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Abstract

Large language models (LLMs) have made fundamental contributions over the last
a few years. To train an LLM, one needs to alternatingly run ‘forward’ computations
and ‘backward’ computations. The forward computation can be viewed as attention
function evaluation, and the backward computation can be viewed as a gradient
computation. In previous work by [Alman and Song, NeurIPS 2023], it was proved
that the forward step can be performed in almost-linear time in certain parameter
regimes, but that there is no truly sub-quadratic time algorithm in the remaining
parameter regimes unless the popular hypothesis SETH is false. In this work, we
show nearly identical results for the harder-seeming problem of computing the
gradient of loss function of one layer attention network, and thus for the entire
process of LLM training. This completely characterizes the fine-grained complexity
of every step of LLM training.

1 Introduction

Large language models (LLMs) have emerged as popular technologies, driving breakthroughs across
many applications in natural language processing, computer vision, translation, and many other
areas [VSP+17, DCLT18, LOG+19, YDY+19, BMR+20, JZLD21, ZRG+22, CND+22, TLI+23,
TMS+23, Man23, TDFH+22, YCRI22, WTB+22, WSD+23, WCZ+23, ZJL+23, ZWH+24,
LLS+24a, XSL24, CLL+24, WMS+24]. The training of these models is a computationally in-
tensive process, characterized by alternating between two primary operations: forward computation
and backward computation. Forward computation, or function evaluation, involves the propagation
of input data through the network to generate predictions. Conversely, backward computation, or
gradient computation, is the process of calculating the gradient of the loss function with respect to
the model’s parameters, facilitating the optimization of these parameters during training.

The efficiency of these computations directly impacts the feasibility and scalability of training LLMs,
particularly as models grow in size and complexity. Recent work by [AS23, AS24c, AS24a] has
carefully studied the forward computation step. They demonstrated a sharp computational boundary,
showing that how quickly the forward steps can be performed depends critically on how large the
entries are of the matrices which define the model parameters. They showed a near-linear time
algorithm when these entries are small, and also proved that when the entries are large, there is no
algorithm much faster than the trivial algorithm, assuming the Strong Exponential Time Hypothesis
(SETH) [IP01] holds.

The Strong Exponential Time Hypothesis (SETH) was introduced by Impagliazzo and Paturi [IP01]
over 20 years ago. It is a strengthening of the P ̸= NP conjecture, and asserts that our current best
SAT algorithms are roughly optimal (for detailed statement, see Hypothesis 3.1 below). SETH is a
popular conjecture from fine-grained complexity theory which has been used to prove lower bounds
for a wide variety of algorithmic problems. See, for instance, the survey [Wil18].
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In other words, in some parameter regimes, the algorithm of [AS23] performs the forward steps
about as quickly as one could hope for, whereas in other regimes, assuming SETH, it is impossible
to design a nontrivially fast algorithm. However, this leaves open many important questions about
LLM training. In the case when forward computation can be done quickly, can the same be said for
backward computation? If not, then the entire training process would still be slow. Relatedly, in
parameter regimes where forward computation is known to be hard, is backward computation also
hard? If not, perhaps heuristic tricks could be used, or other details of the model could be modified,
to speed up the overall training. As we will see shortly, the backward step is defined in a much more
complicated way than the forward step, and it is not evident that algorithms or lower bounds for one
extend to the other.

Our study aims to resolve these questions and determine the fine-grained complexity of the backward
computation phase. Our main result (which we state more formally shortly) shows that the same
computational threshold from forward computation also arises for the backward problem, and that
the problems are easy (or hard) in the exact same parameter regimes. Thus, the forward algorithm
of [AS23] can be combined with our novel backward algorithm to perform each training step for
LLMs in almost linear time when the parameter matrix entries are small enough, whereas when the
entries are not small enough, neither step can be performed quickly.

In addition to characterizing the fine-grained complexity of LLM training, our result for gradient
computation is novel for a few reasons.

• Previous work on computational lower bounds only focuses on forward computations, see
[AS23, KWH23, AS24c, AS24a]. To our knowledge, ours is the first work to prove hardness
of a backward computation step for training an LLM or similar model.

• There has been previous work on algorithms for backward/gradient computation problems
[BPSW21, SYZ21, DHS+22, ALS+23, GQSW24, SZZ24]. That said, most of these works
focus on backwards computation in other settings. The only previous work we’re aware
of that studies the optimization of attention layers (for LLMs) is [GSWY23], which uses
Newton methods that rely on Hessian computations. However, Hessian computation is
substantially more expensive than gradient computation; our algorithm and results apply
directly to the gradient computation and get around the Hessian “barrier”, allowing for faster
algorithms in some parameter regimes, and more powerful lower bounds in others.

Bounded entries. Our result proves that the size of the entries of the matrices defining the LLM play
a substantial role in determining how quickly LLM training can be performed. Prior work on LLM
implementations has observed a similar phenomenon, that algorithmic techniques like quantization
[ZBIW19, HCL+24] and low-degree polynomial approximation [KVPF20], which require bounded
or low-precision entries, can substantially speed up LLM operations. See, for instance, the discussion
of these phenomena in [ZBIW19, Section 2] and [KVPF20, Section 3.2.1]. Our work can be viewed
as giving a theoretical explanation for this phenomenon.

Polynomial approximation. Our new algorithmic approach, which uses a polynomial to approximate
the softmax function, is also not unlike algorithms which have found success in practice [BGVM20,
KWH23, ZBKR24]. For example, see detailed discussions in in [ZBKR24, Section 4.1]. Our new
algorithm improves on these approaches by using theoretically optimal polynomials for softmax, and
combining them with a number of linear algebraic techniques, to give provable guarantees about their
correctness and near linear running time.

Follow-up work of this paper. Recently, a number of works have considered different extensions of
this paper. [LSSZ24] extends our analysis into tensor attention gradient computation and [LSS+24]
extends our results to multi-layer Transformers. On the other hand, [LLS+24b] borrows our tech-
niques and provides a fine-grained attention I/O complexity for attention backward. [LLS+24c]
uses our techniques to provide a fast attention gradient approximation based on Fourier transform.
[LLS+24d] computes a sparse attention matrix based on our analysis as well.

1.1 Problem Definition

Before formally stating our results, we begin by precisely defining the problems we study. We begin
with the following problem of computing a general Attention forward layer.
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Definition 1.1 (ℓ-th layer forward computation). Given weights Q,K, V ∈ Rd×d, and letting
Eℓ ∈ Rn×d denote the ℓ-th layer input, then Eℓ+1 ∈ Rn×d is defined recursively as

Eℓ+1 ← D−1 exp(EℓQK⊤E⊤
ℓ /d)EℓV

where

• D := diag(exp(EℓQK⊤E⊤
ℓ /d)1n).

• exp denotes the exponential function which is applied entry-wise, i.e., exp(A)i,j =
exp(Ai,j) for all matrices A.

• diag() operation takes a vector as input and generates a diagonal matrix with the entries of
that vector.

• 1n denotes the length-n all ones vector.

In mathematical terms, optimization in the context of attention computation is described as (by
renaming the QK⊤ ∈ Rd×d to be X ∈ Rd×d and V ∈ Rd×d to be Y ∈ Rd×d):
Definition 1.2 (Attention optimization). Given four n× d size matrices A1, A2, A3 and E ∈ Rn×d.
Suppose that a d× d size square matrix Y ∈ R is also given. The attention optimization problem is
formulated as:

min
X∈Rd×d

L(X) := 0.5∥D(X)−1 exp(A1XA⊤
2 /d)A3Y − E∥2F .

Here D(X) ∈ Rn×n is

D(X) := diag(exp(A1XA⊤
2 /d)1n).

and ∥ · ∥2F denotes the squared Frobenius norm, i.e., ∥A∥2F :=
∑

i,j A
2
i,j .

Remark 1.3. In principle, the loss function above, and resulting gradients below, should depend on
both X and Y . However, since the final matrix computed in the norm in L depends only linearly on
Y , it is straightforward to incorporate it into either an algorithm or lower bound. Thus, in this work,
we focus on the case where X is variable and Y is a fixed input to simplify some arguments.

We thus define the Approximate Attention Loss function Gradient Computation problem as follows:
Definition 1.4 (Approximate Attention Loss Gradient Computation (AAttLGC(n, d, ϵ))). Given
four n × d size matrices A1 ∈ Rn×d, A2 ∈ Rn×d, A3 ∈ Rn×d,, E ∈ Rn×d and a square matrix
Y ∈ Rd×d, which we think of as fixed matrices. Assume that ∥A1X∥∞ ≤ B, ∥A2∥∞ ≤ B for a
positive parameter B. Further assume that all the entries of these matrices can be represented as
O(log n)-bit rational numbers. Let L(X) be defined as Definition 1.2. Let dL(X)

dX denote the gradient
of loss function L(x).

The goal is to output a vector g̃ such that

∥g̃ − dL(X)

dX
∥∞ ≤ ϵ.

