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ABO: Abandon Bayer Filter for Adaptive Edge Offloading in
Responsive Augmented Reality

Anonymous Author(s)
ABSTRACT
Bayer-patterned color filter array (CFA) has been the go-to solution
for color image sensors. In augmented reality (AR), although color
interpolation (i.e., demosaicing) of pre-demosaic RAW images fa-
cilitates user-friendly rendering, it creates no benefits in offloaded
neural network analytics but only increases the image channels
by 3× with higher transmission overheads. Thus, we propose ABO,
an adaptive RAW frame offloading framework that parallelizes de-
mosaicing with DNN offloading. The contributions are three-fold:
First, we design a configurable tile-wise RAW image neural codec
to compress frame sizes while sustaining the downstream DNN
accuracy under various bandwidth restraints. Second, based on
content-aware tiles-in-frame selection and runtime bandwidth es-
timation, a dynamic transmission controller adaptively calibrates
codec configurations to maximize the DNN accuracy under real-
time constraints. Third, we further optimize the system pipelining
to reduce the end-to-end frame processing latency. Through exten-
sive evaluations on a prototype platform, ABO consistently provides
a 40% more frame processing throughput and a 30% less end-to-end
latency while improving the offloaded DNN accuracy by up to 15%
compared to SOTA baselines. It also presents improved robustness
against dim light and motion blur situations.
ACM Reference Format:
Anonymous Author(s). 2024. ABO: Abandon Bayer Filter for Adaptive
Edge Offloading in Responsive Augmented Reality. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Augmented reality (AR) overlays digital content like images, videos,
or sounds onto the real-world environment, enhancing human-
environment interactions by adding generated elements. It has ex-
tensive applications in surgical assistance [8, 43], E-commerce [31,
53], gaming [4, 39], and education [50, 54]. Accurate perception of
physical objects in real-time lays the foundational pillars for AR.
Although deep neural networks (DNN) have greatly enhanced ma-
chine perception capabilities (e.g., object detection), their computation-
intensive nature incurs significant challenges to limited compute
resources on mobile AR devices. Thus, edge offloading that trans-
mits data to a nearby edge server for remote DNN analytics has
become a leading solution [12, 20].
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The human-computer-environment interactions in AR call for
low response latency (< 40 ms), high processing throughput (>
25 FPS), and sufficient task accuracy for a responsive, smooth, and
precise user experience. The end-to-end response latency denotes
the duration from the frame being captured to the DNN inference
results being rendered, including frame preprocessing, data com-
pressing (i.e., encoding), two-way transmission, and remote DNN
inference steps. To save network transmission, the captured frames
are first compressed by an image codec before sending, which should
effectively reduce image sizes, run efficiently on mobile devices,
and dynamically adapt to bandwidth fluctuations. Standard image
codecs like JPEG, alongwith recent offloading approaches [7, 35, 36],
all focus on encoding preprocessed RGB images and overlook po-
tential optimizations in image preprocessing. Besides, they are
optimized for human browsing experience and could be suboptimal
in serving DNN analytics.

Common digital cameras use Bayer-patterned color filter array
(CFA) to capture color information into single-channel RAW frames,
which are then demosaiced to interpret real-world colors into 3-
channel RGB frames. Demosaicing high-resolution frames can take
more than 25ms on resource-constrained edge devices (e.g., NVIDIA
Jetson Nano), occupying a large portion of end-to-end latency since
the remaining steps only take below 30 ms in total. We believe
demosaicing is only essential to rendering frames into a viewable
form but can be skipped for DNN inference. Since RGB images
are solely interpolated from RAW ones without any extra input,
RAW images should provide a similar task accuracy when feeding
into the downstream DNN model despite having less data. We are
thereby interested in utilizing RAW frames in edge offloading for
DNN analytics. It enables decoupling offloading and demosaicing
with no resource contentions (i.e., communication vs. computation),
thus the onboard demosaicing overhead can be hidden in parallel
pipelines, leading to lower latency and higher throughput.

