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Abstract

The power of large vision-language models (VLMs) has been demonstrated for1

diverse vision tasks including multi-label recognition with training-free approach or2

prompt tuning by measuring the cosine similarity between the text features related3

to class names and the visual features of images. Prior works usually formed the4

class-related text features by averaging simple hand-crafted text prompts with class5

names (e.g., “a photo of {class name}”). However, they may not fully exploit the6

capability of VLMs considering how humans form the concepts on words using rich7

contexts with the patterns of co-occurrence with other words. Inspired by that, we8

propose class concept representation for zero-shot multi-label recognition to better9

exploit rich contexts in the massive descriptions on images (e.g., captions from MS-10

COCO) using large VLMs. Then, for better aligning visual features of VLMs to our11

class concept representation, we propose context-guided visual representation that12

is in the same linear space as class concept representation. Experimental results13

on diverse benchmarks show that our proposed methods substantially improved14

the performance of zero-shot methods like Zero-Shot CLIP and yielded better15

performance than zero-shot prompt tunings that require additional training like16

TaI-DPT. In addition, our proposed methods can synergetically work with existing17

prompt tuning methods, consistently improving the performance of DualCoOp and18

TaI-DPT in a training-free manner with negligible increase in inference time.19

1 Introduction20

The goal of multi-label image recognition is to assign all semantic labels (or class names) within an21

image [10, 44, 48, 11, 27, 33, 31]. Differing from single-label recognition, multi-label recognition22

addresses a broader range of practical applications such as image retrieval [36, 39], recommendation23

systems [52, 8], medical diagnosis recognition [43] and retail checkout recognition [17, 45]. However,24

one of the challenges in multi-label recognition is the difficulty of collecting full label annotations,25

which is laborious and prone to missing. To alleviate it, recent works have investigated training with26

incomplete labels such as partial labels [37, 6, 31, 15, 9] or a single positive label [13, 46].27

Recent advances of large vision-language models (VLMs) [32, 2, 22, 25, 47, 49] has demon-28

strated their strong transferability on various downstream tasks with great performance. Contrastive29

Language-Image Pretraining (CLIP) achieved impressive performance in zero-shot classification by30

measuring the cosine similarity between images and class-related hand-crafted text prompts [32].31

Fine-tuning VLMs for adapting desired downstream datasets [32] can further improve performance32

for targeted tasks, but tuning millions of parameters is usually undesirable due to computation burden33

and possible forgetting. Prompt tuning has been investigated as an efficient and low-cost training34

paradigm [54, 53], learning only a few context tokens of VLMs for a given task. In multi-label35

recognition, prompt tuning with CLIP has been investigated for distinguishing multiple objects in an36
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Figure 1: Illustration of our methods applied to zero-shot CLIP (ZSCLIP) [32]. (a→b) Class concept
is formed from the text descriptions that contain rich contextual information with relevant class names
and other related words, yielding substantially improved performance without aligning with visual
features yet. (b→c) Context-guided visual feature is transformed from visual feature so that it is in
the same linear space as class concept representation, yielding significantly improved performance.

image [37, 18, 41], mitigating the difficulty of acquiring annotated samples. However, prompt tuning37

inherently requires labeled data with additional training and may be susceptible to overfitting for38

context tokens, hindering generalization. The capability of VLMs for label-free and/or training-free39

classification has been exploited using prompt engineering [32, 34, 50, 4]. However, prompt ensem-40

bles by averaging text features from simple hand-crafted prompts (e.g.,“a sketch of {class name}”)41

yielded marginal improvements and struggled with multi-label recognition. Thus, the approach of42

prior works on zero-shot or prompt-tuning based multi-label recognition using class names to obtain43

class-related text features from VLMs may not use the full capacity of VLMs properly.44

Humans form concepts on words from past experience, especially using their patterns of co-occurrence45

with other words [5, 29, 20]. Inspired by this perspective in cognitive neuroscience, we propose a46

novel approach of exploiting VLMs for multi-label recognition by replacing single class name-related47

hand-crafted prompts with our proposed class concept representation using text descriptions such48

as “A person holding a large pair of scissors,” capturing rich contextual information with target49

class names (e.g., person) as well as related words (e.g., holding, scissors). Our class concept will50

be constructed from rich contextual descriptions on classes that may contain diverse and realistic51

patterns of co-occurrence with target class name and other related class names. Then, this novel text52

features with class concept representation requires aligned visual features with them for multi-label53

recognition to properly match them with our class concepts. Thus, we propose context-guided visual54

features to bring VLM’s visual features to the same representation domain as our class concept55

representation by using our sequential attention. See Fig. 1 for the differences of performing multi-56

label recognition using (a) prior zero-shot approach (ZS-CLIP), (b) our proposed class concepts from57

text descriptions and (c) our proposed context-guided visual features on the same space as the class58

concepts. We demonstrated that our proposed methods achieved improved performance on multiple59

benchmark datasets without additional training (tuning), without additional labels (text-image pairs)60

and with negligible increase in inference time. Here is the summary of the contributions:61

• Proposing a novel class concept representation for training-free multi-label recognition tasks62

using VLMs from massive text descriptions inspired by how human forms concept on words.63

• Proposing a context-guided visual feature, transformed onto the same text feature space as64

class concepts using sequential attention for better aligning multi-modal features.65

• Demonstrating that our methods synergetically improve the performance of ZSCLIP and66

other state-of-the-art prompt tuning methods with a negligible increase in inference time.67

2 Related Works68

Multi-label image recognition with CLIP. Multi-Label Recognition (MLR) aims to identify all69

semantic labels within an image. However, it is difficult to collect the annotation of multi-label images70

which involve complex scenes and diverse objects. Recently, prompt tuning with the pre-trained vision-71
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language model CLIP has been developed to address the high labeling costs of multi-label images in72

incomplete label setting. Among them, DualCoOp [37] proposed a novel prompt tuning approach73

that trains positive and negative learnable contexts with class names in the partially labeled setting.74