Here for matrix A, ∥A∥∞ := maxi,j |Ai,j |.

1.2 Main Results

Our main results show that there is a threshold in the computational complexity of AAttLGC(n, d =
O(log n)) depending on the bound B. When B = o(

√
log n) we give a new near-linear-time

algorithm, and when B = ω(
√
log n), we show that such an algorithm is impossible assuming SETH.

This matches the results of [AS23], where a nearly identical threshold at B around
√
log n was also

observed. Our results therefore imply that the entire LLM training process has this computational
threshold.
Theorem 1.5 (Main result, Lower bound, informal version of Theorem E.5). Assuming SETH, there
is no algorithm running in time O(n2−q) for any q > 0 for the AAttLGC(n, d = O(log n), B =
ω(
√
log n)) (see Definition 1.4).
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Theorem 1.6 (Main result, Upper bound, informal version of Theorem D.6). Assuming entries are
bounded, there is a n1+o(1) time algorithm to solve AAttLGC(n, d = O(log n), B = o(

√
log n))

(see Definition 1.4) up to 1/ poly(n) accuracy.

Our new algorithm (Theorem 1.6) builds on a low-rank approximation for the attention matrix from
prior work [AA22, AS23]. Incorporating these approximation into the gradient computation is not
straightforward; in the forward problem, one simply multiplies the attention matrix by an input value
matrix, but in the backward problem, it is combined with other matrices in an intricate (non-linear)
way. We ultimately use tools from tensor algebra to get a handle on the entry-wise products and
high-rank sparse matrices which arise in the gradient computation but do not typically preserve the
needed low-rank structure.

Our new lower bound (Theorem 1.5) comes from a careful reduction from a special case the forward
problem (where hardness is known from prior work) to the backward problem. Reducing from
computing a function to computing its gradient in general is quite challenging or impossible without
control over how quickly the gradient may be growing or changing, and in general, the gradient of
the forward (attention) computation can behave quite erratically (which is likely necessary for the
expressive power of attention units). Nonetheless, in the special case of the inputs for which attention
computation is known to be hard from prior work, we are able to reasonably control the growth of
these gradients and successfully perform our reduction.

Roadmap. We discuss other related works in Section 2. In Section 3, we provide the basic notation,
definitions, backgrounds, and facts which we will use. In Section 4, we provide the proof sketch
of our algorithm and defer the details to the Appendix. In Section 5, we briefly conclude our paper.
In Section 6, we discuss the limitations of our paper. In Section 7, we provide the broader impact
statement.

2 Related Work

Fine-grained Complexity. Numerous algorithmic techniques have been used in theory and in
practice for attention computations. The first algorithm with provable guarantees, by Zandieh, Han,
Daliri, and Karbasi [ZHDK23], used locality sensitive hashing (LSH) techniques [CKNS20], while
later work by Alman and Song [AS23] used polynomial approxmation methods [ACSS20, AA22].
We particularly focus here on the latter technique, which is the only algorithm we’re aware of which
achieves near-linear running time.

Keles, Wijewardena, and Hedge [KWH23] established the first lower bound on attention computation
under the assumption of SETH. Their findings demonstrated that when d = ω(log n), it is not
possible to execute forward computations in subquadratic time. The later lower bound of [AS23]
further incorporated the magnitudes of the input entries into the lower bound to tightly match
the aforementioned algorithms. Both use the high-level technique of [BIS17] from kernel density
estimation, and build on methods derived from fine-grained complexity associated with approximate
nearest neighbor search [Rub18] and the polynomial method [AA22].

Fast Attention Computation. Optimizing the computation of attention mechanisms in pre-trained
LLMs, given their extensive parameter sets, has been a focal point of recent research. Various
studies have explored the application of locality sensitive hashing (LSH) techniques to approximate
attention mechanisms. [KKL20] introduced two methods to enhance computational efficiency,
including the use of LSH to replace dot product attention and a reversible residual layer to substitute
the standard residual layer. [CLP+21] refined this approximation, noting that LSH’s efficiency
does not require constant parameter updates. [ZHDK23] proposed an innovative estimator based
on Kernel Density Estimation (KDE) to speed up the softmax function and matrix multiplication
computations. Some recent works [HJK+23, KMZ23] have specifically used sketching techniques to
avoid large entries in the attention matrix. [PMXA23] developed techniques utilizing a transformer
within a transformer (TinT) model to simulate the transformer’s forward and backward passes,
significantly increasing parameter efficiency. [MGN+23] tackled the challenge of fine-tuning LLMs
with high memory demands by improving the classical ZO-SCD optimizer, creating a memory-
efficient gradient estimator that requires only a forward pass. [BSZ24] provided insights into dynamic
attention problems, they provide algorithm and hardness for the dynamic setting of attention problem.
[GSY+23a] introduces a quantum algorithm for attention computation, opening new avenues for
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efficiency improvements. [GSYZ24] provides a result for computing the attention matrix differentially
privately. [DMS23] introduces a randomized and deterministic attention sparsification algorithms for
over-parameterized feature dimension. [DLMS23] provides a zero-th order method to accelerate the
computation of attention. [FA23, SLBK23, LLSS24] use weights sparsity to accelerate the attention
computation, but cannot reduce the time complexity. [SMN+24] compress the input token length to
accelerate attention inference. [CLS+24] uses Half-Space Reporting (HSR) techniques to accelerate
attention computation. [SYZ24] studies proxy for softmax attention such as matrix exponential and
provides fast algorithms for these proxies.

Transformer Training. Transformer architectures (the backbone of LLMs) have been trained with
alternating steps of forward and backward computations since their introduction [VSP+17, DCLT18,
LOG+19, YDY+19, BMR+20, ZRG+22]. In Appendix B below, we perform computations to verify
that our stated problems are the same as the forward and backward steps from the literature. Note that
there are many weights update methods, such as LoRA [HSW+21, ZL23, HSK+24], prefix turning
[LL21, LSSY24], and many so on. In this paper, we consider the standard training algorithm with
gradient back-propagation. On the other hand [HYW+23, HLSL24, WHHL24, HCL+24, HWL24a,
HCW+24] introduce the modern Hopfield models as a proxy for possible fast attention computation in
training (and inference), which have been used in various applications [XHH+24, WHL+24]. Similar
analyses of computational feasibility have also been conducted for transformer-based diffusion
models, such as Diffusion Transformers (DiTs) [HWL+24b, Ano24].

3 Preliminary

In Section 3.1, we define some basic notation we will use. In Section A.3, we state important facts
related to fast matrix multiplication. In Section 3.2, provide the formal definition of the Strong
Exponential Time Hypothesis. In Section 3.3, we define several intermediate functions related to
softmax and exponential which will arise in our algorithms. In Section 3.4, we define the loss function.
In Section 3.5, we provide standard tensor tricks which we will use. In Section 3.6, we show how to
reformulate the loss function for our purposes.

3.1 Notation

For any positive integer n, we define [n] := {1, 2, . . . , n}. For two same length vector x and y, we
use ⟨x, y⟩ to denote the inner product between x and y, i.e., ⟨x, y⟩ = ∑n

i=1 xiyi. We use x ◦ y to
denote vector that i-th entry is xiyi. Let 1n denote the length-n all ones vector. It is not hard to see
that ⟨x ◦ y,1n⟩ = ⟨x, y⟩. For a vector x, we use x⊤ to denote the transpose of x. For a matrix M ,
we use M⊤ to denote the transpose of matrix M . For a vector x, we use exp(z) to denote the vector
that i-th coordinate is exp(zi). For a matrix M , we use exp(M) to denote the matrix that (i, j)-th
coordinate is exp(Mi,j). For a function f , we use Õ(f) to denote f ·poly(log f). Let n0, n1,m0,m1

be positive integers. Let X ∈ Rn0×m0 and Y ∈ Rn1×m1 . We define the Kronecker product between
matrices X and Y , denoted X ⊗ Y ∈ Rn0n1×m0m1 , as (X ⊗ Y )(j0−1)n1+j1,(i0−1)m2+i1 is equal to
Xj0,i0Yj1,i1 , where j0 ∈ [n0], i0 ∈ [m0], j1 ∈ [n1], i1 ∈ [m1].

3.2 Backgrounds on Complexity

Over 20 years ago, Impagliazzo and Paturi [IP01] introduced the Strong Exponential Time Hypothesis
(SETH), an enhancement of the P ̸= NP conjecture. It posits that the existing algorithms for solving
SAT problems are essentially as efficient as possible:

Hypothesis 3.1 (Strong Exponential Time Hypothesis (SETH)). For any ϵ > 0, there exists a positive
integer k ≥ 3 for which solving k-SAT problems with n variables in O(2(1−ϵ)n) time is impossible,
including with the use of randomized algorithms.

