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Abstract: Robotic manipulation tasks involving cutting deformable objects re-
main challenging due to complex topological behaviors, difficulties in perceiving
dense object states, and the lack of efficient evaluation methods for cutting out-
comes. In this paper, we introduce TopoCut, a comprehensive benchmark for
multi-step robotic cutting tasks, that integrates cutting environment and gener-
alized policy learning. TopoCut is built upon three core components: (1) We
introduce a high-fidelity simulation environment based on a particle-based elasto-
plastic solver with compliant von Mises constitutive models, augmented by a novel
damage-driven topology discovery mechanism that enables accurate tracking of
multiple cutting pieces. (2) We develop a comprehensive reward design that inte-
grates the topology discovery with a pose-invariant spectral reward model based
on Laplace—Beltrami eigenanalysis, facilitating consistent and robust assessment
of cutting quality. (3) We propose an integrated policy learning pipeline, where
a dynamics-informed perception module predicts topological evolution and pro-
duces particle-wise, topology-aware embeddings to support PDDP—Particle-based
Score-Entropy Discrete Diffusion Policy—for goal-conditioned policy learning.
Extensive experiments demonstrate that TopoCut supports trajectory generation,
scalable learning, precise evaluation, and strong generalization across diverse object
geometries, scales, poses, and cutting goals. Project page: https://topocut.github.io/.
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1 Introduction

Robotic manipulation involving the cutting of deformable objects plays a critical role across diverse
domains such as food processing, medical surgery, and manufacturing. Many real-world tasks
require not just a single cut, but a sequence of cutting actions to segment objects into complex or
structured shapes. From slicing ingredients into uniform pieces in culinary automation, to performing
multi-incision procedures in robotic surgery, and executing multi-pass segmentation in industrial
workflows, multi-step cutting is essential for achieving fine-grained precision. The ability to reliably
plan and execute these sequential cutting operations significantly enhances efficiency, safety, and
quality in autonomous systems.

Despite recent progress in robotic cutting of single-material deformable objects with fixed trajec-
tories [1, 2, 3], goal-conditioned multi-step cutting of complex deformable geometries remains a
major challenge. Deformable objects often fail to separate cleanly after each cut, making outcome
evaluation ambiguous [1]. Existing evaluation metrics are sensitive to pose variations and typically
require explicit alignment [3]. Furthermore, dense topological changes resulting from sequential cuts
are difficult to perceive from sparse or noisy observations [4, 3], hindering the effectiveness of policy
learning in such settings.
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To address these challenges, we introduce TopoCut, a unified framework for multi-step robotic cutting
that combines high-fidelity simulation, robust evaluation, and goal-conditioned policy learning. At
its core, TopoCut features a particle-based elastoplastic simulator equipped with a novel damage-
driven topology discovery mechanism that enables precise tracking of multiple cutting-induced
topological changes. We further design a pose-invariant spectral reward based on Laplace—Beltrami
eigenanalysis to evaluate cutting outcomes consistently across varying object geometries and poses.
Finally, we propose a learning pipeline that leverages a dynamics-informed perception module to
produce topology-aware, particle-wise embeddings—explicitly designed to operate on sparse visual
input, making it suitable for real-world robotic settings—and supports PDDP, a discrete diffusion
policy model for scalable and generalizable multi-step cutting.

Our contributions are organized into three core components:

 High-fidelity Simulation and Topology Discovery: We develop a robust simulation environment
utilizing a novel particle-based elastoplastic solver with compliant von Mises constitutive models,
coupled with an advanced particle-based topology discovery method to precisely capture and track
topological changes during cutting.

* Pose-invariant Spectral Reward: We introduce a novel reward formulation integrating the real-
time topology discovery with a spectral reward function based on Laplace-Beltrami eigenanalysis,
enabling consistent, pose-invariant evaluation of cutting outcomes across arbitrary object poses.

* Dynamics-informed Policy Learning: We propose a goal-conditioned policy learning framework
that employs dynamics-informed perception modules to predict topology evolution and generate
particle-level, topology-aware embeddings. These embeddings support conditional score-based
discrete diffusion models, enhancing the robustness and generalizability of the learned cutting
strategies.

2 Related Work

Simulation Environments for Cutting — Robotic cutting simulation has been explored through ana-
lytical, mesh-based, and mesh-free methods. Analytical models [5, 6, 7] offer closed-form solutions
limited to simple materials and motions. FEM-based methods [8, 9, 10] provide high-fidelity stress
fields but require costly re-meshing; DISECT [1] extends FEM with differentiable signed-distance
contact and damage modeling. Mesh-free approaches like Position-Based Dynamics [11, 12] and
MPM [13, 14, 15, 16, 17] better handle large topological changes. Built on MPM, ROBONINJA [3]
and FLUIDLAB [4] enable differentiable simulation for contact-aware and fluid—solid cutting scenar-
ios. Our simulator extends these lines by combining Taichi-based MLS-MPM, signed-distance knife
contact, and differentiable damage tracking for scalable trajectory generation.

Perception for Deformable Objects — Deformable perception merges action and sensing to infer
hidden structures [18]. Early work fused interactive contacts for volumetric scene reconstruction [19,
20, 21, 22], while others analyzed articulation and affordances from object motion [23, 24, 25, 26].
Multimodal sensing expanded perception to vision—touch material classification [27, 28] and deep
visuotactile pipelines [29]. Active shape reconstruction further closed the perception—action loop [30,
31, 32, 33]. In contrast, our dynamics-informed perception module predicts future topological states,
producing compact task-relevant embeddings for policy learning.

Deformable Object Manipulation — Deformable manipulation faces challenges from high-
dimensional states, occlusion, and nonlinear physics [34, 35, 36]. Physics-centric approaches embed
constitutive models [37, 38, 39, 40], while adaptive pipelines learn online corrections [41, 36, 42].
Imitation learning has enabled control of fluids and granular materials [43, 42, 44] but remains bottle-
necked by data collection costs. Recently, end-to-end dynamics learning coupled with sampling-based
planners or diffusion policies [45, 46, 47, 48] has emerged. We propose PDDP, a diffusion-based pol-
icy that leverages particle-based topology-conditioned embeddings to enable goal-directed multi-step
cutting of deformable objects.
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Figure 1: Overview of the TopoCut framework: We define three representative cutting tasks—slice, stick, and
dice—and gather expert data via MPPI guided by Laplace—Beltrami spectral rewards and sparse tele-operation.
A dynamics-informed perception module then extracts particle-wise, topology-aware embeddings from this data,
which condition our PDDP to generate multi-step cutting actions.

3 TopoCut: Method Details

Our goal is to enable robotic agents to segment deformable objects into goal-specified shapes through
precise, sequential cutting actions. To address the challenges of topological complexity and sparse
observations, we introduce TopoCut, a unified framework that integrates simulation, perception, and
control for multi-step robotic cutting. Below, we describe its key components.

3.1 High-fidelity Simulation and Topology Discovery

Simulation Environment — We build our deformable object cutting environment by extending Fluid-
Lab [4], leveraging its Moving Least Squares Material Point Method (MLS-MPM) [49] implemen-
tation in Taichi [50]. MPM is a hybrid particle-grid simulation algorithm that models continuum
materials with high fidelity, making it well-suited for capturing large deformations and complex
material behaviors. Our simulator augments FluidLab with several cutting-specific features, including
compression/stretch-based damage tracking, von Mises plasticity with progressive softening, and
surface adherence modeling. Objects are typically modeled as multi-material bodies, combining a
dense plasto-elastic core with a softer von Mises outer skin to support simultaneous fracture and flow.
A six-degree-of-freedom knife agent executes precise cutting actions, and we provide a teleoperation
interface for intuitive control via mouse and keyboard. This extensible environment serves as the
foundation for scalable data collection, evaluation, and learning in multi-step robotic cutting. For
further details about MPM, please refer to Appendix 7.5.

