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ABSTRACT

Self-supervised learning for inverse problems allows to train a reconstruction net-
work from noise and/or incomplete data alone. These methods have the poten-
tial of enabling learning-based solutions when obtaining ground-truth references
for training is expensive or even impossible. In this paper, we propose a new
self-supervised learning strategy devised for the challenging setting where mea-
surements are observed via a single incomplete observation model. We intro-
duce a new definition of equivariance in the context of reconstruction networks,
and show that the combination of self-supervised splitting losses and equivari-
ant reconstruction networks results in unbiased estimates of the supervised loss.
Through a series of experiments on image inpainting, accelerated magnetic reso-
nance imaging, sparse-view computed tomography, and compressive sensing, we
demonstrate that the proposed loss achieves state-of-the-art performance in set-
tings with highly rank-deficient forward models.

1 INTRODUCTION

Inverse problems are ubiquitous in many sensing and imaging applications. They are written as

y = Ax+ ε (1)

where A ∈ Rm×n is the known forward matrix, x ∈ Rn is the ground truth image to be estimated,
y ∈ Rm is the observed measurement vector, and ε ∈ Rm is the unknown noise, generally assumed
to follow a Gaussian distribution. This model is suitable for many imaging modalities, including
magnetic resonance imaging (MRI) for medical imaging (Zbontar et al., 2019), computed tomogra-
phy (CT) (Withers et al., 2021), microscopy (Ragone et al., 2023), remote sensing (Fassnacht et al.,
2024), and astronomical imaging (Vojtekova et al., 2021).

The number of linearly independent measurements is often smaller than the number of pixels in the
target images due to physical and practical constraints. In this case, the forward matrix is rank-
deficient, the forward process discards some of the information present in the target image. Further
information about the target images is needed to solve the problem and different methods make
different assumptions about the signal distribution.

Modern learning-based solvers generally obtain state-of-the-art performance by training on super-
vised pairs of ground-truth images and measurements. For certain applications, it is expensive or
even impossible to obtain enough ground-truth data for supervised training (Belthangady & Royer,
2019). This is notably the case in astronomical imaging, microscopy and medical imaging.

Recent self-supervised methods overcome this limitation by learning to reconstruct without ground-
truth data, relying only on a dataset of measurements, and they generally differ in the assumption
they make on the forward model. For denoising problems where the forward matrix is the identity
mapping, certain methods rely on knowing the exact noise distribution (Eldar, 2009; Pang et al.,
2021; Monroy et al., 2025), others only assume it is entry-wise independent (Krull et al., 2019),
while some make intermediate assumptions (Tachella et al., 2025a).

In settings where measurements are observed via multiple incomplete forward operators, such as
accelerated MRI with masks varying across acquisitions or inpainting problems with missing pixels
varying across images, the main approaches are splitting (Yaman et al., 2020; Millard & Chiew,
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2023) and consistency across operators (Tachella et al., 2022). Splitting losses divide the measure-
ments into input and target components, and are unbiased estimators of the supervised loss if there
is enough diversity of operators in the dataset (Daras et al., 2023; Millard & Chiew, 2023).

In the more challenging case of measurement data obtained via a single incomplete forward opera-
tor, the main self-supervised approach is equivariant imaging (Chen et al., 2021; 2022) which makes
the assumption that the target distribution is invariant to a certain group of transformations including
geometric transformations (Wang & Davies, 2024; Scanvic et al., 2025) and range transformations
such as intensity scalings (Sechaud et al., 2024). Experimental results show that it can obtain com-
petitive performances to supervised methods even though it does not require ground-truth references
for training (Chen et al., 2022). However, training with EI is typically slower than supervised learn-
ing, as it requires two to three evaluations of the model for every iteration, and can obtain subpar
performances if the operator is highly incomplete.

In this work, we propose equivariant splitting (ES), a new self-supervised method for learning from
measurements obtained via a single forward operator that combines the invariance to transforma-
tions assumption of equivariant imaging and the simplicity and computational efficiency of splitting
methods. The key idea behind our method is the use of recent developments in equivariant architec-
tures (Chaman & Dokmanić, 2021a; Puny et al., 2022) to design a training loss that performs implicit
ground truth data augmentation without any transformation overhead. Our theoretical results show
that our method yields (in expectation) the minimum mean squared error (MMSE) estimator as
long as the model is expressive enough, which is not guaranteed for equivariant imaging and pre-
vious splitting methods. Additionally, our experiments demonstrate state-of-the-art performance on
a wide range of self-supervised imaging problems including compressed sensing, image inpainting,
accelerated MRI and sparse-view CT. This work is additional evidence that architectural constraints
built upon equivariance are a powerful tool to solve ill-posed imaging inverse problems.

Our contributions are the following:

1. We propose a new definition for equivariance in inverse problems, and propose architec-
tures that satisfy this property, including unrolled architectures.

2. We propose a new self-supervised loss that leverages equivariant networks (according to
our definition above) whose global minimizer is the gold standard MMSE estimator under
the assumption of an invariant signal distribution.

3. We demonstrate the performance of our method on a wide range of inverse problems in-
cluding compressed sensing, inpainting, accelerated MRI and sparse-view computed to-
mography.

2 RELATED WORK

Measurement splitting Various self-supervised losses consist of dividing measurement vectors into
two components, one used as input and the other as target. It has been used to solve oversam-
pled single-operator inverse problems including full-view CT (Hendriksen et al., 2020), and also
undersampled multi-operator inverse problems with theoretical guarantees of producing estimates
equivalent to supervised estimates in expectation, notably accelerated MRI and image inpainting
with varying masks (Daras et al., 2023; Millard & Chiew, 2023). To the best of our knowledge,
this work is the first to extend these methods to the more challenging single-operator undersampled
setting, which notably includes sparse-view CT and accelerated MRI (with fixed mask).

Equivariant imaging It is possible to learn from incomplete data associated with a single degra-
dation operator, as long as the underlying signal distribution is invariant to a group of transforma-
tions (Tachella et al., 2023). Equivariant imaging (Chen et al., 2021; 2022) assumes that the dis-
tribution of clean images remains unchanged under certain transformations, including translations,
rotations and flips, and introduces a training loss that enforces the equivariance to these transfor-
mations of the entire measurement-reconstruction process, thereby constraining the set of learnable
models. It has been used effectively to solve various inverse problems using adequate groups of
transformations (Wang & Davies, 2024; Sechaud et al., 2024), but it is computationally expensive
due to the two to three network evaluations. Moreover, the EI loss is not necessarily an unbiased
estimator of the supervised loss, and it is unclear whether this approach recovers the optimal MMSE
estimator in expectation.
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Equivariant neural networks The design of equivariant networks is an active research topic and
many different approaches exist. Some rely on data augmentation to make neural networks more
equivariant to rotations and flips, while other rely on averaging on the group of transformations at
test time (Rivera et al., 2021; Puny et al., 2022; Kaba et al., 2023; Sannai et al., 2024). A third line
of work focuses on architectures that are equivariant by design: Cohen & Welling (2016; 2017) pro-
pose convolutional layers that are equivariant to rotations and flips, and other works also rely on the
design of more equivariant layers to improve translation-equivariance. Zhang (2019); Chaman &
Dokmanić (2021b) propose equivariant pooling and downsampling/upsampling layers, and Karras
et al. (2021); Michaeli et al. (2023) equivariant non-linearities and activation layers. Closer to our
work, in the specific setting of inverse problems, Celledoni et al. (2021) propose the use of equiv-
ariant denoising blocks within unrolled architectures, and Terris et al. (2024) similarly propose to
render plug-and-play denoisers more equivariant by averaging over transformations at test time. We
take these analyses further by providing a clear definition of equivariance in inverse problems and
showing which popular posterior estimators and related architectures verify these properties.

3 BACKGROUND

Solving the inverse problem in eq. (1) amounts to designing a reconstruction function f(y,A) ≈ x
estimating a ground truth signal x ∈ Rn from its measurement vector y ∈ Rm and forward matrix
A ∈ Rm×n. In practice, it is often implemented as a neural network parametrized by a set of
weights. Supervised methods assume the existence of a finite dataset containing pairs of ground truth
signals and measurements {(xi,yi)}i∈I that are used to learn the reconstruction function f(y,A).
The main approach is to minimize a training loss equal to the mean squared error (Ongie et al., 2019)

min
f

{
1

|I|
∑
i∈I
LSUP(xi,yi,A, f)

}
, LSUP(x,y,A, f) = ∥f(y,A)− x∥2. (2)

While this approach obtains state-of-the-art performance, it cannot be used in the absence of ground-
truth data. Self-supervised methods overcome this limitation using a finite dataset containing only
measurements {yi}i∈I , and a training lossL(y,A, f) that need no ground truth data to be evaluated,
and which is designed to approximate well the supervised objective in eq. (2).