SETH, a widely recognized conjecture, has been instrumental in establishing fine-grained lower
bounds across a broad spectrum of algorithmic challenges, as highlighted in the survey [Wil18].
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3.3 Definitions related with Softmax

Now, we start by some definitions about X ∈ Rd×d which will be helpful. Let x denote the
vectorization of X .
Definition 3.2. Let A1, A2 ∈ Rn×d be two matrices. Suppose that A = A1 ⊗ A2 ∈ Rn2×d2

. We
define Aj0 ∈ Rn×d2

be a n× d2 size sub-block from A. Note that there n such sub-blocks.

For every j0 ∈ [n], let us define function u(x)j0 : Rd2 → Rn to be:

u(x)j0 := exp(Aj0 x)︸ ︷︷ ︸
n×1

.

Definition 3.3. Suppose that there are two n × d size matrices A1, A2 ∈ Rn×d. We define Aj0 ∈
Rn×d2

be a n× d2 size sub-block from A. (Recall that A = A1 ⊗A2 ∈ Rn2×d2

.)

For every index j0 ∈ [n], we consider a function, α(x)j0 : Rd2 → R as:

α(x)j0 := ⟨exp(Aj0 x)︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩.

Definition 3.4. Suppose that α(x)j0 ∈ R is defined as in Definition 3.3.

Recall u(x)j0 ∈ Rn is defined as in Definition 3.2.

For a fixed j0 ∈ [n], let us consider function f(x)j0 : Rd2 → Rn

f(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

u(x)j0︸ ︷︷ ︸
n×1

.

Let f(x) ∈ Rn×n denote the matrix where j0-th row is (f(x)j0)
⊤.

Definition 3.5. For every i0 ∈ [d], we define h()i0 : Rd2 → Rn as:

h(y)i0 := A3︸︷︷︸
n×d

Y∗,i0︸︷︷︸
d×1

.

Here let Y ∈ Rd×d denote the matrix representation of y ∈ Rd2

. Let h(y) ∈ Rn×d matrix where i0
column is h(y)i0 .

3.4 Loss Functions

In this section, we introduce some helpful definitions related to both x ∈ Rd2

.
Definition 3.6. For every j0 ∈ [n], we use f(x)j0 ∈ Rn to denote the normalized vector defined by
Definition 3.4. For every i0 ∈ [d], we let h(y)i0 to be defined in Definition 3.5.

Consider every j0 ∈ [n], every i0 ∈ [d]. Let us consider c(x)j0,i0 : Rd2 × Rd2 → R as follows:

c(x)j0,i0 := ⟨f(x)j0 , h(y)i0⟩ − Ej0,i0 .

Here Ej0,i0 is the (j0, i0)-th coordinate/location of E ∈ Rn×d for j0 ∈ [n], i0 ∈ [d].

This is equivalent to

c(x)︸︷︷︸
n×d

= f(x)︸︷︷︸
n×n

h(y)︸︷︷︸
n×d

− E︸︷︷︸
n×d

.

Definition 3.7. For every j0 ∈ [n], for every i0 ∈ [d]. Let us define L(x)j0,i0 to be := 0.5c(x)2j0,i0 .

3.5 Tensor Trick

We state the well-known tensor-trick. It has been widely used in literature of linear algebra related
to tensor computations [SWZ19, DSSW18, DJS+19, SWYZ21, AS24c, GSX23, Zha22, RSZ22,
GSY23b, DSY23, DGS23].
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Fact 3.8 (Tensor trick). For two matrices A1 and A2 ∈ Rn×d, define A = A1 ⊗A2. Let X ∈ Rd×d.
Let x ∈ Rd2

denote the vector representation of X . Then we have vec(A1XA⊤
2 ) = Ax.

Using the above tensor-trick, it is easy to observe that

Fact 3.9. For two matrices A1 and A2 ∈ Rn×d, denote A = A1 ⊗ A2. Let X ∈ Rd×d. Let
Aj0 ∈ Rn×d2

a submatrix of A (by properly selecting n rows of A). Let x ∈ Rd2

denote the vector
representation of X . Then, we have

• vec(exp(A1XA⊤
2 )) = exp(Ax)

• (exp(A1XA⊤
2 )j0,∗)

⊤ = exp(Aj0 x),

Here exp(A1XA⊤
2 )j0,∗ is the j0-th row of n× n matrix exp(A1XA⊤

2 ).

Proof. We can use the definition in fact and Fact 3.8, to prove it.

3.6 Reshape the Loss function via Tensor Trick

Lemma 3.10. Given the below requirements

• Here are three matrices A1 ∈ Rn×d, A2 ∈ Rn×d, and A3 ∈ Rn×d.

• Let A = A1 ⊗A2 ∈ Rn2×d2

to be the Kronecker product of the two matrices A1 and A2.

– For every j0 ∈ [n], define Aj0 ∈ Rn×d2

to be a n × d2 sized block in the matrix
A ∈ Rn2×d2

.

• E ∈ Rn×d be a matrix. Define Ej0,i0 as the (j0, i0)-th coordinate/location of E ∈ Rn×d

for every pair of j0 ∈ [n] and i0 ∈ [d] .

• Here are two square matrices X ∈ Rd×d, let Y ∈ Rd×d.

• Let L(X) be defined as Definition 1.2.

• For every pair of j0 ∈ [n], i0 ∈ [d], recall that definition of L(x)j0,i0 can be found in in
Definition 3.7.

Then, we have

L(X) =
∑

j0∈[n]

∑
i0∈[d]

L(x)j0,i0 .

Proof. We can show that

L(X) = 0.5 · ∥D(X)−1︸ ︷︷ ︸
n×n

exp(A1XA⊤
2 )︸ ︷︷ ︸

n×n

A3︸︷︷︸
n×d

Y︸︷︷︸
d×d

− E︸︷︷︸
n×d

∥2F

=

n∑
j0=1

d∑
i0=1

0.5 · (⟨⟨exp(Aj0 x),1n⟩−1 · exp(Aj0 x), A3Y∗,i0⟩ − Ej0,i0)
2

=

n∑
j0=1

d∑
i0=1

0.5(⟨f(x)j0 , h(y)i0⟩ − Ej0,i0)
2

=

n∑
j0=1

d∑
i0=1

L(x)j0,i0

where the first step follows from definition, the second step follows from writing down the summation,
the third step follows from definition of f(x)j0 (recall the Definition 3.4) and h(y)i0 (recall the
Definition 3.5), and the last step follows from L(x)j0,i0 (see Definition 3.7).
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c(x)j0,i0 d2

n

A⊤
j0 ( n diag(f(x)j0)

n

− n

f
(x
)
j
0

n
f(x)⊤j0

) n
h
(y
)
i
0

Figure 1: An example of c(x, y)j0,i0 · A⊤
j0,i(diag(f(x)j0)− f(x)j0f(x)

⊤
j0
)h(y)i0 .

4 Proof Sketch for General Upper Bound

The most straightforward way to compute the gradient would take O(n2d2) time in order to explicitly
write down the matrix A. We first show how to obtain an intermediate algorithm, which runs in
slightly improved time O(n2d+ nd2) to compute the gradient. Our final algorithm will build on this
idea.
Lemma 4.1 (Warmup, attention gradient computation, informal version of Lemma C.8). If the
following conditions hold

• Define four n× d size matrices E,A1, A2, A3 and two d× d square matrices X,Y to be
input fixed matrices.

• Let X ∈ Rd×d and Y ∈ Rd×d denote matrix variables (we will compute gradient with
respect to X ).

• Let g = dL(X)
dX .

Then the gradient g can be calculated in O(n2d+ nd2) time.

The key idea behind Lemma 4.1 is to use algebraic manipulations to quickly compute the quantities
defined in the previous section. We first compute f(x) in O(nd2) time, then show c(x) and q(x)
can be computed in O(n2d) time. Using these, we compute p(x) in (n2) time, then putting in all
together, we compute g in O(n2d+ nd2) time. (We refer the details to Section C.)

For notational simplicity, we also write x ∈ Rd2×1 to denote the vectorized version of X , and
similarly y ∈ Rd2×1 for Y .

Next, we will show how to improve the running time of computing the gradient from quadratic time
(≥ n2) to almost linear time n1+o(1). We build on the approach of Lemma 4.1 for computing the
intermediate quantities f, c, q, and p, but speed up the time it takes to implicitly, rather than explicitly,
represent these quantities. We want to emphasize that, although our algorithm relies on careful
manipulation of the input matrices, our main algorithmic result does not make use of fast matrix
multiplication (which may otherwise be quite impractical).

