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Abstract
We consider the Euclidean bi-chromatic match-
ing problem in the dynamic setting, where the
goal is to efficiently process point insertions and
deletions while maintaining a high-quality solu-
tion. Computing the minimum cost bi-chromatic
matching is one of the core problems in geo-
metric optimization that has found many appli-
cations, most notably in estimating Wasserstein
distance between two distributions. In this work,
we present the first fully dynamic algorithm for
Euclidean bi-chromatic matching with sub-linear
update time. For any fixed ε > 0, our algorithm
achieves O(1/ε)-approximation and handles up-
dates in O(nε) time. Our experiments show that
our algorithm enables effective monitoring of the
distributional drift in the Wasserstein distance on
real and synthetic data sets, while outperforming
the runtime of baseline approximations by orders
of magnitudes.

1. Introduction
We consider the Euclidean bi-chromatic matching problem,
one of the most fundamental optimization problems in low-
dimensional Euclidean geometry. Given a set A of n red
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points in Rd and a set B of n blue points in Rd, the goal
is to compute a bijection µ : A→ B such that

∑
a∈A∥a−

µ(a)∥2 is minimized. A key application of minimum-cost
bi-chromatic matching in machine learning is estimating
the 1-Wasserstein distance of two spatial distributions ν and
ν′, whose supports satisfy Sν , Sν′ ⊆ Rd. This distance,
also known as Euclidean Earth Mover’s Distance (EMD),
Kantorovich-Rubinstein metric, or Mallow’s distance, is
defined as

W1(ν, ν
′) = inf

P∈Γ(ν,ν′)

∫
Sν×Sν′

∥a− b∥2 dP (a, b) ,

were Γ(ν, ν′) denotes the set of all probability measures on
Sν × Sν′ with marginal distributions ν and ν′.

Estimating the 1-Wasserstein distance measure, or the Eu-
clidean bi-chromatic matching problem, has been exten-
sively studied across a wide range of disciplines, including
machine learning (Liu et al., 2018; 2017; 2018; Cao et al.,
2019; Balaji et al., 2020; Tolstikhin et al., 2018), computer
vision (Rubner et al., 2000), statistics (Panaretos and Zemel,
2019) and economics (Galichon, 2018). This broad inter-
est has led to different problem varaiants, e.g., the point
reweighted setting, and the development of algorithms with
high-accuracy approximation guarantees or those that only
estimate the solution size without explicitly outputting the
underlying matching (for a more detailed discussion, please
see Appendix A).

In this work, we consider the Euclidean bi-chromatic match-
ing in the dynamic setting, where the input undergoes up-
dates such as insertions or deletions of pairs of points. The
goal is to process these updates as fast as possible while
maintaining a matching that achieves a small, provable ap-
proximation ratio compared to the optimal matching at any
given time.

The dynamic setting is particularly relevant in the statisti-
cal estimation of the 1-Wasserstein distance (Gattani et al.,
2023; Beugnot et al., 2021; Liu et al., 2018; Panaretos and
Zemel, 2019), when the closed-form expressions for ν and
ν′ are unknown. In such cases, one can efficiently draw
independent and identically distributed (i.i.d.) samples from
both distributions. The resulting empirical distribution νn
and ν′n, assign a uniform probability mass of 1/n to each
sample in A and B, respectively. It is well known that
W1(νn, ν

′
n) converges to W1(ν, ν

′), as n → ∞. Rather
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than computing a matching from scratch after new samples
are drawn, a dynamic algorithm guarantees efficient mainte-
nance of accurate estimates for minµ

1
n

∑
a∈A∥a− µ(a)∥2

under such changes. Further real-world applications of dy-
namic geometric matching include measuring the similarity
between evolving data sets (Alvarez-Melis and Fusi, 2020),
measuring the change in patient data (such as MRI images)
over a long period of time (Gramfort et al., 2015; Janati
et al., 2019), or applications of matching (or EMD) as a
metric in time series analysis (Cheng et al., 2021). Despite
the fundamental importance of this problem, dynamic geo-
metric matching has only recently been considered in (Xu
and Ding, 2024a) and the existing algorithms cannot break
the linear barrier on the update time.

1.1. Main Contributions

We obtain the first sub-linear dynamic algorithm for Eu-
clidean bi-chromatic bipartite matching. Specifically, our
algorithm achieves O(1) approximation in sub-linear in n
update time. The exact guarantees of our result are summa-
rized in the theorem below.

Theorem 1.1. For any 0 < ε ≤ 1, there exists a fully
dynamic algorithm that maintains an expected O(1/ε)-
approximate solution to the Euclidean bi-chromatic match-
ing problem defined on the point-sets A,B ⊂ R2, |A| = |B|,
while pairs of points are inserted into and deleted from A,B
in O(nε · ε−1) worst-case update time. Here, n denotes the
maximum size of A throughout the update sequence.

In the static setting, the Euclidean bi-chromatic matching
problems admits known (1 + ε)-approximation algorithms
that run in near-optimal running time (Agarwal et al., 2022b;
Raghvendra and Agarwal, 2020). In comparison, the O(1/ε)
approximation guarantee in Theorem 1.1 may initially seem
less competitive. However, as we show in Appendix F (The-
orem F.1), a simple lower bound construction reveals that,
in the dynamic setting (even if restricted to only point inser-
tions or deletions), there is no algorithm that simultaneously
achieves (2− δ)-approximation and runs in sub-linear up-
date time, for any δ > 0. This in turn implies that no
non-trivial dynamic algorithm can maintain a solution to the
problem with an arbitrarily tight approximation ratio.

While the matching problem on graphs has received signifi-
cant attention in the dynamic model (see (Azarmehr et al.,
2024) for a complete list of works), the only prior known
algorithm for the geometric version of the problem was
presented by (Xu and Ding, 2024a) with update time O(n).
Notably, even disregarding edge weights, the maintenance
of a perfect matching in the graph setting requires Ω(n)
update time under well accepted hardness conjectures (Hen-
zinger et al., 2015; Dahlgaard, 2016). On the other hand,
there is a long line of work focusing on maintaining an
O(1)-approximate matching in near optimal update time in

dynamic graphs.

Furthermore, dynamic graph matching algorithms focus on
singular edge updates. As in the dynamic Euclidean bi-
chromatic matching problem we have to work with updates
affecting Ω(n) point-wise distances, in order to obtain our
results, we need techniques which are new to dynamic lit-
erature and heavily exploit the guarantees of the geometric
setting.

To complement our primary contribution (Theorem 1.1),
we present experimental evaluations of the performance
of our dynamic algorithm for estimating the 1-Wasserstein
distance in contrast to static state of the art approximate
algorithms. Our experimental results reveal that in the dy-
namic setting the total running time of our algorithm over a
series of updates outperforms periodic static recomputation
by orders of magnitudes. Furthermore, we find that the ap-
proximation ratio obtained by our algorithm on real-world
datasets is smaller than that of our theoretical guarantees
and almost matches that of static algorithms. Our results
confirm the expected approximation ratio drop-off and run-
ning time decrease we would expect with the reduction of
the ε parameter.

1.2. Technical Overview

In vein of related works, we discuss algorithms and analysis
for d = 2 to simplify the presentation, though our theorems
and implementation extend to constant d > 2.

Our dynamic algorithm builds on the static algorithm of
(Agarwal and Varadarajan, 2004). On a very high level, the
algorithm partitions the input points into a series of nested
grid cells. The nested grid is constructed in a such a way
that each grid cell contains O(nε) sub-cells of the next level,
bottom level cells contain at most O(nε) points and the
data-structure consists of O(ε−1) levels. Intuitively, the
algorithm aims to match every point within the smallest grid
cell possible, however, certain cells might not have the same
number of red and blue points.

A crucial difference between our implementation and that
of (Agarwal and Varadarajan, 2004) is that we describe
a process which constructs the matching in a bottom-up
manner, starting with the smallest cells and progressing
towards the cell containing all of the input, whereas the prior
work iterates in a top-to-bottom order. This change allows
for a shorter algorithm description; however, it requires a
different but arguably simpler analysis, which we present in
Appendix C.

As bottom cells contain only a small number of input points,
they may select a maximal color-balanced subset of them,
match its points optimally using a polynomial running time
static algorithm, and forward the remaining points to their
parent cell.
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If a set of points can’t be matched within a cell due to color
dis-balance, we can argue that an optimal cost matching
must match the dis-balance with points outside of the cell,
and hence with longer edges. This allows us to introduce
some slack and represent these forwarded points implicitly
by the center of their respective cell and their cardinality.

Larger cells aiming to match these forwarded implicitly
represented points can efficiently find an implicit matching
of the underlying points by an optimal polynomial run-
ning time geometric transportation algorithm. These im-
plicit matchings can then efficiently be turned into an actual
matching of the underlying points of roughly the same cost.

To dynamize the algorithm, we show that, due to an update,
the matching structure might only change in cells containing
the updated points. After an update for each affected cell
in a bottom-up manner we carefully adjust the matchings
calculated. Since in each cell we either have O(nε) points
or a larger set of points represented with O(nε) sub-cell
center points, this can be done with polynomial running
time static sub-routines for each affected cell. As the nested
grid contains O(ε−1) levels, the update time works out to
O(nε · ε−1).

Updating the matching of a bottom cell is straightforward,
as we may run an optimal polynomial time algorithm on
their updated points. However, the sub-cell center-points of
intermediate cells may represent Ω(n) input points implic-
itly. Hence, if the implicit matching of the cell significantly
changes due to an update, it may take Ω(n) time to update
the actual output matching within the cell.

To overcome this difficulty, we first carefully analyze the
update process and show that the points matched in each
cell may only change by 2 due to an update. Afterwards,
we present a graph shortest s − t path sub-routine based
procedure which calculates an updated version of the geo-
metric transport solution stored in the cell. This solution
only differs in at most O(nε) edges compared to its unup-
dated state. In turn, this allows us to efficiently update the
matching of the actual input points implicitly represented
by the geometric transportation sub-solutions.

