Under review as a conference paper at ICLR 2026

EQUIVARIANT SPLITTING: SELF-SUPERVISED LEARN-
ING FROM INCOMPLETE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-supervised learning for inverse problems allows to train a reconstruction net-
work from noise and/or incomplete data alone. These methods have the potential
of enabling learning-based solutions when obtaining ground-truth references for
training is expensive or even impossible. In this paper, we propose a new self-
supervised learning strategy devised for the challenging setting where measure-
ments are observed via a single incomplete observation model. We introduce a
new definition of equivariance in the context of reconstruction networks, and show
that the combination of self-supervised splitting losses and equivariant reconstruc-
tion networks results in unbiased estimates of the supervised loss. Through a se-
ries of experiments on image inpainting, accelerated magnetic resonance imaging,
and compressive sensing, we demonstrate that the proposed loss achieves state-of-
the-art performance in settings with highly rank-deficient forward models.

1 INTRODUCTION

Inverse problems are ubiquitous in many sensing and imaging applications. They are written as

y=Ax+e ()
where A € R™*™ is the known forward matrix, & € R" is the ground truth image to be estimated,
y € R™ is the observed measurement vector, and € € R™ is the unknown noise, generally assumed
to follow a Gaussian distribution. This model is suitable for many imaging modalities, including
magnetic resonance imaging (MRI) for medical imaging (Zbontar et al., 2019), computed tomogra-
phy (CT) (Withers et al., [2021)), microscopy (Ragone et al., [2023)), remote sensing (Fassnacht et al.,
2024), and astronomical imaging (Vojtekova et al., 2021)).

The number of linearly independent measurements is often smaller than the number of pixels in the
target images due to physical and practical constraints. In this case, the forward matrix is rank-
deficient, the forward process discards some of the information present in the target image. Further
information about the target images is needed to solve the problem and different methods make
different assumptions about the signal distribution.

Modern learning-based solvers generally obtain state-of-the-art performance by training on super-
vised pairs of ground-truth images and measurements. For certain applications, it is expensive or
even impossible to obtain enough ground-truth data for supervised training (Belthangady & Royer;,
2019). This is notably the case in astronomical imaging, microscopy and medical imaging.

Recent self-supervised methods overcome this limitation by learning to reconstruct without ground-
truth data, relying only on a dataset of measurements, and they generally differ in the assumption
they make on the forward model. For denoising problems where the forward matrix is the identity
mapping, certain methods rely on knowing the exact noise distribution (Eldar, 2009; |Pang et al.,
2021; Monroy et al.l 2025)), others only assume it is entry-wise independent (Krull et al., |2019),
while some make intermediate assumptions (Tachella et al., 2025a).

In settings where measurements are observed via multiple incomplete forward operators, such as
accelerated MRI with masks varying across acquisitions or inpainting problems with missing pixels
varying across images, the main approaches are splitting (Yaman et al.l 2020; [Millard & Chiew,
2023)) and consistency across operators (Tachella et al., 2022). Splitting losses divide the measure-
ments into input and target components, and are unbiased estimators of the supervised loss if there
is enough diversity of operators in the dataset (Daras et al., 2023} Millard & Chiew, |[2023)).
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In the more challenging case of measurement data obtained via a single incomplete forward opera-
tor, the main self-supervised approach is equivariant imaging (EI) (Chen et al., 2021;|2022)) which
makes the assumption that the target distribution is invariant to a certain group of transformation
including geometric transformations (Wang & Davies| [2024; [Scanvic et al., 2025)) and range trans-
formations such as intensity scalings (Sechaud et al., [2024). Experimental results show that it can
obtain competitive performances to supervised methods even though it does not require ground-truth
references for training (Chen et al.| 2022)). However, training with EI is typically slower than super-
vised learning, as it requires two to three evaluations of the model for every iteration, and can obtain
subpar performances if the operator is highly incomplete.

In this work, we propose equivariant splitting (ES), a new self-supervised method for learning from
measurements obtained via a single forward operator that combines the invariance to transforma-
tions assumption of equivariant imaging and the simplicity and computational efficiency of splitting
methods. The key idea behind our method is the use of recent developments in equivariant architec-
tures (Chaman & Dokmaniél [2021aj [Puny et al., 2022)) to design a training loss that performs im-
plicit ground truth data augmentation without any transformation overhead. Our theoretical results
show that our method yields (in expectation) the minimum mean squared error (MMSE) estimator
as long as the model is expressive enough, which is not guaranteed for equivariant imaging and
previous splitting methods. Additionally, our experiments demonstrate state-of-the-art performance
on a wide range of self-supervised imaging problems including compressed sensing, image inpaint-
ing and accelerated MRI. This work is additional evidence that architectural constraints built upon
equivariance are a powerful tool to solve ill-posed imaging inverse problems.

Our contributions are the following:

1. We propose a new definition for equivariance in inverse problems, and propose architec-
tures that satisfy this property, including unrolled architectures.

2. We propose a new self-supervised loss that leverages equivariant networks (according to
our definition above) whose global minimizer is the gold standard MMSE estimator under
the assumption of an invariant signal distribution.

3. We demonstrate the performance of our method on a wide range of inverse problems in-
cluding compressed sensing, inpainting and accelerated MRI.

2 RELATED WORK

Measurement splitting Various self-supervised losses consist of dividing measurement vectors into
two components, one used as input and the other as target. It has been used to solve oversam-
pled single-operator inverse problems including full-view CT (Hendriksen et al., 2020), and also
undersampled multi-operator inverse problems with theoretical guarantees of producing estimates
equivalent to supervised estimates in expectation, notably accelerated MRI and image inpainting
with varying masks (Daras et al.| 2023; Millard & Chiew, [2023)). To the best of our knowledge,
this work is the first to extend these methods to the more challenging single-operator undersampled
setting, which notably includes sparse-view CT and accelerated MRI (with fixed mask).