For mitigating data-limited or label-limited issues, TaI-DPT [18] proposed effective dual-grained75

prompt tuning method using easily accessible text descriptions. It is worth noting that TaI-DPT76

used the same text descriptions as ours not for performing training-free multi-label recognition77

itself, but for label-free prompt tuning by replacing the image features with the contextual text78

features (text as image) under the conventional framework of multi-label recognition with class79

name. SCPNet [14] is designed to leverage the structured semantic prior from CLIP to complement80

deficiency of label supervision for MLR with incomplete labels. CDUL [1] proposed unsupervised81

multi-label recognition through pseudo-labeling using CLIP, alleviating the annotation burden. Even82

though recent works has demonstrated outstanding performance of multi-label recognition task, they83

still require tuning costs or labeled dataset to adapt pre-trained CLIP to various downstream tasks. In84

this work, our method enables training-free and label-free adaptation of CLIP into downstream tasks,85

utilizing the text descriptions.86

Training-free enhancement with CLIP. For single-label recognition, recent works has developed87

the training-free enhancement of CLIP. ZPE [4] weighted-averaged many prompts by automatically88

scoring the importance of each prompt in zero-shot manner for improving prompt ensemble technique.89

CALIP [19] designed a simple parameter-free attention module for zero-shot enhancement over CLIP90

without any tuning of model parameter. With few-shot samples, Tip-Adapter [51] proposed training-91

free approach for fast adaptation to target task, obtaining the weights of adapter using few-shot92

samples during inference. Since these methods were originally developed for single-label recognition,93

it is difficult to be directly applied to multi-label recognition. In multi-label recognition, our method94

enables training-free enhancement and demonstrated its effectiveness on the benchmark dataset.95

3 Method96

First of all, we propose class concept representation as a training-free approach for multi-label97

recognition instead of class name by exploiting pre-trained VLM and rich contextual text descriptions.98

Secondly, we also propose context-guided visual feature that can enhance the alignment of the99

visual feature of VLM with our novel class concept. Our proposed methods are label-free as well as100

training-free so that they can be applicable synergetically for most existing VLM-based multi-label101

recognition methods. The overall pipeline of our method is illustrated in Figure 2.102

3.1 Class Concept Representation103

Humans form concepts on words from past experience, often using their patterns of co-occurrence104

with other words [5, 29, 20]. For example, the word “apple” does not exist alone, but often comes105

with the verb “eat” or the noun “basket.” However, it may not well associate with other words such106

as “fly” or “space.” Fortunately, we can easily obtain rich contextual text descriptions from various107

public sources, including captions from benchmark datasets [26, 23, 24, 30], web crawling and large108

language models [38, 7, 40, 28]. These text descriptions do not only contain class names, but also109

include other words like class-related verbs and nouns in real-world contexts.110

Assume that rich contextual text descriptions were gathered from the public sources that include one111

or multiple class names. We denote the set of text descriptions as Zall = {z1, z2, ..., zM} where zi112

refers to an individual text description. M denotes the total number of text descriptions across all113

classes. Note that M can be dynamically changed at inference since our proposed method does not114

require additional training, thus can be seen as test-time adaptation. Assuming that the target task115

uses the class names of person, scissors, clock, building and cake, the examples of the contextual text116

descriptions from Zall are as follows:117

“A person holding a large pair of scissors.”118

“A clock mounted on top of a building in the city.”119

“Half of a white cake with coconuts on top.”120

TaI-DPT [18] used these descriptions with rich contextual information as a surrogate for images121

to propose a label-free prompt tuning. In this work, we propose to use these descriptions to form122

concepts on class names to compare with images, so that ways of using them are completely different.123
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Figure 2: (a) Overall pipeline of our method. 1) Class concept representation: VLM’s text features
from the rich contextual descriptions associated with each class name are used to construct the class
concept. 2) Context-guided visual features: VLM’s visual features are sequentially transformed onto
the class concept representation space using (b) sequential attention mechanism.

We define the class concept as a vector in the space constructed by the text descriptions as fol-124

lows. Firstly, the linear space Z can be constructed by spanning the VLM’s text features from125

all text descriptions zi in Zall using the VLM’s text encoder Etxt(zi) ∈ R1×D, leading to126

Z = span{Etxt(z1), Etxt(z2), . . . , Etxt(zM )}. Secondly, we propose the class concept for a target127

class name c as a vector tconceptc in the space Z by defining it as follows:128

tconceptc =

M∑
i=1

wc,i1c(zi)Etxt(zi) ∈ R1×D (1)

where 1c(zi) an indicator function such that 1c(zi) = 1 if the text description zi contains the class129

name c and 1c(zi) = 0 otherwise. The weight wc,i is assigned to the text feature of each text130

description within a class c and it is assumed to be normalized within the class. In this work, we set131

wc,i = 1/
∑M

j 1c(zj) for ∀i, thus will be the same for all i for each class, which was guided by the132

prior work on prompt ensembling [4], demonstrated that the prompt ensembling with equal weights133

achieved significant performance gains that were comparable to weighted ensembling for single-label134

recognition. Each class concept can be stored individually or together as a matrix.135

Our class concept representation thus consists of various text features including diverse contextual136

information related to the target class name. For instance, the descriptions for the class name “dog”137

should contain the target class name as the following examples of the text descriptions:138

“A dog greets a sheep that is in a sheep pen.”139

“A woman walks her dog on a city sidewalk.”140

“A dog with goggles is in a motorcycle side car.”141

Note that the descriptions include the target class name (bold) as well as other related words in class-142

related contexts (underline) as intended. We expect that our novel class concepts will be beneficial for143

multi-label recognition due to other nouns (other class names) as well as other verbs to better explain144

the context where the target class name is used. In this work, we obtain the texts from two sources to145

collect the sufficient contextual text descriptions. The first source is the MS-COCO dataset [26] that is146

publicly available and the second source is large language model(i.e., GPT-3.5[28]) that can generate147

the several sentences quickly if the set of class names related to the target task were provided.148