1.3. Related Work

Numerous results exist on special cases and generalizations
of Euclidean bi-chromatic bipartite matching across various
computational settings. In the static setting, an exact solu-
tion can be found through minimum cost max-flow graph
algorithms in Ô(n2) time (van den Brand et al., 2020). For
restricted cases of the problem, (Sharathkumar, 2013) has
presented an algorithm with Ô(n3/2) running time. In the
approximate setting, (Agarwal et al., 2022a) presented the
first deterministic Õ(n) time algorithm for arbitrarily tight
approximations. Due to space restrictions, a more detailed
overview and discussion on related work can be found in

Appendix A.

Paper Outline: We describe a static algorithm and its
dynamic implementation in sections 3 and 4 respectively.
In Section 5, we demonstrate the practicality and efficiency
of the dynamic algorithm for estimating the 1-Wasserstein
distance.

2. Preliminaries
The Euclidean matching problem Given a set of red
points A and a set of blue points B in the plane, where
|A| = |B| = n, a matching is a bijection of the form
µ : A → B. The cost of a matching µ is given by c(µ) =∑

a∈A ∥a − µ(a)∥2. The objective is to find a matching
of minimum cost. We say that a pair of points e := (a, b),
referred to as an edge, belongs to matching µ if b = µ(a).
We define a matching µ to be α-approximate for α ≥ 1 if
c(µ) · α ≤ c(µ∗) for any optimal solution µ∗.

To simplify presentation, we assume that X = A ∪ B ⊆
D × D for some D = poly(n), where D is a power of 2.
Throughout this paper we make the standard assumption
that the spread of the input points, i.e. the ratio between the
largest and the smallest inter-point distance in X , remains
bounded by some large U = poly(n).

A generalization of the matching problem, supporting point
multiplicities, is the so-called Euclidean transportation
problem, defined as follows.

The Euclidean transportation problem Let A,B ⊂ R2

be any two sets of points such that each point a ∈ A has a
non-negative integer supply sa ≥ 0 and each b ∈ B has a
non-positive integer demand db ≤ 0 satisfying

∑
a∈A sa +∑

b∈B db = 0. An assignment, γ : A × B → Z≥0, is a
non-negative set of weights on the edges such that sa =∑

b∈B γ(a, b),∀a ∈ A and −db =
∑

a∈A γ(a, b),∀b ∈ B.

The cost of an assignment γ is c(γ) =∑
a∈A,b∈B γ(a, b)∥a − b∥2. An optimal assignment

for the Euclidean transportation problem is an assignment
of minimum cost.

Theorem 2.1. (Atkinson and Vaidya, 1995) There ex-
ists a deterministic algorithm which, given an instance
of the Euclidean transportation problem A,B ⊆ R2,
s ∈ ZA

≥0, d ∈ ZB
≤0, returns an optimal assignment

γ : A × B → Z≥0 in time O(n5/2 log(n logM)), where
M = max(∥s∥∞ , ∥d∥∞), n = |A ∪B|.

The results of this paper rely on a standard data structure
for representing points in a geometric setting (see (Agarwal
and Varadarajan, 2004; Agarwal et al., 2022a)), the under-
lying and restricted p-trees, two quadtree-like structures.
Throughout the paper think of the parameter p as some nε

sized power of 2.
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The underlying and the restricted p-tree We define a
cell of side-length L > 0 as a square of the form [a, a+L)×
[b, b+ L) for some a, b ∈ R. We will frequently subdivide
cells of side-length L into subcells of side length L/p. We
will call this a grid of side length L/p.

For an integer p ≥ 2, which is also a power of 2, and a
point set X , we define an underlying p-tree T on X to be
a quadtree-like structure with larger branching factor (see
e.g., (Agarwal and Varadarajan, 2004)), formally described
as follows.

(1) The root r̄ consists of a bounding cell with side-length
D, containing all points in X , and its subdivision into
p2 smaller subcells. The root r̄ has p2 children, de-
noted by Cr̄, corresponding to its subcells, each of
side-length D/p. The root is at level 0 of T .

(2) Each internal node v at level i > 0 corresponds to
one of the subcells of its parent node. Thus, an internal
node v at level i consists of a cell of side length D/pi,
and its subdivision into p2 smaller subcells, each of
size D/pi+1 ×D/pi+1.

For a node v of the underlying p-tree T , let Xv be the set
of points from X belonging to the bounding cell of v. We
say that a point x ∈ X belongs to node v if x ∈ Xv. Now,
notice that for some nodes v (on both low and high levels)
the set Xv might be empty. To avoid storing unnecessary
empty cells (which would result in a slower data structure),
we define the restricted p-tree or shortly p-tree, which is a
subtree of the underlying p-tree, where the root and leaves
are defined as follows:

(1) The root r is a node of the underlying p-tree such
that Xr = X , but which does not have a child v with
Xv = X . In other words, r is the node with Xr = X
located on the lowest possible level of the underlying
p-tree.

(2) A leaf of the p-tree is a cell v such that |Xv| ≤ p2, but
whose parent u has |Xu| > p2.

As we insert or delete points in the dynamic setting, notice
that the restricted p-tree might change over time: the root,
as well as the leaves might change to higher or lower levels
of the underlying p-tree. However, as we assume that the
spread of the pointset X is bounded by U at all times, we
know that the height of the restricted p-tree is bounded by
d := logp U and is therefore constant if p is chosen to be
sublinear in n.

It can be shown that a restricted p-tree w.r.t. set X , |X| = n,
can be maintained under insertions and deletions of points
in O(p2 + logp U) amortized update time (see e.g. (de Berg
et al., 2007)).

z-ordering The z-ordering of the point-set X w.r.t. an
underlying p-tree T is defined via specific ordering of chil-

dren nodes in T . Starting from the root of T , we traverse
the children cells of each internal node row by row, then
recursively traverse the subcells of each cell until a subcell
contains only one point.

3. Basic Framework and the Static Algorithm
The starting point of our work is the static algorithm for
computing bi-chromatic Euclidean matchings due to (Agar-
wal and Varadarajan, 2004). Specifically, their top-down
algorithm computes an O(1/ε)-approximate matching for
an instance (A,B) in time O(n1+ε) for sufficiently small
constants ε > 0. We begin by presenting our modified
variant of this algorithm for the static setting, referred to
as STATIC-MATCHING(A,B). The next section shows that
our variant can be extended to a bottom-up algorithm for
the fully dynamic setting achieving sub-linear update time.

For the input sets A,B with bounded spread U we first
apply a random shift to all the points by a fixed random
vector r ∈ [U ]2 to get A′ = {a + r : a ∈ A} and
B′ = {b+ r : b ∈ B}. From now on, we are only inter-
ested in sets A′ and B′. Slightly abusing notation, we will
simply refer to these sets as A and B. Our first step is to
construct a restricted p-tree T on the point set X := A ∪B.
Using T in a bottom-up manner, we obtain a matching be-
tween the point set A and B as follows. Intuitively, as the
number of unmatched red and blue points belonging to some
node might not be balanced, we greedily match as many
red-blue pairs of points as possible at that node. Handling
the unmatched points is deferred to the parent node, which
matches as many excess points from its children as possible,
and so forth. Therefore, for any node v of T , we keep track
of the set of red points Yv(A) and blue points Yv(B) that we
match at that node, and the set of unmatched monochromatic
points that are in excess, denoted by Ev .

An essential element of our algorithm is the choice of the
matching algorithm used throughout the traversal of T . Ob-
serve that the excess points forwarded to an internal node
of T by its children could be of size Ω(n). To overcome
this problem, our algorithm will rely on a data structure
representing excess points forwarded by node v of T by the
center point of the cell of v. Using this data structure we are
able to efficiently compute (and maintain) an implicit match-
ing of the unmatched points at all v ∈ V , which we can
efficiently turn into an explicit matching of the underlying
points when queried.

3.1. Sub-instances via transportation solver

An implicit matching is an optimal assignment γ∗
v [Yv] : v ∈

T associated with a vertex v of T of an Euclidean transporta-
tion problem defined by some inputs (Yv(A), Yv(B), s, d).

To make sense of the above vague definition, we de-
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scribe procedures IMPLICIT-MATCHING and EXPLICIT-
MATCHING that will act as a sub-routines in both static
and dynamic algorithm for Euclidean matchings. The pur-
pose of these functions is to obtain two representations of a
maximal matching between specific points forwarded to an
internal vertex from its children in a restricted p-tree.

Given a subset of points belonging to a node in the p-tree, in
the IMPLICIT-MATCHING, we first define the notion of a ag-
gregated sub-instance for that node. To aggregate the points
of a given cell, we move all of them to the cell’s center. We
define an Euclidean transportation problem on this aggre-
gated sub-instance, and the resulting optimal assignment
will correspond to an implicit matching of v. EXPLICIT-
MATCHING converts this implicit matching into a matching
of the original subset of points, which we refer to as the
explicit matching.

IMPLICIT-MATCHING procedure The input of the pro-
cedure is a vertex v of p-tree T , the monochromatic sets
of points {Eu : u ∈ Cv} (denote their union by E , and
partition into blue EB and red EA points) forwarded to v
from its children and their cardinalities {|Eu| : u ∈ Cv}.
Without loss of generality, assume that |EB | ≥ k = |EA|.
Its output consists of an optimal assignment of a transporta-
tion problem (i.e., an implicit matching) defined by k points
of EB and all points of EA (i.e., the points we can match
within the cell of v) and |EB | − k blue points, which will be
forwarded to the parent of v in T .

Choosing the points to match. Let Yv(B) stand for the
first k points of EB with respect to some ordering (say the
z-ordering). Let Ev = EB \ Yv(B) be the excess set, i.e.
the set of points not matched at v, Yv(A) = EA and Yv =
Yv(A) ∪ Yv(B). Excess set Ev will be forwarded to the
parent of v.

Computing the implicit matching. We define an instance of
Euclidean transportation problem over the center points of
all p2 sub-cells of the cell of v. Note that every such sub-cell
u ∈ Cv contains a monochromatic subset of E . Define Ac

and Bc to be center points of sub-cells containing only red
and blue points of Yv respectively. We set sa′ for a′ ∈ Ac

and −db′ for b′ ∈ Bc to correspond to the number of red
and blue points of Yv of the cells with centers a′ and b′,
respectively.