Farticle-Based Damage Tracking and Topology Discovery — Accurately detecting whether a cutting
action successfully separates an object is critical for evaluation. We propose a particle-based method
that tracks damage and reconstructs object topology within the MLS-MPM framework. During
simulation, each particle’s deformation gradient F,, is monitored, and a particle is classified as
damaged if the volumetric Jacobian satisfies

Jp =det(F,) < (1—e€)™ or Jp>(1+e)™, (1
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Figure 2: (b) Dynamics-informed perception: given the current topological state topo, (top left) and the cutting-
surface action a; (bottom left), F predicts the next topological state topo, ., (right). A perception encoder
® then produces particle-wise embeddings for downstream policy learning. (c¢) Particle-based score-entropy
discrete diffusion policy: given the current topological embedding z;, goal embedding z,, action history anis,
and a noised action a., the policy predicts denoised cutting actions via conditional discrete diffusion.

where €. and €, are critical compression/stretch thresholds and m is a material sensitivity parameter.
For von Mises materials, damage is also triggered when yielding stress falls below a critical threshold
( Figure 2 (a)). Upon detecting damaged particles, we begin tracking the knife trajectory, which is
later carved into the object’s Signed Distance Field (SDF) to enforce spatial separation. The SDF is
defined as SDF(x) = minyep||x — x,||—7p, where 7, is the particle influence radius.

We extract the zero-iso-surface using Marching Cubes [51], apply Laplacian smoothing, and segment
the mesh into connected components. Particles are assigned cluster identities based on proximity
to reconstructed surfaces, maintaining an explicit, consistent topological representation throughout
simulation. This topology discovery process provides essential signals for downstream reward
computation and policy learning. For further details about particle-based damage tracking and
topology discovery, please refer to Appendix 7.6.

3.2 Task Evaluation: Pose-invariant Spectral Reward

Pose-Invariant Shape Evaluation via Spectral Analysis — To robustly compare cut fragments to
goal shapes without explicit alignment, we introduce a spectral reward based on intrinsic shape
geometry. Given a point cloud X, we construct a k-nearest neighbor graph with Gaussian-weighted
edges W;; = exp(—d?j /o?), compute the degree matrix D, and define the combinatorial Laplacian
L = D — W. Solving the eigenproblem L® = A® yields a spectral descriptor consisting of
eigenvalues {\} and eigenvectors {¢y}, capturing intrinsic geometry invariant to rigid motions.



Given two shapes X and Y, we define the spectral distance
dipec(X,Y) = afAx — Ay [3+8]| % ®x — 7Py |7, ()

where «, 3 are weighting factors. Rather than relying on pointwise correspondences, this spectral
comparison offers a compact, isometry-invariant measure of similarity. To map the spectral distance
into a reward, we use an inverse scaling:

Rspec (Xa Y) =k- ma’X(Ov C - Y dSPCC(X’ Y))’ (3)

where ~ controls reward decay, « is a normalization factor, and C is the pre-defined constant. For
multi-fragment objects, we compute rewards over all fragment pairs and sum them to obtain the final
evaluation. This formulation yields a continuous, efficient, and pose-agnostic objective for guiding
goal-conditioned robotic cutting. For details about pose-invariance, please refer to Appendix 7.7.

Data Generation — We gather demonstrations from two sources: (i) MPPI [52], which samples noisy
knife trajectories and re-weights them via the spectral reward, and (ii) manual 6-DoF teleoperation.
Each trajectory is replayed in simulation to label particle damage and reward. Every demonstration
links to a goal point cloud g € {slice, stick, dice}. We store tuples (topo,, a;, topo,, , g), yielding
a concise yet diverse dataset spanning geometries, scales, poses, and tasks. Details in Appendix 7.8

3.3 Dynamics-informed Policy Learning
3.3.1 Dynamics-informed Perception Model Training

To train a perception model, we formulate the evolution of object topology under cutting as F :
(topoy, a;) + topo,, 1, where topo, = {(x;, f;)}/*; and a;, = {(x;,g;)}}L, are particle clouds
from demonstrations, with cluster labels f; and binary segmentation masks g; in one-hot form. The
masks are generated by projecting the SE(3) knife action onto a cutting plane, segmenting points into
labels 0 or 1. Both clouds are downsampled via Farthest Point Sampling (FPS), then used to construct
two graphs: the topology graph G'opo,, connecting k-nearest neighbors with the same cluster label,
and the action graph G,,, connecting points with the same cut mask. Each graph is independently

embedded through a shared perception encoder ®:
Ztopo, — @(Gtopot)v Zay = (I)(Gaf,)a

capturing local topological and action-induced structures. A Graph Transformer 7 then fuses
these embeddings to predict the next topological state: G'iopo, o= ’T(ztopot ,Za, ), where Gtopot o
contains updated particle coordinates and cluster labels. The overall model architecture is visualized
in Figure 2(b).

Training supervision uses two objectives: a geometric loss combining Chamfer distance (CD),
Earth Mover’s distance (EMD), and Hausdorff distance (HD) on point positions, and a Hungarian
matching loss on cluster assignments. The total loss is £ = AposLpos + AiopoLiopo Where Lpos =
CD+EMD+-HD, and Lcp, minimizes the bipartite matching cost between predicted and ground-truth
cluster IDs. For further details, please refer to Appendix 7.9.1.

Notably, since F consumes raw depth point clouds, the same network can process real sensor data
without retraining, despite being trained entirely in simulation due to the low sim2real gap in depth
sensor simulation [36, 53]. Repeated application of F keeps topology estimates current, bridging the
sim-to-real gap and enabling accurate closed-loop manipulation on physical robots. Real cuts hide
particle-level topology. Our model infers it recursively from depth data, reproducing the simulation’s
topological embeddings so the policy transfers unchanged to a real robot.

3.3.2 PDDP: Particle-based Score-Entropy Discrete Diffusion Policy

With the pretrained perception encoder @, we train a goal-conditioned behavior cloning (BC) policy
to predict cutting actions. The policy takes as input the current topological observation topo, =
(X4, Fy), an action history anise = (at—n, . .., a:—1), and a goal point cloud ¢ representing a target
slice, stick, or dice configuration. We first compute point-wise embeddings:z; = ®(X;,F;) and
z, = Encoder(g) where z, captures the current spatial and topological features, and z, encodes the
desired goal shape.



Cutting actions are formulated as per-point binary labels a; € {0, 1}", classifying each particle
as cut or not. Inspired by Score-Entropy discrete diffusion [54], we model action prediction as a
conditional discrete diffusion process (visualized in Figure 2(c)): clean labels aj are progressively
noised into &; according to ¢;(a; | aj) = Multinomial(a; | p:(a;)) where p; defines the noise
schedule. The policy network sy is trained to predict the score function:

So (éta t7 Qhist Zt, zg) ~ vét IOg qt (a: ‘ é15)7 (4)

where the denoising is conditioned on the action history, current object embedding, and goal embed-
ding. The policy is optimized by minimizing the Denoising Score Entropy (DSE) loss:

T

Lc(0) = E(o, apegar) | D I50(ar,t, anist, 21, 29) — Va, log gs(af | )] | - )
t=1

After the denoising process, the predicted segmentation identifies cuttable regions. A cutting plane is
then fitted to the predicted cut points using Support Vector Machine algorithm, reconstructing the
robot’s knife pose a; € SE(3). For further details, please refer to Appendix 7.9.2.

4 Experiments
4.1 Experimental Setup

Environment Setup. — Our experiments are conducted in a high-fidelity deformable object simulator
based on FluidLab, leveraging the Moving Least Squares Material Point Method (MLS-MPM)
implemented in Taichi. MLS-MPM accurately simulates elastoplastic deformation and topological
changes with differentiable dynamics for optimization. The simulated objects consist of two distinct
material layers: a dense, plasto-elastic inner core (high stiffness parameters: 1 = 2083.33, A =
1388.89; high density: p = 4.0) with explicit damage tracking based on critical compression
(2.5 x 10~2) and stretch (1.0 x 10~2) thresholds, and a softer, ductile von-Mises outer skin (identical
stiffness, lower density: p = 1.0, with thickness 0.01) that accommodates plastic deformation without
fracture. Cuts are performed by a thin knife moving downward parallel to its blade, stopping at the
cutting board, and employing high-frequency, small-amplitude oscillations to ensure clean separation.
After each cut, an optional gentle push helps fragments settle onto the board.

