strength of
the regularization appears. This rank-1 noise is a signature of regularization.

On the other hand, as we will see below, the SGD noise covariance is proportional to the Hessian
near a minimum when there is no regularization, i.e., Γ = 0. We have

C(w) =
2L0(w)

S
H0(w) −

1

S
H0(w

∗
)(w −w∗

)(w −w∗
)
TH0(w

∗
) +O(∣w −w∗

∣
2
). (56)

For this case, we need to differentiate between a local minimum and a global minimum. When
L0(w

∗) is not small enough (e.g. at a local but not global minimum),

C(w) =
2L0(w

∗)
S

H0(w) +
(w −w∗)TH0(w

∗)(w −w∗)
S

H0(w)

−
1

S
H0(w

∗
)(w −w∗

)(w −w∗
)
TH0(w

∗
) +O(∣w −w∗

∣
2
)

=
2L0(w

∗)
S

H0(w) +O(S−2
) +O(∣w −w∗

∣
2
)

=
2L0(w

∗)
S

H0(w
∗
) +O(S−2

) +O(∣w −w∗
∣
2
), (57)

and so, to leading order,

C =
2L0(w

∗)
S

H0(w
∗
), (58)

which is proportional to the Hessian but also proportional to the achievable approximation error.

On the other hand, when L0(w
∗) is vanishingly small (e.g. at a global minimum), we have 2L0(w) ≈

(w −w∗)TH0(w
∗)(w −w∗), and thus obtain

C(w) =
1

S
[(w −w∗

)
TH0(w

∗
)(w −w∗

)H0(w
∗
) −H0(w

∗
)(w −w∗

)(w −w∗
)
TH0(w

∗
)]

+O(S−2
) +O(∣w −w∗

∣
2
), (59)

i.e.,

E[C] =
1

S
(Tr[H0Σ]ID −H0Σ)H0 +O(S−2

) +O(∣w −w∗
∣
2
). (60)

This completes the proof.
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Remark. It should be noted that the second term on the right-hand side of Eq. (59) would typically be
much smaller than the first term for large D. For example, when H0(w

∗) = aID with a > 0, the first
and the second terms are respectively given by (a2/S)∥w−w∗∥2ID and −(a2/S)(w−w∗)(w−w∗)T.
The Frobenius norm of the former is given by (Da2/S)∥w −w∗∥2, while that of the latter is given
by (a2/S)∥w −w∗∥2, which indicates that in Eq. (59), the first term is dominant over the second
term for large D. Therefore the second term of Eq. (59) can be dropped for large D, and Eq. (59) is
simplified as

⎧⎪⎪
⎨
⎪⎪⎩

C(w) ≈
(w−w∗)TH0(w∗)(w−w∗)

S
H0(w

∗);
E[C] ≈

Tr[H0Σ]
S

H0.
(61)

Again, the SGD noise covariance is proportional to the Hessian.

In conclusion, as long as the regularization is small enough, that the SGD noise covariance near
a minimum is proportional to the Hessian is a good approximation. This implies that the noise is
multiplicative, which is known to lead to a heavy tail distribution (Clauset et al., 2009; Levy and
Solomon, 1996). Thus, we have studied the nature of the minibatch SGD noise in three different
situations. As an example, we have demonstrated the power of this general formulation by applying
it to the high-dimensional linear regression problem in Sec. 6.1.

C.2 PROOF OF COROLLARY 3

Proof. We prove the case where Γ = 0 and L(w∗) ≠ 0 as an example. Substituting Theorem 5 into
Theorem 1yields

[2ID −
1

1 + µ
ΛH0]ΛH0Σ =

2L0

S(1 − µ)
Λ2H0, (62)

where we have assumed necessary commutation relations. Suppose that the Hessian H0 is of rank-r
with r ≤D. The singular-value decomposition and its Moore-Penrose pseudo inverse are given by
H0 = USV

T and H+
0 = V S+UT, respectively, where U and V are unitary, S is a rank-r diagonal

matrix with elements being singular values of H0, and S+ is obtained by inverting every non-zero
entry of S. Multiplying H+

0 to both sides of the above equation, we have

PrΣ =
2L0

S(1 − µ)
PrΛ(2ID −

Λ

1 + µ
H0)

−1

, (63)

where Pr = diag(1,1, . . . ,1,0, . . . ,0) is the projection operator with r non-zero entries. When the
Hessian is full-rank, i.e., r =D, the Moore-Penrose pseudo inverse is nothing but the usual inverse.
The other cases can be calculated similarly.
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D APPLICATIONS

D.1 INFINITE-DIMENSIONAL LIMIT OF THE LINEAR REGRESSION PROBLEM

Now we apply the general theory in Sec. 5 to linear regressions in the high-dimensional limit, namely
N,D →∞ with α ∶= N/D held fixed.