3.2 Context-Guided Visual Feature149

Our novel class concept representation forms new vectors for diverse class names in the linear space150

Z instead of the embedding space of the VLM where the text and image encoders were relatively151

well-aligned. Thus, it is expected that the class concept representation and the VLM’s visual feature152
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Figure 3: Softmax values can be used to weigh the relevance with the given image. However, (a) naive
attention mechanisms yielded almost equal softmax values, thus may include texts with low relevance.
The proposed sequential attention method focuses on a subset of texts most relevant to the test image,
thus can transforms visual features to context-guided visual features for multi-label recognition by
assigning very high softmax value to the relevant text at index 0 while very low softmax value to the
irrelevant text at index 5000.

may not be aligned well. Here, we propose context-guided visual feature by transforming the visual153

features of the VLM onto the same space as the class concept representation Z by using our sequential154

attention with the text descriptions Zall that were used for class concept construction.155

For the target image q and the VLM’s visual encoder Eimg(q), the L2-normalized global visual feature156

f is obtained by using Eimg(q) ∈ R1×D and the flatten local visual feature F ∈ RHW×D is also157

constructed by using Eimg(Pi,j(q)) where Pi,j(·) is an extractor of the (i, j)th patch of the input image.158

Then, we aim to transform both the global visual feature vector f and the local visual feature matrix F159

onto the same linear space Z as our class concept representation. One easy way is to “project” these160

visual features f and F onto the space Z by computing the cosine similarity between visual features161

(f and the column vectors of F ) and all the text features ti = Etxt(zi) ∈ R1×D, i = 1, . . . ,M162

that constructed Z . Unfortunately, when the softmax function is applied to the cosine similarity163

values, they tend to become similar, thus weigh both relevant and irrelevant texts almost equally164

as illustrated in Figure 3 (a). To address this challenge, we propose sequential attention, applying165

the softmax function to part of the cosine similarity values by dividing them into G groups. For the166

text feature matrix T = [t1 t2 · · · tM ] ∈ RM×D, let us determine Mi for i = 1, . . . , G such that167

M = ΠG
i=1Mi and reshape the text feature matrix to be T ∈ RM1×···×MG×D. Then, propose to168

sequentially apply the following attention process for G iterations for estimating both global and169

local context-guided visual features v(k) and V (k), respectively, at the kth iteration:170

v(k) =

{
T if k = 0,

Softmaxdimk

(
f(v(k−1))t

αf

)
v(k−1) if k > 0,

(2)

171

V (k) =

{
T if k = 0,

Softmaxdimk
(F (V (k−1))t

αF
)V (k−1) if k > 0,

(3)

where αf and αF denote the modulation parameters, SoftmaxMk
refers to the softmax operation172

applied along the dimension corresponding to Mk. In this work, we utilize v(3) and V(3) to compute173

classification score. The sequential attention process is illustrated in Figure 2 (b). Figure 3 further174

demonstrates that our sequential attention is particularly effective in handling massive text descriptions.175

Without sequential attention, weighted averaging essentially becomes equal averaging.176

3.3 Multi-Label Recognition with Class Concepts177

Architecture of model. Two encoders of CLIP are denoted as Eimg and Etxt for the visual encoder178

and text encoder, respectively. Following TaI-DPT [18], we adopt the structure of double-grained179

prompts (DPT), which has been shown effective for enhancing zero-shot multi-label recognition180

performance. To obtain visual representations at both coarse-grained and fine-grained levels, we181

5



extract the local visual feature map F = Eimg(x) ∈ RHW×D is extracted before attention pooling182

layer, where H and W are spatial dimension of visual feature. After attention pooling layer, we183

obtain the global visual feature f ∈ R1×D. Similarly, text features t = Etxt(z) ∈ R1×Dare obtained184

by projecting the End-of-Sentence (EOS) token of the text prompt. Thus, we leverage both global185

and local visual features for multi-label recognition.186

Inference. Through our sequential attention, we obtain the context-guided visual features v(G) and187

V (G) at both global and local levels, respectively. The similarity score Sglo and Sloc are calculated188

between the transformed context-guided visual features v(G), V (G) and the class concepts tconceptc189

using the cosine similarity Ψ(·,·) as follows:190

Stot
c = Sglo

c + Sloc
c = Ψ(v(G), tconceptc ) +

∑HW
j=1 Softmax(slocc,j ) · slocc,j (4)

where Stot
c is the classification score for the class c and slocc,j = Ψ([V (G)]j , t

concept
c ) for the class c.191

For obtaining Sloc
c , we employ the spatial aggregation over HW [37].192

Finally, we combined ZSCLIP[32] and other prompt tuning methods with our training-free approach193

through simple logit ensemble. In our experiments, we demonstrate the effectiveness of integrating of194

our method with existing methods, thereby boosting the performance of multi-label recognition.195

4 Experiments196

4.1 Implementation Details197

Architecture. We empoly CLIP ResNet-50 in the Table. 2 and Table. 3 and ResNet-101 in other198

experiments as the visual encoders and the CLIP transformer as the text encoder for ZSCLIP[32],199

TaI-DPT [18], DualCoOP [37] and our method in the paper. In addition, ZSCLIP[32], TaI-DPT [18]200

and our method are based on the double-grained prompt [18] for both global and local features1.201

Datasets. For evaluation, we performed multi-label recognition experiments on 3 benchmark datasets.202

MS-COCO [26] consists of 80 classes with 82,081 images for training and 40,504 images for test.203

VOC2007[16] consists of 20 object classes with 5,011 image for training and 4,952 images for test.204

