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ABSTRACT

Despite the great performance of deep learning models in many areas, they still
make mistakes and underperform on certain subsets of data, i.e. error slices. Given
a trained model, it is important to identify its semantically coherent error slices
that are easy to interpret, which is referred to as the error slice discovery problem.
However, there is no proper metric of slice coherence without relying on extra
information like predefined slice labels. The current evaluation of slice coherence
requires access to predefined slices formulated by metadata like attributes or
subclasses. Its validity heavily relies on the quality and abundance of metadata,
where some possible patterns could be ignored. Besides, current algorithms cannot
directly incorporate the constraint of coherence into their optimization objective
due to the absence of an explicit coherence metric, which could potentially hinder
their effectiveness. In this paper, we propose manifold compactness, a coherence
metric without reliance on extra information by incorporating the data geometry
property into its design, and experiments on typical datasets empirically validate
the rationality of the metric. Then we develop Manifold Compactness based error
Slice Discovery (MCSD), a novel algorithm that directly treats risk and coherence
as the optimization objective, and is flexible to be applied to models of various
tasks. Extensive experiments on the current benchmark and case studies on other
typical datasets demonstrate the effectiveness of our algorithm.

1 INTRODUCTION

In recent years, with the enhancement of computational power, deep learning models have achieved
significant progress in numerous tasks (He et al.,|2016; |Devlin et al.|[2018; He et al.,[2017). Despite
their impressive overall performance, they are far from perfect, and still suffer from performance
degradation on some subpopulations (Sagawa et al., 2019; |Yang et al., 2023)). This substantially
hinders their application in risk-sensitive scenarios like medical imaging (Suzukil |2017), autonomous
driving (Huval et al., 2015}, etc., where model mistakes may result in catastrophic consequences.
Therefore, to avoid the misuse of models, it is a fundamental problem to identify subsets (or slices)
where a given model tends to underperform. Moreover, we would like to find coherent interpretable
semantic patterns in the underperforming slices. For example, a facial recognition model may
underperform in certain demographic groups like elderly females. An autonomous driving system
may fail in the face of steep road conditions. Identifying such coherent patterns could help us
understand model failures, and we could employ straightforward solutions for improvement like
collecting new data (Liu et al.l 2023) or upweighting samples in error slices (Liu et al., [2021).

Previously, there are works of error slice discovery (d’Eon et al., 2022; [Eyuboglu et al., 2022; Wang
et al., [2023b; |Plumb et al., 2023) towards this goal. Despite the emphasis on coherence in error
slice discovery, there is no proper metric to assess the coherence of a given slice without additional
information like predefined slice labels. On one hand, this impairs the efficacy of the evaluation
paradigm of error slice discovery. In the current benchmark (Eyuboglu et al., 2022)), with the help
of metadata like attributes or subclasses, it predefines slices that are already semantically coherent,
and they depict the coherence of a slice discovered by a specific algorithm via the matching degrees
between it and the predefined underperforming slices, so as to evaluate the effectiveness of the
algorithm. Such practice heavily relies on not only the availability but also the quality of metadata,
whose annotations are usually expensive, and may overlook model failure patterns not captured by
existing metadata. On the other hand, due to the absence of an explicit coherence metric, current
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Figure 1: Ilustration of Manifold Compactness based error Slice Discovery (MCSD). The blue points
are correctly classified by the given trained model, while the red ones are wrongly classified. We can
see that the model achieves a good overall accuracy, but exhibit a high error in a certain slice.

algorithms can only indirectly incorporate the constraint of coherence into their design, e.g. via
clustering (Eyuboglu et al., [2022; Wang et al., 2023b; [Plumb et al.,|2023), without treating it as a
direct optimization objective. This could potentially impede the development of more effective error
slice discovery algorithms.

In this paper, inspired by the data geometry property that high dimensional data tends to lie on a
low-dimensional manifold (Belkin & Niyogi, |2003; Roweis & Saul, 2000; Tenenbaum et al., 2000),
we incorporate this property to propose manifold compactness as the metric of coherence given a slice,
which does not require additional information. We illustrate the validity of the metric by showing
that it captures semantic patterns better than

, and is empirically consistent with current evaluation metrics that require predefined
slice labels. Then we propose a novel and flexible algorithm named Manifold Compactness based
error Slice Discovery (MCSD) that jointly optimizes the average risk and manifold compactness to
identify the error slice. Thus both the risk and coherence, i.e. the desired properties of error slices are
explicitly treated as the optimization objective. We illustrate our algorithm in Figure|l| Besides, our
algorithm can be directly applied to trained models of different tasks while most error slice discovery
methods are restricted to classification only. We conduct experiments on dcbench (Eyuboglu et al.|
2022) to demonstrate our algorithm’s superiority compared with existing ones. We also provide
several case studies on different types of datasets and tasks to showcase the effectiveness and flexibility
of our algorithm. Our contributions are summarized below:

* We define manifold compactness as the metric of slice coherence without additional infor-
mation. We empirically show that it captures semantic patterns well, proving its rationality.

* We propose MCSD, a flexible algorithm that directly incorporates the desired properties of
error slices, i.e. risk and coherence, into the optimization objective. It can also be applied to
trained models of various tasks.

* We conduct experiments on the current error slice discovery benchmark to show that our
algorithm outperforms existing ones, and we perform diverse case studies to demonstrate
the usefulness and flexibility of our algorithm.

2 PROBLEM

Unless stated otherwise, for random variables, uppercase letters are used, in contrast to a concrete
dataset where lowercase letters are used. Consider a general setting of supervised learning. The input
variable is denoted as X € X and the outcome is denoted as Y € ), whose joint distribution is
P(X,Y). There exist multiple slices, where j-th slice can be represented as a slice label variable
SU) € {0,1}. For the classic supervised learning, the goal is to learn a model fy : X +— ) with
parameter 6. Denote £ : Y x Y +— [0, +00] as the loss function. Current machine learning algorithms
are capable of learning models with a satisfying overall performance, which can be demonstrated via
alow risk Ep[¢(fs(X),Y)] over the whole population. However, performance degradation could
still occur in a certain subpopulation or slice. Here we introduce the error slice discovery problem:
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Problem 1 (Error Slice Discovery) Given a fixed prediction model fp, : X — Y and a validation
dataset D,, = {(z}*, y}*)} .2, we aim to develop an algorithm A that takes D,, and fg, as input,

and learns slicing functions gfoj) : X x Y= {0,1},1 < j < K. Denote the output of j-th slicing

function as S ;. We require that the risk in the slice is higher than the population-level risk by a certain
threshold: By v p(x y|3,=1) (fo(X),Y)] > Exyopxy)l(fo(X),Y)] + ¢ and the discovery
slice is as coherent as possible for convenience of interpretation.

The reason why we require an extra validation dataset to implement error slice discovery is that for
deep learning models, training data is usually fitted well enough or even nearly perfect. Thus model
mistakes on training data carry much less information on models’ generalization capability. This is
common practice in previous works (d’Eon et al., 2022} [Eyuboglu et al.| 2022; Wang et al., 2023b;
Plumb et al.,[2023). Without ambiguity, we omit the superscript or subscript of “va” for n, x;, y; for
convenience in the next two sections.