D.1.1 PROOF OF PROPOSITION 4

The loss function

L(w) =
1

2N

N

∑
i=1

(wTxi − yi)
2

(64)

with yi = uT + εi can be written as

L(w) =
1

2
(w − u − Â+v)

T
Â (w − u − Â+v) −

1

2
vTÂ+v +

1

2N

N

∑
i=1

ε2i , (65)

where Â ∶= 1
N ∑

N
i=1 xix

T
i is an empirical covariance for the training data and v ∶= 1

N ∑
N
i=1 xiεi. The

symbol (⋅)+ denotes the Moore-Penrose pseudoinverse. We also introduce the the averaged traing
loss: Ltrain ∶= Ew[L(w)]

The minimum of the loss function is given by

w∗
= u + Â+v +Πr, (66)

where r ∈ RD is an arbitrary vector and Π is the projection onto the null space of Â. Since
1 −Π = Â+Â, w∗ is also expressed as

w∗
= Â+

(Âu + v) +Πr. (67)

In an underparameterized regime α > 1, Π = 0 almost surely holds as long as the minimum eigenvalue
of A (not Â) is positive (Hastie et al., 2019). In this case, Â+ = Â−1 and we obtain

w∗
= u + Â−1v for α > 1. (68)

On the other hand, in an overparameterized regime α > 1, Π ≠ 0 and there are infinitely many global
minima. In the ridgeless regression, we consider the global minimum that has the minimum norm
∥w∗∥, which corresponds to

w∗
= Â+

(Âu + v) = (1 −Π)u + Â+v for ridgeless regression with α < 1. (69)

In both cases, the loss function is expressed as

L(w) =
1

2
(w −w∗

)
T
Â (w −w∗

) −
1

2
vTÂv +

1

2N

N

∑
i=1

ε2i . (70)

Asymptotically, wt converges to a stationary point w∗ with fluctuation Σ obeying the following
equation (Theorem 1:

λÂΣ + λΣÂ − λ2ÂΣÂ = λ2C. (71)

The SGD noise covariance C is given by Eq. (14). In the present case, the Hessian is given by H = Â
and we also have

1

N

N

∑
i=1

(`′i)
2
=

1

N

N

∑
i=1

(wTxi − yi)
2
=

2

N

N

∑
i=1

`i = 2L(w). (72)

On the other hand, ∇L(w)∇L(w)T = Â(w−w∗)(w−w∗)TÂ, and hence Ew[∇L(w)∇L(w)T] =

ÂΣÂ. Therefore we obtain

C = Ew[C(w)] =
2Ltrain

S
Â −

1

S
ÂΣÂ. (73)
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Now, we find Ltrain. First, we define X ∈ RN×D as Xik = (xi)k, and ε⃗ ∈ RN as ε⃗i = εi. Then
w∗ = (1 −Π)u + Â+v = (1 −Π)u + (XTX)+XTε⃗.

With this notation, we have Â =XTX/N , and the loss function is expressed as

L(w) =
1

2
(w −w∗

)
TÂ(w −w∗

) −
1

2N
ε⃗TX(XTX)

+XTε⃗ +
1

2N

N

∑
i=1

ε2i . (74)

We therefore obtain

Ltrain =
1

2
Tr[ÂΣ] −

1

2N
E[ε⃗TX(XTX)

+XTε⃗] +
σ2

2
. (75)

Here,
E[ε⃗TX(XTX)

+XTε⃗] = σ2Tr[(XTX)(XTX)
+
] = σ2Tr(1 −Π). (76)

We can prove that the following identity is almost surely satisfied (Hastie et al., 2019) as long as the
smallest eigenvalue of A (not Â) is positive:

Tr(1 −Π) = min{D,N}. (77)

We therefore obtain

Ltrain =
1

2
Tr[ÂΣ] −

σ2

2N
min{D,N} +

σ2

2
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1

2
Tr[ÂΣ] +

1

2
(1 −

1

α
)σ2 for α > 1,

1

2
Tr[ÂΣ] for α ≤ 1

(78)

By substituting Eq. (78) into Eq. (73), we obtain the following SGD noise covariance:

C =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1

S
(Tr[ÂΣ] − ÂΣ) Â +

σ2

S
(1 −

1

α
) Â for α > 1,

1

S
(Tr[ÂΣ] − ÂΣ) Â for α ≤ 1.

(79)

This finishes the proof. ◻

D.1.2 PROOF OF THEOREM 6

Proof. We have to solve this equation:

ÂΣ +ΣÂ − λÂΣÂ = λC, (80)

where C is given in Proposition 4. Using the similar trick of multiplying by Ĝ ∶= 2ID − λ (1 − 1
S
) Â

as in Appendix E.2.2, one obtains

Tr[ÂΣ] = {
λσ2

S
(1 − 1

α
) κ̂ for α > 1;

0 for α ≤ 1,
(81)

where κ̂ ∶= Tr[Ĝ−1Â]
1− λSTr[Ĝ−1Â] with Ĝ ∶= 2ID − λ (1 − 1

S
) Â.