In denoising problems (A = I) with Gaussian noise of known variance, Recorrupted2Recorrupted
(R2R) (Pang et al., 2021) and SURE (Metzler et al., 2020) provide unbiased estimators of the su-
pervised loss. The R2R loss is computed by adding synthetic Gaussian noise ω ∼ N (0, σ2I) to the
measurements, creating input-target pairs as (y + αω,y − ω

α ) for some α ∈ (0,+∞). However, if
measurements are observed by an incomplete operator A with a non-trivial nullspace, these losses
fail to learn in the nullspace, approximating f(y,A) = A†AEx|y,A {x} + v(y,A), with v being
any function taking values in the nullspace of A (Chen et al., 2021).

In the rest of this section, we present the two main self-supervised losses that can learn beyond
the nullspace, measurement splitting in Section 3.1 and equivariant imaging in Section 3.2. By
combining their main ideas, we obtain our new self-supervised loss introduced in Section 4.

3.1 MEASUREMENT SPLITTING

One strategy to address the limitations imposed by the nullspace of a single operator is to employ
multiple operators (Millard & Chiew, 2023). The key idea is that different operators generally do not
share the same nullspace; thus, observing measurements through the image spaces of multiple oper-
ators allows access to the whole space Rn. Formally, they assume that measurements are obtained
according to y ∼ p(y|Ax) where the measurement operator A is itself drawn from a distribution
p(A), and differ for each acquisition.

Splitting losses divide the measurements into two components y = [y⊤
1 ,y

⊤
2 ]

⊤ with correspond-
ing operators A = [A⊤

1 ,A
⊤
2 ]

⊤, where A1 ∈ Rm1×n and A2 ∈ Rm2×n with m1 + m2 = m.
The network is then trained to predict the entire measurements vector y from only one of its two
components y1, using the training loss1

LSPLIT(y,A, f) = Ey1,A1|y,A
{
∥Af(y1,A1)− y∥2

}
, (3)

1We use the notation Ea|b{g(a)} for
∫
a
g(a)p(a|b)da.
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where p(y1,A1 | y,A) is a random splitting distribution, which is chosen on a per-problem ba-
sis. The loss encourages the model to learn in the nullspace of each operator by predicting the
unobserved part. In practice, the expectation in eq. (3) is estimated using a single split y1 for each
training batch.

3.2 EQUIVARIANT IMAGING

Equivariant imaging (EI) relies on the assumption that the distribution of images is invariant under
a group of transformations Tg∈ Rn×n, g ∈ G, to learn beyond the nullspace of measurements ob-
tained via a single operator (Chen et al., 2021; 2022). In this setting, the reconstruction model is
expected to be able to estimate ground truth images x as well as their transformations Tgx in a co-
herent manner, i.e., such that the entire measurement-reconstruction pipeline f(Ax) is equivariant
with respect to the transformations f(ATgx,A) = Tgf(Ax,A). In order to achieve this, they pro-
pose a self-supervised loss which consists in a traditional measurement consistency term (replaced
by SURE in the presence of noise), along with an equivariance-promoting term

LEI(y,A, f) = ∥Af(y,A)− y∥2 + λEg{∥Tgf(y,A)− f(ATgf(y,A),A)∥2}, (4)

where λ > 0 is a trade-off coefficient. Even though it has been shown to be particularly effective on
a wide variety of problems (Wang & Davies, 2024; Sechaud et al., 2024), it typically requires from
two to three evaluations of the neural network which makes it very computationally expensive (Xu
et al., 2025). Moreover, the equivariant loss is only effective at enforcing equivariance when the
learned estimator achieves almost perfect reconstructions, f(y,A) ≈ x (Chen et al., 2021), which
is not the case for very ill-conditioned problems and which leads to the method having multiple
possible solutions in general.

4 METHOD

In this section, we present our method that combines measurement splitting and EI introduced in
Section 3. In order to learn from incomplete measurements obtained via a single operator, we rely
on the same assumption of EI:

Assumption 1. The distribution of ground truth images p(x) is invariant to the transformations
{Tg}g∈G

p (Tgx) = p(x), ∀g ∈ G,∀x ∈ Rn. (5)

The set of transformations is a design choice of the method to be chosen on a per-problem basis.
Corollary 1 helps to choose them for specific problems, and we use it in the experiments. This
assumption applies in many different settings, natural image distributions are generally invariant to
rigid transformations (translations, rotations, flips, scalings), especially microscopic, aerial or re-
mote sensing images which have no privileged orientation. Moreover, our experiments show that
our method performs well even in the presence of approximate invariance, e.g., for medical im-
ages. Refer to Appendix A.2 for more details about how to choose the transformations for a given
application.

In Section 4.1, we present our proposed loss and state its optimality under mild assumptions in Theo-
rem 1 and Proposition 1. In Section 4.2, we present a new definition of equivariance for reconstruc-
tion functions and state sufficient conditions for common architectures to be equivariant in The-
orem 2. In Section 4.3, we finally present a computational synergy between our loss and these
equivariant architectures stated in Theorem 3. See Appendix A.3 for a description of the end-to-end
algorithm, and Appendix C for the detailed proofs.

4.1 PROPOSED LOSS

Under Assumption 1, the measurements can be understood in a different way than they are tradi-
tionally. Indeed, measurements y are generally thought of as being associated to the ground truth
image x and the forward matrix A, but they can equally be understood as being associated to the
virtual ground truth image xg = T−1

g x and the virtual forward matrix Ag = ATg , with

y = Ax+ ε = ATgT
−1
g x+ ε = Agxg + ε. (6)

4
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The implicit multi-operator structure (with operators {ATg}g∈G) of the problem hints that we should
be able to leverage the splitting approaches presented in Section 3. Moreover, since we use the same
invariance assumption as EI, we can combine the two approaches to obtain equivariant splitting
(ES), a new self-supervised loss LES that has the advantages of both methods.

Noiseless measurements The ES self-supervised loss is expressed as

LES(y,A, f) ≜ Eg {LSPLIT(y,ATg, f)} (7)

= Eg

{
Ey1,A1|y,ATg

{
∥ATgf(y1,A1)− y∥2

}}
(8)

where A1 ∼ p(A1|ATg) ≜ p(A1|g) is a random splitting of ATg .
Theorem 1. In the case of noiseless measurements with p(x) G-invariant (Assumption 1), if the
matrix QA1 ≜ Eg|A1

{
(ATg)

⊤ATg

}
∈ Rn×n has full rank for some split A1, then the splitting

method yields the same MMSE-optimal reconstructions as the supervised method, i.e.,

f∗(y1,A1) = Ex|y1,A1
{x} . (9)

While it is sufficient for the matrix QA1
to be invertible for the reconstructions to be almost or

exactly optimal, in practice the spectrum (number of its non-negligible eigenvalues) of the matrix
determines how close to optimal they are. In the experiments, we use a single (random) split per
batch element and we average the reconstructions corresponding to 10 splits at inference.

Proposition 1. If the matrix Q̄A ≜ EA1|A {QA1
}∈ Rn×n is invertible and f minimizes

Ey{LES(y,A, f)}. Then the reconstruction function

f(y,A) ≜ Ey1,A1|y,A
{
Q̄−1

A QA1
f(y1,A1)

}
(10)

satisfies
f(y,A) = Ey1,A1|y,A

{
Q̄−1

A QA1
Ex|y1,A1

{x}
}
. (11)

where eq. (11) is a convex combination of MMSE estimators for different splittings.

In practice, often neither Q̄A nor QA1
can be computed in closed-form, and we use a non-weighted

average over random splittings

f(y,A) :=
1

J

J∑
j=1

f(y
(j)
1 ,A

(j)
1 ) with (y

(j)
1 A

(j)
1 ) ∼ p(y1A1|y,ATg) (12)

where g is chosen randomly over the group of transformations for each split.