We now sketch the main algorithmic ideas. First, by linearity of derivative, we can show that

dL(x)

dx
=

n∑
j0=1

d∑
i0=1

dL(x)j0,i0
dx

Based on calculations we perform in Section B, Section C, and several linear algebra facts, we can
show that

dL(x)j0,i0
dx

= c(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

For any fixed j0 ∈ [n], consider this quantity. Since this expression involves an n × n matrix, the
most straightforward way to calculate it would take Θ(n2) time, and so summing over all j0 ∈ [n]

8



would lead to a cubic-time algorithm. It is not too difficult to improve this: the n × n matrix (see
Figure 1 for an illustration)

( diag(f(x)j0)︸ ︷︷ ︸
a diagonal matrix

− f(x)j0f(x)
⊤
j0︸ ︷︷ ︸

a rank 1 matrix

)

is easily decomposed into a low-rank part (f(x)j0f(x)
⊤
j0

which has size n × n) and a sparse part
(diag(f(x)j0) which also has size n× n), which reduces the calculation of each part to only Õ(n)

time, and the total running time to Õ(n2) time.

However, we are aiming for a almost-linear time algorithm, and it is not possible to achieve this by
treating the different j0 separately, since a given j0 must take Ω(n) time to process. Instead, we use
tensor techniques related to low-rank approximations to simultanouesly compute all j0 together and
sum them in almost-linear time.

To do that, we create several extra artificial or intermediate matrices q(x) ∈ Rn×n(see Section C),
p(x) ∈ Rn×n (see Section C). We will show the gradient can be finally constructed using a simple
chaining technique (see Section D for more details), from f, c, q, p1 (handling diag(f(x)j0) similarly),
p2 (handling f(x)j0f(x)

⊤
j0

similarly), p (p = p1 − p2) to dL
dx . Intuitively, the chaining shows that a

low rank representation for f yields one for c, and these in turn yield one for q, and so on.

In particular, using q(x), we obtain that dL(x)
dx can be written as

n∑
j0=1

A⊤
j0( a diagonal matrix︸ ︷︷ ︸

diag(f(x)j0 )

− a rank 1 matrix︸ ︷︷ ︸
f(x)j0f(x)

⊤
j0

) a column vector︸ ︷︷ ︸
q(x)j0

which in fact notably removes the summation step of i0 = 1 to d. Using the notation of p(x), we
finally yield that we need to compute A⊤

1 p(x)A2. Thus as long as p(x) has a low-rank representation,
then we can solve the in n1+o(1) time (see Section D for more details). In particular, we will find that
p(x) is the entry-wise product of two matrices with low-rank representations from prior work, which
we can combine using a column-wise Kronecker product to approximate p(x) itself.

5 Conclusion

Our results give a complete fine-grained analysis of the running time needed to train LLMs. We show
that there is a threshold depending on the parameter B, the magnitude of the parameter matrix entries.
In settings where B is small, a near-linear-time algorithm for LLM training is possible by using our
novel algorithm for backward computation. In settings where B is large, not only does our algorithm
not apply, but we show it is impossible to design a nontrivially-fast algorithm (barring a breakthrough
in satisfiability algorithms that would refute the popular SETH).

These insights can guide LLM designers to more efficient algorithms. When B can be made small, it
would lead to substantial savings in the computational resources needed for training and expression.
When B must be large (perhaps to achieve a high expressiveness?), our lower bounds show that one
may as well use straigthforward algorithms and focus on other aspects of algorithm speedup such as
parallelization. The magnitude of B needed has been studied more recently (e.g., [AS24c]), and the
need for fast training algorithms may further motivate this direction of research.

6 Limitations

Our main algorithm shows that the polynomial method can be used to quickly train LLMs with
provable guarantees. While polynomial methods are frequently used for LLM operations in practice,
they are typically simpler than the algorithms we present here. Implementing our algorithm in a
practical way would require substantial future engineering work which is beyond the scope of this
paper. Our lower bound is predicated on the Strong Exponential Time Hypothesis (SETH), a popular
conjecture from fine-grained complexity theory. As with most results in complexity theory, results
proved using a conjecture like this naturally come with associated limitations: the hard instances
of SAT may not translate to the most important instances of LLM training, or the conjecture may
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not even be true! That said, we wish to emphasize that SETH is the most popular conjecture in
fine-grained complexity, used to prove the optimality of many algorithms in nearly every domain of
computation, and decades of research in satisfiability algorithms have supported its veracity.

7 Broader Impact Statement

We give a new algorithm with provable guarantees for LLM training, which can help to guide future
algorithm design in practice. This will help to develop the many positive broader impacts of LLMs.
Since this is a purely theoretical work, which addresses theoretical computational concerns for
implementing known algorithms, we believe it does not introduce any negative societal impact.
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Appendix

Roadmap.

In Section A, we provide basic notation and facts. In Section B, we provide details about gradient
computations. In Section C, we explain the computation time for the gradient of attention loss. In
Section D, we show how to further improve the gradient computation from quadratic time to almost
linear time. In Section E, we provide our main lower bound result.

A Preliminaries

In Section A.1, we define some basic notation. In Section A.2, we state several facts which we will
use.

A.1 Notation

For any positive integer n, we define [n] := {1, 2, . . . , n}.
For two same length vector x and y, we use ⟨x, y⟩ to denote the inner product between x and y, i.e.,
⟨x, y⟩ = ∑n

i=1 xiyi. We use x ◦ y to denote vector that i-th entry is xiyi. Let 1n denote the length-n
all ones vector. It is not hard to see that ⟨x ◦ y,1n⟩ = ⟨x, y⟩.
For a vector u, we use u⊤ to denote the transpose of u. For a matrix M , we use M⊤ to denote the
transpose of matrix M .

For a vector u, we use exp(u) to denote the vector that i-th coordinate is exp(ui). For a matrix A,
we use exp(A) to denote the matrix that (i, j)-th coordinate is exp(Ai,j).

We define the Kronecker product between matrices X and Y , denoted X ⊗ Y ∈ Rn0n1×m0m1 , as
(X ⊗Y )(j0−1)n1+j1,(i0−1)m2+i1 is equal to Xj0,i0Yj1,i1 , where j0 ∈ [n0], i0 ∈ [m0], j1 ∈ [n1], i1 ∈
[m1].

For each positive integers m1,m2,m3, we use Tmat(m1,m2,m3) to denote the time of multiplying
m1 ×m2 matrix with another m2 ×m3 matrix.

A.2 Basic Facts

Fact A.1. Let x, y, z ∈ Rn. Then we have

• ⟨x ◦ y, z⟩ = x⊤diag(y)z.

• ⟨x, y⟩ = ⟨x ◦ y,1n⟩.
Fact A.2 (Folklore). Let U1, V1 ∈ Rn×k1 . Let U2, V2 ∈ Rn×k2 . Then we have

(U1V
⊤
1 ) ◦ (U2V

⊤
2 ) = (U1 ⊘ U2)(V1 ⊘ V2)

⊤

Here, given U1 ∈ Rn×k1 and U2 ∈ Rn×k2 , the U1 ⊘ U2 ∈ Rn×k1k2 is the row-wise Kronecker
product, i.e., (U1 ⊘ U2)i,l1+(l2−1)k1

:= (U1)i,l1Ui,l2 for all i ∈ [n], l1 ∈ [k1] and l2 ∈ [k2]

A.3 Matrix Multiplication

We define matrix multiplication notation and state some well-know facts here.
Definition A.3. Let n1, n2, n3, denote any three positive integers. We use Tmat(n1, n2, n3) to denote
the time of multiplying an n1 × n2 matrix with another n2 × n3.

The straightgforward algorithm following the definition of matrix multiplication gives that
Tmat(n1, n2, n3) ≤ O(n1n2n3). In fact, we will only use this straightforward bound in all our
algorithms in this paper, and we avoid needing any other (potentially impractical) matrix multiplica-
tion algorithms. Nonetheless, we will emphasize the appearances of Tmat in our algorithms below,
since then any fast algorithms or systems for performing matrix multiplication could be used to speed
up these steps of our approach.

It is well-known that
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Fact A.4 ([BCS97, Blä13]). Let n1, n2, n3, denote any three positive integers. Tmat(n1, n2, n3) =
O(Tmat(n1, n3, n2)) = O(Tmat(n2, n1, n3)) = O(Tmat(n2, n3, n1)) = O(Tmat(n3, n1, n2)) =
O(Tmat(n3, n2, n1)).

B More Details about Gradient Computation

In this section, we provide details and calculations to assist with gradient and derivative computations.
We remark that, in this section, for convenience of computing a closed form for the gradient, we
ignore the 1/d factor in function f . Since it is only a rescaling factor, it won’t affect how we compute
these matrices in general.
Lemma B.1 (The gradient computation for several different functions with respect to xi). For every
i ∈ [d2], define Aj0,i ∈ Rn to be the i-th column for Aj0 ∈ Rn×d. u(x)j0 ∈ Rn. The scalar function
α(x)j0 ∈ R, column function f(x)j0 ∈ Rn, scalar function c(x)j0,i0 ∈ R and scalar function
L(x)j0,i0 ∈ R are defined as in Definitions 3.2, 3.3, 3.4, 3.6 and 3.7 respectively.