Substituting the above trace into the matrix equation, we have

Σ = {
λσ2

S
(1 − 1

α
) (1 + λ

S
κ̂) Ĝ−1 for α > 1;

0 for α ≤ 1.
(82)

D.2 SECOND-ORDER METHODS

Proposition 5. Suppose that we run DNM with Λ ∶= λA−1 with random noise in the label. The model
fluctuation is

Σ =
λσ2

gS − λD
A−1, (83)

where g ∶= 2(1 − µ) − (
1−µ
1+µ +

1
S
)λ.
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Proof. Substituting Λ = λA−1 into Eqs. (3) and (5) yields

gΣ =
λ

S
(Tr[AΣ] + σ2)A−1, (84)

where g ∶== 2(1 − µ) − (
1−µ
1+µ +

1
S
)λ. Multiplying A and taking trace on both sides, we have

Tr[AΣ] =
λDσ2

gS − λD
. (85)

Therefore, the model fluctuation is

Σ =
λσ2

gS − λD
A−1. (86)

Proposition 6. Suppose that we run NGD with Λ ∶= λ
S
J(w)−1 ≈ λ

S
C−1 with random noise in the

label. The model fluctuation is

Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ

4
g −

1

2

σ2

1 +D
+

1

4

¿
Á
ÁÀλ2g2 + 4λ(g −

2

1 +D

1

1 + µ
)

σ2

1 +D
+ 4(

σ2

1 +D
)

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

A−1, (87)

where g ∶= 1
1+D

1
1+µ +

1
1−µ

1
S

.

Proof. Similarly to the previous case, the matrix equation satisfied by Σ is

(1−µ)(C−1AΣ+ΣAC−1) − 1 + µ2

1 − µ2

λ

S
C−1AΣAC−1 + µ

1 − µ2

λ

S
(C−1AC−1AΣ+ΣAC−1AC−1) = λ

S
C−1.

(88)

Although it is not obvious how to directly solve this equation, it is possible to guess one solution
according to the hope that Σ be proportional to J−1, in turn, A−1 (Amari, 1998; Liu et al., 2021).
We assume that Σ = xA−1 and substitute it into the above equation to solve for x. This yields one
solution without claiming its uniqueness. By simple algebra, this x is solved to be

x =
λ

4
g −

1

2

σ2

1 +D
+

1

4

¿
Á
ÁÀλ2g2 + 4λ(g −

2

1 +D

1

1 + µ
)

σ2

1 +D
+ 4(

σ2

1 +D
)

2

. (89)

Let σ = 0. We obtain the result in Sec. 6.4.

D.3 ESTIMATION OF TAIL INDEX

In Mori et al. (2021); Meng et al. (2020), it is shown that the (1d) discrete-time SGD results in a
distribution that is similar to a Student’s t-distribution:

p(w) ∼ (σ2
+ aw2

)
− 1+β

2 , (90)

where σ2 is the degree of noise in the label, and a is the local curvature of the minimum. For large w,
this distribution is a power-law distribution with tail index:

p(∣w∣) ∼ ∣w∣
−(1+β), (91)

and it is not hard to check that β also equal to the smallest moment of w that diverges: E[wβ] = ∞.
Therefore, estimating β can be of great use both empirically and theoretically.

In continuous-time, it is found that βcts =
2S
aλ

+ 1 (Mori et al., 2021). For discrete-time SGD, we
hypothesize that the discrete-time nature causes a change in the tail index β = βcts + ε, and we are
interested in finding ε. We propose a “semi-continuous" approximation to give the formula to estimate
the tail index. Notice that Theorem 2 gives the variance of the discrete-time SGD, while Eq. (90)
can be integrated to give another value of the variance, and the two expressions must be equal for
consistency. This gives us an equation that β must satisfy:

∫ p(w;β)(w −E[w])
2
= Var[w], (92)
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Figure 7: Tail index β of the stationary distribution of SGD in a 1d linear regression problem. Left to
Right: aλ = 0.2, 1.0, 1.8.

this procedure gives the following formula:

β(λ,S) =
2S

aλ
− S = βcts + ε, (93)

and one immediately recognizes that −(S + 1) is the discrete-time contribution to the tail index. See
Figure 7 for additional experiments. We see that the proposed formula agrees with the experimentally
measured value of the tail index for all ranges of the learning rate, while the result of Mori et al.
(2021) is only correct when λ→ 0+. Hodgkinson and Mahoney (2020) also studies the tail exponent
of discrete-time SGD; however, their conclusion is only that the “index decreases with the learning
rate and increases with the batch size". In contrast, our result give the functional form of the tail index
directly. In fact, this is the first work that gives any functional form for the tail index of discrete-time
SGD fluctuation to the best of our knowledge.

The following proposition gives the intermediate steps in the calculation.
Proposition 7. (Tail index estimation for discrete-time SGD) Let the parameter distribution be

p(w) ∼ (σ2 + aw2)
− 1+β

2 , and Var[w] be given by Theorem 2. Then

β(λ,S) =
2S

aλ
− S. (94)

Proof. The normalization factor for the distribution exists if β > 0:

N =

√
a

π

σβΓ(
1+β

2
)

Γ(
β
2
)

. (95)

If β > 2, the variance exists and the value is

Var[w] =
σ2

a(β − 2)
. (96)

By equating Eq. (96) with the exact variance (6), we are able to solve for an expression of the tail
index as

β(λ,S) =
2S

aλ
− S. (97)
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E PROOFS AND ADDITIONAL THEORETICAL CONSIDERATIONS

E.1 PROOF OF PROPOSITION 1

The with-replacement sampling is defined in Definition 2. Let us here define the without-replacement
sampling.
Definition 3. A minibatch SGD without replacement computes the update to the parameter w with
the following set of equations:

{
ĝt =

1
S ∑i∈Bt ∇`(xi, yi,wt−1);

wt =wt−1 − λĝt,
(98)

where S ∶= ∣Bt∣ ≤ N is the minibatch size, and the set Bt is an element uniformly-randomly drawn
from the set of all S-size subsets of {1, ...,N}.