However, there are three technical challenges in the decoupled
pipelines: First, an efficient codec is required to compress RAW im-
ages no larger than JPEG files, while ensuring higher downstream
DNN accuracy upon decoding. Second, to prioritize real-time in-
teractions, we need to dynamically calibrate codec configurations
with accuracy-efficiency tradeoffs in response to runtime band-
width fluctuations. Third, we need to make both the encoder and
the adaptation controller lightweight enough to execute efficiently
on edge devices without incurring excessive overhead.

To that end, we propose ABO, an adaptive pre-demosaic RAW
frame edge offloading framework for DNN analytics, that decouples
demosaicing from the offloading into parallel processes, providing
real-time responses under constrained and dynamic network band-
width. Its design includes three key perspectives. First, we train a
configurable RAW image neural codec that operates on sub-frame
image tiles with an asymmetric autoencoder (i.e., device-side shal-
low encoder and server-side deep decoder) to quickly compress
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Figure 1: Comparing two image transmission types.

RAW tiles and utilize server-side computation in exchange for trans-
mission savings. It is trained in a task-aware manner by minimizing
both the image reconstruction loss and knowledge distillation loss
from downstream DNN, and it is highly configurable in tiles-in-
frame selections and the encoded feature dimensions. Second, we
design a dynamic transmission controller that adaptively decides
the two configuration knobs based on real-time video content and
estimated bandwidth, to maximize the downstream task accuracy
without violating the real-time latency constraint. Third, we refac-
tor the system pipeline by decoupling and parallelizing demosaicing
and offloading processes to optimize bottleneck resource utiliza-
tions (i.e., device-side GPU and wireless network).

We extensively evaluate the performance of ABO with datasets
collected with a prototype AR system. The results show that ABO
outperforms not only JPEG but also the SOTA neural codec base-
lines, with up to 15% improvement on downstream DNN accuracy
while incurring similar bandwidth consumption. Meanwhile, the
dynamic offloading pipeline of ABO consistently provides over
40% more throughput and 30% less response latency, achieving the
target of real-time experience.

Our main contributions are summarized as follows:
• We are the first to decouple the visual DNN offloading from

image demosaicing such that they can run in parallel for
higher throughput and lower end-to-end latency.

• We design a tile-based configurable neural codec for RAW
images to achieve different latency-accuracy tradeoffs.

• We propose an adaptation controller algorithm to optimize
the offloaded DNN task accuracy and frame processing
throughput upon network bandwidth fluctuations.

• We implemented both the hardware and software prototype
system and performed extensive evaluations to demonstrate
the effectiveness and efficiency of ABO.

2 BACKGROUND AND MOTIVATIONS
This section reviews preliminary background knowledge on DNN
offloading and digital image processing, as well as the main moti-
vations driving this paper.

2.1 DNN Offloading for Augmented Reality
DNN analytics (e.g., object detection) are crucial in AR applications
as they enhance theway digital content interacts with the real world
by helping anchor virtual elements to real-world objects. Due to
the limited onboard resources, offloading computation-intensive
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Figure 2: Typical on-sensor image processing pipeline.

DNN analytics to a nearby edge server has been a common prac-
tice [33]: The DNN model is loaded on the server to process up-
loaded frames from the client device (e.g., headset). The detection
results are then sent back to the client for user-facing rendering.
The offloading pipeline needs to effectively support high-resolution
and high-frequency frame processing in real time for an accurate,
responsive, and smooth user experience in the augmented world.

To save bandwidth consumption, standard image codecs (e.g.,
JPEG) are applied on the client to compress image frames before
transmission, which actually mismatch with DNN inference needs.
As shown in Figure 1, we distinguish conventional human-centric
image transmission and machine-centric image transmission:

• In human-centric transmission like content delivery
networks (CDN), image frames are transmitted for human
viewing after decoding, so standard codecs like JPEG are
designed for optimized human perceptual quality.

• In machine-centric transmission, the decoded frames
are instead processed by DNN models, thus downstream
model accuracy should become the new quality metric that
guides the neural codec design.