NUS-WIDE[12] consists of 81 concepts with 161,789 image for training and 107,859 image for205

test. For MS-COCO [26] and VOC2007 [26], text description source is from MS-COCO [26]. For206

NUS-WIDE[12], we gathered the text descriptions from GPT-3.5. Note that there is example of text207

template for extracting sentence from GPT-3.5 in supplementary.208

Inference Details. In the paper, we set the total number of text descriptions, denoted as M , for209

the MSCOCO[26], VOC2007[16], and NUS-WIDE[12] at 40,000, 64,000, and 57,600, respectively.210

Note that we prepared the text embeddings of every text descriptions from CLIP text encoder in211

advance. We set values of modulation parameter α via validation.212

4.2 Evaluation on Limited Data Setting213

To evaluate our method, we conducted the experiments in limited data scenarios, including zero-shot214

and few-shot settings for data-limited cases and partially labeled setting for label-limited cases. Note215

that only our method provides training-free enhancement of CLIP without tuining cost for multi-label216

recognition. Therefore, our method can be easily combined with existing methods to improve their217

performance.218

Evaluation on Zero-Shot Setting. We performed comparison studies for different zero-shot and fully219

supervised methods in multi-label image recognition. To evaluate the effectiveness of our method220

which, we combined our method with existing zero-shot methods, ZSCLIP[32] and TaI-DPT [18],221

for zero-shot setting, as shown in Table 1. Additionally, we utilized the fully supervised method,222

DualCoOp[37] with our method, for zero-shot learning setting (ZSL) as presented in Table 2.223

Table 1 summarizes the results of the zero-shot experiment on benchmark datasets. In MS-COCO [26]224

and VOC2007 [16], TaI-DPT [18] and our method utilized the public language data from MS-225

COCO [26]. By applying our method to ZSCLIP[32] and TaI-DPT [18] during inference, we yield226

performance improvements without tuning costs. Especially, the performance of ZSCLIP[32] with227

1https://github.com/guozix/TaI-DPT
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Table 1: Multi-label recognition with zero-shot methods on MS-COCO [26], VOC2007 [16] and
NUS-WIDE [12]. Without training, our method significantly enhances the performance of existing
zero-shot methods. The evaluation is based on mAP.

Training-free Methods MS-COCO[26] VOC2007[16] NUS-WIDE[12]
✓ ZSCLIP[32] 57.4 82.8 37.3
✓ +Ours 70.0 (+12.6) 89.2 (+6.4) 46.6 (+9.3)
✗ TaI-DPT[18] 68.0 88.9 46.5
✓ +Ours 70.9 (+2.9) 90.1 (+1.2) 49.1 (+2.6)

Table 2: Multi-label recognition with 17 unseen classes on MS-COCO [26]. In zero-shot learning
(ZSL , recognizing only unseen classes) and generalized ZSL (GZSL, recognizing both seen and
unseen classes), our method effectively supplements the complementary information of unseen classes
to the supervised DualCoOp[37] on 48 seen classes. The evaluation is based on mAP.

Methods ResNet-50 ResNet-101
ZSL GZSL ZSL GZSL

DualCoOp[37] 78.2 70.2 82.9 74.9
+Ours 82.9 (+4.7) 73.2 (+3.0) 87.6 (+4.7) 78.0 (+3.1)

our method is notably enhanced, achieving better and comparable performance to TaI-DPT [18],228

which requires mild tuning. In NUSWIDE [12], we incorporate contextual text descriptions from229

a large language model (GPT-3.5) to validate the potential of utilizing generated texts instead of230

well-curated caption data. With provided class name of NUSWIDE [12], we readily gathered the231

massive set of text descriptions within a short amount of time. TaI-DPT [18] is trained with the232

public caption data from OpenImages[23]. Our method exceeds the performance of ZSCLIP[32] and233

TaI-DPT [18] by a large margin, with improvements of 9.3 mAP and 2.6 mAP, respectively.234

Table 2 shows the results of the zero-shot learning setting for unseen classes. In MS-COCO [26],235

we follow the DualCoOp[37] and split the dataset into 48 seen classes and 17 unseen classes.236

The evaluation is conducted in both zero-shot setting (ZSL, recognizing only unseen classes) and237

generalized zero-shot setting (GZSL, recognizing both seen and unseen classes). Based on prompt238

tuning, DualCoOp[37] trains learnable context tokens on 48 seen classes and achieves the state-of-the-239

art performance on both ZSL and GZSL. Our method was originally designed to handle novel classes240

(unseen classes) by leveraging text descriptions. As a result, our method significantly improved241

the ZSL and GZSL performance of the supervised DualCoOp[37] by providing complementary242

information. Table 1 and Table 2 demonstrate the effectiveness of our method performing training-243

free enhancement of CLIP with only text descriptions that are easily obtained.244

Evaluation on Few-Shot Setting. We performed comparison study with few-shot methods in multi-245

label recognition. In TaI-DPT [18], they have investigate to confirm the effectiveness of their zero-shot246

method. Here, we further validate our method, which is zero-shot test-time task adaption without247

tuning costs.248

Table 3 summarizes the results of the few-shot methods on MS-COCO dataset [26], especially using249

1 and 5 shot samples for all classes. While existing few-shot methods [3, 35, 54, 51] demonstrated250

the performance enhancements with an increase of labeled samples, TaI-DPT [18] and our method251

are performed within the zero-shot setting. By applying our method with existing zero-shot methods252

(ZSCLIP[32] and TaI-DPT [18]), we consistently enhance performance, as already demonstrated in a253

zero-shot setting. In the absence of labeled samples and tuning, we achieved comparable performance254

with ML-FSL[35] and better results than other few-shot methods utilizing 5-shot samples.255

Evaluation on Partially Labeled Setting. Due to high costs of annotation in multi-label image256

recognition, training with partially labeled samples [37, 21, 31, 6] has been studied. Following257

DualCoOp [37], we performed the evaluation of partially labeled setting. As shown in Table 4,258

our method supplements the decreased performance of DualCoOp [37] caused by partially labeled259

samples by providing complementary information during inference. Through zero-shot test time task260

adaptation without tuning costs, we consistently enhance the the performance of DualCoOp [37] on261

7



Table 3: Comparison with few-shot methods on MS-COCO [26]. The evaluation is based on mAP
with 16 novel classes. For each shot, we highlighted the best performance in bold.