From the definition of the update rule for sampling with or without replacement, the covariance
matrix of the SGD noise can be exactly derived.
Proposition 8. The covariance matrices of noise in SGD due to minibatch sampling as defined in
Definitions 2 and 3 with an arbitrary N are

C(w) = {

1
S
[ 1
N ∑

N
i=1∇`i∇`

T
i −∇L(w)∇L(w)T] , (with replacement)

N−S
S(N−1) [

1
N ∑

N
i=1∇`i∇`

T
i −∇L(w)∇L(w)T] , (without replacement)

(99)

where the shorthand notation `i(w) ∶= l(xi, yi,w) is used.

In the limit of S = 1 or N ≫ S, two cases coincide. In the N ≫ S limit, both methods of sampling
have the same noise covariance as stated in Proposition 1:

C(w) =
1

SN

N

∑
i=1

∇`i∇`
T
i −

1

S
∇L(w)∇L(w)

T. (100)

Remark. We also note that a different way of defining minibatch noise exists in Hoffer et al. (2017).
The difference is that our definition requires the size of each minibatch to be exactly S, while Hoffer
et al. (2017) treats the batch size also as a random variable and is only expected to be S. In
comparison, our definition agrees better with the common practice.

Now we prove Proposition 8.

Proof. We derive the noise covariance matrices for sampling with and without replacement. We first
derive the case with replacement. According to the definition, the stochastic gradient for sampling
with replacement can be rewritten as

ĝ =
1

S

N

∑
n=1

gnsn, (101)

where gn ∶= ∇`n and

sn = l, if l −multiple n′s are sampled in S, with 0 ≤ l ≤ S. (102)

The probability of sn assuming value l is given by the multinomial distribution

P (sn = l) = (
S

l
)(

1

N
)

l

(1 −
1

N
)

S−l
. (103)

Therefore, the expectation value of sn is given by

EB[sn] =
S

∑
l=0

lP (sn = l) =
S

N
, (104)

which gives

EB[ĝ] = g ∶=
1

N

N

∑
n=1

gn = ∇L(w). (105)
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For the covariance, we first calculate the covariance between sn and sn′ . Due to the properties of the
covariance of multinomial distribution, we have for n ≠ n′

EB[snsn′] = cov[sn, sn′] +E[sn]
2

= −
S

N2
+
S2

N2

=
S(S − 1)

N2
; (106)

and for n = n′

EB[snsn] = Var[sn] +E[sn]
2

=
S

N

N − 1

N
+
S2

N2

=
SN + S(S − 1)

N2
. (107)

Substituting these results into the definition of the noise covariance yields

C(w) = EB[ĝĝT
] −EB[ĝ]EB[ĝ]T

=
1

S2

N

∑
n=1

N

∑
n′=1

gng
T
n′EB[snsn′] − ggT

=
1

S2

N

∑
n,n′=1

gng
T
n′
S(S − 1)

N2
+

1

S2

N

∑
n=1

gng
T
n [

SN + S(S − 1)

N2
−
S(S − 1)

N2
] − ggT

=
1

NS

N

∑
n=1

gng
T
n −

1

S
ggT

=
1

S
[

1

N

N

∑
i=1

∇`i∇`
T
i −∇L(w)∇L(w)

T
] . (108)

Then, we derive the noise covariance for sampling without replacement. Similarly, according to the
definition, the stochastic gradient for sampling without replacement can be rewritten as

ĝ =
1

S

N

∑
n=1

gnsn, (109)

where

sn = {
0, if n ∉ S;

1, if n ∈ S.
(110)

The probability of n that is sampled in S from N is given by

P (sn = 1) =
(
N−1
S−1

)

(
N
S
)

=
S

N
. (111)

The expectation value of sn is then given by

EB[sn] = P (sn = 1) =
S

N
, (112)

which gives

EB[ĝ] = g ∶=
1

N

N

∑
n=1

gn = ∇L(w). (113)

For the covariance, we first calculate the covariance between sn and sn′ . By definition, we have for
n ≠ n′

EB[snsn′] = P (sn = 1, s′n = 1) = P (sn = 1∣s′n = 1)P (s′n = 1)

=
(
N−2
S−2

)

(
N−1
S−1

)

(
N−1
S−1

)

(
N
S
)

=
S(S − 1)

N(N − 1)
; (114)
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and for n = n′

EB[snsn] = P (sn = l) =
S

N
. (115)