3 METRIC

Due to the absence of a proper metric for coherence that is independent of additional information, the
current benchmark (Eyuboglu et al.| 2022} provides numerous datasets, trained models, and their
predefined underperforming slice labels. They employ precision @k, i.e. the proportion of the top k
elements in the discovered slice belonging to the predefined ground-truth error slice as the metric of
slice coherence to evaluate error slice discovery algorithms. Although such practice is reasonable to
some extent, its effectiveness of evaluation strongly relies on the quality of metadata that composes
the underperforming slice labels, which might be not even available under many circumstances.
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Figure 2: Category “Blond Hair” of CelebA. Visualization of t-SNE and UMAP (manifold-based
dimension reduction techniques) shows much clearer clustering structures than that of PCA (mainly
preserving Euclidean distances between data points), indicating that it could be better to measure
coherence in the metric space of a manifold than

To eliminate the requirement of predefined slices, we try to propose a new metric of coherence. It
is commonly acknowledged that high-dimensional data usually lies on a low-dimensional mani-
fold (Belkin & Niyogi, 2003; Roweis & Saull [2000; Tenenbaum et al., 2000). In this case, while

cannot properly capture the dissimilarity between data points, the
geodesic distance in the metric space of the manifold can. For preliminary justification, here we pro-
vide visualization analyses based on different types of dimension-reduction techniques. Among these
techniques, PCA mainly preserves pairwise Euclidean distances between data points while t-SNE
and UMAP are both manifold learning techniques. In Figure[2] blue dots are correctly classified by
the trained model and red dots are wrongly classified. We can see that the visualization of t-SNE
and UMAP shows much clearer clustering structures than that of PCA, either having a larger number
of clusters or exhibiting larger margins between clusters. This indicates that it could be better to
measure coherence in the metric space of a manifold than in the original Euclidean space. Due to the
space limit, we only present results of the widely adopted facial dataset CelebA (Liu et al., [2015))
here, leaving results of other datasets in Appendix where the same conclusion is true.

Therefore, we attempt to define a metric of coherence inside the discovered slice via the compactness
in the data manifold. In practice, the manifold can be treated as a graph G (Melas-Kyriazil [2020),
and we can apply graph learning methods like k-nearest neighbor (kNN) to approximate it (Dann
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et al., 2022). Given an identified slice S = {(x;,:)|8; = 1}, where ; is the output of the slicing
function on ith sample, we define manifold compactness of S as follows:

Definition 1 (Manifold Compactness) Consider a given approximation of the data manifold, i.e. a
weighted graph G = (V, E, Q). The node set V- = {v;}'_; corresponds to the dataset {(;, ;) }1;.
The edge set E = {e;; }1<i j<n, where e;; represents whether node v; and v;j are connected in the
graph G. The weights QQ = {qi; }1<i,j<n, Where q;; represents the weight of edge e;;. Given a slice

S, the manifold compactness of it can be defined as:

A 1
MC(S)=— Y gy ¢))

|S‘ (i,yi)y(25,95) €S

This metric is the average weighted degree of nodes of the induced subgraph, whose vertex set
corresponds to the slice. The higher it is, the denser or more compact the subgraph is, implying a
more coherent slice. Note that when applying this to evaluate multiple slice discovery algorithms, for
convenience of comparison, we control the size of S for those algorithms to be the same by taking
the top an data points sorted by the slicing function’s prediction probability. Here n is the size of
the dataset and « € (0, 1] is a fixed proportion. The operation of selecting data points with highest
prediction probabilities is akin to calculating precision@#k in dcbench (Eyuboglu et al., [2022).

Next, we try to demonstrate
the validity and advantages
of our proposed coherence
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the combination of y and a (the lightest circles in the four corners), and slices of the middle granularity
are formulated by either of y and a. Figure [3] shows the percentage of the increase of manifold
compactness and the decrease of variance with directed arrows from semantically coarse-grained
slices to fine-grained ones. It is intuitive that these digits are supposed to be positive if these two
metrics could properly measure semantic coherence. However, for variance, in some cases the value
of the more coarse-grained slice is even smaller than the more fine-grained, marked in red arrows.
For manifold compactness, there is always a positive increase from semantically coarse-grained
slices to fine-grained slices. In this way, we demonstrate that manifold compactness is better at
capturing semantic coherence than variance does. Still due to the space limit, we only provide results
of CelebA here, and leave detailed values and results of other datasets in Appendix [A.T.2] where we
reach the same conclusion. Besides, in Table [I] of Section[5] we have also empirically shown that
the rank order of the four methods according to precision metrics is generally the same as that of
manifold compactness. Since the precision metrics are based on predefined slice labels with semantic
meanings, it implies that our proposed coherence metric could capture semantic patterns well and is
appropriate for evaluation of slice discovery algorithms even when predefined slice labels are absent.
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Algorithm 1 Manifold Compactness based Error Slice Discovery (MCSD)
Input:
Validation dataset: D = {(x;,y;) ;.
The trained model to be evaluated: fp, : X — ).
Size of the slice as a proportion of the dataset: a.
Coherence coefficient \.
A pretrained feature extractor: hy. : X — Z.

Output: The identified error slice S.
for i = 1tondo
Calculate the embedding: z; = hye(x;).
Calculate the model prediction loss: I; = £( fo, (x:), yi)-
end for
Establish the kNN graph G = (V, E, Q) based on the embeddings {z; }" ;.
Formulate the quadratic programming problem with variables {w;}?_, as Equation .
Employ Gurobi to solve the problem in Equation (2)).
for i = 1tondo
$; = 1if w; > a-Quantile of {w; }?_; else 0.
end for
return: S = {(z;,y;)|8; = 1}

4 ALGORITHM

We introduce Manifold Compactness based error Slice Discovery (MCSD), a novel error slice
discovery algorithm that incorporates the data geometry property by taking manifold compactness
into account. In this way, the metrics of both risk and coherence can be treated as the explicit
objective of optimization, thus better enabling the identified error slice to exhibit consistent and
easy-understanding semantic meanings. The detailed algorithm is described in Algorithm[I] It is
worth noting that although we mainly focus on the identified worst-performing slice for convenience
of analyses and comparison, our algorithm could discover more error slices by removing the first
discovered slice from the validation dataset and applying our algorithm repeatedly to the rest of the
dataset for more error slices. Related experiments and analyses are included in Appendix [A.2]

First, we approximate the data manifold via a graph. To facilitate the graph learning approach, we
obtain the embeddings of the dataset via a pretrained feature extractor (Radford et al., 2021), i.e.
zi = hye(x;), which follows previous works of error slice discovery (Eyuboglu et al., 2022; Wang
et al.| [2023b). Then we construct a kNN graph G = (V, E, ) based on the embeddings {z; }I;,
which is a widely adopted manifold learning approach (Zemel & Carreira-Perpinan, 2004; Pedronette
et all[2018;|Dann et al., 2022). In the graph G, the edge weight ¢;; = 1 if z; is among the k nearest
neighbors of z;, or else g;; = 0.

For the convenience of optimization, instead of hard selection, we assign a sample weight w;
for each data point (x;,y;), which is the variable to be optimized and is restricted in the range
[0, 1]. Considering the model risk, we employ the weighted average mean of loss Z?:l w;l; as our
optimization objective, where I; = ¢( fg,(x;), y;) is the model prediction loss of ith sample given fq, .
Considering coherence, we adopt manifold compactness in Definition [I]as the optimization objective,
ie. D1, >oj_, wiw;gij. We add these two objectives together along with a hyperparameter ).
Besides, we restrict the size of the identified slice to be no more than a proportion « of the dataset.
Thus we formulate the optimization problem as a quadratic programming (QP) problem below:

n n n

twidin i i=1 j=1

n
s.t. Z w; < an
i=1

0<w; <1, Vi<i<n

@
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The above QP problem can be easily solved by classic optimization algorithms or powerful mathemati-
cal optimization solvers like Gurobi (Gurobi Optimization, 2021)). After solving for the proper sample
weights {w;}7 ;, we select the top an samples sorted by the weights as the error slice S. Note that
in most previous algorithms’ workflow, they require the prediction probability as the input (Eyuboglu
et al.,|2022; Plumb et al., [2023; 'Wang et al., [2023b), thus only applicable to classification, while our
algorithm takes the prediction loss as input, naturally more flexible and applicable to various tasks.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the validity of our proposed metric
and the advantages of our algorithm MCSD compared with previous methods. For quantitative
results, we conduct experiments on the error slice discovery benchmark dcbench (Eyuboglu et al.|
2022). Besides, we conduct experiments on other types of datasets like classification for medical
images (Irvin et al., 2019), object detection for driving (Yu et al., [2020), and detection of toxic
comments (Borkan et al.,[2019), which showcase the great potential of our algorithm to be applied to
various tasks. Before we start, we briefly list the baselines:

 Spotlight (d’Eon et al., 2022): It learns a point in the embedding space as the risky centroid,
and chooses the closest points to the centroid as the error slice.