As with EI, the forward operator should not be equivariant with respect to the choice of transforma-
tions, in order to learn beyond the nullspace of the operator:
Corollary 1. In order for the matrices QA1

or Q̄A to have full rank, it is necessary that A is not
equivariant:

∃g ∈ G,ATg ̸= TgA. (13)

Noisy measurements The ES loss can be split into two separate terms, one enforcing measure-
ment consistency, and the other prediction accuracy:

LES(y,A, f) = Eg

{
Ey1,A1|y,ATg

{
∥A1f(y1,A1)− y1∥2 + ∥A2f(y1,A1)− y2∥2

}}
,

where A1 and A2 are a splitting of ATg . If the measurements are noisy, the first term can be re-
placed by a self-supervised denoising loss. In particular, if measurements are corrupted by Gaussian
noise of standard deviation σ, we replace the first term by the R2R loss, yielding:

LG-ES(y,A, f) = Eg,y1,A1,ω|y,ATg

{∥∥∥A1f(y1 + αω,A1)−
(
y1 −

ω

α

)∥∥∥2
+ ∥A2f(y1 + αω,A1)− y2∥2

}

5
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with ω ∼ N (0, σ2I) and a hyper-parameter α ∈ (0,+∞). Since R2R provides an unbiased
estimate of the clean measurement consistency term (Pang et al., 2021), we can apply Theorem 1 to
show that minimizing this loss (in expectation) also results in MMSE estimators (if the conditions
on QA1

or Q̄A are verified). In the case of non-Gaussian noise, the R2R loss can be replaced by
its non-Gaussian extension (Monroy et al., 2025). As with random splits, the expectation over ω is
computed using a random realization per batch. At test time, we modify eq. (12) to average over
both splits and synthetic noise additions.

4.2 EQUIVARIANT RECONSTRUCTORS

The ES loss requires a model evaluation for every mask and transformation. We show that, instead of
sampling a random transformation each evaluation, imposing architectural equivariance constraints
removes the need to explicitly compute the transforms.

Image-to-image functions ϕ(x) are equivariant if they satisfy (Cohen & Welling, 2016)
ϕ(Tg x) = Tg ϕ(x), ∀x ∈ Rn, ∀g ∈ G. (14)

In this work, we introduce an extension of this definition to reconstruction functions f(y,A). To
the best of our knowledge, this is the first work that introduces this definition.
Definition 1. We say that the reconstruction function f(y,A) is an equivariant reconstructor if

f(y,ATg) = T−1
g f(y,A), ∀y ∈ Rm, ∀g ∈ G, ∀A ∈ Rm×n. (15)

This property is very general and the class of classical reconstruction functions that satisfy it is large.
Theorem 2. The reconstruction functions defined in points below are all equivariant as in eq. (15).

1. Artifact removal network. For a denoiser ϕ(x) equivariant in the sense of eq. (14),

f(y,A) = ϕ
(
A⊤y

)
, or f(y,A) = ϕ

(
A†y

)
. (16)

2. Unrolled network. For ϕ(x) equivariant, any γ ∈ R and data fidelity d(Ax,y), with

x0 = 0, xk+1 = ϕ
(
xk − γ∇xk

d(Axk,y)
)

(17)
for k = 0, . . . , L− 1 and f(y,A) = xL.

3. Reynolds averaging. For a possibly non-equivariant reconstructor r(y,A), with

f(y,A) =
1

|G|
∑
g∈G

Tgr(y,ATg). (18)

4. Maximum a posteriori (MAP). For a distribution p(x) invariant as in eq. (5), with

f(y,A) = argmax
x∈Rn

{
p(x | y,A)

}
. (19)

5. Minimum mean squared error (MMSE). For a distribution p(x) invariant as in eq. (5),
f(y,A) = Ex|y,A {x} . (20)

For additional motivation and details about these reconstructor architectures, see Appendix A.

4.3 EFFICIENT LOSS EVALUATION WITH EQUIVARIANT RECONSTRUCTORS

For equivariant reconstructors, the ES loss in eq. (7) reduces to the splitting loss in eq. (3).
Theorem 3. If f(A,x) is an equivariant reconstructor, then ES is equivalent to the splitting loss

LES(y,A, f) = LSPLIT(y,A, f). (21)

We emphasize that the condition for a reconstructor to be equivariant is different from the condi-
tion enforced by the EI loss, i.e., f(ATgx,A) = Tgf(Ax,A). They are only equivalent if the
reconstruction function is a perfect one-to-one mapping over all possible images.

In our experiments, we build equivariant reconstructors using i) artifact removal networks with a
translation equivariant UNet denoiser Chaman & Dokmanić (2021b) and ii) unrolled networks with
a denoiser architecture equivariant to rotations and flips via averaging (Sannai et al., 2021).
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5 EXPERIMENTS

We assess the effectiveness of the proposed self-supervised loss using experiments conducted on
different inverse problems. For each experiment, we train a model corresponding to our method as
well as baseline methods and compare their performance. The inverse problems we consider are 1)
inpainting, 2) compressive sensing, 3) accelerated MRI and 4) sparse-view CT. We also validate our
theoretical predictions by testing the effect of using an equivariant architecture. In Section 5.1 we
detail our experiments on compressive sensing, in Section 5.2 on image inpainting, in Section 5.3
on accelerated MRI and in Section 5.4 on sparse-view CT, and in Section 5.5 we present an abla-
tion study on the effect of equivariant architectures. For additional details about the experiments,
see Appendix B.

In each experiment, we compare against multiple baselines: a supervised baseline using the super-
vised loss described in eq. (2), the EI (Chen et al., 2021) baseline described in eq. (4), a measurement
consistency baseline (MC and SURE) Eldar (2009) and a learning-free baseline which are either the
measurements directly, or their image under the adjoint or the pseudo-inverse of the forward oper-
ator. We use the same architecture and the same training procedure for every method to ensure a
fair comparison. We report the peak signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) (Wang et al., 2004) of the final reconstructions for the different methods. They are
distortion metrics indicating how close the reconstructions are to the ground truth images. We do
not include perception metrics which are known to be at odds with them (Blau & Michaeli, 2018).
In each case, we also compute equivariance metrics (EQUIV) for translations or rotations and flips.

We design a model architecture from the principles introduced in Section 4, with a variant equivari-
ant to shifts, one equivariant to rotations and flips, and one without equivariance. It uses an existing
unrolled architecture (Aggarwal et al., 2019) with a prior step implemented as a standard UNet (Ron-
neberger et al., 2015), or that of Chaman & Dokmanić (2021b) to enforce the equivariance to shifts.
It also optionally uses Reynolds’ averaging to enforce the equivariance to rotations and flips. We
use a single equivariant variant dictated by Corollary 1 for each problem, the shift-equivariant one
for compressive sensing and inpainting, and that equivariant to rotations and flips for MRI and CT.

5.1 COMPRESSIVE SENSING

The 28 × 28 ground truth images are obtained from the MNIST dataset and are measured without
additional noise through compressive matrices A ∈ Rm×n, with m < n varying from training
to training to assess the impact of the compression rate. These matrices are obtained by sampling
Ai,j ∼ N (0, 1/m) for i = 1, . . . ,m and j = 1, . . . ,m, where n = 28 × 28. Figure 1 shows
the performance of the different methods for the different compression rates. Our method performs
almost as well as the supervised baseline, while the equivariant imaging baseline performs close to
the supervised baseline only for higher compression rates.

5.2 IMAGE INPAINTING

The dataset consists of 128 ×128 images from DIV2K (Agustsson & Timofte, 2017) measured
without additional noise through a single subsampling matrix A ∈ Rm×n selecting about 30% of
the pixels. This matrix is obtained by sampling a1, . . . , an ∼ B(0.3) where n = 3 × 128 × 128
and letting Ai,j = δji,j for i = 1, . . . ,m and j = 1, . . . , n, where m ≈ 0.3n is the number of
nonzero values in a, and ji is the i-th index in a corresponding to a nonzero value. Among the 900
images in the dataset, 800 are used for training while the remaining 100 are used for testing. For the
supervised method, we use different crops at each evaluation. Table 2 and Figure 2 show that ES
performs almost as well as the supervised baseline, and better than EI.

5.3 MAGNETIC RESONANCE IMAGING

The dataset contains 320 ×320 images from FastMRI (Zbontar et al., 2019) subsampled in the
Fourier domain by a single binary mask corresponding to an acceleration of 8, as well as Gaus-
sian noise with a standard deviation of 0.005 corresponding to a signal-to-noise ratio (SNR) of 40
dB. Mathematically, the forward operator A ∈ Rm×n is expressed as A = MF where F ∈ Rn×n

denotes the n×n discrete Fourier transform matrix and where M ∈ Rm×n is the subsampling mask

7
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Table 1: Medical imaging results. ES (ours) performs better than EI, SURE and MC (baselines),
while performing almost as well as the supervised baseline in reconstruction quality (PSNR, SSIM)
and measured equivariance (EQUIV). In bold, the best self-supervised metrics (avg ± st.d.).