Substituting these results into the definition of the noise covariance yields

C(w) = EB[ĝĝT
] −EB[ĝ]EB[ĝ]T

=
1

S2

N

∑
n=1

N

∑
n′=1

gng
T
n′EB[snsn′] − ggT

=
1

S2

N

∑
n,n′=1

gng
T
n′
S(S − 1)

N(N − 1)
+

1

S2

N

∑
n=1

gng
T
n [

S

N
−
S(S − 1)

N(N − 1)
] − ggT

=
1

NS

N − S

N − 1

N

∑
n=1

gng
T
n −

N − S

S(N − 1)
ggT

=
N − S

S(N − 1)
[

1

N

N

∑
i=1

∇`i∇`
T
i −∇L(w)∇L(w)

T
] . (116)

E.2 PROOFS IN SEC. 4.2

E.2.1 PROOF OF LEMMA 1

Proof. From the definition of noise covariance (2), the covariance matrix for the noise in the label is

C(w) = 1

NS

N

∑
i=1

∇li(wt−1)∇li(wt−1)T −
1

S
∇L(wt−1)∇L(wt−1)T

= 1

S

1

N

N

∑
i

(wTxi − εi)xixTi (wTxi − εi)T −
1

S
[ 1

N

N

∑
i

(wTxi − εi)xi]
⎡⎢⎢⎢⎣

1

N

N

∑
j

xTj (wTxj − εj)T
⎤⎥⎥⎥⎦

= 1

S

1

N

N

∑
i

(wTxixix
T
i x

T
i w + ε2ixixTi ) −

1

S
[ 1

N

N

∑
i

(wTxixi)]
⎡⎢⎢⎢⎣

1

N

N

∑
j

(xTi xTi w)
⎤⎥⎥⎥⎦

(117)

= 1

S
(AwwTA +Tr[AwwT]A + σ2A), (118)

where we have invoked the law of large numbers and the expectation value of the product of four
Gaussian random variables in the third line is evaluated as follows.

Because N is large, we invoke the law of large numbers to obtain the (j, k)-th component of the
matrix as

lim
N→∞

1

N

N

∑
i=1

(wTxixix
T
i x

T
i w)jk = EB[wTxxxTxTw]jk = EB [

D

∑
i

wixixjxk
D

∑
i′
xi′wi′] . (119)

Because the average is taken with respect to x and each x is a Gaussian random variable, we apply the
expression for the product of four Gaussian random variables E[x1x2x3x4] = E[x1x2]E[x3x4] +

E[x1x3]E[x2x4]+E[x1x4]E[x2x3]−2E[x1]E[x2]E[x3]E[x4] (Janssen and Stoica, 1988) to obtain

EB [
D

∑
i

wixixjxk
D

∑
i′
xi′wi′]

= EB [
D

∑
i

wixixj]EB [xk
D

∑
i′
xi′wi′] +EB [

D

∑
i

wixixk]EB [xj
D

∑
i′
xi′wi′]

+EB [
D

∑
i

wixi
D

∑
i′
xi′wi′]EB [xjxk]

= 2(AwwTA)jk +Tr[AwwT
]Ajk. (120)

Writing Σ ∶= Ew[wwT], we obtain

Ew[C(w)] =∶ C =
1

S
(AΣA +Tr[AΣ]A + σ2A). (121)
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This method has been utilized repeatedly in this work.

E.2.2 PROOF OF THEOREM 2

Proof. We substitute Eq. (5) into Eq. (3) which is a general solution obtained in a recent work (Liu
et al., 2021):

(1 − µ)(ΛAΣ +ΣAΛ) −
1 + µ2

1 − µ2
ΛAΣAΛ +

µ

1 − µ2
(ΛAΛAΣ +ΣAΛAΛ) = ΛCΛ. (122)

To solve it, we assume the commutation relation that [Λ,A] ∶= ΛA −AΛ = 0. Therefore, the above
equation can be alternatively rewritten as

[(1 − µ)ID −
1

2
(

1 − µ

1 + µ
+

1

S
)ΛA]ΣAΛ +ΛAΣ [(1 − µ)ID −

1

2
(

1 − µ

1 + µ
+

1

S
)ΛA]

−
1

S
Tr[AΣ]ΛA =

1

S
σ2ΛA. (123)

To solve this equation, we first need to solve for Tr[AΣ]. Multiplying Eq. (123) by G−1
µ ∶=

[2(1 − µ)ID − (
1−µ
1+µ +

1
S
)ΛA]

−1
and taking trace, we obtain

Tr[AΣ] −
1

S
Tr[AΣ]Tr[ΛAG−1

µ ] =
1

S
σ2Tr[ΛAG−1

µ ], (124)

which solves to give

Tr[AΣ] =
σ2

S

Tr[ΛAG−1
µ ]

1 − 1
S

Tr[ΛAG−1
µ ]

∶=
σ2

S
κµ. (125)

Therefore, Σ is

Σ =
σ2

S
(1 +

κ

S
)Λ [2(1 − µ)ID − (

1 − µ

1 + µ
+

1

S
)ΛA]

−1

. (126)