* Domino (Hendrycks & Gimpel, 2016)): It develops an error-aware Gaussian mixture model
(GMM) by incorporating predictions into the modeling process of GMM.

* PlaneSpot (Plumb et al., 2023): It combines the prediction confidence and the reduced
two-dimensional representation together as the input of a GMM.

Note that in all our experiments, we apply algorithms to the validation dataset {z}*, y}*}", to obtain
the slicing function g, and then employ g, on the test dataset {x°, yi°}7", to acquire the prediction
probability of each test sample belonging to the error slice. We choose the top an, samples from
the test dataset sorted by the prediction probabilities as the error slice S, and calculate evaluation
metrics based on it. As for our method that outputs the error slice of the validation dataset instead of
a slicing function, to compare with other methods, we additionally train a binary MLP classifier on
top of embeddings, i.e. g, : Z + [0, 1], by treating samples in the error slice as positive examples,
and treat the rest as negative ones. However, it is worth noting that our method is effective at error
slice discovery without this additional slicing function, which is illustrated in Appendix A.11.

Besides, following previous works of error slice discovery (Eyuboglu et al., 2022} [Wang et al.|
2023b)), for image data, we employ the image encoder of CLIP with a backbone of ViT-B/32 to
extract embeddings of images for error slice discovery algorithms in our main experiments. For text
data, we employ pretrained BERT}, ¢ to extract embeddings. We conduct additional experiments
to show that our method is flexible in the choice of the feature extractor A ., whose detailed results
are left in Appendix [A.3] Due to the space limit, for all case studies of visual tasks, we only exhibit
3 or 5 images randomly sampled from each identified slice of the test dataset, and for baselines we
only exhibit images from the slice identified by Domino, the previous SOTA algorithm. We put more
examples including those of Spotlight and PlaneSpot in Appendix [A.4] about 20 images for each
identified slice. For running time comparison and related analyses of our method and the baselines,
we leave results in Appendix For the choice and analyses of hyperparameters, we leave them
in Appendix[A.6] For the improvement of the original models utilizing the discovered error slices,
we leave results in Appendix

In addition to coherence, we also compute the average performance of the given model fp, on the
identified slice S. For classification tasks, the performance metric is average accuracy. For object
detection, it could be Average Precision (AP). Note that now there are two evaluation metrics at the
same time. In this case, we put more emphasis on coherence instead of performance, since we only
require the performance of the identified slice to be low to a certain degree but expect it to be as
coherent as possible for the benefits of interpretation. This is similar to dcbench (Eyuboglu et al.|
2022) where coherence also outweighs performance and is chosen as the main evaluation metric.

5.1 BENCHMARK RESULTS: DCBENCH

Dcbench (Eyuboglu et al.l 2022) offers 886 publicly available settings for error slice discovery. Each
setting consists of a trained ResNet-18 (He et al.,2016), a validation dataset and a test dataset, both
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Table 1: Results of dcbench. We mark the best method in bold type and underline the second-
best method in terms of each metric. “Comp.” means “Manifold Compactness”. “Corr.” means
“Correlation”. “1” indicates that higher is better. “%” indicates that the digits are percentage values.

Metric | Precision@10 (%) 1 | Precision@25 (%) 1 | Average Precision (%) 1 | Manifold Comp.t
Method | Corr. Rare Noisy | Corr. Rare Noisy | Corr. Rare  Noisy | Corr. Rare Noisy

Spotlight | 32.3 287 432 322 264 409 289 164 22.7 478 267 420
Domino | 362 525 517 | 338 523 500 | 299 377 313 | 414 406 553
PlaneSpot | 26.1 18.1 29.4 223  18.1 27.8 21.8 143 18.8 293 159 330
MCSD 474 61.1 60.6 45.6 598 574 40.3 524 38.4 622 17.81 8.71

with predefined underperforming slice labels. The validation dataset and its error slice labels are
taken as input of slice discovery methods, while the test dataset and its error slice labels are used for
evaluation. There are three types of slices in dcbench: correlation slices, rare slices, and noisy label
slices. The correlation slices are generated from CelebA 2015), while the other two types
of slices are generated from ImageNet [2009). More details are included in Appendix [A.8]
In terms of evaluation metrics, we employ precision@k and average precision following dcbench’s
practice, where precision@Fk is the proportion of samples with top k highest probabilities output
by the learned slicing function that belongs to the predefined underperforming slice, and average
precision is calculated based on precision @k with different values of k. We also calculate manifold
compactness as Definition[T] For all these metrics, a higher value indicates higher coherence of the
identified slice, thus implying a more effective algorithm capable of error slice discovery.

Effectiveness of our method Table[T|shows that MCSD outperforms other methods across all three
types of error slices in precision@ 10, precision@25, average precision, and manifold compactness.
This greatly exhibits the strengths of our method compared with existing ones in error slice discovery.
Among the baselines, Domino consistently ranks 2nd, also showing a fair performance.

Validity of our metric It is also worth noting that the proposed metric manifold compactness shows
a strong consistency with other metrics. In Table[T} we find that the rank order of the four methods
based on precision metrics is always MCSD, Domino, Spotlight, PlaneSpot, which is generally
the same as the rank order based on manifold compactness, except for the correlation slice where
the rank order of Domino and Spotlight switches. While other metrics require access to labels of
predefined underperforming slices, our metric does not rely on them. This demonstrates the validity
and advantages of our proposed manifold compactness when measuring coherence and evaluating the
error slice discovery algorithms.

5.2 CASE STUDY: CELEBA

Figure 4: Images randomly sampled from slices of CelebA. Left five columns are results of the
category “Blond Hair”. Right five columns are results of the category “Not Blond Hair”. We can see
that MCSD is capable of finding error slices that are more coherent than others.

CelebA 2015) is a large facial dataset of 202,599 images, each with annotations of 40
binary attributes. In the setting of subpopulation shift, it is the most widely adopted dataset since
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it is easy to generate spurious correlations between two specific attributes by downsampling the
dataset (Yang et all,[2023}; [Sagawa et al., 2019} [Liu et al.} 2021). Different from settings in dcbench,
in this case study we follow (Sagawa et al.,[2019) to treat the binary label of blond hair as the target
of prediction and directly use the whole dataset of CelebA without downsampling,
thus closer to the real scenario. In terms of implementation details, we employ the default data
split provided by CelebA and follow the training process of ERM in (Sagawa et al.,[2019) to train a
ResNet-50. We apply error slice discovery algorithms on both categories respectively, thus taking
advantage of outcome labels that are known during slice discovery. We also illustrate results of
directly selecting top an samples sorted by prediction losses.

From Table 2] we can see that for both categories of CelebA, our algorithm identifies the most coher-
ent underperforming slice in terms of manifold compactness, where higher is better. Although it ranks
2nd for the category of blond hair in terms of accuracy, where lower is better, for the task of error slice
discovery, we put more emphasis on coherence since we want the identified slices to be interpretable,
and we only require the performance of the slice to be lower than a threshold compared with the over-
all performance, as stated in Section[3] In Figure[d] the left five columns and the right five columns are
from the two categories separately. The four rows correspond to randomly sampled images from dif-
ferent sources: the error slice that Domino identifies, the error slice that MCSD identifies, the top ane
samples sorted by the loss, and all samples of the corresponding category. We can see that the images
from the error slice identified by MCSD obviously exhibit more coherent characteristics than others.
For the category of blond hair, images in the
row of MCSD are all faces of males, which con-
forms to the intuition that models may learn the
spurious correlation between blond hair and fe-

Table 2: Results on CelebA, along with the over-
all accuracy of the trained model. “Acc.” means
“Accuracy”. “Comp.” means “Manifold Compact-
male, and could be inclined to make mistakes 1€ss”- 1" indicates that higher is better, while *]”
in subgroups like males with blond hair in the indicates that lower is better. We mark the best

row of MCSD. Although more than half of the method in bold type and underline the second-best.
images for Domino in the blond hair category “%” indicates that the digits are percentage values.

are also males, its coherence is much smaller Blond Hair? | Yes \ No

than that of MCSD, making it hard for humans Method | Acc. (%) | Comp.t | Acc. (%)) Comp.t

to interpret the failure pattern when compared  Spotlight 26.3 5.71 65.9 3.35

with images of the whole population. Besides, = Domino 34.6 6.07 82.1 3.58

in the third row, when simply taking account of ~ PlaneSpot 68.4 2.92 93.6 113
N W, WRCTL SIMpLY & u MCSD 33.8 8.09 75.7 5.54

the prediction loss to select risky samples, it is
also difficult to extract the common pattern. For
the category of not blond hair, although both
Domino and sorting-by-loss can extract the pattern of faces being female with brown hair or blond
hair (label noise), MCSD identifies more detailed common characteristics that faces in the images are
not only female, but bear vintage styles like in the 20th century, which also constitute a riskier slice
than Domino in terms of accuracy. It is also worth noting that MCSD achieves a higher manifold
compactness than Domino in Table 2} consistent with that the identified slice of MCSD exhibits more
coherent semantics in Figure[d] further confirming the rationality of our proposed coherence metric.