Equivariant imaging It is possible to learn from incomplete data associated with a single degra-
dation operator, as long as the underlying signal distribution is invariant to a group of transforma-
tions (Tachella et al.l 2023). Equivariant imaging (Chen et al., [2021} [2022)) assumes that the dis-
tribution of clean images remains unchanged under certain transformations, including translations,
rotations and flips, and introduces a training loss that enforces the equivariance to these transfor-
mations of the entire measurement-reconstruction process, thereby constraining the set of learnable
models. It has been used effectively to solve various inverse problems using adequate groups of
transformations (Wang & Davies|, 2024} Sechaud et al.| [2024), but it is computationally expensive
due to the two to three network evaluations. Moreover, the EI loss is not necessarily an unbiased
estimator of the supervised loss, and it is unclear whether this approach recovers the optimal MMSE
estimator in expectation.

Equivariant neural networks The design of equivariant networks is an active research topic and
many different approaches exist. Some rely on data augmentation to make neural networks more
equivariant to rotations and flips, while other rely on averaging on the group of transformations at
test time (Rivera et al., [2021} |Puny et al., |2022; |Kaba et al., 2023} |Sannai et al., | 2024)). A third line
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of work focuses on architectures that are equivariant by design: (Cohen & Welling| (20165 2017)) pro-
pose convolutional layers that are equivariant to rotations and flips, and other works also rely on the
design of more equivariant layers to improve translation-equivariance. [Zhang| (2019); |Chaman &
Dokmani¢| (2021b) propose equivariant pooling and downsampling/upsampling layers, and Karras
et al.| (2021); [Michaeli et al. (2023) equivariant non-linearities and activation layers. Closer to our
work, in the specific setting of inverse problems, |(Celledoni et al.| (2021) propose the use of equiv-
ariant denoising blocks within unrolled architectures, and [Terris et al| (2024) similarly propose to
render plug-and-play denoisers more equivariant by averaging over transformations at test time. We
take these analyses further by providing a clear definition of equivariance in inverse problems and
showing which popular posterior estimators and related architectures verify these properties.

3 BACKGROUND

Solving the inverse problem in eq. (1) amounts to designing a reconstruction function f(y, A) ~ x
estimating a ground truth signal £ € R” from its measurement vector y € R™ and forward matrix
A € R™*"_ In practice, it is often implemented as a neural network parametrized by a set of
weights. Supervised methods assume the existence of a finite dataset containing pairs of ground truth
signals and measurements {(x;, y;) };cz that are used to learn the reconstruction function f(y, A).
The main approach is to minimize a training loss equal to the mean squared error (Ongie et al.,[2019)

1

m}n{mZ»CSUP(wiayi?Avf)}a ESUP(wvyvAaf) = ||f(y7A)_w||2 (2)
i€

While this approach obtains state-of-the-art performance, it cannot be used in the absence of ground-
truth data. Self-supervised methods overcome this limitation using a finite dataset containing only
measurements {y; };cz, and a training loss L(y, A, f) that need no ground truth data to be evaluated,
and which is designed to approximate well the supervised objective in eq. (2).

In denoising problems (A = I') with Gaussian noise of known variance, Recorrupted2Recorrupted
(R2R) (Pang et al.l 2021) and SURE (Metzler et al., 2020) provide unbiased estimators of the su-
pervised loss. The R2R loss is computed by adding synthetic Gaussian noise w ~ A(0, 02I) to the
measurements, creating input-target pairs as (y + aw,y — £) for some o € (0, +00). However, if
measurements are observed by an incomplete operator A with a non-trivial nullspace, these losses
fail to learn in the nullspace, approximating f(y, A) = ATAE,, 4 {z} + v(y, A), with v being
any function taking values in the nullspace of A (Chen et al.| 2021)).

In the rest of this section, we present the two main self-supervised losses that can learn beyond
the nullspace, measurement splitting in Section [3.1] and equivariant imaging in Section 3.2 By
combining their main ideas, we obtain our new self-supervised loss introduced in Section 4]

3.1 MEASUREMENT SPLITTING

One strategy to address the limitations imposed by the nullspace of a single operator is to employ
multiple operators (Millard & Chiew, 2023). The key idea is that different operators generally do not
share the same nullspace; thus, observing measurements through the image spaces of multiple oper-
ators allows access to the whole space R™. Formally, they assume that measurements are obtained
according to y ~ p(y|Ax) where the measurement operator A is itself drawn from a distribution
p(A), and differ for each acquisition.

Splitting losses divide the measurements into two components y = [y, ,y, | ' with corresponding
operators A = [A], AJ|T. The network is then trained to predict the entire measurements vector
y from only one of its two components y;, using the training loss

Lspur(y, A, f) = Ey, ay .4 {I|1Af(y1, A1) —y|*}, 3)

where p(y1, A1 | y,A) is a random splitting distribution, which is chosen on a per-problem ba-
sis. The loss encourages the model to learn in the nullspace of each operator by predicting the
unobserved part. In practice, the expectation in eq. (3) is estimated using a single split y; for each
training batch.
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3.2 EQUIVARIANT IMAGING

Equivariant imaging (Chen et al., 2021} 2022)) relies on the assumption that the distribution of im-
ages is invariant under a group of transformations T,, g € G, to learn beyond the nullspace of
measurements obtained via a single operator. In this setting, the reconstruction model is expected to
be able to estimate ground truth images x as well as their transformations T, in a coherent manner,
i.e., such that the entire measurement-reconstruction pipeline f(Ax) is equivariant with respect to
the transformations f(AT,x, A) = T,f(Ax, A). In order to achieve this, they propose a self-
supervised loss which consists in a traditional measurement consistency term (replaced by SURE in
the presence of noise), along with an equivariance-promoting term

Lu(y, A, f) = |Af(y. A) — y|* + AE{| Ty f(y. A) — f(AT, f(y. A), A}, @

where A > 0 is a trade-off coefficient. Even though it has been shown to be particularly effective on
a wide variety of problems (Wang & Davies, |2024; Sechaud et al., 2024), it typically requires from
two to three evaluations of the neural network which makes it very computationally expensive (Xu
et al.| [2025). Moreover, the equivariant loss is only effective at enforcing equivariance when the
learned estimator achieves almost perfect reconstructions, f(y, A) &~ @ (Chen et al.,[2021)), which
is not the case for very ill-conditioned problems and which leads to the method having multiple
possible solutions in general.