MRI (×8 Accel., 40 dB SNR)

Method PSNR ↑ SSIM ↑ EQUIV ↑
Supervised 28.74 ± 2.81 0.6445 ± 0.1094 31.71 ± 2.83

ES (Ours) 28.54 ± 2.75 0.6195 ± 0.1188 31.53 ± 2.74
EI 27.88 ± 2.64 0.5731 ± 0.1299 30.79 ± 2.64
SURE 24.45 ± 1.86 0.5479 ± 0.0740 27.35 ± 1.90

IDFT 23.62 ± 1.90 0.5052 ± 0.0900 25.99 ± 1.94

Real MRI measurements (×8 Accel.)

Method PSNR ↑ SSIM ↑ EQUIV ↑
Supervised 28.81 ± 2.85 0.6480 ± 0.1103 31.81 ± 2.84

ES (Ours) 28.30 ± 2.64 0.6151 ± 0.1179 31.29 ± 2.62
EI 27.88 ± 2.61 0.5740 ± 0.1290 30.80 ± 2.61
MC 23.63 ± 1.90 0.5061 ± 0.0904 26.00 ± 1.94

IDFT 23.63 ± 1.90 0.5060 ± 0.0904 26.00 ± 1.94

CT (50 views, 50 dB SNR)

Method PSNR ↑ SSIM ↑ EQUIV ↑
Supervised 33.99 ± 2.48 0.8819 ± 0.0585 34.00 ± 2.49

ES (Ours) 32.62 ± 2.16 0.8570 ± 0.0596 32.60 ± 2.17
EI 28.61 ± 1.28 0.7400 ± 0.0466 28.61 ± 1.29

FBP 25.59 ± 0.69 0.4805 ± 0.0363 25.59 ± 0.70

9080706050
20

30

40

Compression level (%)
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N
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B
)

Supervised
ES (Ours)
EI

Figure 1: Compressive sensing results. ES (ours) performs similarly as the supervised baseline,
unlike EI (baseline) whose performance gap widens with higher compression levels.

Table 2: Inpainting results. ES (ours) performs better than EI (baseline), both in terms of recon-
struction quality (PSNR, SSIM) and measured equivariance (EQUIV), while performing competi-
tively against the supervised baseline. In bold, the best self-supervised metrics (avg ± st.d.).

Method PSNR ↑ SSIM ↑ EQUIV ↑
Supervised 28.46 ± 2.97 0.8982 ± 0.0411 28.46 ± 2.97

ES (Ours) 27.45 ± 2.86 0.8737 ± 0.0461 27.46 ± 2.85
EI 25.89 ± 2.65 0.8332 ± 0.0521 25.89 ± 2.65
MC 8.22 ± 2.47 0.0983 ± 0.0551 8.22 ± 2.47

Incomplete image 8.22 ± 2.47 0.0973 ± 0.0542 N/A
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Ground Truth Supervised ES (ours) EI Measurement

Figure 2: Sample reconstructions for image inpainting. ES (ours) produces images perceptually
closer to the supervised baseline than EI (baseline) which appears blurry.

Ground Truth Supervised ES (Ours) EI SURE IDFT

Figure 3: Sample reconstructions for MRI (×8 Accel., 40 dB SNR). Unlike EI (baseline) which
suffers from dot-shaped artifacts, ES (ours) is perceptually closer to the supervised baseline. In line
with the theoretical predictions, SURE and IDFT (baselines) fail to recover information beyond the
observed frequencies.

defined as Mi,j = δji,j for i = 1, . . . ,m and j = 1, . . . , n, where ji denotes the i-th component in
Rn corresponding to a pixel in one of the subsampled vertical lines in a random Gaussian mask. Out
of the 973 images in the full dataset, 900 are selected for training and the remaining 73 are used for
testing. We also test our method on a noise dominated setting using a different mask corresponding
to an acceleration of 6, with a higher noise level of 0.1 corresponding to an SNR of only 10 dB,
see these results in Appendix B.4. The variant of our proposed loss we use in this experiment is
the R2R one introduced in Section 4 with α = 0.5. Table 1 shows the performance of the different
methods on the test set. Table 3 shows the synergy of our method with the equivariant architecture.
Figure 3 shows sample reconstructions from the trained models.

We also evaluate our method on real MRI measurements from FastMRI instead of synthetic mea-
surements. We normalize the k-space data that are sampled on different grids for different scans by
resampling them using aliasing-free sinc interpolation on the 320×320 sampling grid of the ground
truth scans. The resulting k-space data are subsampled using the same ×8 acceleration mask used
in the setting with synthetic measurements. Table 1 shows that our method performs competitively.

5.4 COMPUTED TOMOGRAPHY

The dataset consists in pairs of ground truth CT scans and corresponding sinograms. In order to
obtain the CT scans, we resize to 256 ×256 pixels and clip between -1,000 and 1,000 HUs the
ground truth scans from the LIDC-IDRI dataset (Armato III et al., 2011). For each scan, we compute
the corresponding sinogram using a discrete Radon transform with 50 views and additive white
Gaussian noise with a standard deviation of 0.001 corresponding to a SNR of about 50 dB. The
resulting 1,010 pairs are further split into 900 training pairs and 110 test pairs. Table 1 shows that
ES performs almost as well as the supervised baseline, and better than EI.

9
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5.5 ABLATION STUDY

Table 3 shows that architectures designed to be equivariant are measurably more equivariant across
imaging modalities and training losses. Moreover, it shows that networks trained using the splitting
loss perform better for equivariant architectures than for non-equivariant architectures, with an even
greater gap than for supervised inpainting baselines, which confirms the theoretical analysis made
in Section 4. Finally, we observe that non-equivariant architectures still lead to fairly measurably
equivariant models. While surprising, this phenomenon has already been witnessed and is usu-
ally referred to as learned equivariance, whereby the training data and inductive biases lead to fairly
equivariant learned models (Gruver et al., 2024). We believe that this learned equivariance is respon-
sible for the high performance of splitting methods even when using non-equivariant architectures.
For additional results on the impact of equivariant architectures, see Appendix B.4.

Table 3: Impact of using equivariant architectures. In accordance with the theoretical results
described in Section 4, there is a synergy between the splitting loss and equivariant architectures
resulting in higher performance. Non-equivariant models have surprisingly high equivariance mea-
sures (EQUIV) which might explain their high performance when using the splitting loss. Eq. arch.
denotes whether the architecture is equivariant. In bold, the best self-supervised metrics (avg ±
st.d.).

Image inpainting

Training loss Eq. arch. PSNR ↑ SSIM ↑ EQUIV ↑
Supervised ✓ 28.46 ± 2.97 0.8982 ± 0.0411 28.46 ± 2.97

× 28.62 ± 3.03 0.9002 ± 0.0414 27.85 ± 2.71

Splitting (Ours) ✓ 27.45 ± 2.86 0.8737 ± 0.0461 27.46 ± 2.85
× 27.20 ± 2.83 0.8652 ± 0.0461 26.52 ± 2.60

MRI (×8 Accel., 40 dB SNR)

Training loss Eq. arch. PSNR ↑ SSIM ↑ EQUIV ↑
Supervised ✓ 28.74 ± 2.81 0.6445 ± 0.1094 31.71 ± 2.83

× 28.48 ± 2.68 0.6381 ± 0.1082 28.78 ± 1.95

Splitting (Ours) ✓ 28.54 ± 2.75 0.6195 ± 0.1188 31.53 ± 2.74
× 28.18 ± 2.58 0.6104 ± 0.1176 27.28 ± 2.10

6 CONCLUSION

In this work, we propose a new self-supervised loss for solving inverse problems which bridges
the gap between existing equivariance and splitting-based self-supervised losses. We motivate the
design of our loss by showing that minimizing the expected loss results in MMSE estimators. We
further validate our method using numerical simulations on different image distributions and imag-
ing modalities, including inpainting of natural images, MRI and CT. These results suggest that the
proposed method compares favorably to the equivariant imaging baseline and is close to supervised
methods. To the best of our knowledge, this work is the first to leverage equivariant networks to
learn from incomplete data alone, going beyond the usual goal of improving the generalization of
the networks to unseen transformations at test time. Our method provides a new way to evaluate
the benefits of using different equivariant architectures, and can benefit from future advances made
in this field. More broadly, our work is further evidence that invariance is a promising prior for
learning from incomplete data.