Overall | 76.4 - | 98.2

Domino

High Loss

Population

Figure 5: Images randomly sampled from slices of CheXpert. Left five columns are results of the
category “IlI”. Right five columns are results of the category “Healthy”. We can see that MCSD is
capable of finding error slices that are more coherent than others.
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5.3 CASE STUDY: CHEXPERT

To demonstrate the effectiveness of our algorithm on other types of data, we conduct experiments
on a medical imaging dataset, i.e. CheXpert (Irvin et al., 2019), where the task is to predict
whether patients are ill or not based on their chest X-ray images. It contains 224,316 images
coming from 65,240 patients. We follow the data split and training process of (Yang et al.| [2023)
to train a ResNet-50. Still, we apply algorithms to images of ill and healthy patients respectively.

In Table 3] we can see that MCSD still achieves
highest manifold compactness and relatively low
slice accuracy in terms of the discovered error
slice for both ill and healthy patients. In Fig-
ure 3] for ill patients, images sampled from the
error slice discovered by MCSD are all taken
from the frontal view, while there are different
views for images sampled from other sources.

Table 3: Results on CheXpert, along with the over-
all accuracy of the trained model. “Acc.” means
“Accuracy”. “Comp.” means “Manifold Compact-
ness”. “1” indicates that higher is better, while “|”
indicates that lower is better. We mark the best
method in bold type and underline the second-best.
“%” indicates that the digits are percentage values.

For healthy patients, images corresponding to mr | Yes | No

MCSD are all taken from the left lateral view, Method | Acc. (%)) Comp.t | Acc. (%)) Comp.t

while other rows constitute images from dif- Spotlight 195 2.10 64.9 4.70

ferent views, making it difficult to extract the = Domino 315 1.53 88.4 2.82

common risky pattern. These results showcase ~FlaneSpot 42.8 3.66 69.5 3.17

MCSD’s usefulness in medical imaging, which MCSD 315 470 633 487
Overall | 455 - | 910

is a highly risk-sensitive task and deserves more
attention for error slice discovery and failure

pattern interpretation. Besides, the consistency of the order of coherence for MCSD and Domino in
Table 3]and Figure [5]also confirms the rationality of our proposed coherence metric.

5.4 CASE STUuDY: BDD100K

Population

Figure 6: Images randomly sampled from slices of BDD100K. Left three columns are results of the
category “Pedestrian”. Right three columns are results of the category “Traffic Light”. We can see
that MCSD is capable of finding error slices that are more coherent than others.

Compared with most previous algo-
rithms (Eyuboglu et al., 2022; [Wang et al.
2023bj |[Plumb et al., 2023)) that require predic-
tion probabilities as a part of input and are only
designed for classification tasks, our algorithm
MCSD is flexible to be employed in various
tasks since it takes prediction losses as input. To
illustrate its benefits of extending to other tasks,

Table 4: Results of algorithms on BDD100K for
two categories, along with the overall AP of the
trained model. “Comp.” means “Manifold Com-
pactness”. “1” indicates that higher is better, while
“}” indicates that lower is better. We mark the best
method in bold type. “%” indicates that the digits
are percentage values.

we conduct a case study on BDD100K (Yu| Category | Pedestrian | Traffic Light
et al.z 2020), a largf?-scale dataset comppsed Method | AP (%)) Comp.t | AP (%)) Comp.}
?f 'dH]Vlélg scenes kw1thfabﬁpc;ant annotations. Spotlight 573 205 463 261
t includes ten tasks, of which we investigate “\j-qpy 53.8 6.60 573 478
object detection in our paper. The number of

Overall | 714 - |  69.2 -

images in BDD100K’s object detection task
is 79,863, which we split into train, validation,
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and test datasets with the ratio 2:1:1. We train a YOLOv7 (Wang et al.,|2023a)) and try to identify
coherent error slices for it. We employ Average Precision (AP) as the metric of performance that is
widely adopted in detection tasks. Of the 13 categories in the task, we select 2 categories with a
relatively high overall performance and a large sample size, i.e. pedestrian and traffic light. We apply
our algorithm MCSD for each of them respectively. Note that we could not compare with Domino or
PlaneSpot since neither of them is applicable to tasks other than classification.

In Table ] we can see that MCSD successfully identifies error slices whose AP are lower than
those of overall for both categories, and whose coherence is higher than that of Spotlight in terms of
manifold compactness. In Figure [6] each row corresponds to five images randomly sampled from
a given source. The left three columns correspond to the category of pedestrians, while the right
three columns correspond to the category of traffic lights. For both pedestrians and traffic lights,
samples from the source of MCSD are coherent in that they are all taken at night. This conforms to
the intuition that it is more difficult to recognize and locate objects when the light is poor. However,
directly sampling from the high-loss images can hardly exhibit any common patterns. This reveals
the potential of our algorithm to be extended to other types of tasks.

5.5 CASE STUDY: CIVILCOMMENTS

In addition to experiments on visual tasks, to demonstrate the applicability of our method
to other types of data, we conduct experiments on CivilComments (Borkan et all [2019), a
text dataset included in some popular distribution shift benchmarks (Yang et al.| 2023; |[Koh
et al [2021). Its task is to predict whether a given comment is toxic or not. We em-
ploy the version of the dataset in [Yang et al| (2023) where the dataset has 244,436 com-
ments, and follow its data split and training process to train a BERT}h.5. We apply algo-
rithms to toxic and non-toxic comments respectively. In Table 5] we can see that MCSD
identifies slices of the lowest accuracy and highest manifold compactness in both categories.
We also list two parts of comments that are
respectively sampled from the slice identified
by applying MCSD to the “toxic” category and
from all comments of “toxic” category in Ap-
pendix [A.9) (Warning: many of these comments
are severely offensive or sensitive), where each

Table 5: Results on CivilComments, along with
the overall accuracy of the trained model. “Comp.”
means “Manifold Compactness”. “1” indicates
that higher is better, while “}” indicates that lower

part contains 10 comments. We employ Chat-
GPT to tell the main difference between the two

is better. We mark the best method in bold type.
“%” indicates that the digits are percentage values.

parts of comments and the reply is “Part 1 is _Toxic? | Yes \ No
characterized by detailed, historical, and ethi- Method | Acc.(%)] Comp.t | Acc. (%) Comp.t
cal discussions with a critical stance on conser-  Spotlight 48.6 5.10 91.0 733
vatism and a defense of marginalized groups”. Domino 56.1 5.98 87.9 6.55
We further check and confirm that comments in  PlaneSpot 46.3 1.65 96.5 2.99
part 1, i.e. the slice identified by our method, MCSD 252 8.56 608 7.67
Overall | 61.2 - \ 90.9 -

mostly present a positive attitude towards minor-
ity groups in terms of gender, race, or religion.
This implies that the model tends to treat com-
ments with excessively positive attitudes towards minority groups as non-toxic, some of which are
actually offensive and toxic. These results demonstrate our method’s usefulness in text data.