As a solution, the image codec should be refactored to align with
the downstream DNN inference and abandon any information unre-
lated to DNNprediction (i.e., interpolated colors, content intactness).
Besides, the human-in-the-loop nature of AR calls for both low la-
tency and high throughput. Low latency provides responsiveness,
while high throughput guarantees smoothness.

2.2 Demosaicing in Digital Image Processing
Bayer filter is a fundamental component of digital image sensors.
It is technically a CFA placed over the photodiodes of sensors for
capturing images. As shown in Figure 2, a typical CFA pattern is a
2x2 repeating unit (RGGB filter cell), and it outputs single-channel
RAW images. To reconstruct them into the RGB form, demosaicing
algorithms are applied [21, 34, 37] to estimate the missing pixel
colors based on nearby pixels, which takes 25 to 45 ms on em-
bedded platforms (i.e., Nvidia Jetson Nano). Although demosaiced
3-channel RGB images facilitate human browsing, they do not lead
to better DNN inference performance but result in higher trans-
mission overhead. Thus the RAW images, with appropriate codecs,
could be better candidates for DNN offloading.

We conduct experiments to validate the hypothesis. Using object
detection as the offloaded task, we first train two YOLO models [40]
on RAWand RGB images of the same dataset (details in Appendix B).
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Table 1: Accuracy-bandwidth tradeoffs on object detection
between different image codecs. YOLOv5 model is used.

Image Codec F1 Score mAP Frame Size
RAW 0.893 0.911 242 KB

ABO-noDistill 0.873 0.878 73 ±5 KB
ABO-Distill 0.923 0.937 75 ±5 KB

RGB 0.888 0.904 726 KB
JPEG 0.883 0.899 230±30 KB

Original RAW ABO-noDistill ABO-Distill

2.93 4.032.66

Figure 3: Comparison of the original RAW image, ABO-
noDistill decoded image and ABO-Distill decoded image with
edge clearness values (Definitions given in Appendix A). Im-
ages are demosaiced to RGB formats for better viewing.

We then evaluate the RGBmodel on RGB and JPEG-decoded images
while evaluating the RAW model on RAW and ABO-decoded im-
ages, respectively. The results in Table 1 show that (1) Demosaicing
does not enhance the downstream task performance. Instead, the
samplings of real-world information remain original and intact in
RAW images, which receive better object detection performance
than interpolated RGB images (RAW vs. RGB). (2) Without en-
coding, both frame types lead to excessive frame sizes intolerable
for transmission, while ABO and JPEG can effectively reduce the
transmitted frame sizes. (3) Although ABO causes a small degra-
dation in model accuracy (ABO-noDistill vs. RAW), finetuning its
codec through knowledge distillation achieves even slightly better
performance than RAW (ABO-Distill vs. RAW).

We visualize the different image types in Figure 3, and find
knowledge distillation achieves targeted image-enhancing artifacts
in a mission-oriented manner with better exposed object outlines.
It is also noteworthy ABO achieves lower bandwidth consumption
than JPEG without sacrificing DNN accuracy, thus presenting a
higher potential for offloading.

2.3 Efficiency Savings on Pre-Demosaic RAW
Frame Offloading

Existing offloading frameworks [26, 28, 51, 52] only optimize the
latency from demosaiced RGB images to results rendering but over-
look the latency associated with onboard demosaicing. One main
motivation of this paper is to decouple image offloading and demo-
saicing. Having analyzed its feasibility from the accuracy perspec-
tive, here we analyze its efficiency savings.