Training-free Methods 0-shot 1-shot 5-shot

✗ LaSO[3] - 45.3 58.1
✗ ML-FSL[35] - 54.4 63.6
✗ CoOp[54] - 46.9 55.6
✓ Tip-Adapter[51] - 53.8 59.7

✓ ZSCLIP[32] 49.7 - -
✓ +Ours 58.5 (+8.8) - -
✗ TaI-DPT[18] 59.2 - -
✓ +Ours 61.4 (+2.2) - -

Table 4: Performance of multi-label recognition based on the partially labeled dataset [26, 16,
12]. Without training and labeled samples, our method consistently enhanced the performance of
supervised DualCoOp [37] over all partial label ratio. DualCoOp [37] is reproduced and the evaluation
is based on mAP.

Datasets Method Partial label
10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

MS-COCO SARB[31] 71.2 75.0 77.1 78.3 79.6 79.6 80.5 80.5 80.5 77.9
DualCoOp[37] 80.8 82.2 82.8 83.0 83.5 83.8 83.9 84.1 84.2 82.7

DualCoOp[37]+Ours 81.5 82.8 83.3 83.5 84.0 84.2 84.4 84.5 84.6 83.6
VOC2007 SARB[31] 83.5 88.6 90.7 91.4 91.9 92.2 92.6 92.8 92.9 90.7

DualCoOp[37] 91.6 93.3 93.7 94.3 94.5 94.7 94.8 94.9 94.8 94.0
DualCoOp[37]+Ours 92.5 93.9 94.3 94.7 94.9 95.0 95.1 95.2 95.1 94.5

NUS-WIDE DualCoOp[37] 54.0 56.1 56.9 57.4 57.9 57.8 58.0 58.4 58.8 57.3
DualCoOp[37]+Ours 55.0 56.9 57.7 58.2 58.6 58.6 58.8 59.2 59.5 58.1

all benchmark dataset. Furthermore, we achieved the performance of DualCoOp [37] trained with262

90% labels by applying our method with DualCoOp trained with 60% labels from MS-COCO [26],263

50% labels from VOC2007 [16], and 70% labels from NUSWIDE [12].264

4.3 Ablation Study and Analysis265

4.3.1 Effectiveness of our method266

To verify the effectiveness of components of our method, we conducted an ablation study for analyzing267

our method. As shown in Table 5, we first proposed a novel class concept representation with text268

descriptions by class to ZSCLIP[32]. Since the text descriptions contain the semantic meaning among269

multiple class names and contextual information for multi-label recognition, the alignment between270

visual features of test image and text features are improved compared to the hand-crafted prompts as271

shown in the Fig.1. Thus, the performance is increased by 4.1 mAP and 1.1 mAP on MS-COCO [26]272

and VOC2007 [16], respectively. Then, we performed the context-guided visual feature using a large273

set of text descriptions, Zall. Transforming the visual features into same text feature space as our class274

concept representation is essential to minimize the gap between visual feature from task-agnostic275

visual encoder and text features for each class. Constructing context-guided visual feature, our method276

yield remarkable performance gain by 8.5 mAP and 5.3 mAP on MS-COCO [26] and VOC2007 [16],277

respectively. Thus, we effectively designed our method that improves the alignment between visual278

and text features.279

4.3.2 The Number of Text Descriptions280

We investigate the effect of the number of text descriptions for our method. As shown in Table 6,281

we evaluated performance by increasing the number of randomly selected text descriptions from 1K282

to 32K texts. With only 1K text descriptions, our method enhances performance by approximately283
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Table 5: Effectiveness of our method on MS-COCO [26] and VOC2007 [16]. Each component of
our method consistently improves performance, with significant enhancements achieved particularly
in context-guided visual feature through narrowing the gap between visual and text features. The
evaluation is based on mAP.

Method MS-COCO [26] VOC2007 [16]
Baseline (ZSCLIP[32]) 57.4 82.8
+Class concept representation 61.5(+4.1) 83.9(+1.1)
+Context-guided visual feature 70.0(+8.5) 89.2(+5.3)

Table 6: Ablation studies in terms of the number of the text descriptions. As increasing the number of
texts, we measured the performance of ZSCLIP[32] with our method in mAP on MS-COCO [26] and
VOC2007 [16]. Note that ZSCLIP[32] achieves 57.4 mAP and 82.8 mAP for MS-COCO [26] and
VOC2007 [16], respectively.

Dataset Number of text descriptions
1K 2K 4K 8K 16K 32K

MS-COCO [26] 65.8 68.4 68.5 69.1 69.6 69.9
VOC2007 [16] 88.1 88.5 88.8 88.9 89.0 89.1

8 mAP on MS-COCO [26] and 5 mAP on VOC2007 [16], respectively. As the number of text284

descriptions ranges from 1K to 32K, the text embeddings of Zall can cover the wider range of test285

dataset, resulting in increased performance gains. For adapting to novel classes during inference, our286

method not only achieves a significant performance improvement with only 1K texts but also further287

enhances performance as the quantity of texts increases.288

4.3.3 Analysis of Inference Time289

We analyzed the inference time of our method depending on the number of text descriptions. When290

extracting text embeddings from the text descriptions in advance, we measure the inference time291

as the number of text descriptions increases. ZSCLIP[32], as the baseline model, processes each292

sample for classification in 7.2ms. When the number of texts increases from 1K to 32K, integrating293

