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Putting the Value Back in RL: Better Test-Time Scaling by Unifying LLM
Reasoners With Verifiers

Anonymous Authors1

Abstract
Prevalent reinforcement learning (RL) methods
for fine-tuning LLM reasoners, such as GRPO or
Leave-one-out PPO, abandon the learned value
function in favor of empirically estimated returns.
This hinders test-time compute scaling that relies
on using the value-function for verification. In
this work, we propose RLV that augments any
“value-free” RL method by jointly training the
LLM as both a reasoner and a generative veri-
fier using RL-generated data, adding verification
capabilities without significant overhead. Empiri-
cally, RLV boosts MATH accuracy by over 20%
with parallel sampling and enables 8− 32× effi-
cient test-time compute scaling compared to the
base RL method. RLV also exhibits strong gen-
eralization capabilities for both easy-to-hard and
out-of-domain tasks. Furthermore, RLV achieves
1.2− 1.6× higher performance when jointly scal-
ing parallel and sequential test-time compute with
a long reasoning R1 model.

1. Introduction
Reinforcement learning (RL) on correctness rewards has
emerged as a pivotal technique for advanced reasoning ca-
pabilities of large language models (LLMs) (DeepSeek-AI,
2025). A notable trend among state-of-the-art RL algo-
rithms designed for LLMs, including GRPO (Shao et al.,
2024), VinePPO (Kazemnejad et al., 2024), and Leave-one-
out PPO (Chen et al., 2025b; Ahmadian et al., 2024), is
their shift from the canonical PPO (Schulman et al., 2017)
method by abandoning the learned value function network,
opting instead to rely on empirically estimated returns. This
shift reduces both computational demands and GPU mem-
ory consumption, which is crucial for scaling RL training to
increasingly massive LLMs.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Discarding the learned value function, while beneficial for
RL training , sacrifices its potential utility at test time. Tra-
ditionally, the value function estimates expected future re-
wards, allowing it to serve as an outcome verifier (Cobbe
et al., 2021) to assess correctness of a given reasoning chain.
This verification capability is valuable for scaling inference
compute through parallel search strategies like Best-of-N or
weighted majority voting.

We argue that the potential for efficient test-time compute
scaling offered by a value-like signal remains largely un-
tapped in prevalent RL methods. To capture this potential
without sacrificing training scalability, we propose RLV

that augments “value-free” methods with a generative ver-
ifier (Zhang et al., 2024). Unlike traditional value func-
tions predicting only scalar rewards, generative verifiers
leverage the LLM’s generation capabilities. Our core idea
utilizes the abundant data generated during RL training to
simultaneously train the LLM as a reasoner and a verifier.
Specifically, we jointly optimize standard RL objectives
alongside a generative verification objective, framing veri-
fication as a next-token prediction task conditioned on the
RL-generated reasoning sequences. This enables the same
LLM to serve a dual function: acting as the policy generat-
ing solutions while simultaneously providing an intrinsic,
generative score reflecting perceived solution correctness.

Empirically, RLV demonstrates significant advantages for
test-time scaling. It boosts MATH accuracy by over 20%
compared to the base RL method when using parallel sam-
pling and enables substantially more efficient test-time com-
pute scaling, achieving 8− 32× improvements, as shown
with in Figure 2. Furthermore, RLV exhibits robust general-
ization capabilities, outperforming the base RL method not
only on harder math problems in MATH2 (Shah et al., 2025)
but also on out-of-domain tasks like GPQA Physics (Rein
et al., 2024), as illustrated in Figure 4. The benefits of
RLV extend to long CoT reasoning models when scaling
both parallel and sequential compute, where it achieves
1.2− 1.6× higher performance than baseline methods, con-
sistently yielding the best results across different generation
lengths and parallel sample counts (Figure 1, 6).
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Figure 1: Left: Scaling Sequential and Parallel Compute Jointly with GRPOV compared to baselines on the AIME’24
using R1-Distill-Qwen-1.5B as the base LLM. We use Hendrycks’ MATH for RL fine-tuning. Each point represents the
compute-optimal accuracy achieved at a sequence length using 64 parallel samples. Right: Length Selection Using a Joint
Verifier. By iteratively increasing the generation length until a chosen RLV confidence threshold is met, we can obtain
the maximum accuracy at a given sequential compute budget, allowing the model to dynamically allocate more sequential
compute to difficult problems.