Task Setup. — We evaluate goal-conditioned cutting tasks to segment the deformable object into
predefined shapes: slices (thin planar sections with controllable thickness), sticks (obtained by further
cutting slices along their width), and dices (small blocks produced by rotating the knife 90° and
chopping sticks orthogonally). Each task varies in slice thickness, stick width, and dice size. For stick
and dice tasks, a gentle downward push ensures proper fragment separation between cuts. Success
of each cut is determined by comparing the fragment shape to the target using our spectral reward
(based on the Laplace-Beltrami operator). A predefined reward threshold is used both to evaluate
successful shape matching and to terminate MPPI-based trajectory planning.

4.2 Benchmark Evaluation

Q1: Can our spectral reward reliably indicate the success or failure of sequential cutting actions?
— To evaluate the reliability of our spectral reward, we conducted a teleoperated slicing experiment
involving a four-step cutting sequence. The first three cuts produced segments that matched the target
shape, while the final cut was deliberately incorrect. At each step, we computed normalized similarity
scores using Chamfer Distance (CD), Earth Mover’s Distance (EMD), Hausdorff Distance (HD), and
our spectral reward. As shown in Figure 3, only our spectral reward steadily increases during the
successful cuts and drops sharply after the failed one, correctly capturing true shape fidelity while
remaining pose-invariant. In contrast, CD, EMD, and HD continue to rise even after the erroneous
cut, failing to reflect the degradation in quality. When we replace the failed final cut with a correct
one, the spectral reward resumes increasing (green dashed line), further confirming its robustness and
sensitivity to meaningful geometric improvement.
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Table 1: Normalized Spectral Reward (R) and Cut Count (N¢): All R values are normalized by the corre-
sponding human baseline per cut mode. Overall, our method yields superior normalized rewards and efficient
cut counts across both in-distribution and out-of-distribution geometries, demonstrating robust performance and
generalization.

In-distribution Geometries Out-of-distribution Geometries

@ W | & | a| W% | &

Algorithm | 2 N R Ne| R Ne| R Ne| R Ne| RN
HumanTeleOp | 33 47 17 3539 so| - - | - - | - .
Heuristic | 082 240 053 090|059 190 | 088 280|029 040|041 160
DP3 | 074 272 050 092|049 229|085 290|026 052042 160

3D Diffuser Actor | 0.83 291 0.66 1.00 | 052 254 | 058 242 | 031 095|043 140

Ours wio Perception | 0.92 525 0.56 093 | 051 258 | 064 322|025 094|045 151

PDDP (Ours) | 085 483 071 115|057 233|082 431|039 084|049 189

Q2: Can our spectral reward support large-scale data generation for policy learning? — We combine
our spectral reward with MPPI planning to autonomously generate expert demonstrations across
three goal types—slice ( 0, stick (W), and dice ( & )—each with varied specifications.
Cutting is performed on 10 diverse object geometries (e.g., cake, potato, tomato), resulting in 1,000
trajectories with around five cuts each. This dataset captures a wide range of shapes, poses, and cut
targets, and is used to train goal-conditioned cutting policies in the next stage.

4.3 Policy Evaluation

Evaluation Setup. — We evaluate policies in the MLS-MPM simulator using deterministic rollouts
of five sequential cuts per episode. Each policy is tested on 405 episodes spanning nine object
geometries—five seen during training (cake, cube, ditto, ham, potato) and four novel (donut, burger,
sushi, steak)—across three goal types: slice ( 2 ), stick ( 4 ), and dice (% ). Object pose
is randomized in translation (z € [-0.4,0.4], z € [-0.2,0.2]), yaw (€ [—15°,15°]), and scale
(€ [0.8,1.2]) to assess robustness.

Baselines. — We compare our method to four baselines: a 3D diffusion model (DP3), a standard point
cloud diffusion model (3D Diffuser Actor), a heuristic controller with fixed cut trajectories, and human
teleoperation. Each learned policy is tested with three perception configurations: (i) no perception
(raw point clouds only), (ii) a frozen pretrained graph encoder ®, and (iii) a self-attention-based
GraphConv encoder. Our full model uses the policy paired with ®.
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Figure 4: Example cutting trajectories for the three canonical tasks. Each row corresponds to one task—slice
(top), stick (middle), and dice (bottom)—showing the initial state (column 1), the goal shape (column 2), and the
successive knife poses and resulting fragments at Steps 1-4 (columns 3-6).

Evaluation Metrics. — We report two metrics: (1) normalized spectral reward R, which captures cut
quality via spectral similarity to the goal shape (normalized to human teleop scores); and (2) cut
count N¢, the number of correctly segmented goal-consistent pieces. These metrics jointly reflect
geometric accuracy and task success. Results are summarized in Table 1.

Q3: How does the choice of policy model and perception architecture impact cutting performance? —
Our PDDP backbone consistently outperforms baselines across both seen and unseen tasks. Instead of
directly predicting actions, it segments point-wise regions and infers actions via an SVM, improving
stability and noise tolerance—achieving up to 85% test accuracy post-training. Using a frozen,
pretrained perception encoder further stabilizes learning and enhances generalization; its removal
often leads to overfitting and degraded performance on unseen geometries. Many failure cases involve
disorganized particle states after poor cuts, where our segmentation-based transformer helps maintain
spatial consistency. For fair comparison, all diffusion baselines are configured to predict one sparse
action per step, matching our PDDP setup.

Q4: How well can policies trained with our framework generalize across varied object geometries
and goal shapes? — Our method generalizes well to unseen objects and goals, maintaining high
spectral rewards and accurate cut counts. This is enabled by the pretrained perception module and
diverse demonstrations. Without the pretrained encoder, policies overfit and perform poorly on novel
shapes. The stick task shows the lowest scores across all methods, as it depends heavily on global
geometry—irregular shapes make clean stick cuts difficult. We also observe that cube-like shapes
yield more valid stick and dice cuts than irregular or donut-like ones, especially under our strict reward
threshold. These results underscore the importance of structured perception and geometry-aware
learning in complex cutting.

5 Conclusion

We introduced TopoCut, a unified platform for robotic cutting of deformable objects that combines a
high-fidelity particle simulator, robust topology tracking, and a pose-invariant spectral reward for cut
quality. TopoCut trains goal-conditioned cutting policies via a conditional score-based diffusion model
and a pretrained, dynamics-informed perception module capturing topological changes. Experiments
show strong generalization across geometries, materials, and tasks, consistently outperforming
baselines. TopoCut sets a new benchmark for deformable object manipulation, with broad relevance
to industrial, medical, and personal robotics.



6 Limitation

Despite its significant advancements, TopoCut still faces notable limitations that should be ad-
dressed in future work. In particular, the warp mesh reconstruction stage dominates the computational
workload, forcing the simulator to run at real-time speeds and restricting efficient large-scale online re-
inforcement learning. Mitigating this bottleneck through algorithmic optimizations, GPU-accelerated
mesh processing, or parallel reconstruction pipelines will be essential to enable scalable policy train-
ing. Currently, our evaluation is restricted to exact shape matching of every cut fragment. In future
work, we could introduce more generalized tasks, such as sculpting, where the objective is to match
only the shape of the largest piece, thereby better probing the adaptability of our manipulation policies.
Moreover, due to the inherent fragility and resolution constraints of the MPM algorithm used in our
simulation, the platform cannot fully support dexterous cutting control. Consequently, simulating
highly realistic scenarios, such as objects with high stiffness like potatoes, remains challenging.
Future improvements in MPM robustness and resolution will be necessary to better simulate such
nuanced, realistic manipulation scenarios.
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7 Appendix

Step 2

Step 3 Step 4

Figure 5: Ice—Cream Scooping Task. (Step 1) Initial setup of the scene, with the spoon positioned above the ice
cream cube. A white cup is placed beside the ice cream block to receive the scooped pieces. (Step 2) After the
first scoop, a distinct ice cream piece appears in the cup, shown in a different color to indicate it is a separate
connectivity cluster. (Step 3) The spoon performs a second scooping, inserting into the ice cream cube to gather
another piece. (Step 4) The task is completed with two distinct ice cream pieces, each in its own cluster, now
present in the cup.

7.1 Additional Manipulation Tasks

While our main focus is on multi-step cutting, our simulator, topology discovery mechanism, and
spectral reward function extend naturally to other deformable-object tasks. Below, we describe two
illustrative examples that highlight the potential for extending our framework, using enumerated steps
for each task’s execution.