E.2.3 TRAINING ERROR AND TEST ERROR FOR LABEL NOISE

In the following theorem, we calculate the expected training and test loss for random noise in the
label.
Theorem 8. (Approximation error and test loss for SGD noise in the label) The expected approxi-
mation error, or the training loss, is defined as Ltrain ∶= Ew[L(w)]; the expected test loss is defined
as Ltest ∶=

1
2
EwEB [(wTx)2]. For SGD with noise in the label given by Eq. (5), the expected

approximation error and test loss are

Ltrain =
σ2

2
(1 +

λκ

S
) , (127)

Ltest =
λσ2

2S
κ. (128)

Remark. Notably, the training loss decomposes into two additive terms. The term that is proportional
to 1 is the bias, caused by insufficient model expressivity to perfectly fit all the data points, while
the second term that is proportional to λκ/S is the variance in the model parameter, induced by the
randomness of minibatch noise.
Remark. When the learning rate λ is vanishingly small, the expected test loss diminishes whereas
the training error remains finite as long as label noise exists.

Proof. We first calculate the approximation error. By definition,

Ltrain ∶= Ew[L(w)]

=
1

2
Tr[AΣ] +

1

2
σ2

=
1

2

λσ2

S
κ +

1

2
σ2

=
σ2

2
(1 +

λκ

S
) . (129)
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The test loss is

Ltest =
1

2
Ew [wTAw] =

1

2
Tr[AΣ]

=
λσ2

2S
κ. (130)

E.3 MINIBATCH NOISE FOR RANDOM NOISE IN THE INPUT

E.3.1 NOISE STRUCTURE

Similar to label noise, noise in the input data can also cause fluctuation. We assume that the training
data points x̃i = xi+ηi can be decomposed into a signal part and a random part. As before, we assume
Gaussian distributions, xi ∼ N(0,A) and ηi ∼ N(0,B). The problem remains analytically solvable
if we replace the Gaussian assumption by the weaker assumption that the fourth-order moment exists
and takes some matrix form. For conciseness, we assume that there is no noise in the label, namely
yi = uTxi with a constant vector u. One important quantity in this case will be uuT ∶= U . Notice
that the trick w − u = w no more works, and so we write the difference explicitly here. The loss
function then takes the form

L(w) =
1

2N

N

∑
i=1

[(w − u)Txi +wTηi]
2
=

1

2
(w − u)TA(w − u) +

1

2
wTBw. (131)

The gradient ∇L = (A +B)(w − u) +Bu vanishes at w∗ ∶= (A +B)−1Au, which is the minimum
of the loss function and the expectation of the parameter at convergence. It can be seen that, even
at the minimum w∗, the loss function remains finite unless u = 0, which reflects the fact that in the
presence of input noise, the network is not expressive enough to memorize all the information of the
data. The SGD noise covariance for this type of noise is calculated in the following proposition.
Proposition 9. (Covariance matrix for SGD noise in the input) Let the algorithm be updated
according to Eq. (1) or (98) with random noise in the input while the limit N →∞ is taken with D
held fixed. Then the noise covariance is

C =
1

S
{KΣK +Tr[KΣ]K +Tr[AK−1BU]K} , (132)

where K ∶= A +B, and Σ ∶= Ew [(w −w∗)(w −w∗)T].
Remark. It can be seen that the form of the covariance (132) of input noise is similar to that of label
noise (5) with replacing A by K and σ2 by Tr[AK−1BU], suggesting that these two types of noise
share a similar nature.

Defining the test loss as Ltest ∶= 1
2
EwEB [(wTx − uTx)2], Proposition 9 can then be used to

calculate the test loss and the model fluctuation.
Theorem 9. (Training error, test loss and model fluctuation for noise in the input) The expected
training loss is defined as Ltrain ∶= Ew[L(w)], and the expected test loss is defined as Ltest ∶=
1
2
EwEB [(wTx − uTx)2]. For SGD with noise in the input given in Proposition (9), the expected

approximation error and test loss are

Ltrain =
1

2
Tr[AK−1BU] (1 +

λ

S
κ′) , (133)

Ltest =
λ

2S
Tr[AK−1BU]κ′ +

1

2
Tr[B′TAB′U], (134)

where κ′ ∶= Tr[KG′−1]
1−λ 1

STr[KG′−1] withG′ ∶= 2ID−λ (1 + 1
S
)K, andB′ ∶=K−1B. Moreover, let [K,U] = 0.

Then the covariance matrix of model parameters is

Σ =
λTr[AK−1BU]

S
(1 +

λκ′

S
)[2ID − λ(1 +

1

S
)K]

−1

. (135)

Remark. Note that [K,U] = 0 is necessary only for an analytical expression of Σ. It can be obtained
by solving Eq. (144) even without invoking [K,U] = 0. In general, the condition that [K,U] = 0
does not hold. Therefore, only the training and test error can be calculated exactly.
Remark. The test loss is always smaller than or equal to the training loss because all matrices
involved here are positive semidefinite.
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E.3.2 PROOF OF PROPOSITION 9

Proof. We define Σ ∶= Ew [(w −w∗)(w −w∗)T]. Then,

Ew[wwT
] = Σ + (A +B)

−1AUA(A +B)
−1
∶= Σ +A′UA′T

∶= ΣA, (136)

Ew [(w − u)(w − u)T] = Σ +B′UB′T
∶= ΣB , (137)

where we use the shorthand notations A′ ∶= (A+B)−1A, B′ ∶= (A+B)−1B and ΣA ∶= Σ+A′UA′T,
ΣB ∶= Σ +B′UB′T. We remark that the covariance matrix Σ here still satisfies the matrix equation
(3) with the Hessian being K ∶= A +B.