6 CONCLUSION

In this paper, inspired by the data geometry property, we propose manifold compactness as a metric of
coherence given a slice, which does not rely on predefined underperforming slice labels. We conduct
empirical analyses to justify the rationality of our proposed metric. With the help of explicit metrics
for risk and coherence, we develop an algorithm that directly incorporates both risk and coherence
into the optimization objective. We conduct experiments on a benchmark and perform case studies
on various types of datasets to demonstrate the validity of our proposed metric and the superiority of
our algorithm, along with the potential to be flexibly extended to different types of tasks.
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A APPENDIX

A.1 MORE EXPERIMENTAL RESULTS RELATED TO MANIFOLD COMPACTNESS

In this part, we provide more experimental results that demonstrate the validity and advantages of
our proposed coherence metric, i.e. manifold compactness. In Section[3|we only present results of
CelebA, while here we also present results on other datasets like CheXpert and BDD100K.

A.1.1 VISUALIZATION ANALYSES

We provide visualization results of different dimension-reduction methods: PCA, t-SNE, and UMAP,
where PCA mainly preserves pairwise Euclidean distances between data points while t-SNE and
UMAP are both manifold learning techniques. We employ features extracted by the image encoder of
CLIP-ViT-B/32 as input of the dimension-reduction methods. Thus the original dimension (dimension
of features extracted by the image encoder of CLIP-ViT-B/32) is 512 and the reduced dimension is 2
for convenience of visualization. In Figure [7]and 8] blue dots are correctly classified by the trained
model and red dots are wrongly classified. In Figure[9] the color is brighter when the loss is higher.
All three visualizations illustrate that t-SNE and UMAP show much clearer clustering structures than
PCA, either showing a larger number of clusters or exhibiting larger margins between clusters. Such
results indicate that it is better to measure coherence in the metric space of a manifold instead of

(a) PCA (b) t-SNE (c) UMAP

Figure 7: Visualization: Category “blond hair” of CelebA.

(a) PCA (b) t-SNE (c) UMAP

Figure 8: Visualization: Category “ill” of CheXpert.

(a) PCA (b) t-SNE (c) UMAP

Figure 9: Visualization: Category “pedestrian” of BDD100K.
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A.1.2 COMPARISON WITH VARIANCE

We compare manifold compactness with variance,

, on different semantically predefined slices. Note that since
the slices are not of the same size, to compare manifold compactness of different slices properly, for
each given slice we randomly sample a subset of size 150 with 20 times, and average the manifold
compactness of 20 subsets as the manifold compactness of the given slice. For CelebA, we use the
binary label y to indicate whether the person has blond hair or not, and a to indicate whether the
person is male or not. From Appendix we can see that for manifold compactness, its value of
the more fine-grained slice, i.e. the more coherent slice, is larger than the more coarse-grained slice.
For example, the manifold compactness of y = 1&a = 0 is 0.38, larger than that of y = 1 (the value
is 0.35) or @ = 0 (the value is 0.13). Such a relationship holds for every pair of slices. However, in
terms of variance, for example, variance of y = 1&a = 1 is 39.6, larger than that of y = 1 whose
value is 36.2, which is contrary to our expectation that variance of the more fine-grained slice is
smaller than that of the more coarse-grained slice. For CheXpert, we use the binary label y to indicate
whether the person is ill or not, and «a to indicate whether the person is male or not. We also find
that for manifold compactness, its value of the more fine-grained slice, i.e. the more coherent slice,
is larger than the more coarse-grained slice, while the value of variance is not consistent with the
granularity of the slice. We also additionally compare with other metrics that are directly calculated
in Euclidean distance, including Mean Absolute Deviation (MeanAD), Median Absolute Deviation
(MedianAD), and Interquartile Range (IQR). We find that they exhibit similar phenomenons to
variance, i.e. the metric value of the more coarse-grained slice is sometime even smaller than that of
the more fine-grained slice, which contradicts our expectation. Thus we demonstrate that manifold
compactness is better at capturing semantic coherence than variance does.

Table 6: Comparing manifold compactness with

Dataset | CelebA | CheXpert
Slice | Comp. Var. MeanAD MedianAD IQR | Comp. Var. MeanAD MedianAD IQR
All ‘ 0.07 429 113.9 96.2 192.9 ‘ 0.07 9.4 42.3 34.7 69.2
y=1 0.35 36.2 102.7 86.5 173.1 0.12 10.1 42.1 34.6 69.3
y=20 0.08 43.6 114.6 97.0 194.3 0.07 9.4 42.3 34.6 69.1
a= 0.17 425 114.2 96.4 193.1 0.08 9.8 41.3 33.8 67.5
a=0 0.13 38.3 106.9 90.1 180.4 | 0.08 9.0 432 35.4 70.7
y=1la=1 3.19 39.6 107.3 90.4 181.6 0.15 9.5 40.8 33.6 67.4
y=1a=0 0.38 35.2 101.1 85.4 171.0 | 0.17 10.1 43.1 354 71.2
y=0,a= 0.18 425 114.1 96.3 193.0 | 0.09 9.9 41.3 33.8 67.4
y=0,a=0 0.15 38.8 107.1 90.2 180.7 0.09 8.6 432 35.4 70.6

A.2 SHOWCASE FOR MULTIPLE ERROR SLICES

In this part, we compare both the worst slice and the second worst slice discovered by our algorithm
MCSD and the previous SOTA algorithm Domino. For MCSD, we remove the first error slice from
the validation dataset and apply our algorithm again to the rest of the validation dataset to acquire the
second error slice. For Domino, we select the slice with the highest and second highest prediction
error in the validation dataset as the worst and second worst slice. Results of the blond hair category
of CelebA are shown in Figure We find that MCSD is also capable of identifying a coherent
slice where faces are female with vintage styles, similar to the error slice also identified by MCSD in
Figure[I3] while only the pattern of female can be captured in the second worst slice identified by
Domino.

A.3 CHOICE OF FEATURE EXTRACTORS

We conduct additional experiments on CelebA by changing CLIP-ViT-B/32 to CLIP-ResNet50
and ImageNet-supervised-pretrained ResNet50. Table[/|shows that whatever the pretrained feature
extractor is, MCSD consistently identifies slices of low accuracy and outperforms other methods
in terms of manifold compactness. It is worth noting that this conclusion is valid even for MCSD
with ResNet50, which is generally considered as a weaker pretrained feature extractor than ViT-B/32
employed by baselines. In Figure we can see that MCSD with different pretrained feature
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Population

Figure 10: Showcase of multiple error slices for each algorithm on the category “Blond Hair” of
CelebA.

extractors truly identifies coherent error slices for the blond hair category of CelebA. As for the
practice of using pretrained feature extractors, it is acceptable and generally adopted in previous

Figure 11: Left five images are sampled from the slice identified by MCSD (CLIP-ResNet50). Right
five images are sampled from the slice identified by MCSD (Supervised-ResNet50).
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Table 7: Experiments using different pretrained feature extractors.

Blond Hair? | Yes | No
Method | Acc. (%) ] Comp.t | Acc. (%)) Comp.t
Spotlight 26.3 5.71 65.9 3.35
Domino 34.6 6.07 82.1 3.58
PlaneSpot 68.4 2.92 93.6 1.13
MCSD(CLIP-ViT-B/32) 33.8 8.09 75.7 5.54
MCSD(CLIP-ResNet50) 29.3 8.77 71.7 5.38
MCSD(Supervised-ResNet50) 32.8 7.22 67.0 475
Overall | 76.4 - | 98.2 -

A.4 MORE EXAMPLES FOR CASE STUDIES

In this part, we provide more examples for the case studies of visual tasks in our main paper. For
CelebA (Figure [12]and[T3) and CheXpert (Figure[T4]and[I3]), we randomly sample 20 images from
each slice and put 10 images in a row. For BDD100K (from Figure[I6|to 23), we randomly sample 18
images for each slice and put 3 images in a row for clearer presentation. We also draw the predicted
bounding box with red color and the ground truth bounding box with yellow color. Experimental
findings are basically the same as those in our main paper. MCSD still consistently identifies coherent
slices in these three cases. Note that in CheXpert, previous algorithms like Spotlight and PlaneSpot
are also able to identify coherent slices, illustrating a certain degree of their effectiveness in error
slice discovery.
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Figure 12: More examples of the category “Blond Hair” of CelebA.
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Spotlight
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Figure 13: More examples of the category “Not Blond Hair” of CelebA.