The optimal assignment γ∗
v [Yv] obtained by solving the

Euclidean transport problem defined by (Ac, Bc, s, d) using
the algorithm of Theorem 2.1 will be returned as the implicit
matching of vertex v. Crucially, observe that setting up the
Eucledian transport instance doesn’t require the knowledge
of the exact location of vertices in Yv(A), Yv(B) just their
cardinalities in the sub-cells of v.

EXPLICIT-MATCHING procedure The inputs of the pro-
cedure are sets Yv(A) and Yv(B), as well as implicit match-
ing γ∗

v [Yv] between those points at an internal node v. Its
output is a matching between Yv(A) and Yv(B).

The procedure naturally translates the assignment γ∗
v [Yv] to

a perfect matching µ′
v[Yv] between the points Yv(A) and

Yv(B) as follows: match γ∗
v [Yv](a

′, b′) many different pairs
of points of the form (a, b), where a and b lies in the sub-cell
whose centers are a′ and b′ respectively. We refer to the
latter matching as an explicit matching of node v w.r.t. its
corresponding point set Yv . For an example involving both
implicit and aggregated sub-instances, see Figure 1.

In the following lemmas, we summarize the above algo-
rithms and their running times.

Lemma 3.1. Let v be an internal node of a p-tree T
on X := A ∪ B with |A| = |B| = n. Let E =
{Eu : u ∈ Cv} be the pointers to some monochromatic
sets of v’s children forwarded to v, as well as their car-
dinalities {|Eu| : u ∈ Cv}. There is an algorithm
IMPLICIT-MATCHING(v, E , {|Eu| : u ∈ Cv}) that chooses
balanced red and blue sets Yv(A) and Yv(B), computes an
implicit (perfect) matching γ∗

v [Yv] between them, in time
O(p5 log p log n). Additionally, the function returns the
(pointer to the) monochromatic set of unmatched points Ev

at node v.

A crucial property of the Lemma 3.1 is that it has a running
time only polylogarithmic with respect to n although E
could consist of Ω(n) points. This can be naturally achieved
through an implicit representation of the point sets {Eu :
u ∈ Cv}. We formalize this process in Appendix B.

Now, as described above, it is easy to convert an implicit
matching to a matching of the input points.

Lemma 3.2. Let T be a p-tree on X = A ∪ B and d its
depth. The following statements hold:

1. Given a vertex v of a p-tree T , and an implicit matching
γ∗
v [Yv] w.r.t. v and set Yv, the corresponding explicit

matching γ′
v[Yv] can be obtained in time O(|Yv|d).

2. Given tree T where each leaf stores a matching and
each non-leaf node an implicit matching, the corre-
sponding perfect matching on X can be reported in
O(n) time.

3.2. Static Algorithm

Next, we present the formal description of the bottom-up
algorithm. To this end, we define the subroutine MATCH(v)
as follows. If node v is leaf of the restricted p-tree:

1. Determine sets Yv(A), Yv(B) and Ev: Let Y ′
v(A) =

Xv ∩ A be the red points, Y ′
v(B) = Xv ∩B the blue

points, and ηv = |Y ′
v(A)| − |Y ′

v(B)| the difference in
cardinality, at node v.
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Figure 1. Examples of an instance (left), implicit matching of the aggregated sub-instance (middle), and the resulting matching sub-
instance (right). In the left picture, red points are represented by circles, while blue points are represented by crosses. The middle picture
shows the implicit matching on the aggregated sub-instance, with numbers next to vertices representing their demands and supplies, while
numbers next to edges represent the weighting of the edges. The right picture shows the corresponding matching of the input points.

If ηv = 0, we set Ev = ∅. If ηv > 0, we assign a
subset of ηv red points chosen as the last ηv points in
the z-ordering from Y ′

v(A) to Ev, and set Yv(A) =
Y ′
v(A) \ Ev and Yv(B) = Y ′

v(B) (in the same way as
presented in Section 3.1). Analogously, if ηv < 0, we
assign a subset of ηv blue points from Y ′

v(A) to Ev,
and set Yv(B) = Y ′

v(B) \ Ev and Yv(A) = Y ′
v(A).

We refer to Ev as the excess points at v.
2. Compute matching: Obtain a matching µv between

red points Yv(A) and blue points Yv(B) using any
efficient exact algorithm (e.g. the Hungarian algorithm
(Munkres, 1957)), and compute its cost c(µv).

3. Return the cost and the excess set (c(µv), Ev).

Otherwise, node v is internal:

1. Compute implicit matching: For each child u
of v, let Eu be the set of excess points returned
by MATCH(u). Invoke algorithm IMPLICIT-
MATCHING(v, E , {|Eu| : u ∈ Cv}) from Section 2
(see Lemma 3.1). Let γ∗

v [Yv] be the resulting implicit
matching w.r.t. node v and set Yv computed via the
algorithm, and Ev the set returned by the algorithm.
Set the estimate of the cost for the matching in v to
c(µv) := c(γ∗

v [Yv]) +
∑

u∈Cv
c(µu).

2. Return the cost and excess set (c(µv), Ev).

Our algorithm STATIC-MATCHING(A,B) first invokes the
MATCH(r) subroutine, where r is the root of T on A ∪B.
Note that this yields implicit matchings γ∗

v [Yv] at internal
nodes v of T . Using Lemma 3.2, Part (2), we can transform
the implicit matchings γ∗

v [Yv] of the aggregated versions of
Yv into matchings of the original points µ′[Yv] of roughly
the same cost (see Claim C.4 for a formal bound on the
slack introduced by the aggregation). Finally, we return a
maximal matching µr on the entire point set X , along with
its already computed cost c(µr).

Our analysis of the algorithm builds on the following key
idea from (Agarwal and Varadarajan, 2004): when all points

are shifted randomly by the vector r, the probability of an
edge being cut by a grid in a node of the p-tree is propor-
tional to the length of the edge and inversely proportional to
the spacing of the grid.

However, the algorithm of (Agarwal and Varadarajan, 2004)
works in a top-to-bottom approach (building the matching
starting from the root and progressing to the leaves) in con-
trast to our algorithm, which takes a bottom-up approach.
The bottom-up approach allows us to guarantee that for any
node v ∈ T the number of nodes not matched within the cell
of v simply corresponds to the difference in the number of
blue and red nodes inside the cell of v. Intuitively, this im-
plies that points are matched to near-by neighbor whenever
possible.

This results in an arguably simpler analysis differing from
that of (Agarwal and Varadarajan, 2004), and crucially rely-
ing on the concept of implicit matchings. We provide a self-
contained analysis of the static algorithm in Appendix C.

Theorem 3.3 (Static). For any Euclidean matching instance
(A,B), with |A| = |B| = n, and spread U ≤ nc, for
some constant c > 0, and for any constant ε ∈ (0, 1

10 ),
algorithm STATIC-MATCHING(A,B) computes an O(1/ε)-
approximate Euclidean matching with high probability in
O(n1+ε · ε−1) time.

4. Dynamic Algorithm
In this paper, we present two dynamic data structures for
maintaining perfect matchings under insertions and dele-
tions of pairs of red and blue points. Both data structures
naturally convert our static, bottom-up algorithm from the
previous section into a dynamic one.

Our first algorithm EUCLMATCH1 implicitly maintains a
matching for each node of the tree. This allows us to (i)
estimate the cost of the entire matching after each update
and (ii) report the current approximate matching upon a
query in time proportional to its size. Our second algorithm
EUCLMATCH2 explicitly maintains the output matching at
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all times. We defer the second algorithm to Appendix E due
to page limitations.

Initialization For any given set of points A and B, we
will next describe how to initialize a matching by essen-
tially running the bottom-up algorithm STATIC-MATCHING
on the instance (A,B). Formally, the INITIALIZE(A,B)
initializes the restricted p-tree T w.r.t. X := A ∪ B, and
the following corresponding values: the set of unmatched
points Y ′

v(A), Y ′
v(B), the excess set Ev at each node v of

T , the implicit matching γ∗[Yv] and the cost c(µv) of the
matching w.r.t. the subtree rooted at each internal node, and
the matching µv and its cost c(µv) at each leaf. This process
takes O(n1+ε) time by Theorem 3.3.

Handling updates As the procedures for insertions and
deletions are similar (see Appendix D), we focus on pre-
senting the insertion procedure. Without loss of generality
assume that we insert a red point a to A. The algorithm
INSERT(a) (see Algorithm 2) proceeds in two steps: updat-
ing the restricted p-tree T , and updating the matchings at
each affected node, i.e. node v where a ∈ Xv .

First, updating T follows a standard approach, similar to the
method described in e.g. (Har-Peled, 2011). Namely, one or
both of the following cases can happen:

1. After insertion of a to A, a leaf v of T might contain
more than p2 points. In this case, v now becomes an
internal node of T , while a new subtree has to be built
under v. We refer to these nodes as new subroots, while
all other nodes belonging to this subtree are called
marginal nodes. Finally, all nodes in T that are not
marginal are refered to as non-marginal nodes.

2. If a does not belong to the current root of the restricted
p-tree, a internal node of the underlying p-tree that is
on a higher level than the previous root now becomes
the new root of T .

Second, we define the recursive procedure
INSERT-UPDATE(v, a) which updates the matchings
at each affected node of T in a bottom-up manner (see
Alorithm 1). Specifically, we define INSERT-UPDATE(v, a)
for three types of affected nodes of T : non-marginal
internal nodes, non-marginal leaves, and new subroots.
We focus on presenting the case for non-marginal internal
nodes, as the other two cases are simpler, and can be found
in Appendix D.

If a node v is a non-marginal internal node, the procedure
INSERT-UPDATE(v, a) first updates set Eu for the affected
child u of v, via INSERT-UPDATE(u, a). Then, we up-
date the excess set Ev accordingly. Finally, we invoke the
IMPLICIT-MATCHING(·) procedure to obtain an implicit
matching for the remaining points Yv at v.

Crucially, observe that throughout this process the affected

nodes of T , that is nodes at which either the implicit match-
ing or the excess set changes, lie along a path from a leaf
to the root of T . Hence, the most costly operation of the
algorithm, the updating of the implicit matchings, only has
to be repeated at a small number of nodes.