The noise covariance is

C(w) =
1

S

1

N

N

∑
i

(wTx̃i − uTxi)x̃ix̃
T
i (w

Tx̃i − uTxi)
T
−

1

S
∇L(w)∇L(w)

T

=
1

S
{A(w − u)(w − u)TA +BwwTB +A(w − u)wTB +Bw(w − u)TA

+Tr[A(w − u)(w − u)T
]K +Tr[BwwT

]K}. (138)

In Eq. (138), there are four terms without trace and two terms with trace. We first calculate the
traceless terms. For the latter two terms, we have

Ew[(w − u)wT
] = Σ −A′UB′T, (139)

Ew[w(w − u)T
] = Σ −B′UA′T. (140)

Because A′ +B′ = ID, after simple algebra the four traceless terms result in 2(A +B)Σ(A +B).

The two traceful terms add to Tr[AΣB +BΣA]K. With the relation AB′ = BA′, what inside the
trace is

AΣB +BΣA =KΣ +AK−1BU. (141)

Therefore, the asymptotic noise is

C ∶= Ew[C(w)]

=
1

S
{KΣK +Tr[AΣB +BΣA]K} (142)

=
1

S
{KΣK +Tr[KΣ]K +Tr[AK−1BU]K} . (143)

E.3.3 PROOF OF THEOREM 9

Proof. The matrix equation satisfied by Σ is

ΣK +KΣ − λ(1 +
1

S
)KΣK =

λ

S
(Tr[KΣ]K +Tr[AK−1BU]K) . (144)

By using a similar technique as in Appendix E.2.2, the trace Tr[KΣ] can be calculated to give

Tr[KΣ] =
λTr[AK−1BU]

S
κ′, (145)

where κ′ ∶= Tr[KG′−1]
1−λ 1

STr[KG′−1] with G′ ∶= 2ID − λ (1 + 1
S
)K.

With Eq. (145), the training error and the test error can be calculated. The approximation error is

Ltrain = Ew[L(w)] =
1

2
Tr[AΣB +BΣA] =

1

2
Tr[AK−1BU] (1 +

λ

S
κ′) . (146)
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The test loss takes the form of a bias-variance tradeoff:

Ltest =
1

2
EwEB [(wTx − uTx)2] =

1

2
Ew [(w − u)TA(w − u)] =

1

2
Tr[AΣB]

=
λ

2S
Tr[AK−1BU] (1 +

λκ′

S
)Tr[AG′−1

] +
1

2
Tr[B′TAB′U]

=
λ

2S
Tr[AK−1BU]κ′ +

1

2
Tr[B′TAB′U]. (147)

Let [K,U] = 0. Then Σ can be explicitly solved because it is a function of K and U . Specifically,

Σ =
λTr[AK−1BU]

S
(1 +

λκ′

S
)[2ID − λ(1 +

1

S
)K]

−1

. (148)

E.4 PROOFS IN SEC. 4.3

E.4.1 PROOF OF PROPOSITION 3

Proof. The covariance matrix of the noise is

C(w) =
1

S

1

N

N

∑
i

[(w − u)Txixi + Γw] [xT
i x

T
i (w − u) +wTΓ] −

1

S
∇LΓ(w)∇LΓ(w)

T

=
1

S
{A(w − u)(w − u)TA +Tr[A(w − u)(w − u)T

]A}. (149)

Using a similar trick as in Appendix E.3.2, the asymptotic noise is

C =
1

S
(AΣA +Tr[AΣ]A +Tr[Γ′TAΓ′U]A + ΓA′UA′Γ) . (150)

E.4.2 PROOF OF THEOREM 4

Besides the test loss and the model fluctuation, we derive the approximation error here as well.

Theorem. (Training error, test loss and model fluctuation for learning with L2 regularization) The
expected training loss is defined as Ltrain ∶= Ew[L(w)], and the expected test loss is defined as
Ltest ∶=

1
2
EwEB [(wTx − uTx)2]. For noise induced by L2 regularization given in Proposition 3,

let [A,Γ] = 0. Then the expected approximation error and test loss are

Ltrain =
λ

2S
Tr[AK−2Γ2U]Tr[AG−1

] (1 +
λκ

S
) +

λ

2S
(Tr[A2K−2Γ2G−1U] +

λr

S
Tr[AG−1

])

+
1

2
Tr[AK−1ΓU], (151)

Ltest =
λ

2S
(Tr[AK−2Γ2U]κ + r) +

1

2
Tr[AK−2Γ2U], (152)

where κ ∶= Tr[A2K−1G−1]
1− λSTr[A2K−1G−1] , r ∶= Tr[A3K−3Γ2G−1U]