ZSCLIP[32] with our method only increases the inference time by 0.4-0.5ms, with tests conducted on294

the RTX3090. In addition, Our method (6.8GB) requires slightly more memory than ZSCLIP (6.5GB)295

on VOC2007 [16]. Therefore, our method presents a simple and efficient approach for training-free296

enhancement approach at inference.297

5 Conclusion298

In this paper, we propose a novel class concept representation from massive text descriptions for299

training-free multi-label recognition tasks. Inspired by how humans form concepts based on words,300

as studied in cognitive neuroscience, we replace single class name prompts with the class concept301

representation that capture various patterns of co-occurrence with other words. To further enhance302

alignment between multi-modal features of VLMs, we propose a context-guided visual representation303

that is transformed onto the same linear space as the class concept representation. Remarkably,304

our proposed method outperforms zero-shot prompt tuning methods such as TaI-DPT and achieves305

significant enhancements over ZSCLIP and other state-of-the-art prompt tuning methods without306

requiring parameter tuning or labeled samples, and with minimal inference time overhead.307

Limitations. While our method achieved impressive results with training-free enhancement of CLIP,308

it exhibits limitations. First, a significant performance gap exists compared to prompt tuning methods309

with full samples, like DualCoOp [37]. Second, the computational memory demands of our method310

grow at a faster rate than ZSCLIP[32] as the batch size increases.311
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A Generation of Text Descriptions using LLMs443

Our proposed method leverages the text descriptions for enhancing the alignment between the444

visual and text features. In practice, gathering the proper text descriptions is an essential process for445

replacing the hand-crafted prompts. As mentioned in the main paper, the text descriptions can be446

readily gathered from benchmark dataset, web crawling, or large language models. Recent advances447

in large language models (LLMs) enable to rapidly generate text descriptions that are similar to448

image captions in MS-COCO [26]. Therefore, we utilized the generated text descriptions from large449

language model. With provided class name of NUSWIDE [12], Fig. 6 illustrates the example of input450

prompt template and corresponding generated text descriptions using GPT3.5. We carefully designed451

the instruction of input prompt including main description, constraints, examples of bad and good452

cases, class names of target task and output format.453

B Implementing Other Zero-Shot Training-Free Method454

In single-label recognition, CALIP [19] proposed zero-shot alignment enhancement of CLIP for adapt-455

ing target task without few-shot samples or additional training. The parameter-free attention module of456

cross-modal interaction effectively enhances the alignment of visual and text features. CALIP utilized457

the visual feature F =Encv(xk)∈RHW×D via reshaping and the text feature T =Enct(Ph)∈RC×D458

12



Table 7: Ablation study of hyperparameter searching on validation set. We varied the modulation
parameters αf,t and αF,t and searched the proper values for context-guided visual feature.

1/αf,t,1/αF,t MS-COCO VOC2007 NUS-WIDE

100, 50 69.45 87.62 47.32
80, 40 69.51 87.94 48.31
60, 30 69.25 88.06 49.05
40, 20 67.47 87.37 49.82
20, 10 64.13 85.04 47.33

where Ph is a hand-crafted description and C denotes the number of classes. The parameter-free459

attention module is formulated as follows:460

F a = Softmax(A/αt)T, (5)

T a = Softmax(AT /αv)F (6)

where the attention matrix is A=FTT∈RHW×C , αt and αv are the modulation parameters of textual461

and visual features, respectively, and T a and F a are bidirectionally updated textual and visual features.462

After pooling the updated visual feature F a
v ∈R1×D and the global visual feature Fv∈R1×D, the463

classification logit S is obtained as below:464

S = β1 · FvT
T + β2 · FvT

aT + β3 · F a
v T

T , (7)

where β1, β2, β3 are the weights for the three logits.465

CALIP [19] tuned the hyperparameters β2, β3 for each dataset while fixed β1 to be 1 for simplicity.466

As shown in Fig. 4, we have explored the value of β2, β3 for multi-label recognition setting on467

MS-COCO [26] and have observed that the parameter-free attention module consistently decreases468

the mAP performance since multi-label recognition covers the identification of multiple objects469

within an image, involving complex scene and diverse objects.470

C Exploring Modulation Parameters471

For hyperparameter searching, following existing methods for classification tasks, such as zero-472

shot [18, 19], training-free [51, 19], and test-time adaptation [42], we explore the modulation pa-473

rameters αt by conducting ablation studies on validation set. For simplicity, we set the value of474

αf,t to be half of αF,t. As shown in Table 7, the value of (1/αf,t, 1/αF,t) is suitable in the range475

of (40∼80,20∼40). In the experiments of main paper, we set the (1/αf,t, 1/αF,t) as (80,40) for476

MS-COCO [26], (60,30) for VOC2007 [16] and (40,20) for NUSWIDE [12].477

D Examples of Local Alignment Enhancement478

In Fig. 5, we visualized the examples of local alignment enhancement by applying our method.479

Enhancing local alignment is important to recognize multiple objects in a test image [37]. Our480

proposed method enhances the local alignment between the visual features of test image and the481

text features of each class name, thereby suppressing the false-positive prediction. Therefore, Fig. 5482

demonstrates the effectiveness of our method.483

E Positive and Negative Societal Impacts484

As a positive societal impact, our method can allow people with limited computing resources to485

achieve better performance in multi-label classification using existing vision-language models. This486

is because it does not require extensive training or labeled data. However, as a negative societal487

impact, the failure of classification could produce the negative side effects. For example, in security488

applications, incorrect classification of objects could lead to false alarms or missed detections,489

potentially compromising safety and security.490
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Figure 4: Results of hyperparameter searching of CALIP [19] on MS-COCO [26] on β2 and β3.
Applying the parametric-free attention module of CALIP consistently decreases performance as
compared to the zero-shot CLIP (ZSCLIP) [32].
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Figure 5: Additional examples of local alignment enhancement via our method. We visualized the test
image in the left column and its corresponding spatial similarity map of each class name in the right
column. The yellow and red boxes refer to the bounding boxes for different labels in a multi-label
setting. By applying our method, the local alignment is enhanced across multiple objects in a test
image, thereby suppressing false-positive predictions.
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Figure 6: Example of text description generation using GPT3.5 for contextual text descriptions of
NUSWIDE [12]. We carefully designed the input prompt to ensure that the generated sentences
include the class name of the target task. The elements considered in designing the input prompt
include the main description, constraints, examples, class names, and the desired output format.
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NeurIPS Paper Checklist491