20



Under review as a conference paper at ICLR 2025

Spotlight

Domino

PlaneSpot

MCSD

P ———

High Loss

Population

21



Under review as a conference paper at ICLR 2025

Spotlight

Domino

MCSD

P ———

High Loss

Population

Figure 15: More examples of the category “healthy” of CheXpert.
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Figure 16: More examples of the category ‘“Pedestrian” of BDD100K via Spotlight.
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Figure 17: More examples of the category ‘“Pedestrian” of BDD100K via MCSD.
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Figure 18: More examples of the category ‘“Pedestrian” of BDD100K sampling from high loss
images.
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Figure 19: More examples of the category ‘“Pedestrian” of BDD100K sampling from the whole
population.
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Figure 20: More examples of the category “Traffic Light” of BDD100K via Spotlight.
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Figure 21: More examples of the category “Traffic Light” of BDD100K via MCSD.
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Figure 22: More examples of the category “Traffic Light” of BDD100K sampling from high loss
images.
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Figure 23: More examples of the category “Traffic Light” of BDD100K sampling from the whole
population.
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A.5 TIME COMPARISON

Since the optimization process of our method formulates a non-convex quadratic programming
problem and we employ Gurobi optimizer to solve it, it is hard to analyze the time complexity.
However, we directly provide a running time comparison. Here we report the running time of
different methods on CelebA. The two rows of results correspond to the two categories of CelebA,
where the time is measured in seconds. The time consumption of solely constructing the kKNN graph
is also listed in the last column. We can see that although our method MCSD requires longer running
time, the time cost is still generally low and acceptable. Furthermore, in terms of scalability to very
large datasets, it is worth noting that our method only requires a validation dataset to work. The
validation dataset is essentially a subset sampled from the whole dataset, whose size is much smaller
than that of the whole dataset. For example, in CelebA, the validation data size is only 19,867, about
1/10 of the whole dataset size of 202,599. This indicates that for a very large dataset, we could sample
a small and appropriate proportion of the whole dataset, and it would be possible for our method to be
still effective when being applied to the subset. Besides, the construction of the kNN graph is fast and
only takes up a small proportion of running time, which is not the bottleneck of time consumption.

Table 8: Time comparison measured in seconds.
Blond Hair? | Data Size | Spotlight Domino PlaneSpot | MCSD | knn graph

Yes 3,056 16.8 1.3 7.1 39.1 2.0
No 16,811 93.0 26.3 453 171.0 13.5

A.6 HYPERPARAMETER SELECTION AND ANALYSES
A.6.1 HYPERPARAMETER SELECTION

For the hyperparameter of coherence coefficient A, we fix it as 1 for experiments on dcbench. For the
case studies, we set the search space of \ as {0.5,0.8,1.0,1.5,2.0,2.5,3.0}. We split the validation
dataset into two halves, apply our algorithms on one half to obtain a slicing function, apply the slicing
function on the other half, and calculate the average performance and manifold compactness of the
discovered slice. We choose A that maximizes manifold compactness under the condition that the
slice performance is significantly lower than the overall performance, where the threshold can be
customized for different tasks. In our experiments, we set it as 15 percent point for accuracy in terms
of image classification, and 10 percent point for average precision (AP) in terms of object detection.
For the hyperparameter of slice size «, in our experiments we set it as 0.05 when the size of the
validation dataset is smaller than 5, 000, and set it as 0.01 otherwise. For building kNN graphs, we
fix k = 10 in our experiments.

A.6.2 HYPERPARAMETER ANALYSES

In this part, we conduct hyperparameter analyses on the category ‘“Blond Hair” of CelebA for the
coherence coefficient )\, the size a, and the number of neighbors & when building the kNN graph.
From Table [9] we find that both the accuracy and manifold compactness are best when \ and « are in
a moderate range, neither too large nor too small. This implies the importance of the balance between
pursuing high error and high coherence, which could be achieved by the tuning strategy mentioned in
Appendix [A.6.1] This also implies the importance of appropriately controlling «, i.e. the size of the
slice, which is set according to experience in our implementation. Its selection is left for future work.

For k, we initially find that £ = 10 works well and thus fix it. In Table E] where the manifold
compactness of other values has been rescaled to the case of k = 10, we can see that the accuracy of
the identified slice is generally low compared with the overall accuracy of the blond hair category
(76.4%), and the compactness is high when 10 < k& < 30. Although k£ = 15 is slightly better than
k = 10 in terms of compactness, it is still appropriate to select £ = 10 since it is computationally
more efficient.
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Table 9: Hyperparameter analyses on the category “Blond Hair” of CelebA for the coherence
coefficient A, the size o, and the number of neighbors k. “” indicates that higher is better, while “]”
indicates that lower is better. We mark the best method in bold type and underline the second-best.
“%” indicates that the digits are percentage values.

A | Ace. (%) Compt | «a | Acc.(%)| Comp.t | k | Acc. (%)) Comp.t

0 27.8 2.94 | 0.005 46.2 1.00 | 3 21.1 4.16
05| 196 336 | 0.01 19.2 331 | 5 203 5.01
0.8 18.1 371 | 0.03 22.8 584 | 10 33.8 8.09
1.0 196 485 | 0.05 338 809 | 15 42.1 8.13
15 30.1 714 | 0.1 489 807 | 20 414 7.60
20| 338 8.09 | 0.15 49.4 760 | 30 36.8 7.98
2.5 39.9 793 | 02 56.6 740 | 50 36.8 6.73
30| 451 7.99 | 03 67.7 754 | 100 | 342 5.66

A.7 PERFORMANCE IMPROVEMENT VIA UTILIZATION OF THE DISCOVERED ERROR SLICES

We conduct experiments to show performance improvement that the identified error slices could bring
via data collection guided by the interpretable characteristics of identified error slices, following
the practice of non-algorithmic interventions of [Liu et al.|(2023)). For example, for a given trained
image classification model on CelebA, the identified error slice exhibits characteristics of blond hair
male, then we could be guided to collect specific data of the targeted characteristics of blond hair
male and add to the training data, which is a non-algorithmic intervention and a straightforward and
practical way of improving performance of the original model after interpreting characteristics of
the identified error slice. Here we compare the results of guided data collection and random data
collection. To simulate the guided data collection process, for CelebA, since the identified error
slice for the category of blond hair is male and there are extra annotations of sex, we add the images
annotated as blond hair male in validation data to training data. Since the identified error slice for not
blond hair category is female bearing vintage styles, and there are no related attribute annotations,
we directly add the images of the identified slice to the training data. For CheXpert, the identified
error slices are from the frontal view for ill patients and from the left lateral view for healthy patients,
and CheXpert has annotations of views, so we add the corresponding images in validation data to
training data. To simulate the random data collection process, we randomly sample the same number
of images from validation data and add to training data for each dataset. Then we retrain the model
three times with varying random seeds.

Table 10: Performance of different data collection strategies. ““1” indicates that higher is better. We
mark the best strategy in bold type. “%” indicates that the digits are percentage values.
CelebA | Average Acc. (%) 1 Worst Group Acc. (%) 1 | CheXpert | Average Acc. (%) 1  Worst Group Acc. (%) 1

Original 953 37.8 Original 86.7 40.3
Random 95.3+0.4 424422 Random 88.1+0.2 50.0+£1.1
Guided 95.4+0.5 59.843.0 Guided 88.7+0.8 70.1£1.7

Here worst group accuracy is defined following a distribution shift benchmark (Yang et al.| [2023)),
where CelebA and CheXpert are divided into groups according to annotated attributes, and worst
group accuracy is an important metric. From Table we can see that guided data collection
outperforms the original model and random data collection in both metrics, especially in worst group
accuracy. This illustrates that our method is beneficial to performance improvement in practical
applications.