4 METHOD

In this section, we present our method that combines measurement splitting and EI introduced in
Section 3] In order to learn from incomplete measurements obtained via a single operator, we rely
on the same assumption of EI:

Assumption 1. The distribution of ground truth images p(x) is invariant to the transformations

{Tg}geg
p(T,x) = p(x), Vg € G,V € R™. (5)

The set of transformations is a design choice of the method to be chosen on a per-problem basis.
Corollary [T helps to choose them for specific problems, and we use it in the experiments.

In Section[d.T] we present our proposed loss and state its optimality under mild assumptions in Theo-
rem|l|and Proposition |1} In Section we present a new definition of equivariance for reconstruc-
tion functions and state sufficient conditions for common architectures to be equivariant in The-
orem [2] In Section [4.3] we finally present a computational synergy between our loss and these
equivariant architectures stated in Theorem [3| See Appendix |C|for the detailed proofs.

4.1 PROPOSED LOSS

Under Assumption|[I] the measurements can be understood in a different way than they are tradition-
ally. Indeed, measurements y are generally thought as being associated to the ground truth image
a and the forward matrix A, but they can equally be understood as being associated to the virtual
ground truth image =, = Tg‘lm and the virtual forward matrix A, = AT,, with
y=Az+e=AT,T, 'z +e=Agz,+e (6)

The implicit multi-operator structure (with operators { AT, } ;) of the problem hints that we should
be able to leverage the splitting approaches presented in Section[3] Moreover, since we use the same
invariance assumption as EI, we can combine the two approaches to obtain equivariant splitting
(ES), a new self-supervised loss Lgg that has the advantages of both methods.

Noiseless measurements The ES self-supervised loss is expressed as

Les(y, A, ) £ Ey {LspLir(y, ATy, f)} @)
=Ey {Ey, a,y,ar, {|AT,f(y1, A1) — yl*}} ®)

where A; ~ p(A1|AT,) £ p(Ai|g) is a random splitting of AT
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Theorem 1. In the case of noiseless measurements with p(x) G -invariantAssumption if the matrix

Qa, = Ega, {(ATg)TATg} has full rank for some split A1, then the splitting method yields the
same MMSE-optimal reconstructions as the supervised method, i.e.,

f*(yh Al) = ]Em|'y17A1 {SC} . &)

Having a matrix @ 4, invertible is a sufficient condition for sharing the minimizer of the supervised
loss, but not a necessary one. At test time, one may employ several splits A; and average the
corresponding reconstructions.

Proposition 1. Ifthe matrix Qa £ E 4,14 {Qa, } is invertible and f minimizes Ey{Lgs(y, A, f)}.
Then the reconstruction function

f(y, A) 2 Ey, a,1y.4{Q4'Qa, f(y1,A1)} (10
satisfies
f(y,A) =Ey, 4,154 {Q4' Q4 Eqjy, 4, {x}} . (an
where eq. is a convex combination of MMSE estimators for different splittings.

In practice, often neither Q 4 nor Q 4, can be computed in closed-form, and we use a non-weighted
average over random splittings

J
_ 1 B B ) . .
Ty, A) =33 fw”, AY) with (5 AY) ~ p(yr Arly, AT,) (12)
j=1

where g is chosen randomly over the group of transformations for each split.

As with EI, the forward operator should not be equivariant with respect to the choice of transforma-
tions, in order to learn beyond the nullspace of the operator:

Corollary 1. In order for the matrices Q a, or Q a to have full rank, it is necessary that A is not
equivariant:
g€ G AT, # T,A. (13)

Noisy measurements The ES loss can be split into two separate terms, one enforcing measure-
ment consistency, and the other prediction accuracy:

Les(y, A, ) =Eg {Ey, a,y,ar, {|A1f (Y1, A1) —y1|® + A f (y1, A1) —u2|°} },

where A, and A are a splitting of AT,. If the measurements are noisy, the first term can be re-
placed by a self-supervised denoising loss. In particular, if measurements are corrupted by Gaussian
noise of standard deviation o, we replace the first term by the R2R loss, yielding:

w 2
EG—ES(yaAvf) = Eg7y17A17<~'|y7ATg{ HAlf(yl + aw,A1) N (yl B E) H
+ |Asf(y1 + ow, Ay) — yzll2}

with w ~ N(0,02I) and a hyper-parameter o € (0,+0oc). Since R2R provides an unbiased
estimate of the clean measurement consistency term (Pang et al.l [2021), we can apply Theorem|I]to
show that minimizing this loss (in expectation) also results in MMSE estimators (if the conditions
on Qa, or Q4 are verified). In the case of non-Gaussian noise, the R2R loss can be replaced by
its non-Gaussian extension (Monroy et al.,2025)). As with random splits, the expectation over w is
computed using a random realization per batch. At test time, we modify eq. (I2Z)) to average over
both splits and synthetic noise additions.

4.2 EQUIVARIANT RECONSTRUCTORS

The ES loss requires a model evaluation for every mask and transformation. We show that, instead of
sampling a random transformation each evaluation, imposing architectural equivariance constraints
removes the need to explicitly compute the transforms.
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Image-to-image functions ¢(x) are equivariant if they satisfy (Cohen & Welling, 2016)
o(Tyx) =T, p(x), Ve € R", Vg € G. (14)

In this work, we introduce an extension of this definition to reconstruction functions f(y, A). To
the best of our knowledge, this is the first work that introduces this definition.

Definition 1. We say that the reconstruction function f(y, A) is an equivariant reconstructor if

fly, AT,) =T, " f(y, A), Yy € R™,Vg € G, VA € R™*". (15)

This property is very general and the class of classical reconstruction functions that satisfy it is large.

Theorem 2. The reconstruction functions defined in points below are all equivariant as in eq. (13).
1. Artifact removal network. For a denoiser ¢(x) equivariant in the sense of eq. ,
fly. A) =0 (ATy), or f(y.A) =9 (Aly). (16)
2. Unrolled network. For ¢(x) equivariant, any v € R and data fidelity d( Az, y), with
o =0, @41 = (@) — YV, d(Axy,y)) (17)
fork=0,...,L—1and f(y,A) = xy.