7.1.1 Cream Writing

In this task, the objective is to “write” a target word (e.g., CORL) by extruding a soft, von Mises-
plastic “cream” material onto a flat surface. The cream is modeled in MPM with low yield stress
and high plasticity, allowing it to retain its shape after extrusion. The agent controls a “cream pen”
at a fixed height above the table. Its state is represented by its (z,y) position, and the action is
a 3-dimensional vector (Az, Ay, b), where (Ax, Ay) specifies the pen movement and b € {0,1}
toggles the extrusion.

During the writing process, each continuous stroke formed while b = 1 is considered a single
connectivity cluster. If the pen is lifted and re-positioned, the next stroke is assigned to a new cluster.
Thus, the clustering mechanism is naturally defined by the writing process, not by explicit color
control. The visualization in Figure 6 uses different colors to indicate separate clusters, a distinction
that becomes critical when computing the spectral-based reward.

Execution steps:

1. Position the pen at the starting point for the letter “C,” toggle b = 1, and move rightward to trace
the stroke, forming the first connectivity cluster.
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Step 3 Step 4

Figure 6: Cream Writing Task. (Step 1) The cream pen extrudes a continuous stroke to form the letter “C.” (Step
2) The pen lifts, repositions, and extrudes the letter “O.” (Step 3) Next, it draws “R.” (Step 4) Finally, it writes
“L.” Each letter is rendered in a different color to indicate that they belong to separate connectivity clusters. The
color differentiation is not manually controlled but automatically generated based on the clustering, which is
leveraged during the spectral-based reward computation.

2. Lift the pen, move to the position for the letter “O,” toggle b = 1, and extrude to form the second
cluster.

3. Reposition to the third slot, toggle b = 1, and draw the letter “R,” creating a new cluster.

4. Finally, move to the fourth slot, toggle b = 1, and write the letter “L,” forming the final cluster.

Our spectral reward function evaluates how well each cluster corresponds to the intended letter shape.
This clustering mechanism provides a natural way to segment distinct components, allowing the
reward function to assess both spatial structure and connectivity. However, the sequential planning
of strokes remains a complex decision-making challenge, distinct from the cutting task, and thus
extending PDDP to handle such “additive” tasks is a promising direction for future work.

7.1.2 Ice-Cream Scooping

In this task, the objective is to scoop a chunk from a block of “pudding”-like ice cream (elastoplastic
MPM) and deposit it into a cup. The agent controls a spoon at a fixed height, using a 2D (z, y) action
space to position the scoop. Once positioned, the agent executes a predefined scooping primitive as
follows:

Execution steps:

Lower the spoon into the ice cream block to initiate contact.

Translate the spoon forward to penetrate and gather the material.

Lift the spoon while rotating it to maintain a horizontal orientation, preventing spillage.
Move the spoon above the cup.

Tilt or open the spoon to release the scooped chunk into the cup.

Nk L=

The scooped chunk forms a distinct connectivity cluster, separate from the remaining block. As
illustrated in Figure 5, each scooped piece is automatically assigned a different color to indicate it
belongs to a separate cluster. This distinction is crucial when computing our spectral-based reward,
as it allows for quantifying successful segmentation and accurate placement of the scooped pieces.
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7.1.3 Discussion

These two examples demonstrate the extensibility of our MPM-based environment, topology dis-
covery, and spectral reward function to a broader range of deformable manipulation tasks beyond
multi-step cutting. The use of distinct clusters to represent separate connectivity components is a key
mechanism for computing spectral-based rewards, applicable in both “additive” and “scooping” tasks.
Designing specialized action primitives and learning-based planners for these scenarios remains a
promising direction for future exploration.

7.2 Pyramid Cutting Task

Motivation and Objective. — To further evaluate the generalization capability of our spectral reward
function to more complex and arbitrary goal shapes, we introduce the pyramid cutting task (Figure 7).
In contrast to the predefined slicing, sticking, and dicing tasks, this experiment requires the agent to
carve out a corner segment from a cubic block to produce a pyramid-shaped fragment. The target
shape is defined as a triangular pyramid with sloped surfaces, representing a more intricate and
asymmetrical geometry than previous tasks.

The objective of this experiment is to assess whether the MPPI planning method, driven solely by
our spectral reward function, can effectively discover a plausible cutting trajectory to achieve the
desired pyramid shape without any task-specific tuning or retraining. This setup challenges the reward
function to guide cutting actions that align with more complex, multi-faceted surfaces, testing its
robustness and generalizability.
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Figure 7: Pyramid Cutting Task. (Left) Cutting Plane: Visualization of the cutting plane planned by the
MPPI controller based on our spectral reward function. The plane is strategically positioned to carve out a
pyramid-shaped fragment from the corner of the cube. (Middle) Cutting Target: The target goal shape, shown as
a point cloud representation, highlighting the desired pyramid structure that serves as a guide for the cutting task.
(Right) Cutting Execution: The scene depicts the execution of the planned cutting trajectory, where the knife
removes the corner section to achieve the specified pyramid shape. The orange particles indicate the material
identified as the target segment to be removed, aligning with the planned cutting plane.

Takeaway. — The results of the pyramid cutting task clearly demonstrate that our spectral reward
function effectively generalizes to more intricate geometric goals, even in cases involving angled
and asymmetric surfaces. As shown in Figure 7, the MPPI planner successfully identifies a cutting
plane that produces a distinct pyramid-shaped fragment from the cube’s corner, aligning well with the
target structure. The qualitative alignment between the planned cutting plane and the final extracted
segment validates that the reward function remains a reliable guidance signal, even for complex
and non-standard shapes. This outcome highlights the adaptability of our framework, suggesting its
potential to handle more sophisticated and arbitrary cutting tasks in future applications.
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7.3 Perception Model Architecture Details

In practice, we design two distinct styles of perception models to explore their effectiveness in
our setup: a graph-based model and a point-based model. The graph-based model leverages graph
convolutional networks (GCNs) and joint attention mechanisms to process structured graph data,
while the point-based model employs a hierarchical PointNet-style architecture using SPALPA blocks
to handle point cloud data. After extensive evaluation, we adopt the graph-based model as our final
choice. This decision is driven by the significant reduction in parameter count (approximately four
times fewer parameters) and faster training and inference speed compared to the point-based model.
The PointNet-based architecture, though capable of capturing finer local features, incurs substantial
computational overhead due to its deeper SPALPA structure and multi-scale processing layers.

7.3.1 PointNet-Based Perception Model Architecture

The PointNet-based architecture processes point cloud data through hierarchical SPALPA blocks for
multi-scale feature extraction. The key components are:

* Topological Encoder: The primary perception encoder in this architecture, responsible for ex-
tracting features from 32-dimensional topological inputs. It comprises 5 SPALPA blocks that
progressively increase feature dimensions as follows:

96 — 192 — 384 — 768 — 1536

Each SPALPA block includes:
— Local Attention: Extracts localized spatial relationships through ‘Conv2d‘.
— Global Attention: Aggregates broader context using multi-scale convolutional layers.
— Grouper: Implements ‘QueryAndGroup‘ for spatial neighborhood aggregation.

* Action Encoder: Encodes 2-dimensional action inputs using the same hierarchical structure as the
Topological Encoder, ensuring feature alignment and consistency.

* Cross-Attention Network: Integrates topological and action features through CrossAttnNet
modules, employing PreNorm Attention, cross-attention, and gated residual connections.

* Decoder: Reconstructs the feature maps and propagates them to the original point cloud resolution
using ‘FeaturePropagation‘ blocks, merging multi-scale features.

* Qutput Heads:
— Segmentation Head: Projects features to segmentation classes using ‘Conv1d* layers.
— Point Cloud Head: Predicts point coordinates through residual blocks and a final ‘Linear* layer.
Despite its comprehensive feature extraction capability, the PointNet-based model incurs con-
siderable computational overhead, resulting in slower training and inference compared to the
graph-based model.

7.3.2 Graph Network Architecture

The Graph Network architecture processes structured graph data using GCN layers and attention-
based mechanisms. The core perception module in this architecture is the t_graph_encoder, which
encodes topological information through GCN layers.