A.8 BENCHMARK DETAILS

Dcbench (Eyuboglu et al., [2022)) offers a large number of settings for the task of error slice discovery.
Each setting consists of a trained ResNet-18 (He et al.,|2016), a validation dataset and a test dataset,
both with labels of predefined underperforming slices. The validation dataset and its error slice labels
are taken as the input of slice discovery methods, while the test dataset and its error slice labels are
used for evaluation.
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There are 886 settings publicly available in the official repository of dcbenclﬂ comprising three
types of slices: correlation slices, rare slices, and noisy label slices. The correlation slices are
generated from CelebA (Liu et al.,[2015), a facial dataset with abundant binary facial attributes like
whether the person wears lipstick. Correlation slices include 520 settings. They bear resemblance
to subpopulation shift (Yang et al., [2023), where a subgroup is predefined as the minor group by
generating spurious correlations between two attributes when sampling training data. That subgroup
also tends to be the underperforming group after training. The other two types of slices are generated
from ImageNet (Deng et al., 2009), which has a hierarchical class structure. Rare slices include
118 settings constructed by controlling the proportion of a predefined subclass to be small. Noisy
label slices include 248 settings formulated by adding label noise to a predefined subclass. Although
many settings comprise more than one predefined error slice, we check and find that the given model
actually achieves even better performance on a number of slices than the corresponding overall
performance. For accurate and convenient evaluation, we select the worst-performing slice of the
given model for each setting.

A.9 EXAMPLES FROM CIVILCOMMENTS

Warning: Many of these comments are severely offensive or sensitive

Here in Table [[T| we list two parts of comments that are respectively sampled from the slice identified
by applying MCSD to the “toxic” category and from all comments of “toxic” category. Since some
comments are too long, we do not list the complete comments but additionally list the id of these
comments in the dataset for convenience of checking. We check the complete comments and confirm
that comments belonging to the error slice identified by MCSD mostly exhibit a positive attitude
towards minority groups in terms of gender, race, or religion. This implies that the model tends to
treat comments with positive attitudes towards minority groups as non-toxic, while some of these
comments are also offensive and toxic.

Table 11: Comments and their id that are respectively sampled from the slice identified by applying
MCSD to the “toxic” category and from all comments of “toxic” category. (Warning: Many of these
comments are severely offensive or sensitive)

Asian countries for Asians. Black countries for Blacks. but White countries for everybody? That’s genocide. | 6299730

Slice | Content |

| The Kingdom of Hawai’i has a long, proud history of being the most diverse and inclusive nation... | 5054686
| You have it a bit twisted, TomZ. You say “ ...there is evidence that Judge supported same-sex acts ... | 5977193
\ scuppers: Go outside. Seriously. You are so invested in this narrative that you’re completely losing... \ 5865832

MCSD | It’s not racist to shun people who believe apostates and blasphemers against Islam should be killed... | 6155392
‘ So, libs have as a leader a person with , IQ less than 70, who can not make a full statement without... ‘ 5316528
\ Wow! The US Catholic Church is learning only this year - in 2017 - that racism is rife in the country... \ 6320767
| Who is asking for special accommodations here? Transgender people who just want to exist and live... | 5665161
\ Poor analogy. Both the KKK and the Blacks are Christians. So cross burning is racial not religious.... \ 348794
| Brian Griffin quoted Mencken: “The common man’s a fool”. Peter Griffin is proof. | 691891
| Wow.... Trump isn’t a very deep thinker, and neither is anyone who supports this stupid rule. First... | 5438617
\
|
\

The rapist was a Stanford student; his victim was not. The judge was a Stanford alumnus. We’re looking... \ 343947

T wonder if Trump would be in favour of hot black women kneeling? | 6020870

Population | Plato condemned homosexual relationships as contrary to nature. What are you smoking and where can ... | 5614294
\ Black Pride = being black and proud Gay Pride = being gay and proud White Pride = NAZI! \ 5815448

| That was Brennan, under Obama, not our good American, Christian president. You really should not make... | 6250038

\ So when it’s a pretty white woman murdered by her boyfriend, the ANCWL pickets outside the courtroom... \ 5763897

|  pnw mike, you are right! hillary is a liar. One metric comes from independent fact-checking website... | 520428
|  Reminds me of an old Don Rickles joke. “Why do jewish men die before their wives?.... Because they ... | 5215731
\ When do see the piece on the worlds most annoying Catholics? Buddhist? Muslims? \ 375375

'"https://github.com/data-centric—ai/dcbench
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A.10 THEORETICAL ANALYSES

In this subsection, we conduct theoretical analyses on our optimization objective, i.e. Equation (2.
First we theoretically prove that the objective not only explicitly considers the manifold compactness
inside the identified slice, but also implicitly considers the separability between samples in and out of
the identified slice. Then we prove that the optimization objective, where optimized variables are
continuous, is equivalent to the discrete version of sample selection with an appropriate assumption.
This confirms the validity of our transformation of the problem from the discrete version into the
continuous version for the convenience of optimization.

First, we prove a lemma for convenience of later theoretical analyses.

Lemma 1 For the inequality constraint Y ., w; < an in Equatzon , the equality can be achieved
for the solution of Equation (2).

Proof. Denote the solution of Equation as wi,ws, .., wk. Assume Y . 1 w; < an. Since
Z?Zl w; < an < n, there exists at least one sample Welght satisfying wk < 1. Let wj, =
min{w; + an — Z ', w}, 1}. We can see that all constraints in Equation (2) are still be satisfied.
However, since w;, > wy}, the objective has become larger than before. Thus w7, w3, .., w;, are not a
solution for Equation (2). Since the initial assumptlon leads to a contradiction, we prove that for the
solution of Equation (2), we have >, w} = an.

Next, we prove that Equation (2) also implicitly takes the separability between samples in and out of
the identified slice by proving that it is equivalent to an objective that explicitly takes the separability
into account.

Proposition 1 Maximizing > ;" wli+A Y07 77, wiw;qi; under the constraints in Equation
is equivalent to maximizing >y wili + A1 Y00y DU wiwiqig — Aa iy D g wi(l —wy)gi
under the same constraints, where A\ = \; + Ao

Proof. Note that since {g;; }1<i,j<n corresponds to a kNN graph, we have:

> gj=kVi<i<n 3)
j=1

Combined with Lemmal[T] we have:

n n n
RSN 3 SITIIRSY) 3) SUACEIIS
i=1 i=1 j=1 i=1j=1

n n n n

=3 wili + A+ A2) DD wiwigi; — A Y D> widi;

i=1 i=1 j=1 i=1 j=1

_szl + )\1+A2 Zzww]qU_AQsz

=1 j=1

—Zwl —i—)\Zszw]qU Agank

=1 j=1

“

Since Ayank is constant, we have proved the equivalence. Note that the other objective has an extra
term of 7, 3", w;(1 — w;)gs;, which exactly represents the separability between samples in
and out of the 1dent1ﬁed slice.

Finally, we prove that Equation (2)) is equivalent to the original discrete version of sample selection
with proper assumptions.

Proposition 2 Assume there exists an ordering of sample index {r; }1<i<y, satisfying that q,, , ,, =

Qrivri, = 0and a-n € NT. Then there exists a solution of Equation H w* = {w},ws, .., wi}
such that w} € {0,1},V1 < i <n.
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Proof. Define J(w) = Y0, wil; + A3 1L, >0 wyw;q;;. We denotes an optimal solution
w’ achieving the optimal value of J(w). Then we can find an optimal solution w* satisfying
wi €{0,1},V1 <i<nand J(w*) = J(W).

We initialize w(®) = w’. Then we sweep a variable i from 1 to n — 1. For each iteration with
1 < j <n— 1, we generate a new weight vector w(/) by the following process. We can prove that
w7 is one solution of Equation (2) and wij) € {0,1},V1 < i < j by mathematical induction, which
is already satisfied for j = 0.