1− λSTr[A2K−1G−1] , with G ∶= 2ID −λ (K + 1
S
K−1A2). Moreover,

if A, Γ and U commute with each other, the model fluctuation is

Σ =
λ

S
Tr[AK−2Γ2U] (1 +

λκ

S
)AK−1G−1

+
λ

S
(A2K−2Γ2U +

λr

S
A)K−1G−1. (153)

Remark. Because Γ may not be positive semidefinite, the test loss can be larger than the training
loss, which is different from the input noise case.
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Proof. The matrix equation obeyed by Σ is

ΣK +KΣ − λKΣK −
λ

S
AΣA =

λ

S
Tr[AΣ]A +

λ

S
(Tr[AK−2Γ2U]A +AK−1ΓUΓK−1A) ,

(154)

where we use the shorthand notation K ∶= A + Γ. Let [A,Γ] = 0. Using the trick in Appendix E.2.2,
the trace term Tr[AΣ] is calculated as

Tr[AΣ] =
λ

S
(Tr[AK−2Γ2U]κ + r) , (155)

where κ ∶= Tr[A2K−1G−1]
1− λSTr[A2K−1G−1] , r ∶= Tr[A3K−3Γ2G−1U]

1− λSTr[A2K−1G−1] , and G ∶= 2ID − λ (K + 1
S
K−1A2).

The training error is

Ltrain =
1

2
Tr[AΣΓ + ΓΣA]

=
1

2
Tr[KΣ] +

1

2
Tr[AK−1ΓU]

=
λ

2S
Tr[AK−2Γ2U]Tr[AG−1

] (1 +
λκ

S
) +

λ

2S
(Tr[A2K−2Γ2G−1U] +

λr

S
Tr[AG−1

])

+
1

2
Tr[AK−1ΓU]. (156)

The test loss is

Ltest =
1

2
EwEB [(wTx − uTx)2]

=
1

2
Ew [(w − u)TA(w − u)] =

1

2
Tr[AΣΓ]

=
λ

2S
(Tr[AK−2Γ2U]κ + r) +

1

2
Tr[AK−2Γ2U]. (157)

Let A, Γ and U commute with each other. Then,

Σ =
λ

S
Tr[AK−2Γ2U] (1 +

λκ

S
)AK−1G−1

+
λ

S
(A2K−2Γ2U +

λr

S
A)K−1G−1. (158)

E.4.3 PROOF OF COROLLARY 1

For a 1d example, the training loss and the test loss have a simple form. We use lowercase letters for
1d cases.
Corollary 4. For a 1d SGD with L2 regularization, the training loss and the test loss are

Ltrain =
aγ

2(a + γ)

2(a + γ) − λ [(a + γ)2 + 2
S
a(a − γ)]

2(a + γ) − λ [(a + γ)2 + 2
S
a2]

u2, (159)

Ltest =
aγ2

2(a + γ)

2 − λ(a + γ)

2(a + γ) − λ [(a + γ)2 + 2
S
a2]

u2. (160)

Proof. The training error and the test loss for 1d cases can be easily obtained from Theorem E.4.2.

Now we prove Corollary 1.

Proof. The condition for convergence is 1 − λ
S

Tr[A2K−1G−1] > 0. Specifically,

λ(a + γ)2
− 2(a + γ) + λ

2

S
a2

< 0. (161)
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For a given γ, the learning rate needs to satisfy

λ <
2(a + γ)

(a + γ)2 + 2
S
a2
. (162)

For a given λ, γ needs to satisfy

1 − aλ −
√

1 − 2
S
a2λ2

λ
< γ <

1 − aλ +
√

1 − 2
S
a2λ2

λ
, (163)

which indicates a constraint on λ:

aλ <

√
S

2
. (164)

If γ is allowed to be non-negative, the optimal value can only be 0 due to the convergence condition.
Therefore, a negative optimal γ requires an upper bound on it being negative, namely

1 − aλ +
√

1 − 2
S
a2λ2

λ
< 0. (165)

Solving it, we have

aλ >
2

1 + 2
S

. (166)

By combining with Eq. (164), a necessary condition for the existence of a negative optimal γ is

2

1 + 2
S

<

√
S

2
→ (S − 2)2

> 0→ S ≠ 2. (167)

Hence, a negative optimal γ exists, if and only if

2

1 + 2
S

< aλ <

√
S

2
, and S ≠ 2. (168)

For higher dimension with Γ = γID, it is possible to calculate the optimal γ for minimizing the test
loss (11) as well. Specifically, the condition is given by

d

dγ
Ltest ∶=

1

2

d

dγ

f(γ)

g(γ)
= 0, (169)

where

f(γ) ∶= γ2Tr [AK−2
(ID +

λ

S
A2K−1G−1

)U] , (170)

g(γ) ∶= 1 −
λ

S
Tr[A2K−1G−1

]. (171)

Although it is impossible to solve the equation analytically, it can be solved numerically.
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