* t_graph_encoder: The designated perception module in this architecture, processing node and
label embeddings through GCN layers structured as:

3 — 96 — 96

Key submodules include:
— Node Encoder: Projects 3-dimensional node features to a 96-dimensional latent space.
— Label Encoder: Processes 32-dimensional node labels through GCN layers.
— Embedding Encoder: Integrates 192-dimensional precomputed embeddings into a unified
96-dimensional space.

* a_graph_encoder: Processes action-related graph data using a similar structure to the
‘t_graph_encoder, but with 2-dimensional action inputs.

* Joint Graph Transformer: Integrates features from both graph encoders through multi-layer
attention and cross-attention modules:

96 —>64 —+32—16 >8 —~4
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Table 2: Empirical Studies of Pretraining Strategies for Perception Models: We evaluate the effectiveness
of graph-based and point-based perception models under various pretraining strategies, including sorting the
input point cloud, applying Gaussian noise for data augmentation, and downsampling the input points before
processing. The final model selected for deployment is the Graph-Based model with sorting, Gaussian noise,
and 256 downsampled points, balancing accuracy and computational efficiency.

Perception Model With Sort  Gaussian Noise =~ Downsample Points | Seen Accuracy  Unseen Accuracy
Graph-Based X X 128 66.4 48.7
Graph-Based H v X 128 73.8 52.1
Graph-Based v v 128 75.4 69.3
Graph-Based (Final) v v 256 771 74.1
PointNet-Based X v 2048 732 61.2
PointNet-Based v v 512 79.2 75.4

* Query Point Encoder: Processes query nodes in the graph structure through ‘Linear® and ‘ReLU*
layers:

3 — 64— 96

* Output Heads:
— Node Position Head: Outputs node coordinates through residual blocks.
— Node Feature Head: Projects node features to a 32-dimensional space.
The graph-based model provides a more parameter-efficient and computationally feasible archi-
tecture while maintaining robust feature extraction and representation capabilities, making it the
preferred choice in our implementation.

Summary: — We explore both PointNet-based and Graph Network architectures to identify the optimal
perception model for our setup. While the PointNet-based model employs extensive SPALPA blocks
for multi-scale feature extraction, its computational cost and parameter count are substantially higher
than the graph-based model. Consequently, we adopt the graph-based architecture, leveraging the
t_graph_encoder as the primary perception module due to its significantly lower parameter count,
faster training and inference speeds, and effective integration of topological and action features.

7.3.3 Empirical Evaluation of Perception Models

Discussion and Model Selection: — Table 2 presents a comparative evaluation of graph-based and
point-based perception models under various pretraining strategies. The primary factors analyzed
include sorting based on the x-axis, Gaussian noise for data augmentation, and the degree of point
cloud downsampling.

* Sorting and Gaussian Noise: Incorporating sorting and Gaussian noise consistently improves
model accuracy for both seen and unseen data. For the graph-based model, enabling both sorting and
Gaussian noise increased unseen accuracy from 48.7% to 69.3% under a 128-point downsampling
setting.

* Downsampling Strategy: The impact of point cloud resolution is evident as increasing the number
of points from 128 to 256 in the graph-based model further improved unseen accuracy to 74.1%.
This result underscores the importance of maintaining sufficient point density to preserve critical
spatial information.

* Comparison of Models: The point-based model with 512 points achieves 75.4% unseen accuracy,
slightly outperforming the graph-based model with 256 points. However, the computational
overhead associated with the point-based model is significantly higher, consuming approximately
four times more parameters and resulting in slower training and inference.

Final Model Selection: — Based on the empirical findings, the graph-based model with sorting,
Gaussian noise, and 256 downsampled points is selected as the final perception model for deployment.
This configuration achieves a balanced trade-off between computational efficiency and segmentation
accuracy, making it a practical choice for large-scale robotic manipulation tasks.
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7.4 Policy Model Architecture Details

In our framework, the policy model architecture is structured to handle skill-conditioned action
generation through a structured diffusion process. The model, named PDDP (Particle-Based
Diffusion Policy), leverages adaptive normalization, timestep embeddings, and modular diffusion
blocks to effectively model action trajectories. Notably, the observation encoder in PDDP utilizes
the perception encoder previously defined in the Perception Model Architecture section, ensuring
consistent feature extraction and representation across the pipeline.

7.4.1 Policy Model Architecture - PDDP

The PDDP architecture is structured as follows:
1. Encoders: —

* Observation Encoder: The observation encoder adopts the perception encoder design outlined
previously, specifically utilizing the graph-based t_graph_encoder as the primary perception
module. This encoder processes topological node features through a GCN and includes three key
submodules:

— Node Encoder: Projects 3-dimensional node features to a 96-dimensional latent space through a
2-layer GCN:

3 — 96 — 96

— Label Encoder: Transforms 32-dimensional node labels to a 96-dimensional space using the
same GCN structure.

— Embedding Encoder: Integrates 192-dimensional precomputed embeddings, projecting them
to 96 dimensions.

The outputs from each encoder component are processed through a shared ‘LayerNorm* to stabilize

feature representation.

* Goal Encoder: Encodes 3-dimensional goal vectors through a fully connected network:

3 — 64 — 96

ReLU activation is applied to the intermediate layer.
* Timestep Embedding (sigma_map): Encodes the diffusion timestep using a 2-layer MLP:

256 — 128 — 128

A SiLU activation is applied after the first linear layer to maintain smooth gradient flow.
* Action History Layer: Integrates action history features through a fully connected layer:

21 — 128

* Conditional Layer: Aggregates timestep, goal, and action history embeddings into a unified
feature space:
256 — 128

2. Backbone - Diffusion Blocks (DDiTBlock): —

The core processing backbone of PDDP consists of a sequence of 12 DDiTBlocks. Each DDiTBlock
contains:

 Self-Attention Layer: Applies self-attention to the feature space with 96-dimensional query, key,
and value projections:
96 — 288 — 96

This allows the model to capture dependencies across all points in the point cloud, facilitating
information exchange across nodes.
* MLP Layer: Implements a 2-layer MLP with GELU activation:

96 — 384 — 96

This structure refines the feature representation after the attention operation, maintaining non-linear
feature transformations.
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* Dropout: Applied to both the attention and MLP layers with a probability of 0.4 to mitigate
overfitting and stabilize training.

* Adaptive LayerNorm (adalLN): Adaptive LayerNorm is applied to each block using modulation
inputs derived from both the timestep embedding and goal encoder. The modulation layer is
structured as:

128 — 576

This mechanism enables each DDiTBlock to dynamically adjust its feature scaling based on
task-specific conditions.

3. Output Layer: —

The final output layer processes the feature representation generated by the diffusion blocks to predict
binary classification logits for each point in the point cloud. The output shape is defined as:

Output Shape: [batch size, num points, 2]

A linear projection is applied to transform the 96-dimensional feature space into 2-dimensional logits,
representing the binary classification output for each point. This design aligns the output structure
with the expected action space while maintaining consistency across the diffusion layers.

Summary: — The PDDP architecture is structured to leverage a modular pipeline consisting of
encoders for observation, goal, and timestep embeddings, a backbone of 12 DDiTBlocks with
adaptive normalization and self-attention mechanisms, and a binary classification output layer for
per-point action prediction. The use of the t_graph_encoder as the primary perception module
ensures consistent feature extraction and integration across both the perception and policy networks,
promoting robust action generation in diverse manipulation tasks.

7.5 Material Point Method in Details

The Material Point Method (MPM) is a hybrid Lagrangian—Eulerian scheme originally introduced
by Sulsky et al. for solid mechanics. In MPM, state variables (mass, momentum, deformation) are
carried on material points (particles), while a fixed Eulerian grid is used to solve the equations of
motion. This split representation combines the mesh-free advantages of particle methods with the
stability and boundary-handling capabilities of grid methods.

Governing Equations — MPM begins from the continuum balance laws in Eulerian form:

Dp Dv
=r V-v=0 =7
i TPVUEY Py
where p is the mass density, v the velocity field, o the Cauchy stress tensor, and g the body-force (e.g.

gravity). The material derivative D/ Dt captures convection of field quantities with the flow.

=V-o+py,

Weak Form and Discretization — To derive a tractable discretization, one multiplies the momentum
equation by a test function ¢(z) and integrates over the domain Q™ at time step n. Integration by
parts moves spatial derivatives onto g, yielding the weak form. We then partition Q2" into particle
subdomains (277, and approximate both trial and test functions using B-spline shape functions N;(x)
centered at grid nodes ¢. This Galerkin-style projection leads to discrete nodal equations that are
assembled via sums over particles.