REPRODUCIBILITY STATEMENT

We share the implementation of our method and experiments2 to make our work easier to reproduce.

2https://anonymous.4open.science/r/Equivariant-Splitting-ICLR2026
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A DETAILS ABOUT THE METHOD

A.1 EQUIVARIANT RECONSTRUCTOR
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Figure 4: Compressive sensing results. Adds the pseudo-inverse reconstruction (pseudo-inv.) as a
baseline to Figure 1

Equivariant reconstructor

MoDL

DF DF DF
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Figure 5: Reconstructor equivariant to rotations and flips. It is the Reynolds averaging of 90°
rotations and horizontal and vertical flips as in eq. (18) of a non-equivariant reconstructor of the
MAP type, as in eq. (19), implemented using a MoDL unrolled algorithm (Aggarwal et al., 2019)
with 3 iterations, shared weights, and using a non-equivariant residual UNet (Ronneberger et al.,
2015) as the denoiser architecture.

In Theorem 2, we consider reconstruction functions of 4 different structures. In this section, we give
additional details about them.

The artifact removal reconstructor architecture (Jin et al., 2017) in eq. (16) consists in a projection
step that maps the measurements back into the image space using the adjoint or the pseudo-inverse
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of the forward matrix, which is immediately followed by a very general trainable network, often
a UNet or another encoder-decoder type of network, or sometimes simply a fully convolutional
network. Theorem 2 states that this reconstructor architecture produces equivariant reconstructors
as long as the denoiser architecture is, itself, equivariant in the sense of eq. (14).

Reynolds averaging for possibly non-equivariant reconstruction functions r(y,A) in eq. (18)

f(y,A) =
1

|G|
∑
g∈G

Tgr(y,ATg). (18)

has, as far as we know, not been defined in previous works. It is a natural extension of Reynolds
averaging for possibly non-equivariant image-to-image functions or denoisers ψ(x) (Sannai et al.,
2024; Terris et al., 2024),

ϕ(x) =
1

|G|
∑
g∈G

T−1
g ψ(Tgx) (22)

which makes them equivariant in the sense of eq. (14), to reconstruction functions in order to make
them equivariant in the sense of eq. (15). It is a fairly simple way to make a reconstructor equivariant
and it is relatively inexpensive for small groups of transformations such as the group of 90° rotations
and horizontal and vertical flips (Cohen & Welling, 2016). It is however too expensive to be used in
practice when the group is relatively large, like the group of shifts, since it would require to evaluate
the neural network for as many times as there are pixels in the input image, for each image.

The maximum a posteriori (MAP) reconstructor architecture defined in eq. (19)

f(y,A) = argmax
x∈Rn

{
p(x | y,A)

}
. (19)

is a classical reconstructor architecture that has been used in different ways, including iterative
algorithms with a hand-crafted prior (Rudin et al., 1992; Davy et al., 2025), plug-and-play archi-
tectures using an iterative approach but with the hand-crafted prior replaced with a pre-trained de-
noiser (Venkatakrishnan et al., 2013), and unrolled architectures where the optimization problem is
done with a fixed number of steps and where parts of the algorithm are replaced with trainable mod-
ules (Aggarwal et al., 2019). It is often interpreted as a Bayesian maximum a posteriori estimator,
but also commonly outside of a Bayesian framework as a variational approach with a data-fidelity
term and a regularization term. It is one of the reconstructor architectures that we use for our ex-
periments in Section 5. Theorem 2 states that these reconstructors are equivariant as long as the
prior distribution is invariant in the sense of eq. (5), or equivalently, if the associated regularization
function or negative log-prior is invariant.

The minimum mean squared error (MMSE) estimator in eq. (20)

f(y,A) = Ex|y,A {x} (20)

is generally the target theoretical reconstructor as it achieves the highest theoretical PSNR (Tachella
et al., 2023). It is generally estimated by reconstructors trained with a mean squared error loss (Chen
et al., 2021), which is notably how we train the supervised baselines in the experiments in Section 5.
Theorem 2 states that as long as the prior distribution is invariant in the sense of eq. (5), the MMSE
reconstructor is equivariant in the sense of eq. (15).

A.2 HOW TO CHOOSE TRANSFORMATIONS FOR A GIVEN INVERSE PROBLEM

There are two major criteria for choosing the transformations for a given application. First, the im-
age distribution of interest should be invariant to the chosen transformations. Aerial, remote sensing
and microscopic images are invariant to translations and rotations as the scenes and subjects they
measure exhibit no privileged position and orientation with respect to the image plane. Natural im-
age distributions and texture distributions (Portilla & Simoncelli, 2000) are also generally invariant
to translations but they are less invariant to rotations as natural images are typically oriented upward
and texture distributions might be anisotropic.

Second, the transformations should also be chosen in accordance with the measurement operator.
Corollary 1 shows that transformations for which the operator is equivariant do not improve the
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Table 4: MRI results in another setting. Supplementary results for a different MRI problem (×6
Accel., 10 dB SNR) than in Table 1 In bold, the best self-supervised metrics. Values: avg ± st.d.

MRI (×6 Accel., 10 dB SNR)

Method PSNR ↑ SSIM ↑ EQUIV ↑
Supervised 27.39 ± 2.44 0.5243 ± 0.1373 30.38 ± 2.43

ES (Ours) 27.33 ± 2.45 0.5126 ± 0.1444 30.32 ± 2.44
EI 27.23 ± 2.41 0.5110 ± 0.1421 30.21 ± 2.40
SURE 27.08 ± 2.29 0.5097 ± 0.1372 30.06 ± 2.28

IDFT 23.85 ± 1.05 0.3878 ± 0.0272 25.14 ± 0.79

Table 5: Decision table for the transformations. Corollary 1 shows that not all transformations are
well-suited for all problems. Namely, transformations for which the operator is equivariant introduce
no additional information and should not be used. This table specifies which transformations are
well-suited for which operator.

Operator Translation Rotation Permutation Amplitude

Isotropic blur × × ✓ ×
Image inpainting ✓ ✓ ✓ ×
Sparse-view CT × ✓ ✓ ×
Accelerated MRI × ✓ ✓ ×
Compressive sensing ✓ ✓ ✓ ×

reconstruction process. It is a well-known criterion introduced in the original work on equivari-
ant imaging (Chen et al., 2021) which remains correct in our setting where measurement splitting
is added to the theoretical analysis. Table 5 lists correct choices of transformations for common
measurement operators.

A.3 END-TO-END ALGORITHM

In this section, we present the end-to-end ES algorithm. It consists in a training step where an equiv-
ariant reconstructor is trained using backpropagation against a training dataset of measurements
only, after which it is applied to obtain the reconstructions associated to the test measurements. The
ES loss used in the training step is computed using the expression in Equation (3). The expectations
are estimated using Monte Carlo sampling where a single sample is used at training time and T = 10
samples are used at inference. In the experiments, we use the splitting ratio s = 0.8 corresponding
to m1 = 0.8m and m2 = 0.2m. Algorithms 1 and 2 show the detailed algorithms in pseudo-code.
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Algorithm 1: Equivariant Splitting (Training procedure)
Input: Dataset D = {yi}i∈I , forward operator A ∈ Rm×n, split ratio s, learning rate η,

number of epochs E, equivariant reconstructor fθ
Output: Trained model fθ
for epoch = 1 to E do

Shuffle dataset D ;
foreach mini-batch B ⊂ D do

init: L = 0
foreach y in B do

init: M ∈ Rm1×m a random split s.t m1 = s×m.
Split measurement and operator: y1 = My,A1 = MA ;
Compute predictions: x̂ = fθ(y1,A1) ;
Compute sample loss ℓ = ∥Ax̂− y∥22 ;
Aggregate loss: L← L+ ℓ ;

end
Mean: L← 1

|B|L ;
Backpropagation: compute gradients ∇θL ;
Update parameters: θ ← ADAM(θ,∇θL, η) ;

end
end

Algorithm 2: Equivariant Splitting (Inference)
Input: Measurement y ∈ Rm×n, forward operator A ∈ Rm×n, split ratio s, number of

samples T , trained reconstructor fθ
Output: Reconstructed images x̂ = fθ(y,A)
init: x̂ = 0
for i = 1 to T do

init: M ∈ Rm1×m a random split s.t m1 = s×m.
Split measurement and operator: y1 = My,A1 = MA ;
Compute one predictions: x̂i = fθ(y1,A1) ;
Aggregate: x̂← x̂+ x̂i ;

end
Mean: x̂← 1

T x̂ ;

B DETAILS ABOUT THE EXPERIMENTS

We use the optimizer AdamW (Loshchilov & Hutter, 2019) for every training with different learning
rates for the different inverse problems, a weight decay of 10−8, beta coefficients equal to 0.9 and
0.999 and without the AMSGrad option. For longer trainings, we use step schedulers that divide the
learning rate by a factor ranging from 2 to 10 at specific epochs, up to 3 or 4 times.