The correctness of the algorithm follows from the algorithm
always satisfying that after handling an update its output
corresponds to the run of a static algorithm on the current
state of the input, up until the different choices the under-
lying optimal bi-chromatic matching algorithm (Hungarian
algorithm) and optimal geometric transport algorithm (see
Theorem 2.1) makes. Note that the choice of underlying ex-
act algorithms is arbitrary as long as they run in polynomial
time.

Queries To report the changes to the matching, the algo-
rithm converts the implicit matchings at the affected nodes
to an explicit matching of X via Lemma 3.2. To query
the cost of the approximate solution the algorithm simply
returns the approximate cost value c(µr) that is maintained
at root r of T .

The following theorem summarizes the results of our sim-
pler dynamic algorithm.

Theorem 4.1. Let ε ∈ (0, 1] and (A,B) two point sets in
R2 with |A| = |B| = n, and spread U < nc for some con-
stant c > 0. There is a dynamic data structure that supports
insertions and deletions in O(nε · ε−1) worst-case update
time and maintains an expected O(1/ε)-approximate match-
ing between the dynamic set (A,B). Initialization takes
O(n1+ε) time. Reporting the matching, the changes to the
matching when an insertion or deletion occurs (recourse),
and the cost of the matching, take O(n), O(n) and O(1)
time, respectively.

Improved dynamic algorithm Ideally, the algorithm
would maintain the solution matching explicitly. This does
require however, that the explicit matchings implicitly repre-
sented at all nodes of T are explicitly maintained at all times.
This requires a careful propagation of changes throughout
the p-tree and the ability to update explicit matching effi-
ciently when the underlying implicit matching changes. To
dynamize the maintenance of explicit matchings, we rely on
the fact that a single insertion might only change the excess
set stored at each node by 1 point.

This implies that the difference between the updated and
pre-updated matching lies along a short alternating path of
old and new matching edges. We find this augmenting path
using a graph shortest-path based sub-routine, which, due
to page limitations, we defer to Appendix E.
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5. Experimental Evaluation
With this work, we provide1 an opensource, single-threaded
C++ implementation of our algorithm in Appendix E. To
demonstrate the practicality and effectiveness our pro-
posed algorithms, we conducted experiments on a 2.2 GHz
Ubuntu 22.04.4 system with AMD Opteron 6174, us-
ing synthetic and real world data sets. For reproducibil-
ity and comparability, we report on measurements for the
same 2D distributions and data sources used in the recent
work (Gattani et al., 2023). For the synthetic data, we drew
the point coordinates from the uniform distribution on in-
tegers between 1 and 500 to obtain the Uniform datasets.
For the Gaussian datasets, we drew the point coordinates
from the normal distribution (µ = 0.5, σ = 0.25) prior to
scaling by a factor of 500 and rounding to integers. For the
real data, we extracted all trips from the Yellow-Cap Taxi
dataset2 of December 2009, and, following (Gattani et al.,
2023), extracted those having at least 3 minutes duration,
at most 110 mph speed, and latitude/longitude in the range
of [−74.5,−73.5]× [40, 41], yielding 14 324 017 trips with
one ‘Pickup’ and ‘Dropoff’ location each.

5.1. Experimental Results

Speedup: Dynamic vs Static Approximation Algorithms
To measure the speedup or of dynamic over baseline approx-
imations, we measured the update time and time to compute
a approximate matching from scratch, for various levels of
approximation quality. Figure 2 shows the speedup factors
(p = 8) for inserting ≤ 8 000 samples from Uniform vs
Guassian (top) and Pickup vs Dropoff (bottom).

Insertion-Workloads: Estimating Wasserstein distance
using Exact vs Approximate Matchings To demon-
strate the usability of approximations of minimum cost bi-
chromatic matchings to estimate the Wasserstein distance,
we estimated the empirical Wasserstein distance using exact
and approximate matchings on identical and different dis-
tributions for various levels of approximations and sample
sizes. Figure 3 shows the empirical 1-Wasserstein distance
of two Uniform distributions (top) using exact minimum
cost matchings and approximations with p = 2, p = 8, and
p = 32, for up to 2 000 samples. The bottom figure shows
the same estimates for Uniform vs Gaussian.

Insertion-Workloads: Convergence and Update Time for
Very Large Sample Sizes To demonstrate the scalability
of our approach, we measured the convergence and update
time of our dynamic approximations for sample sizes up to
1 000 000, rendering the exact solvers impractical. That is,
running the code of (Xu and Ding, 2024b) on Uniform

1https://github.com/Zhengdw/dyn-euc-match
2See https://www.nyc.gov/site/tlc/about/

tlc-trip-record-data.page.

Figure 2. Speedup of dynamic algorithm over static for approxima-
tions with p = 8.

Figure 3. Estimating the 1-Wasserstein distance using exact and
approximate matchings.
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Figure 4. Convergence and update time on large datasets.

Figure 5. Drift in the Pickup-Dropoff distributions of the Taxi
dataset (top) and update time (bottom).

vs Gaussian slowed down substantially with increasing
number of samples. Inserting 2 000 samples took more than
12GB RAM and longer than 3 hours in total, which is when
we had to terminate the process as it was running out of
memory. (Note that this is already > 5s per update on
a very small instance.) In contrast, Figure 4 (top) shows
the convergence of empirical 1-Wasserstein distance, us-
ing p = 2, 4, 8 for approximations, for the Uniform
vs Uniform benchmark (bottom three curves) and the
Uniform vs Gaussian benchmark (top three curves).
The bottom figure shows the update time, in milliseconds,
of our dynamic algorithm on both benchmark data sets,
having sample sizes up to 1 000 000.

Fully-Dynamic Workloads: Drift of Pickup vs Dropoff
distributions over time To demonstrate the effectiveness
of our dynamic algorithms to monitor the drift of time-
dependent, spatial distributions, we sorted the trips in the
Taxi dataset by pickup time and use a sliding window, hav-
ing a width of 10 000 samples, to obtain update sequences
that contain insertions and deletions. Figure 5 (top) shows
the empirical 1-Wasserstein distance between the Pickup
and Dropoff locations, using approximations with p = 4
and p = 16. The bottom figure shows the update time of
our fully dynamic algorithm on the Taxi benchmark.

5.2. Discussion of experimental results

The experimental results show that the dynamic algorithm is
orders of magnitudes faster than computing static approxi-
mations for minimum cost bi-chromatic matching (Figure 2).
In practice, the approximate matching costs are within a
very small factor (i.e. < 2) of the minimum bi-chromatic
matching cost, which enables very accurate and effectiv
estimation the 1-Wasserstein distance (Figure 3 and top part
of Figure 4). As suggested by our Theorem 1.1, we observe
an tradeoff between approximation quality and update time
(bottom part of Figure 4). Updates of the dynamic algorithm
took typically between one and ten millisecond and showed
a clear separation, between inputs with zero and non-zero
distance, at sample sizes around 10 000 samples. The time
dependent spatial distributions of Pickup and Dropoff lo-
cations in the Taxi dataset show a drift in the empirical
1-Wasserstein distance (Figure 5 top), and the dynamic al-
gorithm allows for effective monitoring of the change even
on large window sizes on real data sets (Figure 5 bottom).

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Works
Static Algorithms: The classical Hungarian algorithm (Kuhn, 1955) allows computing an optimal Euclidean bi-chromatic
matching in O(n3) time. (Atkinson and Vaidya, 1995) presented a Primal-Dual based scaling algorithm for points from
R2 that, supporting points with multiplicity at most W , runs in O(n5/2 log(n) log(W )) time. Near-quadratic algorithms
for computing an optimal matching (of points with multiplicity) can be derived from recent advances for minimum cost
max-flows in graphs (van den Brand et al., 2020).

Sub-quadratic algorithms are known for the following two important cases. In case d = 2 and all coordinates are integers
≤U , (Sharathkumar, 2013) presented an O(n3/2+δ log(nU)), for any fixed δ ∈ (0, 1]. In case both A, B are i.i.d. samples
(from two distributions), (Gattani et al., 2023) recently presented an Õ(n2− 1

2d log(U)Φ(n)), where Φ(n) = poly(log n) for
d = 2, expected time algorithm, and showed its practicality for estimating the 1-Wasserstein distance of distributions on R2

for n ≤ 50 000 samples in approximately 700 seconds.

Static Approximations: (Agarwal and Varadarajan, 2004) presented a top-down algorithm that computes, with with high
probability, an O(log 1

ε )-approximation in O(n1+ε)-time, for any fixed ε ∈ (0, 1]. (Sharathkumar and Agarwal, 2012b),
(Raghvendra and Agarwal, 2020) obtained an O(npoly(log n, ε−1)) time algorithm that, using augmenting paths in a
randomly shifted quad-tree, computes with high probability a (1 + ε)-approximate matching. The poly(log n, ε−1)-factor
was further improved in (Agarwal et al., 2022b). Recently, (Agarwal et al., 2022a) presented the first deterministic
(1 + ε)-approximation algorithm with near-linear n( logn

ε )O(d) time.

Variants: Using spanners and fast minimum cost max-flow solvers, it is possible to compute a (1 + ε)-approximation of
the cost-value in Õ(n3/2) or in Õ(n4/3+o(1)) time, also supporting point multiplicity (see (Gabow and Tarjan, 1989) and
(Axiotis et al., 2020)). See also e.g., (Cabello et al., 2005; 2008) and (Gudmundsson et al., 2007). (Indyk, 2007) showed
that importance sampling can be used for obtaining, with high probability, an O(1)-approximation of the cost-value in
O(npoly(log n)) time, which however also does not allow to report a matching. (Altschuler et al., 2017) presented an
algorithm that also reports a matching, but with an additive error ε in time Õ(n2/ε3). For the parallel and streaming model,
(Andoni et al., 2014) presented an n1+oε(1) time algorithm for R2 that allows to compute an O(1)-approximation for the
cost-value of an optimal matching. (Sharathkumar and Agarwal, 2012a) also presented a dynamic approximation algorithm
that maintains a partial-matching.