We compare the standard JPEG-based offloading process with
the RAW-based ABO process, which allows onboard demosaicing
to run in parallel with transmission and remote DNN analysis.
We use an Nvidia Jetson Nano as the edge device and a desktop
with Nvidia RTX 4090 GPU as the edge server, whose results are
reported in Figure 4. With the decoupled threads, the execution
overhead on demosaicing (i.e., 25 ms) is completely hidden behind

0 10 20 30 40 50
Process time from starting a frame (ms)

   
   

  A
B

O
   

   
   

  J
PE

G Demosaic Encode RenderServer
Process

Demosaic

Data
Reshape RenderServer

Process

Encode
Dynamic
Trans
Control

Send Recv
Thread #1

Thread #2

Thread #3

Figure 4: Frame processing time comparison between serial-
ized procedure in JPEG and pipelined procedure in ABO.
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Figure 5: ABO framework overview.

image offloading steps. Besides, as indicated in Table 1, single-
channel RAW images result in smaller compressed sizes, reducing
the network transmission latency. As a result, the end-to-end frame
processing latency is reduced from 54 ms to 37 ms, fulfilling the
real-time requirement of 40 ms. Its frame throughput increases to
over 27 FPS, surpassing the 25 FPS threshold for human viewing.

3 ABO FRAMEWORK
We first give an overview of the proposed ABO framework, then
introduce its major components with design details.

3.1 Overview
An overview of ABO is summarized in Figure 5, which includes two
main components: a tile-wise RAW image neural codec with different
configurations to be calibrated with, and a dynamic transmission
controller tackling bandwidth fluctuations.

Tile-wise RAW Image Neural Codec: It consists of a light-
weight encoder on the edge device to compress sub-frame RAW
image tiles into feature maps with compressed sizes, and a deep
decoder on the edge server to reconstruct the RAW image from
transmitted feature maps for DNN inference. Multiple encoding
configurations are available to balance the offloaded DNN accuracy
and bandwidth consumption during the transmission.

Dynamic Transmission Controller: Given a RAW frame, it
first selects the tiles that may contain objects, then determines the
codec configuration based on the estimated bandwidth and selected
image tiles, adapting to dynamically fluctuating networks.

3.2 Tile-wise RAW Image Neural Codec
A neural codec is expected to significantly reduce the frame size
through encoding while effectively sustaining the downstream

3
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DNN accuracy on decoded output. ABO’s neural codec design is
based on two ideas: First, ABO reduces the client-side computa-
tion by deploying single-layer neural encoders on edge devices
and heavyweight neural decoders on edge servers. Second, instead
of encoding a high-resolution RAW image as a whole, ABO sep-
arately encodes individual sub-frame tiles and provides multiple
encoder configurations, both constituting a tunable space for codec
calibration upon bandwidth dynamics.

3.2.1 Asymmetric Configurable Autoencoder. The neural codec
of ABO is designed to be asymmetric. The encoder only includes
a single convolution layer for compressing tile spatial dimensions.
The kernel stride and numbers of output channels are different for
each configuration, and their parameters are separately assigned.
The single convolution layer can run in real-time on edge devices
and the existence of multiple encoders only induces reasonable
memory overhead. On the other hand, The decoder on the edge
server has a much larger scale to secure the reconstruction quality,
as it is assumed to be resource-rich. The basic decoder structure is
a stack of residual blocks[15] (details in Appandix E). To cope with
heterogeneous encoding configurations without hosting multiple
deep decoders, as shown in Figure 6, we use a pluggable design:
Each encoder configuration has a separate decoder head to unify
the feature map dimensions. After that, all configurations share the
same decoder layers until the output. All encoder-decoder config-
urations are trained jointly to enhance their compatibility within
the shared decoder parameters.

3.2.2 Frame Color Preservation. If a RAW image is fed into
the encoder in the original 1-channel format, the grid-patterned
RGB information would be erased by the convolution kernel, hard
to recover the color information. Instead, we disassemble a RAW
image by the color channels in the CFA repeating pattern and stack
four disassembled channels to create a 4-channel input (illustrated
in Figure 7), so that the mosaiced color information of each channel
can be preserved during the encoding-decoding processes. However,
though a disassembled 4-channel and the original 1-channel frames

have the same pixel volume and information, the spatial information
of a 4-channel input is downsampled by 2× at each dimensionwhich
will greatly degrade the extracted high-level spatial features of the
DNN model[44]. Thus, the decoded tiles need to be reassembled
into the original 1-channel format along the CFA pattern before
feeding into the downstream model.