Then, for each i ∈ [d2], we have

• Part 1.
dx

dxi
= ei

• Part 2. For each j0 ∈ [n],

dAj0 x

dxi
= (Aj0)i

• Part 3. For each j0 ∈ [n]

du(x)j0
dxi

= Aj0,i ◦u(x)j0

• Part 4. For each j0 ∈ [n],

dα(x)j0
dxi

= ⟨Aj0,i, u(x)j0⟩

• Part 5. For each j0 ∈ [n],

df(x)j0
dxi

= Aj0,i ◦f(x)j0 − ⟨Aj0,i, f(x)j0⟩ · f(x)j0

• Part 6. For each j0 ∈ [n], for each i0 ∈ [d],

d⟨f(x)j0 , h(y)i0⟩
dxi

= ⟨h(y)i0 ,Aj0,i ◦f(x)j0⟩ − ⟨h(y)i0 , f(x)j0⟩ · ⟨Aj0,i, f(x)j0⟩

• Part 7. For each j0 ∈ [n], for every i0 ∈ [d]

dc(x)j0,i0
dxi

= ⟨Aj0,i ◦f(x)j0 , h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨Aj0,i, f(x)j0⟩

• Part 8. For each j0 ∈ [n], for each i0 ∈ [d]

dL(x)j0,i0
dxi

= (⟨h(y)i0 ,Aj0,i ◦f(x)j0⟩ − ⟨f(x)j0 ,Aj0,i⟩ · ⟨h(y)i0 , f(x)j0⟩) · c(x)j0,i0

Proof. Proof of Part 1. We have

dx

dxi
= ei
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Proof of Part 2. We have

dAj0 x

dxi
= Aj0︸︷︷︸

n×d2

dx

dxi︸︷︷︸
d2×1

= Aj0︸︷︷︸
n×d2

· ei︸︷︷︸
d2×1

= Aj0,i

Proof of Part 3.

We can show

du(x)j0
dxi

=
d exp(Aj0 x)

dxi

= exp(Aj0 x) ◦
dAj0 x

dxi

= exp(Aj0 x) ◦ Aj0,i

= u(x)j0 ◦ Aj0,i

where the 3rd step follows from Part 2, the last step follows from definition of u(x)j0 .

Proof of Part 4.

For simplicity of writing proofs, we use (·) to denote (x).

We can show

dα(·)j0
dxi

=
d⟨u(·)j0 ,1n⟩

dxi

= ⟨u(·)j0 ◦ Aj0,i,1n⟩
= ⟨u(·)j0 ,Aj0,i⟩

where the 1st step follows from definition of α(·), the 2nd step follows from Part 3, the 3rd step
follows from Fact A.1.

Proof of Part 5. For simplicity of writing proofs, we use (·) to denote (x).

We can show that

df(·)j0
dxi

=
dα(·)−1

j0
u(·)j0

dxi

= α(·)−1
j0

du(·)j0
dxi

+ (
dα(·)−1

j0

dxi
)u(·)j0

For the first term, we have

α(·)−1
j0

du(·)j0
dxi

= α(·)−1
j0

u(·)j0 ◦ Aj0,i

= f(·)j0 ◦ Aj0,i

where the 1st step follows from Part 3, the 2nd step follows from definition of f(·).
For the second term, we have

(
dα(·)−1

j0

dxi
)u(·)j0 = − α(·)−2

j0

dα(·)j0
dxi

u(·)j0
= − α(·)−2

j0
· ⟨u(·)j0 ,Aj0,i⟩ · u(·)j0

= − f(·)j0 · ⟨f(·)j0 ,Aj0,i⟩
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n diag(f(x)j0)

n

− n

f
(x
)
j
0

n
f(x)⊤j0

Figure 2: An example of diag(f(x)j0)− f(x)j0f(x)
⊤
j0

.

where the 1st step follows from basic calculus, the 2nd step follows from Part 4, the 3rd step follows
from definition of f(·)j0 .

Using all of the results above, it holds that

df(·)j0
dxi

= f(·)j0 ◦ Aj0,i−f(·)j0 · ⟨f(·)j0 ,Aj0,i⟩

Proof of Part 6. It follows Part 5 directly.

Proof of Part 7. For simplicity of writing proofs, we use (·) to denote (x).

Following the definition of c in Definition 3.6, it holds that

c(·)j0,i0 := ⟨f(·)j0 , h(y)⟩ − Ej0,i0 (1)

Thus it holds that

dc(·)j0,i0
dxi

=
d(⟨f(·)j0 , h(y)i0⟩ − Ej0,i0)

dxi

=
d⟨f(·)j0 , h(y)i0⟩

dxi

= ⟨f(·)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(·)j0 , h(y)i0⟩ · ⟨f(·)j0 ,Aj0,i⟩,

where the 1st step is because of Eq. (1), the 2nd step is from dEj0,i0

dxi
= 0, and the 3rd step is followed

by Part 4.

Proof of Part 8. For simplicity of writing proofs, we use (·) to denote (x). Following the definition
of L(·) in Definition 3.7, it holds that

L(·)j0,i0 = 0.5c(·)2j0,i0 (2)

Thus, we have

dL(·)j0,i0
dxi

=
d(0.5c(·)2j0,i0)

dxi

= c(·)j0,i0
dc(·)
dxi

= c(·)j0,i0 · (⟨f(·)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(·)j0 , h(y)i0⟩ · ⟨f(·)j0 ,Aj0,i⟩),

where the 1st step is followed by the Eq. (2), the 2nd step is due to the chain rule, the last step
followed by Part 5.
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C Time for Straightforward Computation

In Section C.1, we show the calculation of f (Similarly as Section B, we still ignore the 1/d factor
here) and h. In Section C.2, we show the way we calculate c in straightforward way. In Section C.3
and Section C.4, we define two artificial functions p and q, and show how to compute them. In
Section C.5, we provide the way to re-write the gradient in an elegant way. In Section C.6, we finally
put these all together and find the running time of our algorithm.

C.1 Compute f and h

Lemma C.1 (Computing f and h). Suppose the following objects are given

• Let f(x) be defined as Definition 3.4

• Let h(y) be defined as Definition 3.5

Then, we have

• f(x) can be calculated in time of Tmat(n, d, n) + Tmat(n, d, d)

• h(y) can be calculated in time of Tmat(n, d, d)

Proof. Note that

f(x) = D−1 exp(A1XA⊤
2 )

and

D = diag(exp(A1XA⊤
2 )1n)

We firstly compute exp(A1XA⊤
2 ), this takes time of Tmat(n, d, d) and Tmat(n, d, n).

Then we can compute D, which takes O(n2) time.

Then we can compute D−1 exp(A1XA⊤
2 ), this takes O(n2) time.

Thus, the overall time is

Tmat(n, d, d) + Tmat(n, d, n) +O(n2)

= O(Tmat(n, d, d) + Tmat(n, d, n))

Note that h(y) = A3Y which takes time of Tmat(n, d, d).

Thus, the proof is completed.

C.2 Compute c

Lemma C.2 (Computing c). Suppose the following objects are given

• E ∈ Rn×d

• f(x) ∈ Rn×n is given

• h(y) ∈ Rn×d is given,

Then one can compute c(x) ∈ Rn×d in Tmat(n, n, d) time.

Proof. Based on Definition of c(x) ∈ Rn×d which is

c(x) = f(x)h(y)− E

Computing f(x)h(y) takes time of Tmat(n, n, d), and calculating f(x)h(y)−E takes time of O(nd).

Thus, finally, overall time is

Tmat(n, n, d) +O(nd).
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C.3 Computation for q

We will define q, and then explain how to calculate q.
Definition C.3. Define c(x) ∈ Rn×d as in Definition 3.6. Define h(y) ∈ Rn×d as in Definition 3.5.

We define q(x) ∈ Rn×n as

q(x) := c(x)︸︷︷︸
n×d

h(y)⊤︸ ︷︷ ︸
d×n

Then we use q(x)⊤j0 to denote the j0-th row of q(x) ∈ Rn×n.
Lemma C.4. If it holds that

• Suppose c(x) ∈ Rn×d is given

• Suppose h(y) ∈ Rn×d is given

Then, we can compute q(x) in the time of O(Tmat(n, n, d)).

Proof. Recall that q(x) = c(x)h(y)⊤. Thus it takes time of Tmat(n, d, n) = O(Tmat(n, n, d)).

C.4 Computation for p(x)

Let us firstly define p, and then we can show how to construct it.
Definition C.5. For every index j0 ∈ [n], we define p(x)j0 ∈ Rn as

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 .

We define p(x) ∈ Rn×n in the sense that p(x)⊤j0 is the j0-th row of p(x).
Lemma C.6. If the below requirements are holding that

• Suppose f(x) ∈ Rn×n is given

• Suppose q(x) ∈ Rn×n is given

Then, we can compute p(x) in O(n2) time.