1. Claims492

Question: Do the main claims made in the abstract and introduction accurately reflect the493

paper’s contributions and scope?494

Answer: [Yes]495

Justification: We clearly state our contributions in both the abstract and introduction. Espe-496

cially, we summarize our contributions in the last part of the introduction.497

Guidelines:498

• The answer NA means that the abstract and introduction do not include the claims499

made in the paper.500

• The abstract and/or introduction should clearly state the claims made, including the501

contributions made in the paper and important assumptions and limitations. A No or502

NA answer to this question will not be perceived well by the reviewers.503

• The claims made should match theoretical and experimental results, and reflect how504

much the results can be expected to generalize to other settings.505

• It is fine to include aspirational goals as motivation as long as it is clear that these goals506

are not attained by the paper.507

2. Limitations508

Question: Does the paper discuss the limitations of the work performed by the authors?509

Answer: [Yes]510

Justification: We discuss the limitations of our method in conclusion.511

Guidelines:512

• The answer NA means that the paper has no limitation while the answer No means that513

the paper has limitations, but those are not discussed in the paper.514

• The authors are encouraged to create a separate "Limitations" section in their paper.515

• The paper should point out any strong assumptions and how robust the results are to516

violations of these assumptions (e.g., independence assumptions, noiseless settings,517

model well-specification, asymptotic approximations only holding locally). The authors518

should reflect on how these assumptions might be violated in practice and what the519

implications would be.520

• The authors should reflect on the scope of the claims made, e.g., if the approach was521

only tested on a few datasets or with a few runs. In general, empirical results often522

depend on implicit assumptions, which should be articulated.523

• The authors should reflect on the factors that influence the performance of the approach.524

For example, a facial recognition algorithm may perform poorly when image resolution525

is low or images are taken in low lighting. Or a speech-to-text system might not be526

used reliably to provide closed captions for online lectures because it fails to handle527

technical jargon.528

• The authors should discuss the computational efficiency of the proposed algorithms529

and how they scale with dataset size.530

• If applicable, the authors should discuss possible limitations of their approach to531

address problems of privacy and fairness.532

• While the authors might fear that complete honesty about limitations might be used by533

reviewers as grounds for rejection, a worse outcome might be that reviewers discover534

limitations that aren’t acknowledged in the paper. The authors should use their best535

judgment and recognize that individual actions in favor of transparency play an impor-536

tant role in developing norms that preserve the integrity of the community. Reviewers537

will be specifically instructed to not penalize honesty concerning limitations.538

3. Theory Assumptions and Proofs539

Question: For each theoretical result, does the paper provide the full set of assumptions and540

a complete (and correct) proof?541

Answer: [NA]542
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Justification: Our paper does not include theoretical results, assumptions and proof.543

Guidelines:544

• The answer NA means that the paper does not include theoretical results.545

• All the theorems, formulas, and proofs in the paper should be numbered and cross-546

referenced.547

• All assumptions should be clearly stated or referenced in the statement of any theorems.548

• The proofs can either appear in the main paper or the supplemental material, but if549

they appear in the supplemental material, the authors are encouraged to provide a short550

proof sketch to provide intuition.551

• Inversely, any informal proof provided in the core of the paper should be complemented552

by formal proofs provided in appendix or supplemental material.553

• Theorems and Lemmas that the proof relies upon should be properly referenced.554

4. Experimental Result Reproducibility555

Question: Does the paper fully disclose all the information needed to reproduce the main ex-556

perimental results of the paper to the extent that it affects the main claims and/or conclusions557

of the paper (regardless of whether the code and data are provided or not)?558

Answer: [Yes]559

Justification: We provide the details of the used model, hyperparameters, source of datasets560

and proposed algorithm for reproducing main experimental results.561

Guidelines:562

• The answer NA means that the paper does not include experiments.563

• If the paper includes experiments, a No answer to this question will not be perceived564

well by the reviewers: Making the paper reproducible is important, regardless of565

whether the code and data are provided or not.566

• If the contribution is a dataset and/or model, the authors should describe the steps taken567

to make their results reproducible or verifiable.568

• Depending on the contribution, reproducibility can be accomplished in various ways.569

For example, if the contribution is a novel architecture, describing the architecture fully570

might suffice, or if the contribution is a specific model and empirical evaluation, it may571

be necessary to either make it possible for others to replicate the model with the same572

dataset, or provide access to the model. In general. releasing code and data is often573

one good way to accomplish this, but reproducibility can also be provided via detailed574

instructions for how to replicate the results, access to a hosted model (e.g., in the case575

of a large language model), releasing of a model checkpoint, or other means that are576

appropriate to the research performed.577

• While NeurIPS does not require releasing code, the conference does require all submis-578

sions to provide some reasonable avenue for reproducibility, which may depend on the579

nature of the contribution. For example580

(a) If the contribution is primarily a new algorithm, the paper should make it clear how581

to reproduce that algorithm.582

(b) If the contribution is primarily a new model architecture, the paper should describe583

the architecture clearly and fully.584

(c) If the contribution is a new model (e.g., a large language model), then there should585

either be a way to access this model for reproducing the results or a way to reproduce586

the model (e.g., with an open-source dataset or instructions for how to construct587

the dataset).588

(d) We recognize that reproducibility may be tricky in some cases, in which case589

authors are welcome to describe the particular way they provide for reproducibility.590