3. Reynolds averaging. For a possibly non-equivariant reconstructor r(y, A), with

1
fly, A) = = > Tyr(y, AT,). (18)
‘g| geg

4. Maximum a posteriori (MAP). For a distribution p(x) invariant as in eq. , with

1y, A) = argmax {p(x |y, 4)}. (19)
xeR”™

5. Minimum mean squared error (MMSE). For a distribution p(x) invariant as in eq. ,
.f(y7 A) = IE::c|y,A {.’I}} . (20)

For additional motivation and details about these reconstructor architectures, see Appendix [A]

4.3 EFFICIENT LOSS EVALUATION WITH EQUIVARIANT RECONSTRUCTORS

For equivariant reconstructors, the ES loss in eq. (7) reduces to the splitting loss in eq. (3).

Theorem 3. If f( A, x) is an equivariant reconstructor, then ES is equivalent to the splitting loss

Lrs(y, A, f) = Lspuir(y, A, f). (21

We emphasize that the condition for a reconstructor to be equivariant is different from the condi-
tion enforced by the EI loss, i.e., f(AT,x, A) = T,f(Axz, A). They are only equivalent if the
reconstruction function is a perfect one-to-one mapping over all possible images.

In our experiments, we build equivariant reconstructors using i) artifact removal networks with a
translation equivariant UNet denoiser(Chaman & Dokmanic|(2021b) and ii) unrolled networks with
a denoiser architecture equivariant to rotations and flips via averaging (Sannai et al., [2021)).

5 EXPERIMENTS

We assess the effectiveness of the proposed self-supervised loss using experiments conducted on
different inverse problems. For each experiment, we train a model corresponding to our method
as well as baseline methods and compare their performance. The inverse problems we consider
are 1) inpainting, 2) compressive sensing and 3) accelerated MRI. We also validate our theoretical
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predictions by testing the effect of using an equivariant architecture. In Section [5.1] we detail our
experiments on compressive sensing, in Section[5.2)on image inpainting and in Section[5.3]on accel-
erated MRI, and in Section[5.4]we present an ablation study on the effect of equivariant architectures.
For additional details about the experiments, see Appendix

In each experiment, we compare against multiple baselines: a supervised baseline using the su-
pervised loss described in eq. (2), the EI baseline described in eq. (), a measurement consistency
baseline (MC and SURE) [Eldar| (2009)) and a learning-free baseline which are either the measure-
ments directly, or their image under the adjoint or the pseudo-inverse of the forward operator. We
use the same architecture and the same training procedure for every method to ensure a fair com-
parison. We report the peak signal-to-noise ratio (PSNR) and the structural similarity index mea-
sure (SSIM) (Wang et al., 2004) of the final reconstructions for the different methods. They are
distortion metrics indicating how close the reconstructions are to the ground truth images. We do
not include perception metrics which are known to be at odds with them (Blau & Michaeli, [2018).
In each case, we also compute equivariance metrics (EQUIV) for translations or rotations and flips.

We design a model architecture from the principles introduced in Section[d] with a variant equivari-
ant to shifts, one equivariant to rotations and flips, and one without equivariance. It uses an existing
unrolled architecture (Aggarwal et al.,|2019) with a prior step implemented as a standard UNet (Ron-
neberger et al.l 2015)), or that of (Chaman & Dokmanié|(2021b) to enforce the equivariance to shifts.
It also optionally uses Reynolds’ averaging to enforce the equivariance to rotations and flips. We
use a single equivariant variant dictated by Corollary [I| for each problem, the shift-equivariant one
for compressive sensing and inpainting, and that equivariant to rotations and flips for MRI.

5.1 COMPRESSIVE SENSING

We use images from MNIST to serve as ground truth. Measurements are obtained by multiply-
ing the ground truth images viewed as vectors of size 784 instead of 28 x 28 pixel images by the
same (known) rectangular measurement matrix with fewer columns than rows, without adding fur-
ther noise. Figure [I| shows the performance of the different methods for the different compression
rates. Our method performs almost as well as the supervised baseline, while the equivariant imaging
baseline performs close to the supervised baseline only for higher compression rates.

5.2 IMAGE INPAINTING

The dataset consists of 128 x128 images from DIV2K (Agustsson & Timofte, [2017) corrupted with
a single binary mask which keeps about 30% of the pixels, without additional noise. Among the 900
images in the dataset, 800 are used for training while the remaining 100 are used for testing. For the
supervised method, we use different crops at each evaluation. Table [2] and Figure [2] show that ES
performs almost as well as the supervised baseline, and better than EI.

Table 1: MRI performance results. ES (ours) performs better than EI and SURE (baselines), while
performing almost as well as the supervised baseline in terms of reconstruction quality (PSNR,
SSIM) and measured equivariance (EQUIV). In bold, the best self-supervised metrics (avg =+ st.d.).

MRI (x8 Accel., 40 dB SNR)

Method PSNR 1 SSIM 1 EQUIV 1

Supervised 28.74 +2.81 0.6445 + 0.1094 31.71 +2.83
ES (Ours) 28.54 +2.75 0.6195 + 0.1188 31.53+2.74
EI 27.88 + 2.64 0.5731 £ 0.1299 30.79 + 2.64
SURE 24.45 + 1.86 0.5479 + 0.0740 27.35 £ 1.90
IDFT 23.62 + 1.90 0.5052 + 0.0900 25.99 + 1.94

5.3 MAGNETIC RESONANCE IMAGING

The dataset contains 320 x320 images from FastMRI (Zbontar et al.l [2019) subsampled in the
Fourier domain by a single binary mask corresponding to an acceleration of 8, as well as Gaus-
sian noise with a standard deviation of 0.005 corresponding to a signal-to-noise ratio (SNR) of 40
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Figure 1: Compressive sensing results. ES (ours) performs similarly as the supervised baseline,
unlike EI (baseline) whose performance gap widens with higher compression levels.

Table 2: Inpainting results. ES (ours) performs better than EI (baseline), both in terms of recon-
struction quality (PSNR, SSIM) and measured equivariance (EQUIV), while performing competi-
tively against the supervised baseline. In bold, the best self-supervised metrics (avg + st.d.).