In our experiments, we make extensive use of the DeepInverse library (Tachella et al., 2025b) that
provides an implementation of the various forward operators and training losses that we use. Every
model is trained for up to 50 hours on a single GPU, either an NVIDIA H100, GH200 or RTX 4090.
See Appendix B.4 for more details about the training durations.

B.1 DATASETS

Image inpainting The ground truth images are images obtained from the dataset DIV2K (Agustsson
& Timofte, 2017) which contains pictures of natural scenes (landscapes, animals) by first resizing
them to a resolution of 256 × 256 pixels before extracting a central 128 × 128 pixels crop. We
synthesize the measurements by corrupting the ground truth images using a single binary mask
sampled from a pixel-wise Bernoulli distribution with a 30% chance of keeping each pixel value. In
this setting, we do not corrupt the measurements further with additional noise.

MRI The dataset consists in 973 pairs of ground truth images from the FastMRI dataset (Zbontar
et al., 2019) and associated k-space measurements synthesized using a single coil sensitivity map.
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×8 Accel., 40 dB SNR ×6 Accel., 10 dB SNR

Figure 6: Examples of k-space measurements in MRI. (left) a less noisy problem with less mea-
surements, (right) a noisier problem with more measurements.

The ground truth images have a size of 320 × 320 pixels and each corresponds to the middle slice
of a different 3d knee acquisition. The k-spaces are synthesized as discrete Fourier transforms sub-
sampled on a single non-regular grid and further corrupted with additive white Gaussian noise with
a standard deviation of 0.005 corresponding to an average SNR of about 40 dB. The subsampling
grid models the coil sensitivity map, is sampled from a Gaussian distribution and corresponds to an
acceleration of 8. The entire dataset is finally split into a train/val split containing 900 images and a
test split containing the remaining 73 images. Our implementation uses the work from Wang et al.
(2025).

We also consider an additional dataset obtained in the same way except using a different mask
corresponding to an acceleration of 6 and with a higher noise level corresponding to a standard
deviation of 0.1 or an average SNR of 10 dB in the k-space domain.

B.2 NETWORK ARCHITECTURES

The unrolled architecture uses 3 iterations and the weights are shared across different iterations.
Every UNet is residual, has 4 scales and has no normalization layer as we find them to be detrimental
to the performance.

The transforms we use in the model architecture and in the metrics are grid-preserving: grid-aligned
shifts, 90° rotations, and vertical and horizontal flips. The transforms we use in the EI are grid-
aligned shifts and 1° rotations following the prior art Chen et al. (2021). Reynolds’ averaging is
implemented using an unbiased Monte-Carlo estimator whereby a single random transform is sam-
pled at every evaluation to save on computational cost.

B.3 METRICS

In the experiments, we use three different performance metrics including two standard distortion
metrics (PSNR, SSIM) and a new equivariance metric for reconstructors (EQUIV). The peak signal-
to-noise ratio is defined, for images with a dynamic range normalized to [0, 1], as the mean squared
error expressed in decibels (dB)

PSNR = Ex,y

{
−10 log10

(
∥f(y,A)− x∥2

)}
. (23)

The structural similarity index measure (Wang et al., 2004) is a more perceptual metric which is a
combination of the empirical means, standard deviations and correlation coefficient associated to
the reference and compared images. The complete definition of the metric is too long to be included
in this work and we refer the reader to the original publication for more details. In addition to these
two standard distortion metrics, we use a new equivariance metric similar to that used by Chaman
& Dokmanić (2021b) adapted for our proposed definition of equivariant reconstructors. It is the
average mean squared error associated with eq. (15) and expressed in dB for readability

EQUIV = −10 log10
(
Ey,g

{∥∥f(y,ATg)− T−1
g f(y,A)

∥∥2}) . (24)

It can be roughly understood as a PSNR for equivariance. In every experiment, we use the same
group of transformations for EQUIV as we use for the equivariant reconstructor architectures.
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B.4 RESULTS

In this section, we provide more details about the main experiments and present additional experi-
ments.

For each training done in the main experiments, we report the average epoch duration and the number
of epochs until the model has finished training. For the sake of comparability, we made sure to
conduct the different trainings for the same imaging modality on the same GPU. Namely, we used
a single NVIDIA RTX 3090 Ti GPU for every inpainting experiment and a single NVIDIA H100
GPU for every MRI experiment. Table 10 shows that self-supervised methods including ours have
generally longer epochs and require more epochs than the fully supervised gold standard. We believe
that this is due to a fundamental trade-off whereby the use of ground truth data accelerates the
learning procedure while also enabling the use of simpler training algorithms. Moreover, unlike
standard implementations of EI and SURE, ES requires only a single network pass per iteration
resulting in significantly faster epochs. Overall, ES is computationally more efficient than EI, in
addition to being more performant in terms of reconstruction quality.

Figure 4 shows additional compressive sensing results, Table 4 and Figure 7 show results on a MRI
experiment with settings different from the main one, Table 6 shows extended results for the ablation
study on equivariant architectures, and Figure 6 shows sample k-spaces from the MRI experiments.
Figure 5 shows the equivariant reconstructor architecture that we adopt in the MRI experiments.

Table 6: Extended results on the impact of equivariant architectures. Adds to Table 3 the results
for EI with a non-equivariant architecture for the inpainting task, results for the noise-dominated
MRI task. In bold, the best self-supervised metrics. Values: avg ± st.d.

Image inpainting

Training loss Eq. arch. PSNR ↑ SSIM ↑ EQUIV ↑
Supervised ✓ 28.46 ± 2.97 0.8982 ± 0.0411 28.46 ± 2.97

× 28.62 ± 3.03 0.9001 ± 0.0415 27.85 ± 2.71

Splitting (Ours) ✓ 27.45 ± 2.86 0.8737 ± 0.0461 27.46 ± 2.85
× 27.20 ± 2.83 0.8651 ± 0.0463 26.52 ± 2.60

EI loss ✓ 25.89 ± 2.65 0.8332 ± 0.0521 25.89 ± 2.65
× 26.33 ± 2.81 0.8451 ± 0.0536 25.58 ± 2.52

MC loss ✓ 8.22 ± 2.47 0.098 ± 0.055 8.22 ± 2.47
× 8.24 ± 2.48 0.100 ± 0.056 8.24 ± 2.48

MRI (×8 Accel., 40 dB SNR)

Training loss Eq. arch. PSNR ↑ SSIM ↑ EQUIV ↑
Supervised ✓ 28.74 ± 2.81 0.6445 ± 0.1094 31.71 ± 2.83

× 28.48 ± 2.68 0.6381 ± 0.1082 28.78 ± 1.95

Splitting (Ours) ✓ 28.54 ± 2.75 0.6195 ± 0.1188 31.53 ± 2.74
× 28.18 ± 2.58 0.6104 ± 0.1176 27.28 ± 2.10

MRI (×6 Accel., 10 dB SNR)

Training loss Eq. arch. PSNR ↑ SSIM ↑ EQUIV ↑
Supervised ✓ 27.39 ± 2.44 0.5243 ± 0.1373 30.38 ± 2.43

× 27.33 ± 2.42 0.5174 ± 0.1410 29.73 ± 2.20

Splitting (Ours) ✓ 27.33 ± 2.45 0.5126 ± 0.1444 30.32 ± 2.44
× 27.20 ± 2.38 0.5095 ± 0.1430 28.66 ± 1.76

We present an additional inpainting experiment, designed to simulate a more realistic acquisition
scenario and study the consistency of our method. Specifically, we consider a noisy inpainting set-
ting in which entire image columns are randomly removed. Such sampling patterns naturally arise in
satellite imaging systems based on push-broom scanners (PBS) (Xu et al., 2016). As reported in Ta-
ble 7, the proposed method achieves performance comparable to that of the EI baseline, confirming
its consistency under this more practical acquisition model.
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Ground Truth Supervised ES (Ours) EI SURE IDFT

Figure 7: Sample reconstructions for noise dominated MRI (×6 Accel., 10 dB SNR). In the noise
dominated setting, the different models perform more similarly than in the less noisy setting shown
in Figure 3.