2. Related Work
RL for Reasoning. Recently, there has been a research
surge in eliciting improved reasoning from LLMs via RL, in-
cluding traditional RL algorithms, such as PPO (Zeng et al.,
2025). Notably, one can utilize the value model trained
in PPO as a verifier for test-time search (Liu et al., 2023).
However, the trend towards “value-free” RL (Shao et al.,
2024; DeepSeek-AI, 2025; Kazemnejad et al., 2024; Ah-
madian et al., 2024; Chen et al., 2025b) in recent LLM
applications discards this possibility, and this method also
involved the overhead of training a separate model. Our
work aims to reintegrate verification with RL, proposing a
simple approach where a generative verifier is trained con-
currently with the policy, leveraging data generated during
RL training.

Test-time Verification. Verification serves as a powerful
approach for improving LLM reasoning by scaling test-time
compute, often using separate models trained via binary
classification (Cobbe et al., 2021; Luo et al., 2024; Yu et al.,
2024; Lightman et al., 2023; Setlur et al., 2025; Zhang et al.,
2025), preference learning (Hosseini et al., 2024; Yuan et al.,
2024)), or more recently using next-token prediction (Zhang
et al., 2024; Mahan et al., 2024; Ankner et al., 2024). How-
ever, these separate verifiers incur significant overheads:
they demand large training datasets, extra compute cycles,
and substantial GPU memory during inference, potentially
limiting the size of the LLM reasoner when loaded together.
In contrast, we jointly train a single LLM using RL and

generative verification. Our method offers a capable verifier
essentially for free, incurring no memory and very minimal
compute cost. Furthermore, as seen in Figure 2, our ap-
proach results in much better inference compute scaling than
using the RL policy as a verifier via LLM-as-a-Judge (Bai
et al., 2022; Zheng et al., 2023; Chen et al., 2025a; Kim
et al., 2024; Zhao et al., 2025)

3. Background
Reinforcement Learning for LLMs involves maximiz-
ing the expected reward under the LLM πθ on a set of
prompts X , where we typically use a binary correctness
reward (DeepSeek-AI, 2025). To maintain stability and pre-
vent the fine-tuned LLM from deviating too much from the
base LLM πref , a KL divergence penalty is often added
with a coefficient β, yielding the objective J (θ) (Stiennon
et al., 2020):

J (θ) = Ex∼X [JRL(θ;x)],

where JRL(θ;x) = J (θ;x)− βDKL[πθ||πref ] (1)

JRL(θ;x) is typically optimized using policy gradient meth-
ods, which we describe below.

Proximal Policy Optimization (PPO) (Schulman et al.,
2017) is a canonical RL algorithm for fine-tuning LLMs,
where gradient updates are constrained by a clipping mecha-
nism to prevent large changes from the previous policy. The
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Figure 2: RLV offers significant compute efficiency and performance gains over base “value-free” RL methods when
scaling test-time compute with weighted majority voting on MATH500 (Lightman et al., 2023). For scoring solutions, we
use LLM-as-a-Judge as the verifier for the base method, while the trained unified verifier for RLV . These results are based
on RL fine-tuning Qwen2.5-Math-1.5B on Hendrycks MATH.

objective is described as JPPO(θ;x) :=

E
y∼πθold

(.|x)

[
1

|y|
∑
t

min
(
pt(θ)Ât, clip (pt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

where pt(θ) =
πθ(yt|x,y<t)

πθold(yt|x,y<t)
(2)

where ϵ is the clipping hyperparameter, and Ât is the ad-
vantage for token t. The advantage is typically estimated
with GAE using a learned value network (Schulman et al.,
2018). However, for LLMs this value network can be slow,
memory intensive, and inaccurate, which has resulted in
state-of-the-art methods discarding it.

Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) is a variant of PPO designed to mitigate some of
its drawbacks, particularly for training LLMs. A key part
of GRPO is that it foregoes the need for an explicit value
model. Instead, it estimates the baseline for advantage cal-
culation directly from the rewards of a group of G outputs
{y1,y2, · · · ,yG} generated for the same prompt x. The
objective function is JGRPO(θ;x) :=

E
{yi}G

i=1∼πθold
(.|x)

[
1

|yi|G

G∑
i=1

|yi|∑
t=1

min
(
pt(θ)Âi,t, clip (pt(θ), 1− ϵ, 1 + ϵ) Âi,t

) ]

where Âi,t =
ri − mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
,

and ri = r(x,yi)
(3)

Leave-One-Out PPO (Chen et al., 2025b) also drops the
value network, similar to GRPO, and estimates the advan-
tage using a leave-one-out estimator (Kool et al., 2019).

Given K outputs for a prompt, for each output, the advan-
tage is estimated using the average reward of the remaining
K − 1 samples1, that is, Âi,t = ri − 1

K−1

∑
i ̸=j

rj .

VinePPO (Kazemnejad et al., 2024) improves the credit
assignment in PPO by computing unbiased Monte Carlo
value estimates of intermediate states, instead of relying on
an inaccurate value network. Specifically, it generates K
generations y′

k starting from state st = x⊕ y<t using the
current policy πθ, and averages their reward to get the value
estimate V̂MC(st). This estimate is then plugged into the
advantage calculation:

Ât := r(x,y<t+1) + V̂MC(st+1)− V̂MC(st), (4)

where V̂MC(st) :=
1

K

K∑
k=1

r(x,y′
k) (5)

Test-Time Compute Scaling A prominent research di-
rection involves performing additional computation dur-
ing test-time to boost the reasoning performance of LLMs.
Prevalent techniques often scale compute in parallel by sam-
pling multiple candidate solutions and employing heuristics
like majority voting to select a final answer (Wang et al.,
2023) or using a verifier for test-time reranking with Best-
of-N (Cobbe et al., 2021) or weighted voting (Uesato et al.,
2022). Recently, RL has enabled scaling compute sequen-
tially by generating long chain-of-thought (CoT), character-
istic of reasoning models like R1 (DeepSeek-AI, 2025).

1This coincides with many modern implementations of Rein-
force Leave-One-Out (RLOO) (Ahmadian et al., 2024), including
the one in the HuggingFace RLOOTrainer.
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Figure 3: Overview of RLV : (Top) During training, the LLM policy generates solutions y. This data is used for policy
updates with RL and simultaneously trains the same LLM as a generative verifier via supervised fine-tuning (SFT) on
correctness labels by asking the model ‘Is this solution correct? Answer Yes or No’. (Bottom) At test time, the unified LLM
generates N solutions and also acts as a verifier to assign scores for re-ranking using Best-of-N or weighted voting.

Generative Verifiers Zhang et al. (2024) pose verification
as next-token prediction, where the LLM takes a problem x
and a candidate solution y as input and outputs a verification
decision by predicting a token cy, which is either ‘Yes’ or
‘No’, to indicate correctness. Specifically, we train the veri-
fier using a supervised fine-tuning (SFT) loss to maximize
the likelihood of predicting ‘Yes’ for correct solutions y+

and ‘No’ for incorrect solutions y−:

JV erify(θ;x) := E(x,y,I,cy)∼DV erify
log πθ(cy|x,y, I),

(6)
where DVerify = {(x,y+, I), ‘Yes’}

⋃
{(x,y−, I), ‘No’}

is a class-balanced verification dataset, and I corresponds to
the prompt ‘Is this solution correct? Answer Yes or No.‘.