Farticle—to—Grid (P2G) Transfer — Each particle p holds:
{ mpa ‘/117 Upa Fp}

for mass m,,, volume V,,, velocity v,, and deformation gradient F},. To project onto the grid, we
compute at each node i:

M = ZmpNi(xp)7 (mv); = ZmpUpNi(mp)a = —ZVPUPVNi(xp),
P P

p
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where o, is obtained from the chosen constitutive law (e.g. hyperelastic) evaluated at F},. These
transfers ensure exact conservation of mass and momentum.

Grid Update — On the Eulerian grid, we update nodal momentum via a symplectic (explicit) Euler
step:

(mv)”Jr1

(mo)i ! = (mo)} + AL+ mig), ot =
i
This step advances velocities under both internal stresses and external forces, while preserving
stability for moderate time steps.

Grid—to—Particle (G2P) Transfer — After updating the grid, we interpolate back to particles:
= ZNZ(%?) U;H_l’ Cp= ZU?-H VNi(IP)T’

where C,, is an affine velocity gradient matrix (used in variants like APIC) that captures sub-cell
velocity variation.
Deformation Gradient Update — The particle deformation gradient evolves according to

dF
dt
Using the interpolated velocity gradient C),, we discretize:

FH = (14 AtCy) F,

so that F, accumulates the local deformation history on each particle.

= (Vo) F

Stress Computation — For hyperelastic materials, one defines a strain-energy density ¥(F') and
computes the first Piola—Kirchhoff stress

then the corresponding Cauchy stress
1

P, FT.
det F, E,

Op =
This stress is used in the P2G transfer to produce internal forces.

Algorithm Summary — At each timestep, MPM executes:

. P2G: Transfer {m,,, v,, F},} to grid nodes {m;, v;, fl}
. Grid Update: Integrate nodal momentum, compute v;" ntl
. G2P: Interpolate v"+ and Vo back to particles.

. State Update: Update each F)) "+1 and compute .

. Advection: Move particles: :E"“ =2y 4+ Atoptt

P
. Reset: Clear grid variables for the next 1terat10n

NN AW =

Thanks to its hybrid nature, MPM can robustly simulate extreme deformations, fracture propagation,
and multi-body contact without remeshing, making it a powerful tool in graphics, engineering, and
robotic manipulation contexts.

7.6 Particle-based Damage-tracking and Topological Reconstruction in Details

We propose a robust particle-based method to accurately determine whether a cutting action success-
fully separates an object into discrete pieces. Our approach integrates particle-level damage tracking
with topological surface reconstruction using the Material Point Method (MPM) as shown in Figure 8.
Within our MPM framework, each particle’s deformation state is computed, and we define a particle
as “damaged” based on critical compression and stretch thresholds in its deformation gradient F.
Formally, a particle p is classified as damaged if:

Jp < (1—e€)™ or J,>(14€)™, (6)
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Figure 8: Particle-based damage-tracking and topological reconstruction during a cutting action. Gray and pink
particles remain intact, while damaged particles (purple) mark the cut interface. From these damage signals we
build an implicit SDF, extract the zero-isosurface via Marching Cubes, and then cluster connected components
to recover discrete object segments.

where J, = det(Fp), €c, €5 denote critical compression and stretch values, and m is a material-
specific sensitivity exponent.

In practice, we select the compression and stretch thresholds ¢, and €, so that they correspond directly
to the maximum volumetric change a particle can undergo before being flagged as damaged. Recall
from Eq. (6) that
Jp = det(F,)
measures the local volume ratio of particle p. For example, setting
€. = 0.025, es = 0.01

means that a particle whose volume has decreased by more than 2.5% (J, < (1 — 0.025)™) or
increased by more than 1% (J, > (1 4 0.01)™) is classified as damaged. These values are chosen to
be small enough to detect the onset of fracture in brittle materials, yet large enough to avoid false
positives under normal elastic deformation.

The exponent m modulates how sharply damage accumulates once .J,, deviates from unity: a larger
m yields an abrupt transition from “healthy” to “damaged,” whereas a smaller m produces a more
gradual damage accumulation. We calibrate €., €5, and m using simulated uniaxial compression and
tension tests: a small block is deformed at a constant strain rate, we record its volumetric Jacobian
history, and then choose the smallest thresholds that cleanly separate reversible (elastic) behavior
from irreversible damage.

For more ductile or plastic materials, one might increase the stretch threshold (e.g. €5 ~= 0.05) and use
a lower sensitivity exponent (e.g. m = 1 or 2) to model gradual yielding. Conversely, for near-brittle
media a tighter compression bound (e.g. €, =~ 0.01) and higher exponent (e.g. m > 4) better capture
sudden fracture. By anchoring these parameters to physically measurable strain limits, our framework
remains both interpretable and readily tunable across a wide range of material behaviors.

For more complex yielding materials, such as those modeled with von Mises plasticity, damage
occurs when the yielding stress o, falls below zero after particle softening:

1 ifel™ <o,

0 otherwise,

oyt = o) —7||Ae|, with Damaged, = { )

where 1 is the particle softening coefficient and Ae, represents incremental plastic strain.
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Once particles become damaged, their mechanical properties are altered irreversibly, enabling
consistent tracking of the damaged state throughout subsequent simulation steps.

To reconstruct and evaluate object topology following a cut, we perform explicit topological segmen-
tation leveraging the particle damage signals and knife trajectory data. We track the knife trajectory
precisely during interactions, ensuring a clean spatial separation between object segments. After
the completion of a cut action, defined by a stationary knife and changed particle damage states, we
reconstruct the object’s surface mesh from particle data through an implicit surface representation
using Signed Distance Fields (SDFs) and the Marching Cubes algorithm.

Formally, given the set of particles P and knife trajectory 7, we first construct an implicit SDF
representation S D F(x) of the object’s spatial domain:

SDF(x) = min||x — x,||—7p, )
pEP

where x,, is the position of particle p, and r, is its effective influence radius. Critically, we incorporate
the knife trajectory 7 by explicitly marking trajectory regions within the SDF, enforcing a strict gap
devoid of particles. This guarantees that no particle fills the knife’s trajectory space, creating a clear
geometric boundary between separated pieces.

We perform surface reconstruction by extracting the zero-isosurface of the computed SDF using
a GPU-accelerated Marching Cubes implementation provided by Warp [? ]. Specifically, we first
define a discrete volumetric grid around particle positions, evaluate the SDF values, and then generate
vertices and faces for the surface mesh:

vertices, faces = MarchingCubes(SDF(x) = 0). ©)

This mesh reconstruction process ensures explicit representation of separated object components.
After extracting mesh segments, we apply Laplacian smoothing to refine surface quality:

V, Vv, +a Z (vj — i), (10)
JEN(3)

where v; is a vertex in the mesh, N (7) are neighboring vertices, and « is a smoothing factor.

Subsequently, we cluster these reconstructed mesh segments into distinct topological pieces by
performing connected component analysis on the extracted mesh faces. Each particle is then assigned
a cluster identity by evaluating its spatial relationship to these mesh segments. Given particle positions
x,, and cluster meshes, we perform the following SDF-based assignment:

i if SDFi(x,) <,

—1 otherwise,

Cluster, = { (1D

where SDF; is the SDF for cluster mesh ¢, and 7 is a proximity threshold.

After assigning new cluster identities, we update the global object topology by comparing current
particle clusters to previously stored cluster identifiers. New cluster IDs are assigned whenever
new separate segments emerge, thus preserving consistent object segmentation across simulation
timesteps.

This methodical combination of particle damage tracking, implicit surface reconstruction, and mesh-
based clustering provides a robust and efficient solution for detecting and managing the topological
changes that occur during robotic cutting tasks. Our approach ensures accurate evaluation of cutting
outcomes essential for effective policy learning and performance assessment.

7.7 Pose-Invariant Shape Evaluation via Spectral Analysis in Details

After discovering object topology, we require a robust metric to evaluate how closely the segmented
fragments match the intended goal shape. Traditional point-set distances, such as Chamfer or Earth
Mover’s Distance, are sensitive to pose variations and require explicit alignment. To overcome these
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limitations, we introduce a spectral-based reward derived from the intrinsic geometry of shapes,
inherently invariant to rigid transformations.