The more general problem of dynamic optimal transport has been considered in recent work (Xu and Ding, 2024b).
Specifically, the goal is to design a data structure that accelerates executing one iteration of the Network Simplex Algorithm
on an explicit complete bi-partite graph. Their work is concerned with maintaining an exact solution, within numeric
computing accuracy, after the insertion/deletion of a vertex to the min-cost flow problem. Since their algorithm operates on
a complete, bipartite graph, it requires Ω(n2) space to store the edge weights and Ω(n) update time to insert a new vertex.
Moreover, in the worst case, the update time can take up to a quadratic time. As such, the algorithm and implementation
cannot handle very large instances in practice.

B. Formal description of the implicit and explicit matching sub-routines
IMPLICIT MATCHING Recall that the input of the procedure is a vertex v of p-tree T and the monochromatic set of
points E := {Eu : u ∈ Cv} forwarded to v from its children and their cardinalities {|Eu| : u ∈ Cv}.
Choosing the points to match at v. Formally, first divide E into collections of red and blue monochromatic sets E1 := {Eu :
u ∈ Cv, Eu is red} and E2 := {Eu : u ∈ Cv, Eu is blue}, respectively.

Then, determine the total number of red and blue points in E1 and E2, respectively, by summing up the provided set
cardinalities in each collection. Suppose that there are k1 red points in E1, k2 blue points in E2, and that without loss of
generality k1 ≤ k2. In this case, we aim to match all red points from sets in E1. To pick k1 points from blue sets in E2, we
loop over Cv in a fixed order (e.g. z-order w.r.t. the underlying p-tree) and pick all elements Eu ∈ E2 until one child u
provides sufficiently many points to satisfy stopping (i.e. picking all |Eu| points would lead to a set of blue points of size at
least k).

From this child, the selection implicitly chooses the remaining set E′
u of k′ ≤ k1 points with the smallest z-order. Define set

Ev := Eu \ E′
u of points that will not be matched at v, which can be represented by an integer k and a pointer to child u

a pointer to the (k′ + 1)-th element in set Eu. Finally, denote the set of chosen red and blue points by Yv(A) and Yv(B),
respectively, and let Yv = Yv(A) ∪ Yv(B). Note that (implicitly) choosing these subsets at a node v takes O(p2) time,
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though reporting the points in Yv(A), or in Yv(B), takes O(k · d) time, where d = O(logp U) is the depth of the p-tree.

Obtaining the aggregated sub-instance. For any cell u ∈ Cv , define zu to be the center point of u. For x ∈ Yv , let u(x) be
the subcell of Cv that x is contained in. We define a mapping m(x) from x to zu(x), to be the function that maps a point x
to the center of its (bounding) subcell.

For any point set S, let m(S) := {m(x) | x ∈ S}. We call m(Yv) a aggregated sub-instance w.r.t. to node v and the
corresponding point set Yv .

Note that the function m(Yv) can be implicitly represented by the p2 sub-grid cells of the cell of v and their corresponding
points in Yv .

Computing the implicit matching: We solve the following Euclidean transport instance on the points of
m(Yv(A)),m(Yv(B)): For every point a′ ∈ m(Yv(A)), we set the supply of a′ to be the number of points in Yv(A)
that map to a′, i.e., sa′ := |{a ∈ Yv(A) : m(a) = a′}|. Similarly, for every point b′ ∈ m(Yv(B)), we set the demand of b′

to be the negative number of points in Yv(B) that map to b′, i.e., db′ := −|{b ∈ Yv(B) : m(b) = b′}|. Let γ∗
v [Yv] be an

optimal assignment (or implicit matching) obtained by solving the Euclidean transportation problem on the sets m(Yv(A))
and m(Yv(B)) using the algorithm of Theorem 2.1.

EXPLICIT MATCHING The inputs to the explicit matching procedure are a vertex of the restricted p-tree v, the point sets
Yv (partitioned by their corresponding cells in u ∈ Cv and an optimal assignment γ∗

v [Yv] to the Euclidean transport instance
on (m(Yv(A)),m(Yv(B)), s, d) described above. Its output is a matching of points Yv .

The procedure iterates through the edges (a′, b′) ∈ m(Yv(A)) × m(Yv(B)) with non-zero assignment in γ∗
v [Yv] in an

arbitrary manner and adds γ∗
v [Yv](a

′, b′) arbitrary pairs of points a, b, where a ∈ Yv(A) and b ∈ Yv(B), and m(a) = a′ and
m(b) = b′, as edges to the output matching from the cells with centers a′, b′.

C. Proof of Theorem 3.3
Theorem 3.3 (Static). For any Euclidean matching instance (A,B), with |A| = |B| = n, and spread U ≤ nc, for some
constant c > 0, and for any constant ε ∈ (0, 1

10 ), algorithm STATIC-MATCHING(A,B) computes an O(1/ε)-approximate
Euclidean matching with high probability in O(n1+ε · ε−1) time.

Proof of Theorem 3.3. For this proof, we will assume that both n and p are powers of 2. While a similar approach extends
to the general case, we present the special case here for the sake of clarity. We show that p = nε/10 yields the runtime and
approximation bounds.

Run-time analysis: By definition each leaf of p-tree T contains at most p2 many points. Now, since, we can compute the
exact optimal matching between the points Yv for leaf node v in O(|Yv|3) time using the Hungarian algorithm, the total
runtime of computing exact matchings of all leaves is bounded by O(p4 · n).
Next, we discuss the running time of step 1 in IMPLICIT-MATCHING(v, Yv). By Lemma 3.1, for each non-leaf node v, the
IMPLICIT-MATCHING in the execution of MATCH(v) can be implemented in O(p2 + p5 · log2 n) = O(p5 · log2 n) time.
In addition, we need to solve IMPLICIT-MATCHING for at most n nodes in the p-tree T . The total run-time of solving the
IMPLICIT-MATCHING at each node is bounded by O(n · p5 · log2 n).
For any node v, the total time to report the points in excess set Ev is bounded by O(|Ev|). Thus, Lemma 3.2
yields the perfect matching on set X takes O(n) time. Hence, the runtime of STATIC-MATCHING(A,B) is at most
O
(
n+ p4 · n+ n · p5 · log2 n+ n · logU

log p

)
, since the number of levels in T is bounded by logU

log p . Setting p = nε/10, and
using that U ≤ nc for a fixed c > 0, we obtain the stated run-time bound.

Note that while the upper bound we present of the approximation ratio holds in expectation, in the static setting we may
repeat the algorithm O(log n) times and output the smallest cost solution to find an O(1/ε)-approximate solution with high
probability. In the dynamic setting, this simple trick guaranteeing a high-probability approximation ratio does not work.

Correctness analysis: Let µ∗ be a matching on set X with optimal cost c(µ∗). Say that an edge is crossing at level i if it
crosses the grid of level i of T . Observe that an edge may be crossing at multiple levels. Let Cross(M, i) stand for the
number of crossing edges of matching M at level i.

Note that if none of the edges of µ∗ is cut by a grid at level ℓ, this implies that all nodes at level ℓ have a balanced number of
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blue and red points. Also note that no edge of µ∗ is crossing at level 0, as we assume input points are contained in the cell
D ×D for some D = nc (both in the static and dynamic settings).

Let µa be the matching computed with our algorithm w.r.t. T . Our goal is to prove that

E[c(µa)] = O(ε−1 · c(µ∗)) , (1)

where the expectation is taken with respect to the random shift introduced at initialization. Let Tℓ stand for the vertices of T
at level ℓ. Let λℓ = D/pℓ stand for the length of the sides of the grid at level ℓ. Slightly overloading notation let λv stand
for the length of side of the cell of v.

Matching µa has the following convenient property: every point of Yv is matched with a point of Yv (inside the cell of
v) under µa due to the construction of our implicit-explicit matching procedure. Unfortunately, µ∗ might not have this
convenient property, making the comparison between them difficult. We now describe a procedure which translates µ∗ into
a matching µ′ with this property. Later, we compare the costs of µ′, µ∗ and µa.

Generating µ′ from µ∗ We describe an iterative method which generates µ′ from µ∗. Initially, we set µ′ = µ∗. Assume
that the tree T has k levels. Iterating ℓ from k to 0 for every v ∈ Tℓ, we keep repeating the following as long as possible:

If there exists edges of µ′, denoted (r1, b1), (r2, b2), such that r1, b2 ∈ Yv for some v ∈ Tℓ, r1, b2 are of opposite color and
b1, r2 /∈ Yv , then replace (r1, b1), (r2, b2) with (r1, b2), (r2, b1) in µ′.

Let µ′
ℓ for ℓ ∈ {k, . . . , 0} stand for the state of µ′ after not being able to repeat this process at level ℓ + 1. Specifically,

µ∗ = µ′
k.

Claim C.1. The above process terminates in n iterations and for any ℓ it must hold that for all v ∈ T>ℓ the points of Yv are
matched exclusively to each other by µℓ.

Proof. Observe that before the execution of any of the two steps none of the two edges run between points of Yw for any
w ∈ T . However, after the execution we have (r1, b2) ∈ µ′ and r1, b2 ∈ Yv for some v ∈ T . Hence, the process must
terminate in n steps.

Also, note that any Yv contains the same number of red and blue points. If, without loss of generality, any red point of some
Yv is matched outside of Yv by µ′, then there must also exist a blue point of Yv matched outside of Yv and the process can
take a step. Hence, once the process can’t make any further steps for some Yv where r1, b2 ∈ Yv, then µ′ is matching the
points of Yv to each other.

Claim C.2. Cross(µ′
ℓ, ℓ

′) ≤ Cross(µ∗, ℓ′) for all ℓ′ < ℓ.

Proof. Assume that the process is progressing through vertices of level ℓ. We will argue that any step it may take will not
increase the number of crossing edges at lower levels, implying the claim. If the process takes a step for some v ∈ Tℓ then it
adds edges (r1, b2), (r2, b1) to µ′. (r1, b2) is in the same cell at level ℓ hence it is not crossing at lover levels. (r2, b1) might
be crossing at some level ℓ′ < ℓ. However, in this case as (r1, b2) are in the same cell of level ℓ′ it must hold that in this case
either (r1, b1) or (r2, b2) was crossing at level ℓ′ before their removal from µ′.