4. RLV : Unifying Verifiers with “Value-Free”
RL Reasoners

Prevalent value-free RL methods for LLMs (§3) improve
training scalability but discard the value network, eliminat-
ing the intrinsic verification mechanism available in methods
like PPO. This limits test-time compute scaling approaches
that rely on a verifier to select the final solution among
several candidates. Addressing this limitation currently
involves suboptimal choices: deploying separate verifier
models or value networks imposes significant overhead in
data curation, compute, and GPU memory (Ahmadian et al.,
2024), while prompting the base LLM as a verifier (LLM-
as-a-Judge) has minimal overhead but is less effective due
to its lack of task-specific training (Zhang et al., 2024).

Training LLM reasoners with RL already produce large
quantities of solution data with correctness reward labels,
used solely for improving the reasoning ability of LLMs.
We propose to leverage this data for an additional purpose:
using these solutions generated during RL to concurrently
train a generative verifier within the same LLM used for
reasoning. This approach, which we call RLV , efficiently
builds task-specific verification capabilities while avoiding
the high memory and compute costs of separate verifiers
and being more effective than LLM-as-a-Judge2 based on
prompting.

Unified Training. We train a single LLM, to perform both
reasoning (problem-solving) and verification tasks. For
each batch, the verification objective uses the (problem,
solution, correctness reward) tuples generated during the
RL process as training examples. Rather than employing
separate prediction heads with regression or binary cross-
entropy losses (alternatives explored in §5.4), we add the
generative verification loss (JV erify in Equation 6) to the
RL fine-tuning objective (JRL in Equation 1), resulting in
this unified objective:

JUnified(θ) := JRL(θ;x) + λJV erify(θ;x), (7)

where the hyperparameter λ balances the contribution of
each objective. Specifically, the LLM learns to predict a

2For Base RL (“value free”) LLM-as-a-Judge experiments,
we use the same verification prompt as RLV and only take the
likelihood of predicting ‘Yes’ as the score in this setting as well,
and do not generate verification CoTs for fair comparison.
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Figure 4: RLV outperforms the base RL method (Leave-One-Out-PPO) consistently across different number of solutions
for different generalization settings with respect to the MATH training dataset. (Left) In-distribution Generalization
on MATH500. (Center). Easy-to-Hard Generalization on MATH2 (Right). Out-of-Domain Generalization on Physics
problems in the GPQA Diamond split.

’Yes’ or ’No’ token to assess correctness of a given solution.

Test-time Scaling At test time, we use the LLM verifier to
score solutions generated by itself to guide the final answer
selection. This score s(x,y) quantifies the verifier’s confi-
dence as its ’Yes’ probability given the problem x, solution
y, and prompt I, that is, s(x,y) := πθ(Yes | x,y, I). Here,
we consider three parallel sampling approaches:

• Majority Voting: A verifier-free baseline that selects
the most frequent answer.

• Best-of-N: Selects the solution with the highest verifier
score s(x,y).

• Weighted Voting: Sum the verifier scores s(x,y) for
solutions yielding the same final answer; select the
answer with the highest cumulative score.

5. Experiments
We aim to investigate the effectiveness and characteristics
of our proposed RLV method, which unifies a reasoner and a
generative verifier within a single LLM. We answer several
key questions about this paradigm: 1) How does parallel test-
time compute scale with RLV ? 2) How should the unified
verifier be trained? 3) How should the unified verifier be
used at test-time? 4) How does RLV interact with sequential
scaling in thinking models?

Setup RL training for all our experiments utilized the
Hendycks’ MATH dataset (Hendrycks et al., 2021) and
were run on 4×A100 80G Nvidia GPUs for 3 hours. Evalu-
ations are reported on MATH500 (Lightman et al., 2023),

MATH2 (Shah et al., 2025), GPQA (Rein et al., 2024),
and AIME’24. For experiments involving shorter chain-
of-thought (CoT) reasoning, we employed the Qwen2.5
Math 1.5B model (Yang et al., 2024). We finetune it with
GRPO, Leave-One-Out PPO and VinePPO with and with-
out unified verification. Training used a context window of
1024 tokens. During inference, we generated up to 1024
tokens for MATH500 and up to 2048 tokens for other test
sets. To demonstrate the impact of model scaling, we also
train the Qwen2.5 Math 7B model (Yang et al., 2024) with
Leave-One-Out PPO.