Method PSNR 1 SSIM 1 EQUIV 1
Supervised 28.46 £2.97 0.8982 +0.0411 28.46 £2.97
ES (Ours) 27.45 + 2.86 0.8737 £ 0.0461 27.46 = 2.85
EI 25.89 £2.65 0.8332 £ 0.0521 25.89 £2.65
MC 8.22+247 0.0983 + 0.0551 8.22+247
Incomplete image 8.22 +2.47 0.0973 £ 0.0542 N/A
Ground Truth Supervised ES (ours) EI Measurement

Figure 2: Sample reconstructions for image inpainting. ES (ours) produces images perceptually

closer to the supervised baseline than EI (baseline) which appears blurry.

Ground Truth  Supervised ES (Ours)

SURE

IDFT

Figure 3: Sample reconstructions for MRI (x8 Accel., 40 dB SNR). Unlike EI (baseline) which
suffers from dot-shaped artifacts, ES (ours) is perceptually closer to the supervised baseline. In line
with the theoretical predictions, SURE and IDFT (baselines) fail to recover information beyond the

observed frequencies.
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dB. Out of the 973 images in the full dataset, 900 are selected for training and the remaining 73
are used for testing. We also test our method on a noise dominated setting using a different mask
corresponding to an acceleration of 6, with a higher noise level of 0.1 corresponding to an SNR
of only 10 dB, see these results in Appendix [B.4] The variant of our proposed loss we use in this
experiment is the R2R one introduced in Section 4] with o = 0.5. Table[I|shows the performance of
the different methods on the test set. Table [3]shows the synergy of our method with the equivariant
architecture. Figure[3]shows sample reconstructions from the trained models.

5.4 ABLATION STUDY

Table 3] shows that architectures designed to be equivariant are measurably more equivariant across
imaging modalities and training losses. Moreover, it shows that networks trained using the splitting
loss perform better for equivariant architectures than for non-equivariant architectures, with an even
greater gap than for supervised inpainting baselines, which confirms the theoretical analysis made
in Section[d] Finally, we observe that non-equivariant architectures still lead to fairly measurably
equivariant models. While surprising, this phenomenon has already been witnessed and is usu-
ally referred to as learned equivariance, whereby the training data and inductive biases lead to fairly
equivariant learned models (Gruver et al.|[2024)). We believe that this learned equivariance is respon-
sible for the high performance of splitting methods even when using non-equivariant architectures.
For additional results on the impact of equivariant architectures, see Appendix [B.4}

Table 3: Impact of using equivariant architectures. In accordance with the theoretical results
described in Section [d] there is a synergy between the splitting loss and equivariant architectures
resulting in higher performance. Non-equivariant models have surprisingly high equivariance mea-
sures (EQUIV) which might explain their high performance when using the splitting loss. Eq. arch.
denotes whether the architecture is equivariant. In bold, the best self-supervised metrics (avg +
st.d.).

Image inpainting
Training loss Eq. arch. PSNR 1 SSIM 1 EQUIV 1

Supervised v 28.46 £2.97 0.8982 +£0.0411 28.46 £2.97
X 28.62 +3.03 0.9002 +0.0414 27.85+2.71
Splitting (Ours) v 27.45 + 2.86 0.8737 £ 0.0461 27.46 + 2.85
X 27.20 +£2.83 0.8652 +0.0461 26.52 +2.60

MRI (x8 Accel., 40 dB SNR)
Training loss Eq. arch. PSNR 1 SSIM 1 EQUIV 1

Supervised v 28.74 £ 2.81 0.6445 = 0.1094 31.71 +£2.83
X 28.48 £2.68 0.6381 = 0.1082 28.78 £ 1.95
Splitting (Ours) v 28.54 £2.75 0.6195 + 0.1188 31.53+£2.74
X 28.18 £2.58 0.6104 £0.1176 27.28 £2.10

6 CONCLUSION

In this work, we propose a new self-supervised loss for solving inverse problems which bridges the
gap between existing equivariance and splitting-based self-supervised losses. We motivate the de-
sign of our loss by showing that minimizing the expected loss results in MMSE estimators. We fur-
ther validate our method using numerical simulations on different image distributions and imaging
modalities, including inpainting of natural images and MRI. These results suggest that the proposed
method compares favorably to the equivariant imaging baseline and is close to supervised methods.
To the best of our knowledge, this work is the first to leverage equivariant networks to learn from
incomplete data alone, going beyond the usual goal of improving the generalization of the networks
to unseen transformations at test time. Our method provides a new way to evaluate the benefits of
using different equivariant architectures, and can benefit from future advances made in this field.
More broadly, our work is further evidence that invariance is a promising prior for learning from
incomplete data.
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A DETAILS ABOUT THE METHOD

In Theorem@ we consider reconstruction functions of 4 different structures. In this section, we give
additional details about them.

The artifact removal reconstructor architecture (Jin et al.,[2017) in eq. consists in a projection
step that maps the measurements back into the image space using the adjoint or the pseudo-inverse
of the forward matrix, which is immediately followed by a very general trainable network, often
a UNet or another encoder-decoder type of network, or sometimes simply a fully convolutional
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Figure 4: Compressive sensing results. Adds the pseudo-inverse reconstruction (pseudo-inv.) as a
baseline to Figure[T]
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Figure 5: Reconstructor equivariant to rotations and flips. It is the Reynolds averaging of 90°
rotations and horizontal and vertical flips as in eq. (I8) of a non-equivariant reconstructor of the
MAP type, as in eq. (I9), implemented using a MoDL unrolled algorithm (Aggarwal et al., 2019)
with 3 iterations, shared weights, and using a non-equivariant residual UNet (Ronneberger et al.,
2015)) as the denoiser architecture.

13



Under review as a conference paper at ICLR 2026

network. Theorem [2] states that this reconstructor architecture produces equivariant reconstructors
as long as the denoiser architecture is, itself, equivariant in the sense of eq. (14).