Proof. Since diag(f(x)j0) is a diagonal matrix and f(x)j0f(x)
⊤
j0

is a rank-one matrix, we know
that p(x)j0 ∈ Rn can be computed in O(n), for each j0 ∈ [n]. Thus we can construct matrix
p(x) ∈ Rn×n in n×O(n) = O(n2) time in total.

C.5 Analyze the closed form of gradient

Lemma C.7. Define the functions f(x) ∈ Rn×n, c(x) ∈ Rn×d, h(y) ∈ Rn×d, q(x) ∈ Rn×n and
p(x) ∈ Rn×n as in Definitions 3.4, 3.6, 3.5, C.3 and C.5 respectively. A1, A2 ∈ Rn×d are two given
matrices. We define A = A1 ⊗A2. Let L(x) be defined as Definition 1.2. Let L(x)j0,i0 be defined as
Definition 3.7. Then, we can show that dL(x)

dx = vec(A⊤
1 p(x)A2).

Proof. From the Lemma statement, we have

dL(x, y)j0,i0
dxi

= c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩) (3)

Note that by Fact A.1, it holds that

⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ = A⊤
j0,i diag(f(x)j0)h(y)i0

and

⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0h(y)i0
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Therefore, Eq. (3) becomes

dL(x)j0,i0
dxi

= c(x, y)j0,i0 · (A⊤
j0,i diag(f(x)j0)h(y)i0 − A⊤

j0,i f(x)j0f(x)
⊤
j0h(y)i0)

= c(x, y)j0,i0 · A⊤
j0,i(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)h(y)i0 , (4)

where the 2nd step follows from simple algebra.

Recall the way we define q(x)j0 (see Definition C.3).

q(x)j0 :=

d∑
i0=1

c(x)j0,i0h(y)i0 . (5)

Recall that p(x)j0 ∈ Rn is define as Definition C.5,

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 . (6)

It holds that
dL(x)

dx

=

n∑
j0=1

d∑
i0=1

dL(x)j0,i0
dx

=

n∑
j0=1

d∑
i0=1

c(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)q(x)j0

=

n∑
j0=1

A⊤
j0 p(x)j0

= vec(A⊤
1 p(x)A2)

where the 1st step is because of Definition 1.2, the 2nd step is based on Eq. (4), the 3rd step is
followed by Eq. (5), the 4th step is due to Eq. (6), and the last step uses tensor-trick.

C.6 Putting it together

Lemma C.8 (Attention gradient computation, formal version of Lemma 4.1). If it holds that

• Define A1, A2, A3, E ∈ Rn×d. Define X,Y ∈ Rd×d to be several input fixed matrices.

• Let X,Y ∈ Rd×d denote matrix variables (we will compute gradient with respect to X )

– For easy of writing, we also use vector variables x ∈ Rd2×1 and y ∈ Rd2×1, i.e.,
vec(X) = x.

• Let g = dL(X)
dx ∈ Rd2

(where L(X) is defined as Definition 1.2)

Then we can show that gradient g ∈ Rd2

can be computed in Tmat(n, d, n) + Tmat(n, d, d) time.

Proof. Step 1. we compute f(x), h(y). This takes O(Tmat(n, n, d) + Tmat(n, d, d)) time due to
Lemma C.1.

Step 2. we compute c(x). This takes time of O(Tmat(n, n, d) + Tmat(n, d, d)) due to Lemma C.2.

Step 3. we compute q(x). This take time of O(Tmat(n, n, d)) due to Lemma C.4.
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Step 4. we compute p(x). This take time of O(n2) due to Lemma C.6.

Step 5. using Lemma C.7, we know that gradient is equivalent to vec(A⊤
1 p(x)A2). Suppose A⊤

1 ∈
Rd×n, p(x) ∈ Rn×n, A2 ∈ Rn×d are given, then it can be calculated in time of O(Tmat(n, n, d) +
Tmat(n, d, d)).

Thus, overall running for computing gradient is

O(Tmat(n, d, d) + Tmat(n, d, n))

time.

D Fast Running Time via Polynomial Method

Recall that in the previous section, for convenience of computing the derivative, we ignored the d
factor in f . That factor d doesn’t impact the running time of our algorithms since it is just a rescaling
factor. To apply the tools from previous work [AS23], we will now reconsider the 1/d factor in f . In
Section D.1, we will show how to efficiently and explicitly construct a low rank representation for f .
In Section D.2, we show how to create a low rank construction for c(x). In Section D.3, Section D.4
and Section D.5, we further give low rank presentations for q(x), p1(x), p2(x). In Section D.6, we
prove our final algorithmic result by putting everything together.

D.1 Low rank representation to f

Using [AS23]’s polynomial method result, we are able to obtain the following low-rank representation
result,
Lemma D.1 (Section 3 of [AS23]). For any B = o(

√
log n), there exists a k1 = no(1) such that:

Let A1, A2 ∈ Rn×d be two matrices and X ∈ Rd×d be a square matrix. It holds that ∥A⊤
1 X∥∞ ≤

B, ∥A2∥∞ ≤ B, then there are two matrices U1, V1 ∈ Rn×k1 such that ∥U1V
⊤
1 − f(x)∥∞ ≤

ϵ/ poly(n). Here f(x) = D−1 exp(A1XA⊤
2 /d) and we define D = diag(exp(A1XA⊤

2 /d)1n).
Moreover, these matrices U1, V1 can be explicitly constructed in n1+o(1) time.

D.2 Low rank representation to c

Lemma D.2. Let d = O(log n). Assume that each number in the n× d matrices E and h(y) can be
written using O(log n) bits. Let n× d matrix c(x) be defined as Definition 3.6. Then, there are two
matrices U1, V1 ∈ Rn×k1 we have ∥U1V

⊤
1 h(y)− E − c(x)∥∞ ≤ ϵ/ poly(n).

Proof. We can show that

∥U1V
⊤
1 h(y)− E − c(x)∥∞ = ∥U1V

⊤
1 h(y)− E − f(x)h(y) + E∥∞

= ∥(U1V
⊤
1 − f(x))h(y)∥∞

≤ ϵ/ poly(n)

where the first step follows from c(x) = f(x)h(y)− E.

D.3 Low rank representation to q

Lemma D.3. Let k2 = no(1). Define c(x) ∈ Rn×d to be as in Definition 3.6. Define h(y) ∈ Rn×d

to be as in Definition 3.5. Assume that q(x) := h(y)c(x)⊤ ∈ Rn×n. There are two matrices
U2, V2 ∈ Rn×k2 such that ∥U2V

⊤
2 − q(x)∥∞ ≤ ϵ/ poly(n). The matrices U2, V2 can be explicitly

constructed in n1+o(1) time.

Proof. We define q̃(x) to be the approximation of q(x).

From Lemma D.2, we know that U1V
⊤
1 h(y)− E is a good approximation to c(x).

Then we should pick in this way q̃(x) = h(y)(U1V
⊤
1 h(y)− E)⊤.
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Now, let us turn q̃(x) into some low-rank representation

q̃(x) = h(y)︸︷︷︸
n×d

h(y)⊤︸ ︷︷ ︸
d×n

V1︸︷︷︸
n×k1

U⊤
1︸︷︷︸

k1×n

−h(y)︸︷︷︸
n×d

E⊤︸︷︷︸
d×n

It is obvious that we should can first compute h(y)⊤V1 which only takes n1+o(1) time. Then
since all the low rank matrices are known, then we can explicitly construct U2, V2 ∈ Rn×k2 where
k2 = max{d, k}+ d = no(1).

For controlling the error, we can show

∥q̃(x)− q(x)∥∞ = ∥h(y)(U1V
⊤
1 h(y))− E)⊤ − h(y)c(x)⊤∥∞

≤ d · ∥h(y)∥∞ · ∥U1V
⊤
1 h(y))− E − c(x)∥∞

≤ ϵ/ poly(n)

Thus, we complete the proof.

D.4 Low rank representation to p1(x)

Lemma D.4. Let k1 = no(1). Let k2 = no(1). Assume that p1(x) := f(x) ◦ q(x). Assume
U1, V1 ∈ Rn×k1 approximates the f(x) such that ∥U1V

⊤
1 − f(x)∥∞ ≤ ϵ/ poly(n). Assume

U2, V2 ∈ Rn×k2 approximates the q(x) ∈ Rn×n such that ∥U2V
⊤
2 − q(x)∥∞ ≤ ϵ/ poly(n). Then

there are matrices U3, V3 ∈ Rn×k3 such that ∥U3V
⊤
3 −p1(x)∥∞ ≤ ϵ/ poly(n). The matrices U3, V3

can be explicitly constructed in n1+o(1) time.

Proof. We choose U3 = U1 ⊘ U2 and V3 = V1 ⊘ V2. This can be computed in n1+o(1) time.

For easy of writing proofs, we call f̃(x) = U1V
⊤
1 and q̃(x) = U2V

⊤
2 .