Table 7: Inpainting with push-broom masks. We consider an unevenly-spaced mask sampled
randomly to test our method in a realistic inpainting setting, and an evenly-spaced mask to verify
the claim in Corollary 1 empirically in a case of almost-equivariance.

Image inpainting (Randomly-spaced push-broom mask)

Method PSNR ↑ SSIM ↑
Supervised 23.72 ± 2.10 0.743 ± 0.051
ES (Ours) 23.04 ± 1.81 0.734 ± 0.050
EI 23.05 ± 2.13 0.707 ± 0.066
Incomplete image 9.44 ± 2.31 0.141 ± 0.048

Image inpainting (Evenly-spaced push-broom mask)

Method PSNR ↑ SSIM ↑
Supervised 28.37 ± 2.15 0.873 ± 0.035
ES (Ours) 21.94 ± 2.12 0.617 ± 0.091
Incomplete image 9.61 ± 2.42 0.152 ± 0.061
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To clarify the behavior of ES when the forward operator A is equivariant or nearly equivariant, we
conducted the following experiment: we performed an PBS inpainting operation in which every
other column of the image is removed. In this setting, the operator A becomes “almost” equivariant
in the sense that for any even horizontal shift g, we have ATg = TgA, and the same property holds
for all vertical shifts. Table 7 shows the reconstruction performance deteriorates significantly.
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Figure 8: Performance evolution during training for inpainting. Splitting methods perform
better than EI independent of the network architecture.

B.4.1 TESTING THE EFFECT OF UNKNOWN NOISE DISTRIBUTIONS

In addition to the main experiments where we use the knowledge of the noise distribution in the
reconstruction algorithm, we test a more realistic scenario where the noise distribution is unknown
and is estimated to be zero for a lack of a better estimate. To do so, we train models using variants of
ES and EI where the measurements are assumed to be noiseless even though the training and testing
data are nonetheless corrupted with noise. Table 8 shows that ES also performs better than EI when
the noise distribution is unknown. Moreover, it shows that the performance of ES tends to be lower
when the noise distribution is unknown, but it does not drop exceedingly which demonstrates the
stability of ES to unexpected noise.

B.4.2 EMPIRICAL VERIFICATION OF THE EQUIVARIANCE OF MAP RECONSTRUCTORS

We verify empirically that MAP reconstructors are equivariant as long as the prior is itself equiv-
ariant, i.e., the claim made in Theorem 2. Since they cannot be computed exactly in general, we
consider a specific scenario where they can. We assume that 1) x ∼ N (0, τ2In), 2) A ∈ Rm×n is
the two-dimensional decimation operator with decimation rate 2, 3) y | Ax ∼ N (0, σ2Im), and 4)
that Tg denotes the rotation by angle g ∈ {0◦, 90◦, 180◦, 270◦}. Under these assumptions, the prior
distribution is equivariant and the MAP estimator in eq. (19) can be expressed in closed-form as

f(y,ATg) =
τ2

τ2 + σ2
T−1
g A⊤y, (25)

with f(y,A) being the special case where Tg = In. In the experiment, we set n = 128× 128 for a
grayscale image with 128 rows and 128 columns and we compute the equivariance metric in eq. (24)
(EQUIV) for the MAP reconstructor using 256 i.i.d. samples from the joint distribution. Table 9
shows the results for every angle and for the average over all angles. As predicted theoretically,
perfect equivariance is achieved.

C PROOFS

For the sake of clarity, we state the propositions and theorems a second time before their proofs. We
also state and prove the additional Lemma 1 which helps prove Theorem 1.
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Table 8: Performance when the noise distribution is unknown. In the unknown noise scenarios,
we use the variants of ES and EI corresponding to assuming that the measurements are noiseless.

Image inpainting

Method Known PSNR ↑ SSIM ↑
Supervised 23.72 ± 2.10 0.743 ± 0.051

ES (Ours) ✓ 23.04 ± 1.81 0.734 ± 0.050
ES × 22.05 ± 1.36 0.59 ± 0.061
EI ✓ 23.05 ± 2.13 0.707 ± 0.066
EI × 22.01 ± 1.71 0.59 ± 0.051

Incomplete image 9.44 ± 2.31 0.141 ± 0.048

MRI (×8 Accel., 40 dB SNR)

Method Known PSNR ↑ SSIM ↑
Supervised 28.74 ± 2.81 0.6445 ± 0.1094

ES (Ours) ✓ 28.54 ± 2.75 0.6195 ± 0.1188
ES × 28.52 ± 2.75 0.6194 ± 0.1191
EI ✓ 27.88 ± 2.64 0.5731 ± 0.1299
EI × 27.89 ± 2.59 0.5755 ± 0.1285

IDFT 23.62 ± 1.90 0.5052 ± 0.0900

MRI (×6 Accel., 10 dB SNR)

Method Known PSNR ↑ SSIM ↑
Supervised 27.39 ± 2.44 0.5243 ± 0.1373

ES (Ours) ✓ 27.33 ± 2.45 0.5126 ± 0.1444
ES × 25.73 ± 1.49 0.4566 ± 0.0622
EI ✓ 27.23 ± 2.41 0.5110 ± 0.1421
EI × 26.02 ± 1.65 0.4706 ± 0.0873

IDFT 23.85 ± 1.05 0.3878 ± 0.0272
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Table 9: Empirical validation of the equivariance of MAP estimators.
0° 90° 180° 270° Average

EQUIV ∞ ∞ ∞ ∞ ∞

Table 10: Training durations. For each training, we report the average epoch duration and the
number of epochs until the model is trained. Inpainting trainings are conducted on a single NVIDIA
RTX 3090 Ti GPU and MRI trainings on a NVIDIA H100 GPU.

Image inpainting

Method Epoch duration (s) Epochs

Supervised 12 200
ES (Ours) 12 1000
EI 14 1000

MRI (×8 Accel., 40 dB SNR)

Method Epoch duration (s) Epochs

Supervised 29 200
ES (Ours) 24 13800
EI 53 7800
SURE 36 5700

MRI (×6 Accel., 10 dB SNR)

Method Epoch duration (s) Epochs

Supervised 19 70
ES (Ours) 19 3100
EI 75 2400
SURE 35 1200

Lemma 1. The minimization problem

min
f

Ex,y

{
∥Af(y)−Ax∥2

}
(26)

admits as solutions the functions of the form

f(y) = A†AEx|y {x}+ (I −A†A)v(y) (27)

where v(y) is any function.

Proof. Let’s start by stating that f(y) = Ex|y {x} is the only solution of (Klenke, 2008)

min
f

Ex,y

{
∥f(y)− x∥2

}
. (28)

For f any solution of eq. (26), applying it to f̃(y) = Af(y) and x̃ = Ax gives

Af(y) = AEx|y {x} , (29)

and applying f(y) = A†Af(y) + (I −A†A)f(y) with v(y) := f(y) yields eq. (27). Conversely,
the objective in eq. (26) has the same value no matter the f satisfying eq. (27) and since at least one
of them is solution of eq. (26), they all are.

Theorem 1. In the case of noiseless measurements with p(x) G-invariant (Assumption 1), if the
matrix QA1

≜ Eg|A1

{
(ATg)

⊤ATg

}
∈ Rn×n has full rank for some split A1, then the splitting

method yields the same MMSE-optimal reconstructions as the supervised method, i.e.,

f∗(y1,A1) = Ex|y1,A1
{x} . (9)
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Proof.
Ey{LES(y,A, f)}
= Ey

{
Eg{Ey1,A1|y,ATg

{
∥ATgf(y1,A1)− y∥2

}
}
}

= Ey,g{Ey1,A1|y,g
{
∥ATgf(y1,A1)− y∥2

}
}

= Ey,y1,A1,g{∥ATgf(y1,A1)− y∥2}
= Ex,y1,A1,g{∥ATgf(y1,A1)−ATgx∥2}
= Ey1,A1,xEg|y1,A1

{
∥ATg

(
f(y1,A1)− x

)
∥2
}

= Ey1,A1,x{(f(y1,A1)− x)⊤QA1
(f(y1,A1)− x)},

where the third line use that p(y1,A1 | y,ATg) = p(y1,A1 | y, g) as A is fixed. The fifth line
use the noiseless measurements assumption and the invariance of the distribution p(x). The last line
uses definition of QA1

. By applying Lemma 1, the global minimizer of the expected loss is given
by:

f∗(y1,A1) = Q†
A1

QA1
Ex|y1,A1

{x}+ (I −Q†
A1

QA1
)v(y1) (30)

where v : Rn → Rn is any function. Moreover, since Q has full-rank, Q†
A1

= Q−1
A1

and then

f∗(y1,A1) = Ex|y1,A1
{x} . (31)

Proposition 1. If the matrix Q̄A ≜ EA1|A {QA1}∈ Rn×n is invertible and f minimizes
Ey{LES(y,A, f)}. Then the reconstruction function

f(y,A) ≜ Ey1,A1|y,A
{
Q̄−1

A QA1
f(y1,A1)

}
(10)

satisfies
f(y,A) = Ey1,A1|y,A

{
Q̄−1

A QA1
Ex|y1,A1

{x}
}
. (11)

where eq. (11) is a convex combination of MMSE estimators for different splittings.