In the case of closed-source models, it may be that access to the model is limited in591

some way (e.g., to registered users), but it should be possible for other researchers592

to have some path to reproducing or verifying the results.593

5. Open access to data and code594

Question: Does the paper provide open access to the data and code, with sufficient instruc-595

tions to faithfully reproduce the main experimental results, as described in supplemental596

material?597
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Answer: [Yes]598

Justification: We provide open access to the code for our proposed method. In our experi-599

ments, we utilize a publicly accessible benchmark dataset described in Section ??.600

Guidelines:601

• The answer NA means that paper does not include experiments requiring code.602

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/603

public/guides/CodeSubmissionPolicy) for more details.604

• While we encourage the release of code and data, we understand that this might not be605

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not606

including code, unless this is central to the contribution (e.g., for a new open-source607

benchmark).608

• The instructions should contain the exact command and environment needed to run to609
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.611
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.613

• The authors should provide scripts to reproduce all experimental results for the new614

proposed method and baselines. If only a subset of experiments are reproducible, they615

should state which ones are omitted from the script and why.616

• At submission time, to preserve anonymity, the authors should release anonymized617

versions (if applicable).618

• Providing as much information as possible in supplemental material (appended to the619

paper) is recommended, but including URLs to data and code is permitted.620
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the623

results?624

Answer: [Yes]625
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• The answer NA means that the paper does not include experiments.630
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that is necessary to appreciate the results and make sense of them.632
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material.634
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Answer: [Yes]638

Justification: We do not report the statistical significance of the experimental results, as our639

method does not rely on statistical variables for inference.640
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• The answer NA means that the paper does not include experiments.642
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• The factors of variability that the error bars are capturing should be clearly stated (for646
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• The method for calculating the error bars should be explained (closed form formula,649

call to a library function, bootstrap, etc.)650

• The assumptions made should be given (e.g., Normally distributed errors).651

• It should be clear whether the error bar is the standard deviation or the standard error652

of the mean.653

• It is OK to report 1-sigma error bars, but one should state it. The authors should654

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis655

of Normality of errors is not verified.656
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error rates).659
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resources (type of compute workers, memory, time of execution) needed to reproduce the664

experiments?665

Answer: [Yes]666

Justification: We provide the information of types of compute worker (GPU model), memory667

usage and inference time in Section. 4.3.3.668
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• The answer NA means that the paper does not include experiments.670
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or cloud provider, including relevant memory and storage.672

• The paper should provide the amount of compute required for each of the individual673

experimental runs as well as estimate the total compute.674

• The paper should disclose whether the full research project required more compute675

than the experiments reported in the paper (e.g., preliminary or failed experiments that676

didn’t make it into the paper).677

9. Code Of Ethics678
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Answer: [Yes]681

Justification: We abide by the NeurIPS Code of Ethics.682
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Answer: [Yes]692
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• Examples of negative societal impacts include potential malicious or unintended uses699
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11. Safeguards718
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Answer: [NA]722

Justification: Our paper does not pose a high risk for misuse in terms of model and dataset.723
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• The answer NA means that the paper poses no such risks.725

• Released models that have a high risk for misuse or dual-use should be released with726
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that users adhere to usage guidelines or restrictions to access the model or implementing728
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• Datasets that have been scraped from the Internet could pose safety risks. The authors730

should describe how they avoided releasing unsafe images.731

• We recognize that providing effective safeguards is challenging, and many papers do732

not require this, but we encourage authors to take this into account and make a best733

faith effort.734

12. Licenses for existing assets735

Question: Are the creators or original owners of assets (e.g., code, data, models), used in736

the paper, properly credited and are the license and terms of use explicitly mentioned and737

properly respected?738

Answer: [Yes]739

Justification: We cite the papers that provide datasets, code and models in the Section. 4.740
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• The answer NA means that the paper does not use existing assets.742

• The authors should cite the original paper that produced the code package or dataset.743
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URL.745

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.746

• For scraped data from a particular source (e.g., website), the copyright and terms of747
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• If assets are released, the license, copyright information, and terms of use in the749
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has curated licenses for some datasets. Their licensing guide can help determine the751

license of a dataset.752
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• For existing datasets that are re-packaged, both the original license and the license of753

the derived asset (if it has changed) should be provided.754

• If this information is not available online, the authors are encouraged to reach out to755

the asset’s creators.756

13. New Assets757

Question: Are new assets introduced in the paper well documented and is the documentation758
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Answer: [Yes]760
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• The answer NA means that the paper does not release new assets.763
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limitations, etc.766

• The paper should discuss whether and how consent was obtained from people whose767

asset is used.768

• At submission time, remember to anonymize your assets (if applicable). You can either769

create an anonymized URL or include an anonymized zip file.770

14. Crowdsourcing and Research with Human Subjects771

Question: For crowdsourcing experiments and research with human subjects, does the paper772

include the full text of instructions given to participants and screenshots, if applicable, as773

well as details about compensation (if any)?774

Answer: [NA]775

Justification: Our paper does not involve neither crowdsourcing nor research with human776

subjects.777

Guidelines:778

• The answer NA means that the paper does not involve crowdsourcing nor research with779

human subjects.780

• Including this information in the supplemental material is fine, but if the main contribu-781

tion of the paper involves human subjects, then as much detail as possible should be782

included in the main paper.783

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,784

or other labor should be paid at least the minimum wage in the country of the data785

collector.786

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human787

Subjects788
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approvals (or an equivalent approval/review based on the requirements of your country or791

institution) were obtained?792

Answer: [NA]793

Justification: Our paper does not involve neither crowdsourcing nor research with human794

subjects.795
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• Depending on the country in which research is conducted, IRB approval (or equivalent)799
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• We recognize that the procedures for this may vary significantly between institutions802
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• For initial submissions, do not include any information that would break anonymity (if805

applicable), such as the institution conducting the review.806
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