Reynolds averaging for possibly non-equivariant reconstruction functions r(y, A) in eq.

f(y, 4) > Tyr(y, AT,). (18)

1
|g‘ g€eg

has, as far as we know, not been defined in previous works. It is a natural extension of Reynolds

averaging for possibly non-equivariant image-to-image functions or denoisers ¢(x) (Sannai et al.,

2024; Terris et al., [2024)),

d(x) = é > T, (Ty) (22)

9€g

which makes them equivariant in the sense of eq. , to reconstruction functions in order to make
them equivariant in the sense of eq. (I3). It is a fairly simple way to make a reconstructor equivariant
and it is relatively inexpensive for small groups of transformations such as the group of 90° rotations
and horizontal and vertical flips (Cohen & Welling} 2016). It is however too expensive to be used in
practice when the group is relatively large, like the group of shifts, since it would require to evaluate
the neural network for as many times as there are pixels in the input image, for each image.

The maximum a posteriori (MAP) reconstructor architecture defined in eq. (19)

f(y. A) = argmax {p(x | y, ) }. 1]

xrcR”

is a classical reconstructor architecture that has been used in different ways, including iterative
algorithms with a hand-crafted prior (Rudin et all [1992} Davy et alJ 2025)), plug-and-play archi-
tectures using an iterative approach but with the hand-crafted prior replaced with a pre-trained de-
noiser (Venkatakrishnan et al.l 2013)), and unrolled architectures where the optimization problem is
done with a fixed number of steps and where parts of the algorithm are replaced with trainable mod-
ules (Aggarwal et al.; |2019). It is often interpreted as a Bayesian maximum a posteriori estimator,
but also commonly outside of a Bayesian framework as a variational approach with a data-fidelity
term and a regularization term. It is one of the reconstructor architectures that we use for our ex-
periments in Section [5] Theorem [2] states that these reconstructors are equivariant as long as the
prior distribution is invariant in the sense of eq. (5), or equivalently, if the associated regularization
function or negative log-prior is invariant.

The minimum mean squared error (MMSE) estimator in eq. (20)

f(y, A) =Egjy a{z} (1)

is generally the target theoretical reconstructor as it achieves the highest theoretical PSNR (Tachella
et al.,2023)). It is generally estimated by reconstructors trained with a mean squared error loss (Chen
et al.,|2021)), which is notably how we train the supervised baselines in the experiments in Section@
Theorem [2]states that as long as the prior distribution is invariant in the sense of eq. (5), the MMSE
reconstructor is equivariant in the sense of eq. (I5).

Table 4: MRI results in another setting. Supplementary results for a different MRI problem (x6
Accel., 10 dB SNR) than in TableE]In bold, the best self-supervised metrics. Values: avg =+ st.d.

MRI (x6 Accel., 10 dB SNR)

Method PSNR 1 SSIM 1 EQUIV 1
Supervised 27.39 +2.44 0.5243 +0.1373 30.38 £2.43
ES (Ours) 27.33 £ 2.45 0.5126 = 0.1444 30.32 + 2.44
EI 27.23 £2.41 0.5110 +0.1421 30.21 +2.40
SURE 27.08 £2.29 0.5097 + 0.1372 30.06 + 2.28
IDFT 23.85 + 1.05 0.3878 + 0.0272 25.14 £0.79
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B DETAILS ABOUT THE EXPERIMENTS

We use the optimizer AdamW (Loshchilov & Hutter, 2019)) for every the training with different
learning rates for the different inverse problems, a weight decay of 10~%, beta coefficients equal to
0.9 and 0.999 and without the AMSGrad option. For longer trainings, we use step schedulers that
divide the learning rate by a factor ranging from 2 to 10 at specific epochs, up to 3 or 4 times.

In our experiments, we make extensive use of the Deeplnverse library (Tachella et al., [2025b)) that
provides an implementation of the various forward operators and training losses that we use. Every
model is trained for up to 50 hours on a single GPU, either an NVIDIA H100, GH200 or RTX 4090.

x8 Accel., 40 dB SNR x6 Accel., 10 dB SNR

Figure 6: Examples of k-space measurements in MRI. (left) a less noisy problem with less mea-
surements, (right) a noisier problem with more measurements.

B.1 DATASETS

Image inpainting The ground truth images are images obtained from the dataset DIV2K (Agustsson
& Timofte, |2017) which contains pictures of natural scenes (landscapes, animals) by first resizing
them to a resolution of 256 x 256 pixels before extracting a central 128 x 128 pixels crop. We
synthesize the measurements by corrupting the ground truth images using a single binary mask
sampled from a pixel-wise Bernoulli distribution with a 30% chance of keeping each pixel value. In
this setting, we do not corrupt the measurements further with additional noise.

MRI The dataset consists in 973 pairs of ground truth images from the FastMRI dataset (Zbontar,
et al., 2019) and associated k-space measurements synthesized using a single coil sensitivity map.
The ground truth images have a size of 320 x 320 pixels and each corresponds to the middle slice
of a different 3d knee acquisition. The k-spaces are synthesized as discrete Fourier transforms sub-
sampled on a single non-regular grid and further corrupted with additive white Gaussian noise with
a standard deviation of 0.005 corresponding to an average SNR of about 40 dB. The subsampling
grid models the coil sensitivity map, is sampled from a Gaussian distribution and corresponds to an
acceleration of 8. The entire dataset is finally split into a train/val split containing 900 images and a
test split containing the remaining 73 images. Our implementation uses the work from Wang et al.
(2025).

We also consider an additional dataset obtained in the same way except using a different mask
corresponding to an acceleration of 6 and with a higher noise level corresponding to a standard
deviation of 0.1 or an average SNR of 10 dB in the k-space domain.

B.2 NETWORK ARCHITECTURES

The unrolled architecture uses 3 iterations and the weights are shared across different iterations.
Every UNet is residual, has 4 scales and has no normalization layer as we find them to be detrimental
to the performance.

The transforms we use in the model architecture and in the metrics are grid-preserving: grid-aligned
shifts, 90° rotations, and vertical and horizontal flips. The transforms we use in the EI are grid-
aligned shifts and 1° rotations following the prior art |Chen et al.| (2021)). Reynolds’ averaging is
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implemented using an unbiased Monte-Carlo estimator whereby a single random transform is sam-
pled at every evaluation to save on computational cost.