Firstly, we assign w,(«J) = wg-m forl <i < j—1landj+ 2 < i < nand denote C' =
wd ™D w7 € [0,2].

If w,(g_l) € {0, 1}, we assign wg) = wg_l) and wgll = wg:ll).
Otherwise, we reformulate the function .J(w(/)) as following (for the sake of brevity, we omit the
superscript of (7)):

J(W(j)) = w,, lr,- + wrj+1lrj+1 + Z wil; + A Z Z W;Ws(is

ig{r;,mj+1 ig{rj,rjt1} s¢{r;,mj+1}

+ A Wr; Z (Qi,rj + qu,i) + Wr; 14 Z (qiﬂ’j+1 + qu+1,i) + Wy ; Wr; (quJ’j+1 + qu+1,7’j)

i#T 1FT 41

= wylp; +(C —wp) )y, + Z wil; + A Z Z WiWs i

i¢{r;,rj+1} ig{rj,rj+1} s¢{r;,rj+1}

+ )\ w’r‘j Z (Qi,rj + q’l“j,i) + (C - wrj) Z (qi,Tj+1 + q’r‘j+1,i) + 'LUT]. (C - wTj)(qu,Tj+1 + qrj+1,7‘j)
i#T; T 1
%)

We can see that J(w(/ )) is a quadratic or linear function with respect to wf{ ). Since qr;,
@ryi1,r; = 0, J(W) becomes a linear function of wg)

Because setting wg) = wg e (0, 1) is a global minimum, the coefficient of J(w) with respect to

wf(f) equals zero. Thus J(w) is constant with respect to wT(ﬁ ). Therefore, we set the value of w,(g )
(4)

Ti+l T

and w as the following two rules:

it
o If 1 < C < 2, we assign wg) = 1and wgll =C-1
* If 0 < C < 1, we assign w%) = 0 and wgll =C
It is obvious that J(w(?)) = J(wU~1). Therefore, w(/) also achieves the optimal value for

Equation . Since wﬁj) = wg_l) € {0,1},Vl1 < i < jand wg) € {0,1}, we conclude that
w? = w9 € {0,1},V1 <i < j.
Finally, we obtain w("~1) where we have wfn?_l) € {0,1},V1 <i < n—1. Since the sum of w("~1)

is an integer an, w,(ﬂ:_l) in also an integer. According the construction of wﬁf_l) in the above two

rules, it can be found that 0 < wﬁ.zfl) < 1. Therefore, we have w" ™ ¢ {0,1},V1 <i<n.

i
The pursued solution of w* can be obtained by setting w* = w1,

Remark Since n >> £k, it is likely that the constructed graph is extremely sparse. Therefore, it is
easy to find a sample ordering that the contiguous samples are not connected, which means that our

assumption is satisfied. This proposition proves the equivalence between our continuous optimization
formulation to the discrete sample selection.
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A.11 ABLATION OF THE SLICING FUNCTION

In Algorithm [T} after acquiring the desired samples, we additionally train an MLP as the slicing
function. This is because the standard evaluation process of error slice discovery, an error slice
discovery method is applied to validation data to obtain the slicing function, and then the slicing
function is applied to test data to calculate evaluation metrics and conduct case analyses. Such
practice is also adopted by dcbench (Eyuboglu et al., 2022), the benchmark of error slice discovery.
Thus we follow this practice by additionally train a slicing function after we obtain the desired
samples, so that we can compare fairly with previous methods. However, even without training this
slicing function, our method can still produce meaningful results of case studies. We show examples
randomly sampled from optimized results of Equation (2)) in Figure 24]and 23] We can see that there
is still high coherence in the identified slices.

Figure 24: Examples of the category “blond hair” of CelebA directly sampling from optimized results
of Equation (2).

Figure 25: Examples of the category “not blond hair” of CelebA directly sampling from optimized
results of Equation (2)).

36



Under review as a conference paper at ICLR 2025

B RELATED WORK

Subpopulation Shift It is widely acknowledged that models tend to make systematic mistakes
on some subpopulations, which leads to the problem of subpopulation shift (Yang et al., 2023)). To
guarantee the worst subpopulation performance, some generate pseudo environment labels (Creager
et al., 2021} |Nam et al.,|2021) and then apply existing invariant learning methods (Arjovsky et al.,
2019; [Krueger et al.l 2021). Others take advantage of importance weighting to upweight the minority
group or worst group like GroupDRO (Sagawa et al.| |2019) and JTT (Liu et al) [2021)), or to
combine with Mixup (Zhang et al., 2018) for more benefits (Han et al.||2022). A more recent work
points out that current methods for subpopulation shifts heavily rely on the availability of group
labels during model selection, and even simple data balancing techniques can achieve competitive
performance (Idrissi et al., [2022). For better comparisons between algorithms and promotion of
future algorithm development, Yang et al. (Yang et al.| 2023)) establish a comprehensive benchmark
across various types of datasets.

Error Slice Discovery Instead of developing algorithms to improve subpopulation robustness,
the operation of error slice discovery has also attracted much attention recently. It is more flexible
in that it can be followed by either non-algorithmic interventions like collecting more data for
error slices, or algorithmic interventions like upweighting data belonging to error slices. There are
mainly two paradigms for the process of error slice discovery. The first paradigm, also the more
traditional practice, separates error slice discovery and later interpretation via case analyses or with
the help of multi-modal models. Spotlight (d’Eon et al., [2022]) attempts to learn a centroid in the
representation space and employ the distance to this centroid as the error degree. InfEmbed (Wang
et al., [2023b) employs the influence of training samples on each test sample as embeddings used for
clustering. PlaneSpot (Plumb et al.|, 2023)) concatenates model prediction probability with dimension-
reduced representation for clustering. All of them interpret the identified slices via case analyses
directly. Meanwhile, the error-aware Gaussian mixture algorithm Domino (Eyuboglu et al.| [ 2022) is
followed by finding the best match between candidate text descriptions and the discovered slice in the
representation space of multi-modal models like CLIP (Radford et al.,|2021)). This paradigm has a
relatively high requirement for the coherence of identified error slices so that they can be interpreted.
The second paradigm incorporates the discovery and interpretation of error slices together. Both
HiBug (Chen et al.||2023)) and PRIME (Rezaei et al.| 2024) divide the whole population of data into
subgroups through proposing appropriate attributes and conducting zero-shot classification for these
attributes using pretrained multi-modal models, and then directly calculate average performance
for subgroups to identify the risky ones. The obtained subgroups are naturally interpretable via
the combination of the attribute pseudo labels. Two recent works (Wiles et al., 2022} |Gao et al.,
2023) generate data from diffusion models (Rombach et al., 2022)) before identifying error slices,
avoiding the requirement of an extra validation dataset for slice discovery. It is obvious that the
second paradigm heavily relies on the quality of proposed attributes and the capability of pretrained
multi-modal models.

Error Prediction Another branch of works sharing a similar goal with error slice discovery is error
prediction (or performance prediction). Although they are also able to find slices with high error, they
focus on predicting the overall error rate given an unlabeled test dataset, and measure the effectiveness
of error prediction methods via the gap between the predicted performance and the ground-truth one.
Moreover, they do not emphasize the coherence and interpretability of error slices. Currently, there
are several ways for error prediction. Some employ model output properties on the given test data
like model confidence (Garg et al.,[2021}; |Guillory et al.l 2021)), neighborhood smoothness (Ng et al.|
2022), prediction dispersity (Deng et al., 2023)), invariance under transformations (Deng et al.| [2021)),
etc. Inspired by domain adaptation (Long et al.| 2015; [Ben-David et al.l 2010), some make use of
distribution discrepancy between training data and unlabeled test data (Deng & Zheng| 2021} Yu et al.|
2022; Lu et al.} 2023)). Others utilize model disagreement between two models identically trained
except random initialization and batch order during training (Jiang et al., 2021} Baek et al., 2022}
Chen et al., [2021} Kirsch & Gal, [2022)), which exhibits SOTA performance in the error prediction
task (Trivedi et al.,|2023)).
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