Using Fact A.2, we know that

∥U3V
⊤
3 − p1(x)∥∞ ≤ ∥U3V

⊤
3 − f(x) ◦ q(x)∥∞

= ∥(U1 ⊘ U2)(V1 ⊘ V2)
⊤ − f(x) ◦ q(x)∥∞

= ∥(U1V
⊤
1 ) ◦ (U2V

⊤
2 )− f(x) ◦ q(x)∥∞

= ∥f̃(x) ◦ q̃(x)− f(x) ◦ q(x)∥∞
= ∥f̃(x) ◦ q̃(x)− f̃(x) ◦ q(x) + f̃(x) ◦ q(x)− f(x) ◦ q(x)∥∞
≤ ∥f̃(x) ◦ q̃(x)− f̃(x) ◦ q(x)∥∞ + ∥f̃(x) ◦ q(x)− f(x) ◦ q(x)∥∞
≤ ϵ/ poly(n)

where the 1st step follows from the way we define p1(x), the 2nd step follows from the way we
define U3 and V3, the 3rd step follows from Fact A.2, the 4th step follows from the way we define
f̃(x) and q̃(x), the 5th step follows from simple algebra, the 6th step follows by triangle inequality,
and the last step follows by that entries are bounded and ∥f̃(x) − f(x)∥∞ ≤ ϵ/poly(n) (Lemma
assumption) and ∥q̃(x)− q(x)∥∞ ≤ ϵ/ poly(n) (Lemma assumption)

D.5 Low rank representation p2(x)

Lemma D.5. Let k1 = no(1). Let k2 = no(1). Let k4 = no(1). Assume that p2(x) is an n × n
where j0-th column p2(x)j0 = f(x)j0f(x)

⊤
j0
q(x)j0 for each j0 ∈ [n]. Assume U1, V1 ∈ Rn×k1

approximates the f(x) such that ∥U1V
⊤
1 − f(x)∥∞ ≤ ϵ/ poly(n). Assume U2, V2 ∈ Rn×k2

approximates the q(x) ∈ Rn×n such that ∥U2V
⊤
2 − q(x)∥∞ ≤ ϵ/ poly(n). Then there are matrices

U4, V4 ∈ Rn×k4 such that ∥U4V
⊤
4 − p2(x)∥∞ ≤ ϵ/poly(n). The matrices U4, V4 can be explicitly

constructed in n1+o(1) time.
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Proof. We define a local vector function r(x) ∈ Rn where r(x)j0 is f(x)j0q(x)j0 . Let r̃(x) denote
the approximation of r(x).

Note that (U1V1)
⊤
j0,∗ is a good approximation to f(x)j0 .

Note that (U2V2)
⊤
j0,∗ is a good approximation to q(x)j0 .

Let r̃(x)j0 := ⟨f̃(x)j0 , q̃(x)j0⟩ = (U1V1)j0,∗ · (U2V2)
⊤
j0,∗.

For the computation side, we firstly compute V1V
⊤
2 . This takes n1+o(1) time.

Next, we we have
r̃(x)j0 = (U1V1)j0,∗ · (U2V2)

⊤
j0,∗

= (U1)j0,∗︸ ︷︷ ︸
1×k1

V1V
⊤
2︸ ︷︷ ︸

k1×k2

(U2)
⊤
j0,∗︸ ︷︷ ︸

k2×1

Once the V1V
⊤
2 are pre-computed, the above step only takes O(k1k2) time. Since there n coordinates,

so the overall time is still O(nk1k2) = n1+o(1).

Let f̃(x) = U1V
⊤
1 denote the approximation of f(x). Then we just use f̃(x) and r̃(x) to approximate

p2(x) in the following sense, let p̃2(x) = f̃(x)diag(r̃(x)). Since f̃(x) has low rank representation,
and diag(r̃(x)) is a diagonal matrix, then it is obvious how to construct U4 and V4. Basically U4 = U1

and V4 = diag(r̃(x))V1.

Now, we need to control the error, we have
∥U4V

⊤
4 − p2(x)∥∞ = ∥p̃2(x)− p2(x)∥∞

= max
j0∈[n]

∥f̃(x)j0 r̃(x)j0 − f(x)j0r(x)j0∥∞

= max
j0∈[n]

∥f̃(x)j0 r̃(x)j0 − f̃(x)j0r(x)j0 + f̃(x)j0r(x)j0 − f(x)j0r(x)j0∥∞

≤ max
j0∈[n]

∥f̃(x)j0 r̃(x)j0 − f̃(x)j0r(x)j0∥∞ + ∥f̃(x)j0r(x)j0 − f(x)j0r(x)j0∥∞

where the 2nd step follows follows from definition of p2(x) and p̃2(x).

For the first term, we have

max
j0∈[n]

∥f̃(x)j0 r̃(x)j0 − f̃(x)j0r(x)j0∥∞ ≤ max
j0∈[n]

∥f̃(x)j0∥∞ · |r̃(x)j0 − r(x)j0 |

≤ ϵ/ poly(n)

For the second term, we have

max
j0∈[n]

∥f̃(x)j0r(x)j0 − f(x)j0r(x)j0∥∞ ≤ max
j0∈[n]

∥f̃(x)j0 − f(x)j0∥∞ · |r(x)j0 |

≤ ϵ/ poly(n)

Using the three equations we obtained above, the proof is completed.

D.6 Fast Computation in Almost Linear Time

Theorem D.6 (Main result, formal version of Theorem 1.6). Assuming the entries of
A1, A2, X,A3, Y, E are represented using O(log n) bits, there is a n1+o(1) time algorithm to solve
AAttLGC(n, d = O(log n), B = o(

√
log n)) (see Definition 1.4) up to 1/ poly(n) accuracy. In

particular, our algorithm outputs a gradient vector g̃ ∈ Rd2

such that ∥dLdx − g̃∥∞ ≤ 1/ poly(n).

Proof. Recall definition of n× n matrices p(x) (Definition C.5), p1(x) (see Lemma D.5) and p2(x)
(Lemma D.4), it is straightforward that

p(x) = p1(x)− p2(x).

Using Lemma D.1, Lemma D.2, Lemma D.3, we know that assumptions in Lemma D.4 and
Lemma D.5 are holding, so that we can use Lemma D.4 and Lemma D.5 to obtain that
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• p1(x) has approximate low rank representation U3, V3, let p̃1(x) denote U3V
⊤
3

• p2(x) has approximate low rank representation U4, V4, let p̃2(x) denote U4V
⊤
4

All of the Lemmas D.1, D.2, D.3, D.4 and D.5 are taking n1+o(1) time.

According to the proof for the Lemma C.7, we have that

L(X)

dx
= vec(A⊤

1 p(x)A2)

Thus, we firstly compute A⊤
1 U3V

⊤
3 A2,

• We compute A⊤
1 U3 ∈ Rd×k3 , this takes n1+o(1) time

• We compute V ⊤
3 A2 ∈ Rk3×d, this takes n1+o(1) time

• Compute (A⊤
1 U3) · (V ⊤

3 A2), this takes d2no(1) time

Second, we can compute A⊤
1 U4V

⊤
4 A2,

• We compute A⊤
1 U4 ∈ Rd×k4 , this takes n1+o(1) time

• We compute V ⊤
4 A2 ∈ Rk4×d, this takes n1+o(1) time

• Compute (A⊤
1 U4) · (V ⊤

4 A2), this takes d2no(1) time

So, overall running time is still n1+o(1).

We have

∥dL(X)

dx
− g̃∥∞ = ∥ vec(A⊤

1 p(x)A2)− vec(A⊤
1 p̃(x)A2)∥∞

= ∥A⊤
1 p(x)A2 −A⊤

1 p̃(x)A2∥∞
= ∥A⊤

1 (p1(x)− p2(x))A2 −A⊤
1 (p̃1(x)− p̃2(x))A2∥∞

≤ ∥A⊤
1 (p1(x)− p̃1(x))A2∥∞ + ∥A⊤

1 (p2(x)− p̃2(x))A2∥∞
≤ ∥A1∥∞∥A2∥∞ · n2 · (∥p1(x)− p̃1(x)∥∞ + ∥p2(x)− p̃2(x)∥∞)

≤ ϵ/ poly(n)

where the 4th step follows from triangle inequality, the last step follows from entries in A1, A2 are
bounded, and ∥p1(x)− p̃1(x)∥∞ ≤ ϵ/ poly(n), ∥p2(x)− p̃2(x)∥∞ ≤ ϵ/poly(n) .

Picking ϵ = 1/poly(n), we have the proof completed.

E General Lower Bound

We will critically make use of the known hardness result for attention computation itself, which we
state now.
Definition E.1 (Attention Computation). Given as input matrices Q,K, V ∈ Rn×d and a parameter
ε > 0, compute a matrix T ∈ Rn×d satisfying

∥T −D−1AV ∥∞ ≤ ε,

where A = exp(QK⊤) and D = diag(A1n).