Long CoT experiments were conducted with DeepSeek-R1-
Distill-Qwen-1.5B, a distilled version of DeepSeek-R1. We
tune it with GRPO, and use SGLang (Zheng et al., 2024)
for inference purposes. The RL training process involved
sampling 32 problems per online iteration, generating 5
solutions per problem. With a batchsize of 8 this resulted in
32 updates per iteration. Training continued for 40 epochs.
Models are trained using a “long” chain-of-thought prompt
which encloses reasoning in special tags (see Appendix F.2).

5.1. Test-Time Compute Scaling With RLV

In-Distribution Generalization RLV is up to 32× more
efficient and achieves a 4% higher accuracy than baseline
on MATH500 with 512 samples (Figure 4). Further, Fig-
ure 2 shows that across different RL methods, RLV achieves
higher final accuracy levels. It also reaches strong accura-
cies with significantly less compute. Figure 8 shows these
gains are maintained at the 7B scale.

Easy-to-Hard Generalization (Zhang et al., 2024) and
(Sun et al., 2024) demonstrate that their trained verifiers can

5
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voting, Best-of-N) and verifier-free majority voting on AIME’24. The optimal strategy differs for the short CoT and long
CoT tuned models.

generalize to a fixed separate LLM reasoner on problem sets
more challenging than those encountered during training.
As illustrated in Figure 4 (center), our proposed method
RLV with a unified reasoner and verifier, also exhibits strong
easy-to-hard-generalization capacity on MATH2 (Shah et al.,
2025), containing much more difficult math problems that
require a non-trivial combination of two distinct skills from
MATH.

Out-of-Domain Generalization Going beyond easy-to-
hard generalization, we also evaluate out-of-domain per-
formance on GPQA Physics problems (Rein et al., 2024).
RLV shows strong generalization resulting in more than
10% accuracy improvement compared to the baseline with
512 samples for weighted voting.

RLV can lead to a better reasoner Interestingly, we
observe a positive transfer from unification to better
pass@1 (Chen et al., 2021) performance (without any ad-
ditional test-time compute) from unified training in RLV

across all these tasks, suggesting a synergy between gen-
erative verification and RL objectives (see Figure 4). This
improvement is observed in the Leave-One-Out PPOV mod-
els at the 1.5B and 7B scales.

5.2. Compute-Optimal Scaling: How to Use Your RLV

Verifier?

As outlined in §4, one can use a verifier at test-time to score
generated solutions. Subsequently, a final answer can be se-
lected using either the Best-of-N (BoN) strategy or Weighted
Voting based on these scores. We conducted experiments
on the AIME 2024 dataset with our GRPOV tuned models.
Specifically, we tested variants based on Qwen2.5-Math-
1.5B and R1-Distill-Qwen-1.5B, which generate short and
long CoTs respectively (Figure 5).

For short CoT models (Qwen2.5-Math-1.5B, left panel
of Figure 5), weighted voting consistently outperforms both
majority voting and Best-of-N when sampling 8 or more
solutions per problem. The trend also holds for the Long
CoT models (Figure 5, right). Our findings on the inference
strategies are consistent with base RL experiments using the
same models with LLM-as-a-Judge, where we do not train
a unified verifier and simply prompt the same fine-tuned
reasoning model as a verifier.

5.3. Complementing Long Reasoning Models with RLV

An emerging technique to improve model performance at
inference-time involves training them with RL to generate
longer chain-of-thoughts (CoTs), simulating deeper reason-
ing before delivering an answer. Models employing this
technique, such as DeepSeek-R1 (DeepSeek-AI, 2025) can
dedicate extra sequential computation during inference to
self-verify, reflect, and refine their final output. However,
the amount of compute they allocate to find and verify a
solution in their thought process is uncontrollable. Addi-
tionally, the exact mechanisms behind their reasoning are
not yet fully understood.