We will first relate the costs of matchings µ∗ and µ′.

Claim C.3. c(µ′) ≤ c(µ∗) +
∑k

ℓ=0 8 · λℓ · Cross(µ∗, ℓ).

Proof. Consider the state of µ′ after having finished with vertices of level ℓ+ 1, that is µ′
ℓ. Call a point bad at this point if it

belongs to some Yv : v ∈ Tℓ and is matched to some point outside of Yv by µ′
ℓ. In this case there are two options: it is either

matched outside of its cell at level ℓ, or it is matched to a point forwarded by node v to its ancestor but still inside Cv . Note
that it can’t be matched to any point of Yw for a node on higher level then v due to Claim C.1.

The set of points forwarded by v to its parent is monochromatic. Hence, for any bad point of the later type we will be
able to associate a bad point of the earlier type. This implies, that at least half of the bad points, denote their number
by Bℓ, are incident on edges crossing at level ℓ in µ′

ℓ, that is µ′
ℓ has at least Bℓ/2 crossing edges at level ℓ. Observe that,
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due to Claim C.2, this implies that µ∗ also has at least Bℓ/2 crossing edges at level ℓ. Once the process gets to level ℓ
in every step, it will reduce the number of bad edges by 1. Furthermore, we claim that in each step it may increase the
cost of µ′ by at most 4 · λℓ. By every step some (r1, b2), (r2, b1) are added to µ′ and some (r1, b1), (r2, b2) are removed.
We have that c(r1, b2) ≤ 2 · λℓ as r1 and b2 are contained in the same cell at level ℓ. By triangle inequality, we have
c(r2, b1) ≤ c(b1, r1)+ c(r1, b2)+ c(b2, r2) and therefore c(r2, b1)+ c(r1, b2)− c(b1, r1)− c(b2, r2) ≤ 2 · c(r1, b2). Hence
the total increase is indeed at most 4 · λℓ. That is, the process will take at most Bℓ steps, in each increasing µ′ by at most
4 · λℓ, where Bℓ ≤ Cross(µ∗, ℓ)/2. Summing over all levels proves the claim.

We now relate the costs of matchings µ′ and µa. Let M [Y ] stand for the edges of matching M restricted to points Y . By
construction of the algorithm and due to Claim C.1, we know that both of µ′ and µa match the points of Yv to each other for
any v ∈ T . First, observe that if v is a leaf then our algorithm calculated an optimal minimum cost matching of Yv, that is
c(µ′[Yv]) ≤ c(µa[Yv]) for all leafs v ∈ V .

Claim C.4. c(µa[Yv]) ≤ c(µ′[Yv]) + 2 · λv/p · |Yv| for all non-leaf v ∈ T .

Proof. Recall that the algorithm computes µa[Yv] by aggregating all points of Yv to the respective center of their sub-cell
in Cv and computing an optimal solution of the resulting Euclidean geometric transport instance, then moving the points
back to their original location. That is, assuming the points were already in the center of their respective cells, µa[Yv] is
a minimum cost matching of Yv. Moving a point to the center of it’s respective sub-cell increases the cost of an optimal
solution by at most λv/p (the length of the sides of the sub-cells of v), similarly the cost of moving them back to their
original position is also upper bounded by λv/p.

Claim C.5.
∑

v∈Tℓ|v is non-leaf |Yv| ≤ 2 · Cross(µ∗, ℓ+ 1) for ℓ ∈ {0 . . . k − 1}.

Proof. Consider a particular vertex v ∈ Tℓ. The points matched at v (the points of Yv) are all inherited by v by its children
nodes due to an imbalance of red and blue points in the respective cells of v-s children nodes. This implies that µ∗ matched
at least |Yv| points in Cv with points in a separate sub-cell of layer ℓ+ 1. Hence, |Yv| points of Cv are incident on crossing
edges at level ℓ+ 1 in µ∗. Summing over all vertices of {Yv|v ∈ Tℓ} proves the claim.

We now have to tie the number of crossing edges to the cost of µ∗.

Claim C.6. E[Cross(µ∗, ℓ)]/λℓ = O(c(µ∗)) for all ℓ ∈ {0 . . . k} where the expectation is taken with respect to the random
shift introduced at initialization.

Proof. Consider an edge e ∈ µ∗ of length L. With probability Ω(L/λℓ) it crosses the grid at level ℓ due to the random shift.
Hence, it contributes L to both sides of the inequality.

We are now ready to upper bound the approximation ratio of the algorithm in expectation with respect to the random shift at
initialization.
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E[c(µa)] =
∑

v∈T |v is leaf

E[c(µa[Yv])] +
∑

v∈T |v is non-leaf

E[c(µa[Yv])]

≤ E[c(µ1)] +
∑

v∈T |v is non-leaf

2 · E[|Yv|] · λv/p (2)

≤ c(µ∗) +

k∑
ℓ=0

8 · λℓ · E[Cross(µ∗, ℓ)] +
∑

v∈T |v is non-leaf

2 · E[|Yv|] · λv/p (3)

≤ c(µ∗) +

k∑
ℓ=0

8 · λℓ · E[Cross(µ∗, ℓ)] +

k−1∑
ℓ=0

4 · λℓ/p · E[Cross(µ∗, ℓ+ 1)] (4)

≤ O(c(µ∗) · k) (5)
≤ O(c(µ∗)/ε)

The first inequality follows from the fact that µa matches vertices of Yv exclusively with each other. Equation 2 holds due to
Claim C.4. Equation 3 follows from Claim C.3, while equation 4 follows from Claim C.5.

Equation 5 follows from Claim C.6. Finally, the last inequality holds as the number of layers in the p-tree T is upper
bounded by O(logU/ logP ) = O(1/ε).

D. Basic Algorithm
In this section we first present the pseudo-code of our basic algorithm which can answer queries about the solution efficiently
(see Theorem 4.1). Afterwards we argue about it’s running time and approximation ratio.

D.1. Running Time Analysis

We will first argue about the update time of the algorithm. We will analyze the update time of an insertion as the process
of handling of deletions is similar. An update is handled in a top-to-bottom manner: the algorithm first calls the update
procedure at the root and then always recuses towards the child which contains the newly inserted point. Hence, throughout
an update the algorithm will visit nodes of T along a path form the root to some leaf. Apart from the visited leaf node the
only non-constant time operation executed at any node is the implicit-matching procedure which runs a geometric Euclidean
transport sub-routine on an aggregated sub-instance.

These aggregated sub-instances consist of points corresponding to the centers of the sub-cells of the respective node, that is
p2 points. The weights assigned to each center are at most n. Hence, by Theorem 2.1 they run in time O(p5 · log(p log n)) =
O(nO(ε)). That is, updating the non-leaf nodes along the path takes O(nO(ε)/ε) worst case update time, as T will always
have at most O(1/ε)-levels.

The leaf node might end up having more then p2 input points in its cell after the insertion (otherwise we simply call the
Hungarian algorithm on it). This might result in the leaf splitting into a new sub-tree. This sub-tree can similarly only
have O(1/ε)-levels and in total at most O(p2/ε) nodes. On each of its non-leaf nodes similarly the only non-constant time
operation will be the implicit matching procedure adding O(nO(ε)/ε) worst-case update time.

There might be ∼ p2 leaves of the new sub-tree, but the number of points inside the cells of the new leaves is at most O(p2).
In each such leaf the only non-constant time calculation the algorithm completes is a call to the Hungarian algorithm to
obtain an optimal solution inside the leaf, hence this contributes at most O(p6 = nO(ε)) to the update time.

Additionally, we can maintain the p-tree T itself in O(p2/ε) = O(nO(ε)/ε) worst-case update time. Hence, the total
worst-case update time of the algorithm is O(nO(ε)/ε).

D.2. Algorithm Correctness

The analysis of the approximation ratio of the static algorithm presented in Section C relies on the following properties of
the output:
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Algorithm 1 INSERT-UPDATE(v, a)

if v is non-marginal internal node of T then
u← child u ∈ Cv such that a ∈ Xu

Update Eu and c(µu) via INSERT-UPDATE(u, a)
Update γ∗

v [Yv] and Ev via IMPLICIT-MATCHING(v, E , {|Eu| : u ∈ Cv})
c(µv)←

∑
u∈Cv

c(µu) + c(γ∗
v [Yv])

end if
if v is non-marginal leaf in T then

Y ′
v(A)← Y ′

v(A) ∪ {a}
if η ≥ 0 then

Ev ← Ev ∪ {a}
η ← η + 1
Yv(A)← Yv(A) \ Ev

else
b← any point from Ev

Ev ← Ev \ {b}
η ← η − 1
Yv(B)← Yv(B) \ Ev

end if
µv ← HUNGARIAN-ALGORITHM(Yv(A), Yv(B))

end if
if v is a new subroot of T then

if η ≥ 0 then
Ev ← Ev ∪ {a}
η ← η + 1

else
b← any point from Ev

Ev ← Ev \ {b}
η ← η − 1

end if
Update γ∗

v [Yv] and c(µv) via MATCH(v)
c(µv)←

∑
u∈Cv

c(µu) + c(γ∗
v [Yv])

end if

Algorithm 2 INSERT(a)

Update restricted p-tree T
INSERT-UPDATE(r, a)
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Algorithm 3 DELETE-UPDATE(v, a)

if v is an internal node of T then
u← child u ∈ Tv such that a ∈ Xu

Update Eu and c(µu) via INSERT-UPDATE(u, a)
Update γ∗

v [Yv] and Ev via IMPLICIT-MATCHING(v, E , {|Eu| : u ∈ Cv})
c(µv)←

∑
u∈Cv

c(µu) + c(γ∗
v [Yv])

end if
if v is a leaf in T then

Y ′
v(A)← Y ′

v(A) \ {a}
if a ∈ Ev then

Ev ← Ev \ {a}
else

if η > 0 then
b← any point from Ev

Ev ← Ev \ {b}
η ← η − 1
Yv(B)← Yv(B) \ Ev

else
Ev ← Ev ∪ {a}
η ← η + 1
Yv(A)← Yv(A) \ Ev

end if
µv ← HUNGARIAN-ALGORITHM(Yv(A), Yv(B))

end if
end if

Algorithm 4 DELETE(a)

Update restricted p-tree T
DELETE-UPDATE(r, a)

(1) For any node v ∈ T points of Yv (which all lie in the cell of v) are matched exclusively to each other.