3.2.3 Tile Partitioning. Object detection models are highly spa-
tially localized in feature extraction, meaning the detection quality
will not be affected by removing unrelated background areas. Fur-
thermore, selectively transmitting subframe areas with rich infor-
mation helps greatly reduce bandwidth consumption. To achieve
this, we evenly split a frame as a grid of 𝑟 × 𝑐 overlapped tiles to
preserve the quality of reconstruction from tile padding artifacts.
After transmitting the selected tiles with their positional indexes
to the edge server, the decoded tiles will be placed at their original
position in an empty frame canvas, while the skipped tiles are filled
with default pixel colors.

3.2.4 Learning Objectives. The neural codec training is divided
into two phases. The first phase only focuses on the reconstruction
quality by minimizing a mean-squared error (MSE) loss between
the original input and the decoded output. In the second phase, we
introduce knowledge distillation [17] from the downstream DNN
model to enhance the preservation of task-related information,
achieving higher accuracy in the downstream task. The frozen
downstream model is concatenated to the decoded output and its
task loss (i.e., object detection loss) is backpropagated to both the
encoder and decoder during their update. Besides, in the distillation
phase, losses from different coding configurations are weighted by
the proportion of their original MSE losses. Assume there are 𝒎
train samples in total, and 𝒚𝒊 is the codec output of corresponding
train sample 𝒙 𝒊 . Then the MSE loss can be described as

𝐿𝑜𝑠𝑠𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖 )2 . (1)

Assume there are 𝒏 codec configurations in total, and denote the
MSE loss of one of the configurations as {𝑳𝒐𝒔𝒔𝑴𝑺𝑬 }𝒊 , the weight
for this configuration can be described as:

𝑤𝑖 =

∑𝑛
𝑖=1{𝐿𝑜𝑠𝑠𝑀𝑆𝐸 }𝑖
{𝐿𝑜𝑠𝑠𝑀𝑆𝐸 }𝑖

. (2)

Denote the loss function of downstream DNN visual model as
𝑳𝒐𝒔𝒔𝒕𝒂𝒔𝒌 , so that the task loss of configuration 𝑖 is {𝑳𝒐𝒔𝒔𝒕𝒂𝒔𝒌 }𝒊 ,
and the knowledge distillation loss is:

𝐿𝑜𝑠𝑠𝐾𝐷 =

𝑛∑︁
𝑖=1

𝑃𝑖 ∗ {𝐿𝑜𝑠𝑠𝑡𝑎𝑠𝑘 }𝑖 , (3)

4



531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

ABO: Abandon Bayer Filter for Adaptive Edge Offloading in Responsive Augmented Reality Conference’17, July 2017, Washington, DC, USA

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

where 𝑳𝒐𝒔𝒔𝒕𝒂𝒔𝒌 depends on the used downstream model. In this
way, all codec configurations have the same loss value at the begin-
ning of knowledge distillation, with the intuition of forcing them
to be updated at a similar rate.

3.3 Dynamic Transmission Controller
To ensure smoothness and responsiveness against network fluctua-
tions, we design a dynamic transmission controller to continuously
calibrate neural codec configurations at runtime. It contains a codec
configuration calibrator that operates based on an offline profiled
look-up table (LUT), a content-aware tile selector, and a lightweight
bandwidth estimator.

3.3.1 Adaptation Problem Formulation. The adaptation objec-
tive is to maximize offloaded DNN accuracy on each frame satis-
fying the real-time latency constraint under certain bandwidths.
To do so, a LUT is first created offline as {𝒌𝒆𝒚𝒔 : [𝑪𝒊], 𝒗𝒂𝒍𝒖𝒆𝒔 :
[(𝑷𝒊, 𝑩𝒊)]}