Therefore, having a verifier which one can invoke reliably
could further benefit inference time scaling. Our proposed
method is complementary to sequential inference compute
scaling. Figure 6 shows the AIME 24 success rate achieved
by different methods when varying the number of solutions
generated and the allowed generation length in tokens with
budget forcing (Muennighoff et al., 2025). Notably, GRPOV

method consistently achieves the highest success rate, more
evident at longer generation lengths and scales well with
number of sampled solutions, suggesting complementary
gains to sequential scaling.

Additionally, the RLV verifier allows for fine control of the
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Figure 6: Scaling Parallel Compute using RLV complements Sequential Scaling. AIME’24 success rate vs number of
solutions generated for Base (initial checkpoint), GRPO tuned model (no verification training) and GRPOV (unified verifier
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number of tokens generated for a given problem. In Figure 1,
we predefine a confidence threshold for weighted voted an-
swers to reach. If the threshold is not met for solutions
with a given sequence length (from 1024, 2048 and 4096), a
longer sequence length is chosen until the threshold is met.
This allows the model to dynamically allocate more sequen-
tial compute to more difficult problems. Figure 1 shows the
AIME’24 accuracy steadily increased with the average gen-
eration length. We hypothesize this method could result in
large efficiency gains for very long context models (eg. 32K
tokens) where a correct answer is commonly reached much
before a model stops generating (DeepSeek-AI, 2025).

5.4. How To Train Your Unified Verifier?

The literature offers several options to train a unified verifier.
Common approaches involve adding a dedicated verification
head atop the policy network, trained using classification via
binary cross-entropy (BCE) (Cobbe et al., 2021; Lightman
et al., 2023) or regression objectives (Stiennon et al., 2020)
to predict solution scores. Generative verification, proposed
by (Zhang et al., 2024), suggests it can produce capable
verifiers without degrading, and sometimes even improving,
the policy’s core reasoning performance.

Figure 7 compares the Reasoner accuracy (measured by
pass@1) and Verifier accuracy (measured on a balanced set
of correct and incorrect solutions) of various verifier train-
ing approaches. Notably, Leave-One-Out PPO with sepa-
rate verification heads performs poorly, both as a reasoner

and verifier, compared to Leave-One-Out PPOV . Overall,
RLV outperforms base RL and RL methods with separate
verification heads both as a reasoner and as a verifier. In
addition, the RLV verifier accuracy is comparable to a sepa-
rate verifier trained on logged data from the same RL run,
showing minimal loss from joint training.

A key hyperparameter in unified training is the verifica-
tion coefficient λ (see Equation 7), which balances the rea-
soning and verification objectives. Its impact is explored
in Figure 7b for RLV . For GRPOV , a stark trade-off exists.
Increasing λ significantly boosts Verifier accuracy (from
∼50% to ∼80%), but drastically decreases Reasoner accu-
racy (from ∼54% down to ∼35%). Prioritizing verification
heavily penalizes reasoning in this setup.

In contrast, for Leave-One-Out PPOV , the trade-off is more
nuanced. Verifier accuracy sees a consistent improvement
until plateau as λ increases (∼50% to ∼80%). Crucially,
Reasoner accuracy peaks around λ = 1 before slightly
declining. This suggests that Leave-One-Out PPOV can
achieve a better balance, with optimal reasoning perfor-
mance occurring at an intermediate verification coefficient
where verifier accuracy is also strong.