Lemma E.2 (Lemma 4.7 in [AS23]). Assuming SETH, there is no algorithm running in time
O(n2−δ) for any constant δ > 0 that solves Attention Computation (Definition E.1), even when the
inputs satisfy the following constraints, for any parameter κ ≥ 0:

• d = O(log n),
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• V ∈ {0, 1}n×d,

• There is a value B ≤ O(log2 n · (1 + κ)) such that every entry of QK⊤ is in the interval
[0, B] and at least half the entries in each row of QK⊤ are equal to B,

• moreover ∥Q∥∞, ∥K∥∞ ≤ O(
√

log n(1 + κ)), and

• ε < nκ−O(1).

Next, we show that the attention optimization problem behaves particularly well when given matrices
constrained as in Lemma E.2:

Lemma E.3. Let A be a fixed n × n matrix whose entries are real numbers in the interval [0, B],
and such that in each row of A, at least half the entries are equal to B. Let V be any n× d matrix
whose entries are all in {0, 1}. For λ ∈ R, define the n× n matrix Mλ := exp(λA), where exp is
applied entry-wise. Define the function f : R→ R by

f(λ) := ∥diag(Mλ1n)
−1MλV ∥2F ,

Then, for all λ ∈ R we have

• |f ′(λ)| ≤ O(Bn),

• |f ′′(λ)| ≤ O(B2n).

Proof. Let C denote the n × n matrix C = diag(Mλ1n)
−1Mλ. For i, j ∈ [n], we calculate that

Mλ[i, j] = eλA[i,j] and so

C[i, j] =
eλA[i,j]∑n
k=1 e

λA[i,k]
.

For ℓ ∈ [d], let Sℓ ⊆ [n] be the set of 1s in column ℓ of V , i.e., Sℓ = {j ∈ [n] | V [j, ℓ] = 1}. Hence,
for i ∈ [n] and ℓ ∈ [d], the entry (i, ℓ) of the matrix diag(Mλ1n)

−1MλV is given by

diag(Mλ1n)
−1MλV [i, ℓ] = CV [i, ℓ]

=

n∑
j=1

C[i, j]V [j, ℓ]

=
∑
j∈Sℓ

C[i, j]

=

∑
j∈Sℓ

eλA[i,j]∑n
k=1 e

λA[i,k]
.

where the first step follows from definition, the second step follows from simple algebra.

We thus get an explicit expression for f(λ):

f(λ) =

n∑
i=1

∑d
ℓ=1

(∑
j∈Sℓ

eλA[i,j]
)2

(∑n
k=1 e

λA[i,k]
)2

=

n∑
i=1

∑d
ℓ=1

∑n
j1∈Sℓ

∑n
j2∈Sℓ

eλ(A[i,j1]+A[i,j2])∑n
k1=1

∑n
k2=1 e

λ(A[i,k1]+A[i,k2])
.

We define

a(λ, i) :=

d∑
ℓ=1

n∑
j1∈Sℓ

n∑
j2∈Sℓ

eλ(A[i,j1]+A[i,j2])
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and then we define

b(λ, i) :=

n∑
k1=1

n∑
k2=1

eλ(A[i,k1]+A[i,k2])

Combining the above three equations, we can obtain

f(λ) =

n∑
i=1

a(λ, i)/b(λ, i).

Since, for each row of A, at least half the entries equal B, and all the entries are in the interval [1, B],
we can bound (n

2

)2

· e2Bλ ≤ b(λ, i) ≤ (n)
2 · e2Bλ. (7)

Furthermore, since the derivative of eλ(A[i,k1]+A[i,k2]) with respect to λ is (A[i, k1] + A[i, k2]) ·
eλ(A[i,k1]+A[i,k2]), we can bound

2 · b(λ, i) ≤ db(λ, i)

dλ
≤ 2B · b(λ, i). (8)

We may similarly bound

0 ≤ a(λ, i) ≤ n2 · e2Bλ, (9)

and

2 · a(λ, i) ≤ da(λ, i)

dλ
≤ 2B · a(λ, i). (10)

We can thus bound the derivative of f (where here, all the ′ notation means derivative with respect to
λ):

f ′(λ) =
n∑

i=1

a′(λ, i) · b(λ, i)− a(λ, i) · b′(λ, i)
(b(λ, i))2

≤
n∑

i=1

a′(λ, i) · b(λ, i)
(b(λ, i))2

=

n∑
i=1

a′(λ, i)
b(λ, i)

≤
n∑

i=1

2B · n2e2Bλ

(n/2)2 · e2Bλ

=

n∑
i=1

8B

= 8B · n.
where the 1st step follows from definition, the 2nd step follows from simple algebra, the 3rd step
follows from cancelling b(λ, i), the 4th step is using Eq. (7) (for b(λ, i)) and Eq. (10) (for a′(λ, i)),
the 5th step follows from simple algebra, and the last step follows from simple algebra.

Similarly, we can provide a lower bound f ′(λ),

f ′(λ) =
n∑

i=1

a′(λ, i) · b(λ, i)− a(λ, i) · b′(λ, i)
(b(λ, i))2

≥ −
n∑

i=1

a(λ, i) · b′(λ, i)
(b(λ, i))2
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≥ −
n∑

i=1

(n2 · e2Bλ) · (2B · b(λ, i))
((n/2)2 · e2Bλ) · (b(λ, i))

= −
n∑

i=1

8B

= −8B · n.
where the 1st step follows from definition, the 2nd step follows form simple algebra, the 3rd step
follows Eq. (8) (for b′(λ, i)) and Eq. (9) (for a(λ, i)), the 4th step follows from simple algebra, and
the last step follows from simple algbera.

Finally, letting f(λ, i) := a(λ, i)/b(λ, i), we have again by the quotient rule that f ′′(λ) is equal to
n∑

i=1

a′′(λ, i)− b′′(λ, i) · f(λ, i)− 2 · b′(λ, i) · f ′(λ, i)
b(λ, i)

which we similarly bound in magnitude by O(B2n).

We recall a simple approximation from calculus:
Lemma E.4. Let f : [0, 1] → R be a twice-differentiable function such that |f ′′(λ)| ≤ b for all
λ ∈ [0, 1]. For any positive integer m, define the sum

tm :=

m−1∑
i=0

f ′(i/m)

m
.

Then,
|tm − (f(1)− f(0))| ≤ b/m.

Proof. If two λ0, λ1 ∈ [0, 1] have |λ0 − λ1| ≤ 1/m, then from our bound on f ′′(λ), we know that
|f ′(λ1)− f ′(λ0)| ≤ b/m. We can thus bound the difference

f(1)− f(0) =

∫ 1

0

f ′(λ)dλ

by

f(1)− f(0) ≤
m−1∑
i=0

f ′(i/m) + (b/m)

m
= tm + b/m

and

f(1)− f(0) ≥
m−1∑
i=0

f ′(i/m)− (b/m)

m
= tm − b/m.

Thus, we complete the proof.

Finally, we are ready for our main result:
Theorem E.5 (Formal version of Theorem 1.5). Let κ : N → N by any function with κ(n) = ω(1)
and κ(n) = o(log n). Assuming SETH, there is no algorithm running in time O(n2−δ) for any
constant δ > 0 for Approximate Attention Loss Gradient Computation (Definition 1.4), even in the
case where d = O(log n) and the input matrices satisfy ∥A1∥∞, ∥A2∥∞, ∥A3∥∞ ≤ O(

√
log n ·

κ(n)), B = 0, Y = I , X = λI for some scalar λ ∈ [0, 1], and ε = O(1/(log n)4).

Proof. Suppose there were such an algorithm. We call it O((log n)4) times to refute Lemma E.2 (with
parameter κ = κ(n)). Let Q,K, V be the input matrices to Lemma E.2, and set A1 = Q, A2 = K,
A3 = V , Y = I , and X = λI for a parameter λ ∈ [0, 1]. Suppose the function f : [0, 1]→ R is in
Lemma E.3 where A is the matrix A1A

⊤
2 , so that Mλ is the matrix exp(A1XA⊤

2 ). It follows from
Lemma E.3 that

|f ′′(λ)| ≤ O(n log2 n · (κ(n))2).
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We can compute f(0) in Õ(n) time since then Mf is the all-1s matrix, and our goal is to output f(1).

Thus, by Lemma E.4, it suffices to compute f ′(λ) on O(log2(n)(κ(n))2) = O(log4 n) points
up to O(1/(log n)4) error, and return their average. But, since we have picked X = λI , we can
calculate f ′(λ) from the gradient dL(X)

dX (from Definition 1.4), which is approximated by our assumed
algorithm.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper is a purely theoretical paper, and it doesn’t include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have the read the NeurIPS code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed that in Section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

34

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is a purely theoretical paper, and it doesn’t include any experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper is a purely theoretical paper, and it doesn’t include any experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper is a purely theoretical paper, and it doesn’t include any experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper is a purely theoretical paper, and it doesn’t include any experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper is a purely theoretical paper, and it doesn’t include any experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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