𝒏
𝒊=1 where 𝑪𝒊 is the codec configurations, 𝑷𝒊 and 𝑩𝒊 are

the corresponding profiled task accuracy and bandwidth consump-
tion. 𝑩𝒊 is calculated by 𝑩𝒊 = 𝑭𝑺𝒊/𝑻 𝒕𝒊 where 𝑭𝑺𝒊 and 𝑻 𝒕𝒊 are the
average tile size and a predetermined transmission time threshold.
If the profiled bandwidth consumption of a configuration is higher
than the estimated network bandwidth, the transmission time can
exceed the threshold leading to system lagging and stuttering. At
runtime, a content-aware tile-in-frame selection is performed first,
giving a list of selected tiles 𝑳𝑻 , and the numbers of selected tiles
𝒕𝒔 . Meanwhile, an estimated available bandwidth 𝑬𝑨𝑩 is given by
a lightweight estimator. Then the objective of adaptation can be
evolved into finding the codec configuration 𝑪𝒊 with the best task
accuracy 𝑷𝒊 that fits 𝑩𝒊 < 𝑬𝑨𝑩.

3.3.2 Offline Profiling. To prepare the aforementioned LUT, we
use a small profiling data set from the ABO RAW dataset (details
in Appendix B) to measure the average accuracy and tile size. The
throughput of codec configurations is obtained by running on live
cameras under certain bandwidth constraints without involving
the dynamic transmission controller.

3.3.3 Bandwidth Estimation. We use a lightweight bandwidth
estimator to obtain the estimation of the currently available band-
width (EAB). The estimation 𝑩𝑾 is obtained by a simple time
differential 𝑩𝑾 = 𝑺𝒕𝒓𝒂𝒏𝒔

𝒕𝒆𝒏𝒅−𝒕𝒔𝒕𝒂𝒓𝒕
where 𝑺𝒕𝒓𝒂𝒏𝒔 is the transmitted bit-

stream size of the last frame, 𝒕𝒔𝒕𝒂𝒓𝒕 and 𝒕𝒆𝒏𝒅 are the staring and
ending timestamp of transmission of the last frame.

3.3.4 Content-Aware Tile Selection. To enhance content aware-
ness in tile selection, we use detection results from the latest frame
as references for tile selection in the next frame. For each new tile, if
it overlaps with any object bounding boxes in its previous frame, it
will be selected for encoding and transmission. Such a conservative
criteria ensures only tiles that are unlikely to contain objects are
skipped. However, if previous detection results are inaccurate, the
following tile selections could be affected in a cascade. To avoid
this case, we use a periodic method to reset potential reference
errors in fixed-length time windows. In each window, the first
frame is always encoded with all tiles in the highest configuration
(called the key frame), while the following frames are encoded with
tile selection and codec configuration calibration. Since key frame

Algorithm 1: Runtime Configuration Adaptation.
Input: Offline profiled LUT

𝐿𝑈𝑇 = {𝑘𝑒𝑦𝑠 : [𝐶𝑖 ], 𝑣𝑎𝑙𝑢𝑒𝑠 : [(𝑃𝑖 , 𝐵𝑖 )]}𝑛𝑖=1,
inference results of last frame {𝑏𝑏𝑜𝑥𝑖 }𝑚𝑖=1, period
length 𝑙 , estimated bandwidth 𝐸𝐴𝐵

Output: selected tile list 𝐿𝑇 , codec configuration 𝐶𝑠
// Initialization

1 Sort 𝐿𝑈𝑇 by 𝑃𝑖 in descending order;
2 frame_count=1;
// Main Loop

3 while TRUE do
4 LT={};
5 if frame_count==1 then
6 𝐿𝑇 = {𝑇𝑖 }𝑟×𝑐𝑖=1 , 𝐶𝑠 = 𝐶1;
7 else
8 for 𝑖 ∈ {1, 2, · · · ,𝑚} and 𝑡 ∈ {1, 2, · · · , 𝑟 × 𝑐} do
9 if 𝑇𝑡 ∩ 𝑏𝑏𝑜𝑥𝑖 ≠ ∅ and 𝑇𝑡 ∉ 𝐿𝑇 then
10 append 𝑇𝑡 into 𝐿𝑇 ;
11 num_tiles = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑇 );
12 for 𝑖 ∈ {1, 2, · · · , 𝑛} do
13 if 𝐵𝑖 × 𝑛𝑢𝑚_𝑡𝑖𝑙𝑒𝑠 ≤ 𝐸𝐴𝐵 then
14 𝐶𝑠 = 𝐶𝑖 ;
15 frame_count=frame_count+1 if frame_count!=l else 1;
16 Output 𝐿𝑇 ,𝐶𝑠 to encoder;
17 {𝑏𝑏𝑜𝑥𝑖 }𝑚𝑖=1={ ˆ𝑏𝑏𝑜𝑥𝑖 }𝑘𝑖=1;