6. Discussion & Future Work
We proposed RLV that integrates verification into “value-
free” RL frameworks without significant overhead, yield-
ing substantial gains in reasoning accuracy, test-time com-
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Figure 7: (a) Comparison of Reasoner Accuracy versus Verifier Accuracy for different unified verifier training strategies.
Leave-One-Out PPOV significantly outperforms Leave-One-Out PPO using LLM-as-a-Judge and separate verification
heads, with binary cross-entropy (BCE) or regression (REG) on both metrics. (b) Impact of the Verification Coefficient
λ on Reasoner and Verifier accuracy for RLV . GRPOV shows a stark trade-off, while Leave-One-Out PPOV achieves a
betest-timer balance with peak reasoner performance at an intermediate λ.
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Figure 8: RLV Scales with Model Size. We observe consistent gains in weighted voting at 256 solutions for both 1.5B and
7B models. Additionally, training the 7B model for verification over simply using LLM-as-a-Judge results in drastically
higher verifier accuracy on both MATH500 and AIME’24 benchmarks.

pute efficiency, and generalization across MATH, MATH²,
GPQA, AIME 24 datasets. This method complements se-
quential scaling in long-reasoning CoT models and benefits
from generative verification training, which proved superior
to alternatives.

Building on these findings, future work could focus on
enhancing the generative verifier to produce explicit CoT
explanations (Zhang et al., 2024). However, training such
a verifier necessitates verification-specific CoT data or RL
training itself. We posit that future research could profitably
investigate this direction to achieve a unified framework
for both solution generation and verification through RL.
Further investigation into RLV ’s applicability across other
reasoning domains and scalability with larger LLMs also
remains pertinent.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendices
A. Test-Time Compute Strategies for Baseline
Similar to Figure 5, we evaluated base RL tuned (no verification training) variants based on Qwen2.5-Math-1.5B and
R1-Distill-Qwen-1.5B, which generate short and long CoTs respectively, on AIME’24. The compute optimal strategy
for GRPOV corresponds to Best-of-N (Figure 1). For base RL, Figure 9 shows that majority voting and weighted voting
significantly outperform Best-of-N selection. We use the best performing inference strategy of GRPO in comparison to
GRPOV in Figure 1 and Figure 6 to be fair.

20 22 24 26 28 210

Solutions Per Problem

10

20

30

40

AI
M

E2
4 

Ac
cu

ra
cy

 (%
)

Base Short CoT: Qwen2.5-Math-1.5B

20 22 24 26 28 210

Solutions Per Problem

10

20

30

40
Base Long CoT: R1-Distill-Qwen-1.5B

Majority Voting Weighted Voting Best-of-N

Figure 9: Test-Time Compute Strategies for Base RL (No Verification Training) Methods shows a different trend from
Figure 5. LLM-as-a-Judge no longer provides high quality values, resulting in low Best-of-N scores. The compute optimal
strategy here corresponds to majority voting and weighted voting.

B. Additional Experiments
PPO Baseline To compare with another RL method that learns a value function, we train Qwen2.5-Math-1.5B with
PPO. Since PPO’s value function provides token-level values and we need solution-level scores for re-ranking, we need to
aggregate these values. We find averaging the values over the solution as opposed to taking the value of the last token gives
the best results. Figure 10 shows results on MATH500. These results suggests that PPO’s value function can act as a verifier
but is less effective than RLV .

Figure 10: PPO as a Verifier shows the value function from PPO can act as a verifier, though it is less effective than RLV .
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Figure 11: RLV Verifier with Base Policy shows that there is drastic improvement in reasoner and verifier quality during
training and that our verifier generalizes well to the base model.

RLV Verifier with Base Policy We add an ablation using the the RLV verifier with the Qwen2.5-Math-1.5B reasoner and
Leave-one-out PPOV verifier during inference. The results follow in Figure 11.

This demonstrates that during RLV , there is a drastic improvement in the quality of the reasoner itself (Pass@1: 34.1%
to 58.6% in right figure) in addition to verification ability (weighted vote for Qwen2.5-Math-1.5B + RLV is 5% higher
than majority vote in left figure). It also shows that Pass@1 is not the most important factor when scaling inference, since
a capable verifier is able to bring Qwen2.5-Math-1.5B close to Leave-one-out PPOV at high inference compute budgets
despite a 25% lower Pass@1.

This ablation also shows the generalization capabilities of our verifier since it has been trained on on-policy samples from
the RL trained version of the model (not the solution distribution from the base model), yet it still works well.