Given a point cloud X = {x;} ;, we construct a k-nearest neighbor graph where the edge weight

between points ¢ and j is defined as
d2.
W;j = exp —ﬁ ; (12)

with d;; the geodesic distance between points and o a scaling parameter. We then build the degree
matrix D and the combinatorial Laplacian:

Diy=> Wiy, L=D-W. (13)
J
Eigen-decomposition of L yields the smallest &k eigenpairs:
Ld = AD, (14)
where A = diag()\q,...,\;) contains eigenvalues and ® = [¢y, ..., P] are the corresponding

eigenvectors. These spectral descriptors capture intrinsic shape information invariant to isometries.
Given two shapes X and Y, we define their spectral distance as:

dypec(X,Y) = al|Ax — Ay 35|10k ®x — 2 @y |f3, (15)
where «, 8 balance the contributions of eigenvalue and eigenvector differences.

To transform spectral distance into a reward, we apply a piecewise linear mapping with a critical
threshold 7:
Rmax — 7, d <,
R(d) = (16)
Ryax — 97 —06(d—7), d>r,
where v and ¢ are decay rates (6 > ), ensuring a gradual reward decline for small errors and sharper
penalties for large deviations.

For objects segmented into multiple fragments, we compute the spectral distance and associated
reward for each fragment pair individually, then accumulate the total reward as:

R = 1 Y R(dy), (17)

with x a global scaling factor ensuring consistent reward magnitudes across tasks.

This formulation provides an efficient, continuous, and pose-invariant reward signal for evaluating
and planning goal-conditioned robotic cutting actions.

In order to evaluate the efficient and pose-invariant property, we conduct the following experiments:

Parameter Definitions and Pose-Invariance Observations — Our spectral-reward pipeline relies on
three key configuration parameters and a fixed cutting trajectory. Specifically:

* num_point (= 512) determines how many points are uniformly sampled from the fragment’s
point cloud to serve as vertices in the spectral graph. A larger num_point yields finer geometric
resolution but increases graph-construction cost, whereas a smaller value speeds up computation at
the risk of losing subtle shape details.

* k (= 30) defines the neighborhood size in the k-nearest-neighbor graph: each sampled point
connects to its k closest neighbors (by Euclidean distance). This choice balances local connectivity
(capturing fine features) against spectral stability (avoiding overly dense graphs that blur intrinsic
geometry).

* Trajectory refers to the fixed sequence of knife motions (the “default” cutting action) applied to
all shapes. At each discrete timestep along this trajectory, we recompute the fragment’s spectral
descriptor and record the resulting reward value.
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Figure 9: Pose-Invariance Evaluation of the Spectral Reward. Top: Five ideal stick fragments (5 X 5 x 32)
rotated through distinct angles. Middle: Reward-versus-cut-step curves for each rotation, computed using dense
particles (left) and mesh-surface particles (right) with num_point=512 and k = 30. Bottom: Corresponding
fragment point-cloud sequences along the default cutting trajectory. The nearly identical curves across all
rotations confirm that our spectral reward is invariant to rigid transformations of the ideal shape.

In our experiment shown in Figure 9, we generate five identical “stick” fragments (5 x 5 x 32) and
rotate each by a distinct yaw angle before sampling and evaluation. We then compute two sets of
reward-vs.-step curves—one using all dense particles, the other using only mesh-surface particles.
As shown in the overlaid plots, all five curves coincide almost exactly for both representations. This
confirms that, under our sampling density (num_point=512) and graph connectivity (k = 30), the
spectral reward is effectively invariant to rigid rotations of the ideal shape.

Multi-step Spectral-Loss Evaluation — To verify that our spectral reward correctly identifies the
intended fragment at each cutting step, we conducted a pairwise matching experiment on tele-operated
MPPI data. After segmenting the object into its constituent pieces, we compute the spectral distance
dspec(Xsi,Xp].) between the shape at cutting state s; and each fragment p;, for 4,5 = 0,...,4.
Figure 10 visualizes the resulting 4 x 5 “spectral-loss” matrix: rows index the initial and four
successive cut states, columns index the five fragment geometries (shown below). Darker entries
(lower values) indicate stronger intrinsic shape similarity. Notice that for every state s;, the piece with
low spectral distance in previous state still remain in small value despite the fact that the piece might
fall down due to gravity and there is a new piece with low spectral distance appears. This demonstrates
both the pose-invariance and discriminative power of our spectral descriptor, and justifies its use for
automatic labeling and qualitative evaluation of MPPI rollouts.

7.8 MPPI for Data Generation

To generate high—quality demonstrations for policy learning we adopt the Model Predictive Path
Integral (MPPI) sampling—based optimal control scheme [52]. MPPI maintains a horizon—-H
open—loop action sequence Ug.;;_; € R¥*™ (with m = 6 for the knife pose) and repeatedly refines
it by importance—sampling noisy roll-outs in the deformable—body simulator. For each iteration
we draw K perturbations {e(k)}kK:1 ~ N(0,X) and integrate the dynamics forward, harvesting the
terminal fragments X (*) produced by each sampled cut. The return of a roll-out is the negative
spectral discrepancy

H-1
J® = — RSpeC(X(k)ag) - ZC(ng)a agk))a

t=0
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Figure 10: Pairwise spectral-loss matrix between each cutting state (rows) and each piece within the state
(columns). Lower values indicate closer intrinsic geometry matches, enabling qualitative MPPI data collection.

where Rgpec is the pose-invariant spectral reward defined previously, and C/(+) is a small quadratic
control penalty that biases the knife towards smooth, energy—efficient motions.

Given the roll-out returns we form importance weights w;, = exp(—J*)/)\) with temperature
A = 1/k and update the mean action sequence in closed form:

ZkK:1 wy, €F)
e
> k=1 Wk

After n refinement iterations the first action Uy is executed on the robot; the horizon is then shifted
and replanning continues until the episode terminates.

Uo.g-1 < Ugp_1 +

During each MPPI episode we log the full state-action—reward tuples {o, at, Rspec(Xt, g) }1—g as
well as intermediate mesh reconstructions and knife trajectories. We repeat the procedure for a
diverse set of goal shapes and material parameters, producing ~ 6,000 labelled cuts that serve as
expert demonstrations for subsequent behaviour—cloning.

To complement the automatically generated dataset we developed a light-weight tele-operation
interface in which the operator steers the knife with a 6-DoF mouse while discrete cutting commands
are triggered via keyboard hot-keys. All tele-operated actions are replayed in simulation to obtain
exact particle damage labels and the same spectral reward used by MPPI, ensuring perfect consistency
between human and algorithmic demonstrations.

Together, MPPI planning guided by spectral rewards and targeted tele-operation yield a rich,
high-fidelity dataset that underpins robust policy learning across the wide range of scenarios posed
by TopoCut.

7.9 Policy Learning in Details
7.9.1 Dynamics-Informed Perception Module

To efficiently encode dense deformable object states for policy learning, we develop a dynamic
topology prediction model, denoted as F, which predicts the future topological state conditioned on
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the current topological state and action. Formally, we model the dynamics as:
F : (topo,, at) — topo, 4, (18)

where both topo, and a; are represented as point clouds:

topo; = {(Xivfi)}g\;h ay = {(Xﬁgj)}év:h (19)

with x;, x; € R? denoting 3D coordinates and f;, g; denoting associated point features: cluster labels
for topology and binary segmentation masks for action, respectively.

Within F, we introduce a perception encoder ® that processes point clouds by jointly embedding the
3D coordinates and their corresponding features:

Zy — @(Xt, Ft)a (20)

where X; and F; are the stacked xyz coordinates and feature vectors, respectively. ® produces a
point-wise embedding z, that captures spatial geometry, topological structure, and action intent. This
embedding is later reused for downstream goal-conditioned policy learning.

Topological Representation. — For topo,, the point features f; encode the cluster membership obtained
from our particle-based damage tracking, represented as a one-hot vector over a maximum of 32
clusters. For a;, the point features g; are binary one-hot vectors indicating whether the point lies on
the cutting surface (cut = 1, not cut = 0).