(2) For any leaf node v ∈ T the points matched in the cell of v, Yv, are matched via an optimal Euclidean bi-chromatic
matching algorithm (Hungarian algorithm).

(3) For any internal node v ∈ T the points matched in the cell of v, Yv are matched via the implicit-explicit matching
procedures relying on an underlying optimal Euclidean geometric transport sub-routine (Theorem 2.1).

(4) For any node v ∈ V the algorithm matches all but a monochromatic set of points out of the sets of points forwarded to
v by its children inside the cell of v (or in the case of leaves among all the points in the corresponding cell Cv).

We will argue that once an update is processed by the dynamic algorithm, all of these properties of the output are restored.
The only vertices of T where any of the mentioned properties might be violated are the ones whose cell contains the updated
point or ones which have been created due to the update to the p-tree.

Leaves, which have contained the updated point or are created due to the update, all select an arbitrary maximal color
balanced set of points in their respective cell. The algorithm runs the Hungarian algorithm on these sets restoring item (2).
Afterwards, leaves pass on a monochromatic set of points to their parent internal nodes.

Every internal node runs the implicit-explicit matching procedure on the points passed to it by its children in a bottom-up
order. This implies they will satisfy item (3) once the update has been processed. The implicit-explicit matching procedure
matches all but a monochromatic set of points in a cell, which set is then forwarded to the parent node. This implies that by
the time the root has finished its internal calculations, both items (4) and (1) are satisfied.

Note that we may guarantee that the approximation ratio holds with high probability if we simply maintain O(log n) solutions
in parallel and always query the one with smallest cost. However, in this case in order to maintain the approximation
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ratio with high probability over super-polynomially long update sequences the data-structure has to be periodically rebuilt
reducing the update time guarantee to be amortized.

E. Advanced Algorithm
In this section, we describe an improvement of the algorithm described in Section 4. The main difference is that in the
advanced algorithm, we maintain an explicit matching at each node. As shown previously, we may recompute the explicit
matching at every node efficiently after an update through a black-box Euclidean geometric transport algorithm. However,
without opening the black-box, we can’t guarantee that the implicit matching computed will not differ significantly from its
previous version. This means that in order to maintain a matching of the actual input points we would have to re-run the
explicit matching procedure, but that takes time proportional to the number of points matched at the specific node which
could be Ω(n).

To overcome this difficulty, we show that we can update the implicit and explicit matchings stored at each node v ∈ T in
time O(p3) when two points are added to the respective point set Yv. We will call this procedure AUGMENT-MATCHING.
We then show that the size of the excess set of each node of T changes by exactly 1 after each update. We finally present an
algorithm which maintains the explicit matchings stored at each node efficiently.

E.1. Updating Implicit/Explicit Matchings Under Insertions

Let µ be a matching of some red and blue point sets (A,B) and x, y be some arbitrary points of opposite color not in A,B.
Define an augmenting path with respect to µ to be a path between x, y consisting of edges between x, y,A,B, alternating
between edges not in µ∗ and in µ∗. Define the cost of such a path to be the sum of the costs of its edges not in µ minus the
cost of its edges in µ.

For such an augmenting path Π, define the matching µ′ consisting of all of the edges of µ not in Π and the edges of Π not in µ
to the matching µ augmented by Π. Observe that c(µ′) = c(µ) + c(Π) and c(µ′) is a perfect matching of A∪ {x}, B ∪ {y}.
Claim E.1. Let A,B be a set of input points for the bi-chromatic Euclidean matching problem and µ∗ be an optimal
matching of points A,B. Let x, y be some arbitrary points in the plane of opposite colors and let Π∗ the smallest cost
augmenting path with respect to µ∗ starting and finishing at x and y, respectively. Then the matching obtained by augmenting
µ∗ by Π∗ is a minimum cost perfect matching of A ∪ {x}, B ∪ {y}.

Proof. Define (µ∗)′ to be the matching obtained by augmenting µ∗ with Π∗. Assume that it’s not of minimum cost and let
µ∗
E stand for a min cost matching of the extended point set A ∪ {x}, B ∪ {y}. Look at the union of µ∗ and µ∗

E . It consists
of disjoint edges, cycles and a single augmenting path Π∗ with respect to µ∗ between x and y. Observe, that the cost of
matching all points not part of Π′ is the same under both matchings due to their optimality in their respective point sets,
hence c(µ∗

E) = c(µ∗) + c(Π′) . However, as c((µ∗)′) = c(µ∗) + c(Π∗) this would imply that c(Π∗) > c(Π′) which is a
contradiction.

Now extend the problem bi-chromatic Euclidean matching to point sets where certain points might have the same coordinates.
It can be thought as extending the problem to inputs where input points have multiplicities.
Claim E.2. Let A,B a set of red and blue points where some pairs of points might share locations and µ∗ be a min cost
bi-chromatic Euclidean matching between them. Assume that points A,B are located on k disjoint points of the plane, and
points of A ∪ B at the same location are monochromatic. For arbitrary red and blue points x, y, there exists a min cost
augmenting path between x and y with respect to µ∗ which visits each of the k disjoint locations at most once.

Proof. For sake of contradiction assume that there is no such min cost augment path and let π∗ be a minimum length
(in terms of number of edges) min cost augmenting path between x and y with respect to µ∗. We will show that we can
‘shortcut’ π∗.

Assume that Π∗ visits one of the k disjoint locations a twice. Then it must be the case that the Π∗ contains a sub-path C
which is a cycle starting and ending with a consisting of µ∗ and non-µ∗ edges. There are three possible cases.

• If the total cost of non-µ∗ edges of C is the same as that of the µ∗ edges, then we may remove this cycle meaning that
Π∗ is not of minimum length.
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• If the total cost of non-µ∗ edges of C is larger then that of the µ∗ edges, then if this cycle is removed from the path, we
would get a smaller cost augmenting path between x and y.

• If the total cost of non µ∗ edges of C is smaller then that of the µ∗ edges, then the matching (µ∗ \ C) ∪ (C \ µ∗) (the
matching received by augmenting µ∗ by C) is of smaller cost then µ∗ and is a perfect matching of A,B.

Theorem E.3. (Bellman, 1958) Belman-Ford: There exists an algorithm which given a graph G = (V,E) and distance
function c : E → R where G doesn’t contain a negative length cycle with respect to distance measure c, returns a shortest
path between two vertices of V in time O(|V | · |E|)

Augment-Matching Procedure We are now ready to describe the procedure which augments the implicit matchings
under vertex updates, while making sure only a small number edges are affected by the update.

Recall that an implicit matching γ∗[Yv] of v ∈ T corresponds to a matching of the aggregated versions of points Yv . Assume
that points (x, y) are inserted into Yv. Define the following simple graph G = (V,E) and corresponding edge distance
function c: define V to consist of p2 nodes, VC representing the center pints of the sub-cells of v, and two additional nodes
x′, y′.

Without loss of generality assume x and y are red and blue respectively. Add an edge between x′ and all nodes of vC ∈ VC
to E where v corresponds to a sub-cell of v containing only blue points in Yv (recall that the points of Yv in every sub-cell
of v are monochromatic). Set c((x′, vC)) to correspond to the distance between the centers of sub-cells of x′ and vC .

Similarly, add an edge between y′ and all nodes of vC ∈ VC to E where v corresponds to a sub-cell of v containing only red
points in Yv , and set c((x′, vC)) to correspond to the distance between the centers of sub-cells of x′ and vC .

In addition add an edge to E between any two sub-cell center nodes vC , wC if their sub-cells contain points of the opposite
color. Set c((vC , wC)) to be the distance between the respective sub-cell centers if there isn’t an edge between the centers in
γ∗[Yv], and otherwise set it to be the negative of this distance.

By construction, a path between x′, y′ in G corresponds to an augmenting path of γ∗[Yv] between x, y. By Claim E.2, the
shortest x′, y′ in G corresponds to a minimum cost augmenting path between x, y with respect to γ∗[Yv]. Observe that a
negative length cycle of G could be used to reduce the cost of γ∗[Yv] which was assumed to be optimal, hence no such cycle
should exist.

Finally, due to Claim E.1 we may augment γ∗[Yv] to be a min cost perfect matching of the aggregated versions of Yv∪{x, y}
with such a shortest x′, y′ path.

Constructing graph G may take O(|V |+ |E|) = O(p2) time. We may find the shortest path in O(p3) time by Theorem E.3.
Any shortest path in G can be of length O(p2) as G doesn’t contain negative length cycles. Hence, we can update the
implicit matching of Yv in O(p3) time. Once the the updated implicit matching is computed we can transform it to an
explicit matching of Yv ∪ {x, y} in time O(p2) since the difference between the old and updated state of γ∗[Yv] (and hence
the corresponding explicit matching) is only O(p2) edges. We state this formally by the following lemma:

Lemma E.4. Let T be a p-tree and v a node in T , γ∗[Yv] the implicit matching corresponding to node v, and x, y /∈ Yv

two points of opposite colors. AUGMENT-MATCHING(γ∗[Yv], x, y) returns an optimal implicit matching of the aggregated
versions of Yv ∪ {x, y}, in O(p3) time.

Note that while Lemma E.4 can be easily be extended to point pair deletions, there is no need for this. Assume we want
to update an implicit matching γ∗[Yv] when points (x, y) are deleted from Yv. Let the neighbors of x, y under γ∗[Yv] be
x′, y′. We may remove edges (x, x′) and (y, y′) from γ∗[Yv] and re-insert point pair (x′, y′) using AUGMENT-MATCHING
to simulate this deletion.

E.2. Dynamic Algorithm

We now describe INITIALIZE, the update procedures INSERT and DELETE, as well as QUERY-RECOURSE. The procedure
QUERY-COST is the same as in the basic algorithm. We will only describe how to do point insertions, as the procedure
for point deletions is almost identical. Similarly as before, given p-tree T , our goal is to maintain sets Ev, Y

′
v(A), Y ′

v(B),
difference ηv, matching γ∗[Yv], but also matchings µ′[Yv] and µv, together with its corresponding cost c(µv) for all the
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nodes v in T which is the key difference from the basic algorithm presented in the main body of the paper. We first begin by
describing the initialization procedure.