C. Training Details
As follows are some details that enabled co-training. A linear ramp up was for both learning rate and verification coefficient,
such that the maximum value is reached ¾ of the way through training. We do a hyperparameter search for learning rate
for all methods and use standard settings for other hyperparameters. To ensure both reasoner and verifier objectives are
trained jointly, we include both gradients in a single batch using gradient accumulation. For a given reasoner batch, the
verifier gradient is computed by class-balancing right/wrong answers and computing the loss, oversampling the class with
less right/wrong answers. We ensure the batch size is large enough that the resampling is reasonable. This ensures 100% of
the data generated during RL is used for verification. We use an asynchronous infrastructure with 1 generation GPU and 3
training GPUs. All training for RLV and baselines is wall-clock matched.

D. Inference Details
Budget forcing The budget forcing implementation method can be described as follows:

1. Define the total budget for tokens, denoted by k.

2. Determine a buffer number of tokens, denoted by b.

3. During inference, generate up to k − b tokens.

4. To maintain the in-distribution characteristics of the initial generation, which will serve as the prompt for subsequent
generation, truncate the generated text to the last completed sentence. If no full stops (.) are present in the initial
generation, retain the entire generated text.

5. Append the conclusion tokens:

‘ ‘ ‘ < / t h i n k >\n\n ‘ ‘ ‘
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to the resulting truncated text.

6. Use this concatenated text as the prompt for continued generation, allowing a maximum of k tokens.

7. The final response is the concatenation of the truncated initial generation, the conclusion tokens, and the continued
generation.

Thus, let G0 be the initial generation of up to k − b tokens, and T (G0) represent the truncated version of G0 to the last
completed sentence, or G0 itself if no full stops are present. Let C represent the conclusion tokens:

C = ‘‘‘<think>\n\n‘‘‘

G1 is the continued generation, using T (G0)⊕ C as the prompt, where ⊕ denotes concatenation. The final response R is
given by:

R = T (G0)⊕ C ⊕G1

where the total number of tokens in R is constrained by the initial budget k.

This method balances the appropriateness of longer generation with the preservation of in-distribution properties by managing
the initial generation and subsequent continuation.

E. Evaluation and Metrics
Reliable Estimation of Best-of-N To estimate the average success rate, we perform M independent trials. In each trial,
we draw k samples out of N(N > k) and select the best one (highest score). Finally, we average the success rates across
these selected samples over M trials (Hosseini et al., 2024).

Best-of-k :=
1(
N
k

) N−k∑
i=0

(
N − i− 1

k − 1

)
αi (8)

where [α0, α1, ..., αN−1] are the binary correctness scores (0 or 1) for the candidate solutions sorted in decreasing order of
their verifier scores.

F. Prompts
F.1. Generating Solutions to Math Problems

Math prompt

1 Compute : $1 −2+3−4+5− \ d o t s +99 −100$ .

F.2. Generating Solutions to Math Problems with Long Chains of Thought

Math prompt with long chain of thought

1 Compute : $1 −2+3−4+5− \ d o t s +99 −100$ .
2
3 Think a b o u t t h e r e a s o n i n g p r o c e s s i n t h e mind and t h e n p r o v i d e s an answer .
4
5 The r e a s o n i n g p r o c e s s i s e n c l o s e d w i t h i n <t h i n k> </ t h i n k> t a g s , i . e . , <t h i n k>

r e a s o n i n g p r o c e s s h e r e </ t h i n k >. Pu t your f i n a l answer w i t h i n \\ boxed {{}} .

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
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F.3. Verification Prompt

Verification prompt

1 Problem :
2 Compute : $1 −2+3−4+5− \ d o t s +99 −100$ .
3
4 S o l u t i o n :
5 $ (1 −2) +(3 −4)+ \ d o t s +(97 −98) +(99 −100) = 50( −1) = \boxed { −50} . $
6
7 I s t h i s s o l u t i o n c o r r e c t ? Answer wi th Yes o r No .
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