Learning Objective and Intuition. — The dynamic topology model F is trained to predict how
the object’s topology evolves under a given action. Specifically, given (topo,, a;), it predicts the
resulting topological configuration topo, , ;. By doing so, ® learns rich, actionable particle-wise
embeddings that encode both geometric and topological transformations, enabling robust downstream
manipulation.

Preprocessing and Graph Construction. — Assuming access only to noisy surface observations, we
reconstruct the object’s mesh using Marching Cubes (Warp [? ]), sample interior points to form
volumetric point clouds, and downsample them using Farthest Point Sampling (FPS). A topology-
aware graph is then constructed, where edges connect nearest neighbors within the same cluster,
promoting learning of local topological consistency.

Model Architecture. — The perception encoder @ consists of two stages: (i) a Graph Convolutional
Network (GCN) to extract local features from the topology-aware graph, and (ii) a Graph Transformer
that globally refines the features via self-attention. The output is a set of point-wise embeddings
encoding spatial and topological context.

Training Loss. — We jointly optimize ¢ with two complementary objectives: geometric consistency
and topological structure prediction. The overall loss is defined as:

L= >\pos£pos + )\topo‘ctopoa (21)
where \yos and Aypo are balancing weights.

For geometric consistency, we minimize the Chamfer Distance (CD), Earth Mover’s Distance (EMD),
and Hausdorff Distance(HD) between predicted and ground-truth point clouds:

Lpos = CD(X, X) + EMD(X, X) + HD(X, X) (22)
where X and X are predicted and ground-truth point sets.

For topological structure prediction, we treat clustering as a contrastive learning task, where only the
relative membership between points matters. A Hungarian matching-based loss is applied:

Liopo = min 3 £(m(ci), &), (23)
,]

where P is the set of bipartite matchings, ¢; and ¢; are the ground-truth and predicted cluster
assignments, and £(+, -) is a binary cross-entropy loss.
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Training Data. — The dynamic topology model F is pretrained using state-action-state triplets
(topo,, a;, topo, +1) collected from the MPPI-based demonstration generation (Section ??). This
rich dataset covers diverse materials, object geometries, and cutting scenarios, enabling the learned
embeddings to generalize effectively across a wide range of deformable manipulation tasks.

7.9.2 Particle-based Score-Entropy Discrete Diffusion Policy

With the pretrained perception encoder ® that captures geometric and topological information, we
now train a goal-conditioned behavior cloning (BC) policy for robotic cutting. The policy operates
over perception embeddings, taking as input the current object topology and the desired goal shape,
and predicting the next cutting action.

Given a point cloud observation o; = (X, F;) representing the current object state, and a goal point
cloud g = (X4, F), we first obtain their embeddings:

Z; = (I)(Xt; Ft), Zy = (I)(ng Fg)v (24)
where z; and z, are point-wise embeddings encoding geometry and topology.

The cutting action is represented as a binary segmentation a; € {0, 1}V, where each point is classified
as cut (1) or not cut (0).

Policy Model: Conditional Score-Based Discrete Diffusion. — Inspired by Score Entropy Discrete
Diffusion (SEDD) [54], we formulate action prediction as a conditional discrete denoising diffusion
process over point-wise binary labels.

In the forward process, the clean action labels aj are progressively corrupted into noisy labels a;
through a multinomial noise distribution:

q+(a; | aj) = Multinomial (&; | p:(a})), (25)
where p;(a}) denotes the noise schedule at timestep ¢.
The policy network sy is trained to predict the score function:
so(a,t,2¢,24) = Va, log g (a; | &), (26)

where sy outputs the gradient of the log-posterior of the clean action given the noised action,
conditioned on the current and goal embeddings.

This formulation enables the policy to iteratively denoise a; toward recovering the target cutting
action.

Training Objective. — The BC policy is trained by minimizing the Denoising Score Entropy (DSE)
loss across all diffusion steps:

T
Lpc(0) = Eo,,g,a1)~D lz EDSE(ét,af;e)] ) 27

t=1

where the per-step DSE loss is defined as:

Lpse(as,a;;0) =E |:||39(5t7tazt7zg) — Va, logg:(a} | 51&)”3} . (28)

Action Reconstruction. — After completing the denoising sampling process, we obtain a binary
segmentation over the points indicating which regions should be cut. From the points classified as
cut, we fit a cutting plane, thereby reconstructing the knife’s pose and producing the final action a;.

1. Inputs, Goals, and Perception Embeddings — At each decision step ¢, the robot observes:
0t = (Xh Ft)7
where:

o X; = [x¢1,..- ,xt7N]T € RV*3 are the 3D coordinates of N particles representing the object.
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o F;, = [fi1,...,fin]T € RYX/ are associated per-point features, such as normals, damage
indicators, or material properties.

A desired goal shape is provided as another point-cloud:
9= (Xy,Fy) € RV x RNX/,
Both o, and g are passed through a pretrained perception encoder
o - (RNXS RNXf) SN RNXd

which uses graph-based convolutions followed by a small MLP to produce point-wise latent embed-
dings:

= O(Xy, Fy), Zg :(I)(XQ7F9)7
where d is the embedding dimension. Intuitively, z; captures the current object’s geometric and
topological state, while z, encodes the desired target shape.

2. Action Representation and Forward Noising — We represent the cutting action at time ¢ as a binary
mask

T N
a; = lag1,-- ;v €{0,1}7,
where a; ; = 1 indicates that particle ¢ should be cut. To train our policy using denoising diffusion, we
first define a forward noising process that corrupts aj into progressively noisier versions ay, . .., ar.

Starting from ay = aj, each step applies a small random flip:

N
q(a, | a—1) = H[(l —Be)8(ar; = ar—1,) + Be(ar; # ar—1.4)|,

i=1

where 0; € [0,1] is a noise-rate schedule (e.g. 5; = t/T). After T steps, ar is nearly uniform
random.

3. Score Network and Reverse Diffusion — We train a neural network sq(a;, t, z;, z,) to predict the
gradient of the log-probability of the true mask given the noisy mask:

so(-) ~ Va, log q:(aj | ay).
Concretely, sy receives as input:

* The noisy mask a; (embedded as scalars).
* The timestep ¢, encoded with sinusoidal features.
» The concatenated perception embeddings [z;; z,] € RY*2d,

During inference, we reverse the noising chain by sampling
po(as—1 | &, t,2¢,24) = Categorical (softmax(log(l — Bt, Bt) + so(ay, t, zt,zg))).
This step “denoises” a; one level at a time back toward a clean mask.

4. Training Objective: Denoising Score-Entropy Loss — We optimize 6 by minimizing the expected
squared error between the network’s predicted score and the true score over all timesteps:

T
~ * | ~ 2
Z]Eéf,th(-laf)” so(@,t,2¢,25) — Va, log qi(a; |at)||21-

t=1

EBC (9) = E(ot,g,af)wD

Lpsk(as,af;t)
Because g; uses simple bit-flip noise, the true score gradient has a closed form:
0(ay,; = aj) = (1= Br)
Be(1 — Bt)

Va, logqi(a; | ai) =

5. Inference and Action Reconstruction — At test time:

1. Initialize a7 by sampling each bit from Bernoulli(0.5).
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2. Fort=T,T —1,...,1, sample a;_1 from pg(a;_1 | &, t,2¢,24).
3. The final mask ay indicates the cut points.

4. Fit a planar cut by solving

min Y (nTxe; + )’ |nl=1,

nd . ‘
i1 ag,;=1

where n is the plane normal and d its offset.

Summary. — Our BC policy systematically integrates dynamics-informed perception embeddings
and conditional score-based discrete diffusion modeling. By treating cutting action prediction as a
goal-conditioned denoising process over discrete labels, our method achieves robust and generalizable
cutting behavior across diverse object shapes and cutting goals.

PDDP naturally handles the combinatorial nature of cutting (multimodal mask distributions) and
provides smooth trade-offs between sample quality and runtime via 7. The closed-form score
supervision ensures stable training, and the iterative denoising generates crisp, coherent cutting
actions that generalize across object shapes and materials.

Overall, our method systematically combines efficient topology tracking, pose-invariant shape
evaluation, dynamics-informed perception, and supervised policy learning to enable effective robotic
cutting in general scenarios.
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