Initialization The procedure INITIALIZE is almost the same as in the basic version of the algorithm. However, in the
advanced algorithm, at each node v of T , we also convert the implicit matching to its corresponding explicit matching.
This further allows us to maintain the complete matching of a subtree corresponding rooted at each of its nodes, defined as
µv := µ′[Yv] ∪

⋃
u∈Cv

µu, here Cv denotes the children of node v in p-tree T .

Handling Insertions Without loss of generality, we assume that we are inserting a red point a to A. As in the basic
algorithm, INSERT proceeds in two steps: updating the restricted p-tree and updating the matchings at each affected node.
We define the recursive procedure INSERT-UPDATE(v, a) for three types of nodes in T : new subroots, non-marginal leaf
nodes, and non-marginal internal nodes.

If a leaf v is the new subroot of T , the INSERT-UPDATE(v, a) procedure is the same as in the dynamic algorithm presented
in Algorithm 1.

For non-marginal leaf nodes v, the procedure INSERT-UPDATE(v, a) checks if there exists a pair of points of opposite color
at v, and if so, augments the matching at v.

For non-marginal internal nodes v, we have two cases: the excess set Eu of its affected child u either increases by one red
point a′, or decreases by one blue point b′. In the first case, we proceed similarly as in the leaves. Namely, if there exists a
pair of points of opposite color at v, and if so, augments the matching at v. In the second case, we first have to check if the
blue point b′ was a part of a matching at v. If so, we first have to break that matching. After this, we proceed similarly to the
first case.

Finally, we prove the following theorem:

Theorem 1.1. For any 0 < ε ≤ 1, there exists a fully dynamic algorithm that maintains an expected O(1/ε)-approximate
solution to the Euclidean bi-chromatic matching problem defined on the point-sets A,B ⊂ R2, |A| = |B|, while pairs of
points are inserted into and deleted from A,B in O(nε · ε−1) worst-case update time. Here, n denotes the maximum size of
A throughout the update sequence.

Proof of Theorem 1.1. As the proof of this theorem is very similar to the proof of Theorem 4.1, we only note the key
differences between these two algorithms.
Running time: Compared to the basic algorithm, the running time of INITIALIZE only increases by the time required to
convert implicit matchings at nodes of T to their corresponding matchings of the input points, and therefore also store the
complete matchings of the subtrees. By Lemma 3.2, this takes an additional O(n) time, making the total run time of the
procedure still O(n1+ε).
Now we discuss updates. As mentioned before, the difference between the basic and the advanced update algorithm is that
now, instead of recomputing the entire implicit matching at each affected node (using AUGMENT-MATCHING), we use
AUGMENT-MATCHING procedure to augment both the implicit and the aggregated matching, if needed. The computation
of AUGMENT-MATCHING takes O(p3) time by Lemma E.4, so we again obtain that O(nε)/ε is running time required for
the update procedure of this algorithm.
Regarding queries, in the advanced algorithm, we can easily report the perfect matching by simply returning the complete
matching of a subtree at root r of T , that is µr. Further, we obtain a more efficient algorithm for reporting the recourse of
the matching. Namely, note that the aggregated matching at each affected node changes only along the augmenting path
found in AUGMENT-MATCHING. Since the length of this path is at most p2, the total recourse is at most O(p2 · logU

log p ),
which is O(nε/ε) for p = n

ε
10 .

Correctness: In terms of correctness of the approximation, the advanced and basic versions of the algorithms behave exactly
the same. That is, the advanced algorithm also satisfies the following. For any Yv for v ∈ T points of Yv are matched
exclusively to each other. Further, for leaf v ∈ T the matching of Yv is computed via an optimal algorithm, for any non-leaf
v ∈ T the matching of Yv is computed by the implicit-explicit matching procedures. Finally, for any cell of the grid, the
number of points not matched within that cell exactly corresponds to the the color dis-balance of the points present in that
cell (see the similar argument concerning the basic algorithm see Section D.2). As argued in the analysis presented in
Section C, the algorithm correctness only relies on these properties of the output matching.
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Algorithm 5 INSERT-UPDATE-1(v, a)
1: if v is non-marginal internal node of T then
2: u← child u ∈ Cv such that a ∈ Xu

3: Eb
u ← Eu

4: Update Eu via INSERT-UPDATE(u, a)
5: if Eu = Eb

u ∪ {a′} for some a′ ∈ A then
6: if ηv ≥ 0 then
7: Ev ← Ev ∪ {a′}
8: else
9: b′ ← any point from Ev

10: Update γ∗[Yv] and µ′[Yv] via AUGMENT-MATCHING(γ∗[Yv], a
′, b′)

11: end if
12: end if
13: if Eu = Eb

u \ {b′} for some b′ ∈ B then
14: if ηv ≥ 0 then
15: a′ ← point from A such that (a′, b′) ∈ µ′[Yv]
16: Delete (a′, b′) from µ′[Yv]
17: γ∗[Yv](a

′, b′)← γ∗[Yv](a
′, b′)− 1

18: Ev ← Ev ∪ {a′}
19: else
20: if b ∈ Ev then
21: Ev ← Ev \ {b′}
22: else
23: a′ ← point from A such that (a′, b′) ∈ µ′[Yv]
24: Delete (a′, b′) from µ′[Yv]
25: γ∗[Yv](a

′, b′)← γ∗[Yv](a
′, b′)− 1

26: b′′ ← any point from Ev

27: Update γ∗[Yv] and µ′[Yv] via AUGMENT-MATCHING(γ∗[Yv], a
′, b′′)

28: Ev ← Ev \ {b′′}
29: end if
30: end if
31: end if
32: if Eu = Eb

u \ {b′} for some b′ ∈ B then
33: if b′ was matched in γ∗[Yv] with some a′ ∈ A then
34: b′′ ← any point from Ev

35: Update γ∗[Yv] and µ′[Yv] via AUGMENT-MATCHING(γ∗[Yv], a
′, b′′)

36: end if
37: end if
38: end if
39: if v is non-marginal leaf in T then
40: Y ′

v(A)← Y ′
v(A) ∪ {a}

41: ηv ← |Y ′
v(A)| − |Y ′

v(B))|
42: if η ≥ 0 then
43: Ev ← Ev ∪ {a}
44: else
45: b← any point from Ev

46: µv ← AUGMENT-MATCHING(µv, a, b)
47: Ev ← Ev ∪ {b}
48: end if
49: end if
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50: if v is a new subroot of T then
51: if η ≥ 0 then
52: Ev ← Ev ∪ {a}
53: η ← η + 1
54: else
55: b← any point from Ev

56: Ev ← Ev \ {b}
57: η ← η − 1
58: end if
59: Update γ∗

v [Yv] and c(µv) via MATCH(v)
60: c(µv)←

∑
u∈Cv

c(µu) + c(γ∗
v [Yv])

61: end if

Algorithm 6 INSERT(a)

1: Update restricted p-tree T
2: INSERT-UPDATE(r, a)

F. Hardness Bound for Partially Dynamic Bi-Chromatic Euclidean Matching
In this section we present a simple construction which shows that even under point insertions no efficient dynamic algorithm
may maintain an arbitrarily tight approximation to the bi-chromatic Euclidean matching problem. This is in contrast with
the static setting, where multiple (1 + ε)-approximate near-optimal running time algorithms are known (Agarwal et al.,
2022b; Raghvendra and Agarwal, 2020).

Theorem F.1. For any δ > 0, any (2− δ)-approximate algorithm that maintains a solution to the Euclidean bi-chromatic
matching problem under either insertions or deletions of pairs of points must have Ω(n) amortized update time.

Proof. For sake of contradiction, assume that a dynamic algorithm maintains a (2 − δ)-approximate solution for some
constant δ > 0 on some input A,B. We will consider the case of point pair insertions. Let the points of A,B all lie on
the x-axis. Assume that at some point the input consists of 2 · n specific points for some n >> 1/δ. We will show that
processing the next 2 · n points will take at least Ω(n2) time proving the theorem.

Since the points lie on a line we will describe them with a single coordinate. Assume that the first 2 · n points of the input
consists of A = {−n,−n + 2,−n + 4, . . . , n − 2}, B = {−n + 1,−n + 3, . . . , n − 1} that is simply a series of points
with alternating colors with unit distance between them.

The next n updates will add a point a unit distance away to the left of the leftmost point and to the right to the rightmost
point of the existing points, such that at all times the colors of the points is alternating. That is, the first update adds a point
to A at n a point to b at −n− 1. Afterwards a point to A at −n− 2 and a point to B at n+ 1 ect.

Let µa be the output of the algorithm at some point in time throughout these insertions, and let µ′
a be its output after

processing the next insertions. Let the newly inserted points without loss of generality be −x, x− 1.

In µa ∪ µ′
a points −x, x− 1 are connected by a path of alternating edges of µa and µ′

a, lets call this path Π. We will show
that Π consists of Ω(x) = Ω(n). This implies that during the processing of input (−x, x− 1) the output of the algorithm
undergoes at least Ω(n) recourse, lower bounding its update time.

For the sake of contradiction, assume that the length of Π is some o(x). The total cost of matchings µa and µ′
a just restricted

to the edges of Π is at least 2 · x − 1, the distance of the newly inserted points. Both matchings must also match all the
2 · x− o(x) points of the input not incident on Π. As the minimum vertex distance between two points is 1 this means that
the cost of matching all the points not on Π for both µa and µ′

a is at least x− o(x).

This implies that c(µa) + c(µ′
a) ≥ 4 · x− o(x). However, observe that there exists an optimal solution of size x− 1 and

x before and after the update respectively. Hence, of the two matchings must have a cost of at least 2x− o(x), making it
(2− o(1))-approximate which contradicts our initial assumption of them. Observe that picking n to be arbitrarily large we
can make this o(1) factor arbitrarily small.

Observe that the argument trivially extends to updates consisting of point pair deletions, as we may just reverse this process.
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