Proof. By applying eq. (30) to f in the definition of f we obtain:

f(y,A) = Ey1,A1|y,A

{
Q̄−1

A QA1

(
Q†

A1
QA1

Ex|y1,A1
{x}+ (I −Q†

A1
QA1

)v(y1)
)}

= Ey1,A1|y,A
{
Q̄−1

A QA1
Ex|y1,A1

{x}
}
+ Ey1,A1|y,A

{
Q̄−1

A QA1

(
(I −Q†

A1
QA1

)v(y1)
)}

= Ey1,A1|y,A
{
Q̄−1

A QA1
Ex|y1,A1

{x}
}
.

Corollary 1. In order for the matrices QA1
or Q̄A to have full rank, it is necessary that A is not

equivariant:
∃g ∈ G,ATg ̸= TgA. (13)

Proof. Let’s assume by contradiction that A is equivariant with respect to Tg

ATg = TgA, (32)
and let x ∈ ker(A).

QA1
x =

(
Eg|A1

{
(ATg)

⊤ATg

})
x

= Eg|A1

{
(ATg)

⊤ATgx
}

= Eg|A1

{
(ATg)

⊤TgAx
}

= Eg|A1

{
(ATg)

⊤Tg0
}

= 0

Therefore,
ker(QA1) ⊇ ker(A) ⊋ {0}. (33)

The matrix QA1
has a non-trivial nullspace and thus cannot have full rank. Moreover, since this

non-trivial nullspace is the same for all virtual operators ATg , then Q̄A shares the same non-trivial
nullspace.
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Theorem 2. The reconstruction functions defined in points below are all equivariant as in eq. (15).

1. Artifact removal network. For a denoiser ϕ(x) equivariant in the sense of eq. (14),

f(y,A) = ϕ
(
A⊤y

)
, or f(y,A) = ϕ

(
A†y

)
. (16)

2. Unrolled network. For ϕ(x) equivariant, any γ ∈ R and data fidelity d(Ax,y), with

x0 = 0, xk+1 = ϕ
(
xk − γ∇xk

d(Axk,y)
)

(17)

for k = 0, . . . , L− 1 and f(y,A) = xL.

3. Reynolds averaging. For a possibly non-equivariant reconstructor r(y,A), with

f(y,A) =
1

|G|
∑
g∈G

Tgr(y,ATg). (18)

4. Maximum a posteriori (MAP). For a distribution p(x) invariant as in eq. (5), with

f(y,A) = argmax
x∈Rn

{
p(x | y,A)

}
. (19)

5. Minimum mean squared error (MMSE). For a distribution p(x) invariant as in eq. (5),
f(y,A) = Ex|y,A {x} . (20)

Proof. We prove each case separately.

1. Denoting A× := A⊤ or A× := A†, eq. (16) gives, as (ATg)
× = T−1

g A×,

f(y,ATg) = ϕ
(
T−1
g A×y

)
, (34)

and since ϕ(x) is equivariant, i.e., eq. (14) holds, it simplifies to eq. (15).

2. We start by making the notation show the explicit dependency on y and A:

x0(y,A) = 0, xk+1(y,A) = ϕ
(
xk(y,A)− γ∇xk(y,A)d(Axk(y,A),y)

)
. (35)

and proceed to show that for k = 0, . . . , L it holds that
xk(y,ATg) = T−1

g xk(y,A). (36)
For k = 0, it holds as

x0(y,ATg) = 0 = T−1
g x0(y,A). (37)

Let’s assume that eq. (36) holds for k < L. Applying it and the chain rule in eq. (35) yields

xk+1(y,ATg) = ϕ
(
T−1
g

(
xk(y,A)− γ∇xk(y,A)d(Axk(y,A),y)

) )
. (38)

Finally, applying eq. (14) in this equation gives
xk+1(y,ATg) = T−1

g xk+1(y,A), (39)

and by induction, as f(y,A) = xL(y,A), eq. (15) holds.

3. From eq. (18), it holds that

f(y,ATg) =
1

|G|
∑
h∈G

Thr(y,ATgTh), (40)

which, as the group action property holds TgTh = Tgh, rewrites as

f(y,ATg) =
1

|G|
∑
h∈G

Thr(y,ATgh), (41)

Applying the change of variable h′ = gh in this equation gives

f(y,ATg) =
1

|G|
∑
h∈G

Tg−1hr(y,ATh), (42)

which finally, using group action property again Tg−1h = T−1
g Tg , gives eq. (15).
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4. Taking the negative natural logarithm in eq. (19) and using Bayes’ theorem gives

f(y,A) = argmin
x∈Rn

{
d(Ax,y) + ρ(x)

}
, (43)

where d(Ax,y) = − log p(y | Ax) and ρ(x) = − log p(x). Applying x′ = Tg x,

f(y,ATg) = T−1
g argmin

x∈Rn

{
d(Ax,y) + ρ

(
T−1
g x

)}
, (44)

and eq. (5) makes ρ(x) invariant as well ρ
(
T−1
g x

)
= ρ(x). Therefore, eq. (15) holds.

5. Let’s assume that p(x) and p(A) are invariant in the sense of eq. (5). We first prove that

p(y,ATg) = p(y,A). (45)

Using eq. (5), the invariance of p(A) and the independence of x and A, we compute

p(y,ATg) = Ex {p(y,ATg | x)} = Ex {p(y, | ATg,x)p(ATg | x)}
= Ex {p(y | ATg,x)p(ATg)} = Ex {p(y | ATgx)p(A)}
= Ex {p(y | Ax)p(A)} = Ex {p(y | A,x)p(A | x)}
= Ex {p(y,A | x)} = p(y,A).

Next we start from
f(y,ATg) = Ex|y,ATg

{x} . (46)
and applying the integral formula for expectations gives

f(y,ATg) =

∫
x p(x | y,ATg) dx. (47)

Using Bayes’ formula and p(y | A,x) = p(y | Ax), it becomes

f(y,ATg) =

∫
x
p(y | ATgx)

p(ATg,y)
p(ATg,x) dx. (48)

By using eq. (45), the invariance of p(A) and the independence of A with x, we obtain

f(y,ATg) =

∫
x
p(y | ATgx)

p(A,y)
p(A)p(x) dx. (49)

With the change of variable x′ = Tgx, and since Tg is unitary, we arrive at

f(y,ATg) =

∫
T−1
g x

p(y | Ax)

p(A,y)
p(A)p(T−1

g x) dx. (50)

Finally, applying eq. (5) in this equation yields eq. (15).

Theorem 3. If f(A,x) is an equivariant reconstructor, then ES is equivalent to the splitting loss

LES(y,A, f) = LSPLIT(y,A, f). (21)

Proof. We start from eq. (7)

LES(y,A, f) ≜ Eg {LSPLIT(y,ATg, f)} (51)

= Eg

{
Ey1,A1|y,ATg

{
∥ATgf(y1,A1)− y∥2

}}
(52)

As A1 is a splitting of ATg , we can write A1 = MATg for M a splitting matrix. We obtain

LES(y,A, f) = Eg

{
EM |y,g

{
∥ATgf(My,MATg)− y∥2

}}
(53)

Applying eq. (15) and cancelling out Tg with T−1
g yields

LES(y,A, f) = Eg

{
EM |y,g

{
∥Af(My,MA)− y∥2

}}
. (54)

By dropping the expectation in g and rewriting (My,MA) as (y1,A1), this yields in eq. (21).
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