B.3 MEASURED EQUIVARIANCE METRIC

We propose an equivariance metric similar to that used by (Chaman & Dokmani¢| (2021b)) adapted
for our new definition of equivariant reconstructors. It is the average mean squared error associated
with eq. (I5) and expressed in dB for readability

EQUIV = —10logyg (By, { || f(3, AT,) — T, (5, 4)|°}) (23)

It can be roughly understood as a PSNR for equivariance. In every experiment, we use the same
group of transformations for EQUIV as we use for the equivariant reconstructor architectures.

B.4 RESULTS

Figure [ shows additional compressive sensing results, Table ] and Figure [7]show results on a MRI
experiment with settings different from the main one, Table[5|shows extended results for the ablation
study on equivariant architectures, and Figure [] shows sample k-spaces from the MRI experiments.
Figure 5] shows the equivariant reconstructor architecture that we adopt in the MRI experiments.

Table 5: Extended results on the impact of equivariant architectures. Adds to Table [3]the results
for EI with a non-equivariant architecture for the inpainting task, results for the noise-dominated
MRI task. In bold, the best self-supervised metrics. Values: avg =+ st.d.

Image inpainting

Training loss Eq. arch. PSNR 1 SSIM 1 EQUIV 1
Supervised v 28.46 +£2.97 0.8982 £ 0.0411 28.46 £2.97
X 28.62 + 3.03 0.9001 £0.0415 27.85+2.71
Splitting (Ours) v 27.45 + 2.86 0.8737 £ 0.0461 27.46 +2.85
X 27.20 £ 2.83 0.8651 £0.0463 26.52 +2.60
EI loss v 25.89 +2.65 0.8332 £ 0.0521 25.89 +2.65
X 26.33 +2.81 0.8451 £ 0.0536 25.58 £2.52
MC loss v 8.22 +2.47 0.098 +0.055 8.22 +2.47
X 8.24 £2.48 0.100 + 0.056 8.24 £2.48
MRI (x8 Accel., 40 dB SNR)
Training loss Eq. arch. PSNR 1 SSIM 1 EQUIV 1
Supervised v 28.74 +2.81 0.6445 £ 0.1094 31.71 £2.83
X 28.48 +2.68 0.6381 £0.1082 28.78 £ 1.95
Splitting (Ours) v 28.54 £ 2.75 0.6195 + 0.1188 31.53 £ 2.74
X 28.18 £2.58 0.6104 £0.1176 27.28 £2.10
MRI (x6 Accel., 10 dB SNR)
Training loss Eq. arch. PSNR 1 SSIM 1 EQUIV 1
Supervised v 2739 +2.44 0.5243 £0.1373 30.38 £2.43
X 27.33+242 0.5174 £0.1410 29.73 +£2.20
Splitting (Ours) v 27.33 £2.45 0.5126 + 0.1444 30.32 +2.44
X 27.20 £ 2.38 0.5095 £ 0.1430 28.66 + 1.76
C PROOFS

For the sake of clarity, we state the propositions and theorems a second time before their proofs. We

also state and prove the additional Lemma [T] which helps prove Theorem [I]
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Ground Truth  Supervised ES (Ours) SURE IDFT

Figure 7: Sample reconstructions for noise dominated MRI (x6 Accel., 10 dB SNR). In the noise
dominated setting, the different models perform more similarly than in the less noisy setting shown
in Figure 3]
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Figure 8: Inpainting performance evolution during training. Splitting methods perform better
than EI independent of the network architecture.
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Lemma 1. The minimization problem

min By {I|Af(y) — Az|*} (24)

admits as solutions the functions of the form
f(y) = ATAE, ), {2} + (I - ATA)u(y) (25)

where v(y) is any function.

Proof. Let’s start by stating that f(y) = E4|,, {2} is the only solution of (Klenke, [2008)
min Egy {[I/(y) - 2]} (26)

For f any solution of eq. , applying it to f(y) = Af(y) and & = Ax gives
Af(y) = AEy)y {x}, (27)

and applying f(y) = ATAf(y) + (I — ATA)f(y) with v(y) := f(y) yields eq. 25). Conversely,
the objective in eq. has the same value no matter the f satisfying eq. and since at least one
of them is solution of eq. (24), they all are.

O

Theorem 1. In the case of noiseless measurements withp(x) G -invariantAssumption if the matrix

Qa, = Ega, {(ATg)TATg} has full rank for some split A1, then the splitting method yields the
same MMSE-optimal reconstructions as the supervised method, i.e.,

[ (y1, A1) = Egjy, 4, {z} - 9)

Proof.

Ey{Les(y, A, )}

=E, {Eg{]Eyl,Al\y,ATg {HATgf(yla Al) - y||2}}}
=By o{By, a11y0 {IAT, f(y1, A1) — y[}}
=Eyy,,4,,01[AT, f(y1, A1) — '!J||2}

= Eay, a0 { AT, f (41, A1) — ATyz||*}

=Ey, 4, 2By, a4, { AT, (f(y1, A1) — 2)|°}

=By, 4, 2{(f(y1,41) —2)"Qa, (f(¥1, A1) — 2)},

where the third line use that p(y1, A1 | y, AT,) = p(y1, A1 | y,g) as A is fixed. The fifth line
use the noiseless measurements assumption and the invariance of the distribution p(x). The last line
uses definition of @Q 4,. By applying LemmalI} the global minimizer of the expected loss is given
by:

P (1, A1) = QY Qa By a, {2} + (I - Qly, Qa)u(y1) (28)

where v : R™ — R” is any function. Moreover, since  has full-rank, Q’LA1 = Q;& and then
f*(yla Al) = Em|y1,A1 {df} . (29)
O

Proposition 1. [fthe matrix Qa = E 4, 1A {Qa, } is invertible and f minimizes By {Lrs(y, A, f)}.
Then the reconstruction function

fy,A) 2 Ey a,1y.a{Q4'Qa, f(y1, A1)} (10)
satisfies
f(y,A) =Ey, a,1y.4 {Q4'Qa Eqjy, 4, {x}} . (an
where eq. is a convex combination of MMSE estimators for different splittings.
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Proof. By applying eq. to f in the definition of f we obtain:
Py, A) =By, a,19.4 {Q2'Qa, (@, Qa,Eaiy, 4, {2} + (I - Q1 Qa o) }

= EylaAllyaA {QleAle\yhz% {:13}} + EyhAl\%A {Qlex% ((I - QAT41 QAl)U(yl))}

= EylaAllyaA {QleAle\yl7A1 {:13}} :
O

Corollary 1. In order for the matrices Q a, or Q a to have full rank, it is necessary that A is not
equivariant:
dge G, AT, # T, A. 13)
Proof. Let’s assume by contradiction that A is equivariant with respect to T},
AT, =T A, (30)
and let & € ker(A).

Qaz = (Ega, {(AT,) AT} )2
=Eya, {(AT,))T ATz}
=E,a, {(AT,) T,Az}
= Il:ﬂglAl {(ATQ)TTQO}
=0

Therefore,
ker(Qa,) 2 ker(A) 2 {0}. 31

The matrix @Q 4, has a non-trivial nullspace and thus cannot have full rank. Moreover, since this
non-trivial nullspace is the same for all virtual operators AT, then Q) o shares the same non-trivial
nullspace. O

Theorem 2. The reconstruction functions defined in points below are all equivariant as in eq. (I5).
1. Artifact removal network. For a denoiser ¢(x) equivariant in the sense of eq. ,
fly,A)=9¢(ATy) or f(y.A)=0¢(Aly). (16)
2. Unrolled network. For ¢(x) equivariant, any v € R and data fidelity d( Az, y), with
o =0, xpp1=0¢(xr — Vo, d(Azk,y)) (17)
fork=0,...,L—1and f(y,A) = xy.

3. Reynolds averaging. For a possibly non—equivariant reconstructor r(y, A), with

[, A) = = S Ty, AT,). (18)

9€g

[

4. Maximum a posteriori (MAP). For a distribution p(x) invariant as in eq. (3)), with

/(. A) = argmax {p( |y, A) }. (19)

xcR”

5. Minimum mean squared error (MMSE). For a distribution p(x) invariant as in eq. ,

Proof. We prove each case separately.
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1. Denoting A* := AT or A* := Af eq. gives, as (AT,)* =T, ' A*,
fly, AT,) = ¢ (T, ' A%y), (32)
and since ¢(x) is equivariant, i.e., eq. holds, it simplifies to eq. (13).

2. We start by making the notation show the explicit dependency on y and A:

Zo (ya A) =0, wk+1(y7 A) = ¢($k(ya A) - ’}/mG(y,A)d(Amk(yv A)a y)) . (33
and proceed to show that for k = 0,. .., L it holds that
xi(y, AT,) = Tg_lzlck(y7 A). (34)

For k = 0, it holds as
xo(y, AT,) =0 = Tgflcco(y,A). (35)

Let’s assume that eq. holds for &k < L. Applying it and the chain rule in eq. yields
21 (Y, ATy) = 6(T, " (21(y, A) = Va4 d(ATk(y, A),9) ). (6)
Finally, applying eq. (I4) in this equation gives
wi1(y, AT, ) =T, '@ y1(y, A), (37)
and by induction, as f(y, A) = 1 (y, A), eq. (15) holds.
3. From eq. (I8), it holds that

f(y, AT,) Z Tr(y, AT,T),), (38)
|g| heg
which, as the group action property holds T, T}, = Ty, rewrites as
f(y, AT,) =G ZThr y, ATy), (39)
heg

Applying the change of variable b’ = gh in this equation gives

f(y, AT,) ZT it (y, ATh), (40)

heg

gl
which finally, using group action property again Tj;—1), = Tgfng, gives eq. .

4. Taking the negative natural logarithm in eq. (I9) and using Bayes’ theorem gives

f(y. A) = argmin {d(Az,y) + p(2) |, o)
xeR”™
where d(Ax,y) = —logp(y | Azx) and p(x) = —log p(x). Applying 2’ = T, x,
fly, ATy) = Tgf1 argmin {d(Aa:, y)+p (Tgfla:) }, (42)
xTeR™

and eq. (5) makes p(x) invariant as well p (Tg’lcc) = p(). Therefore, eq. holds.

5. Let’s assume that p(z) and p(A) are invariant in the sense of eq. (5). We first prove that
Using eq. , the invariance of p(A) and the independence of @ and A, we compute
p(y, ATy) = Eo {p(y, AT, | ®)} = Eo {p(y,| ATy, z)p(AT, | )}
=Bz {p(y | AT,, 2)p(AT,)} = Ea {p(y | AT,x)p(A)}
=Ez {p(y | Az)p(A)} = Ex {p(y | A,z)p(A | z)}
=Ez{p(y, A|x)} = p(y, A).
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Next we start from

f(ya AT(]) = Ew|y7ATg {w} . (44)
and applying the integral formula for expectations gives
f(9.AT,) = [ @p(e|y. AT,)do 3)
Using Bayes’ formula and p(y | A, x) = p(y | Ax), it becomes
ply | AT,x)
fly, AT, :/:cipAT,m dx. (46)
( g) 1?(141—;)7 y) ( g )
By using eq. @]) the invariance of p(A) and the independence of A with &, we obtain
p(y | AT,x)
fly, AT, :/wipApx dzx. 47
(y. AT,) iy PARE)
With the change of variable &’ = T x, and since T}, is unitary, we arrive at
_1, Py | Az) -1
f(y, AT, :/T e 28 2 p(A)p(T ) da. (48)
( _l]) ] p(A, y) ( ) ( g )

Finally, applying eq. (5) in this equation yields eq. (T3).

O
Theorem 3. If f( A, x) is an equivariant reconstructor, then ES is equivalent to the splitting loss
Lrs(y, A, f) = Lspur(y, A, f). (21)
Proof. We start from eq.
Les(y, A, f) £ Eg {Lspurr(y, ATy, f)} (49)
=Ey {Ey, a,jyar, {|AT,f(y1, A1) —yl*}} (50)
As A, is a splitting of AT}, we can write A; = M AT, for M a splitting matrix. We obtain
Les(y, A, [) = By {Engjy g {|AT, f(My, MAT,) — y||*} } (51)
Applying eq. and cancelling out T, with T;l yields
Les(y, A, f) = By {Enrjy o {[|Af(My, MA) - y[*}}. (52)

By dropping the expectation in g and rewriting (My, M A) as (y1, A1), this yields in eq. 21).
O
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