transmissions only happen in low frequencies, their overhead is
attenuated across all frames in the window and potential reference
error accumulation is upper bounded, thus we guarantee the relia-
bility of tile selection with high throughput and low latency even
in high-motion scenarios.

3.3.5 Adaptation Algorithm. With the above definitions, the
adaptation algorithm can be described as shown in Algorithm 1.
For a given frame, if it is the first frame of a controlling window (a
key frame), all the tiles will be encoded in the highest configuration
and transmitted for DNN inference. The inference results will be
stored as a reference. If it is not a key frame, the tile selection will be
performed first. For each tile in the frame, if it is not already selected
and has a cross-section with any bounding box from the last frame
inference results, it will be selected for encoding and transmission.
After the tile selection is finished, the number of selected tiles will
multiplied by the bandwidth usage profile to obtain the estimated
bandwidth request (EBR). The best configuration with an EBR less
than the EAB will be used for encoding selected tiles and the DNN
inference results will be used for tile selection of the next frame.

4 IMPLEMENTATION
4.1 Hardware Prototype
As shown in Figure 8, we build a hardware prototype system with
a 3D-printed AR goggle modified from Google Cardboard [1]. We
use two IMX178 rolling-shutter sensors from SonySemicon [16]
as cameras, with a solution of 3072 × 2048 and a maximum frame
rate of 60 FPS. We use NVIDIA Jetson Nano as the edge device for
onboard processing. The edge server is configured with an AMD
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Ryzen R9-7950X CPU with a Nvidia RTX4090 GPU and 64GB RAM,
comparable to home desktop PCs. The client device and the edge
server are connected through a 200 Mbps wireless network.

4.2 Software Implementation
We implementedABO frameworkwith 4500 LoC Python code, using
PyTorch 2.0 [38] as the DNN platform. The network connection and
data transmission is achieved through the TCP Socket protocol. The
downstream object detection model is YOLOv5-7.0. Encoders on the
edge device are converted to FP16 TensorRT engines [3]. Lempel-
Ziv coding and Huffman coding are employed for data compressing
before transmission to further reduce bandwidth consumption.

4.3 System Optimizations
4.3.1 Pipelining. The pipeline of ABO implementation is il-

lustrated in Figure 9. Multi-threading the demosaic process with
the others means the execution time of all the processes except
encoding will be extended since the total CPU resource pool is very
limited. However, according to our observation, the multi-threaded
pipeline still provides 15% more FPS with 17% less end-to-end la-
tency compared to a sequential one.

4.3.2 Quantization. We reduce bandwidth consumption by
quantizing the encoded feature map into unsigned INT8 using sim-
ple add and mul operations. The parameter of quantize is obtained
from the upper and lower bound of encoded feature maps of the
training set. The quantization brings only about 0.05% degradation
of task performance with a neglectable processing time overhead
and a reduction in bandwidth consumption of about 75%.

5 EXPERIMENTS
In this section, we commence describing the experimental setups
and the datasets employed in our experiments. Then, we provide a
comprehensive comparison of overall performance against various
baseline methods, followed by robustness evaluation, ablation study,
and robustness evaluations.

5.1 Experimental Setups
5.1.1 Dataset: Since existing public datasets do not contain

RAW image frames, we manually collect segments of 10-40 seconds
consecutive RAW frames at 30 FPS using the prototype AR device,
including different possible real-world AR scenarios. The detailed
statistics are summarized in Appendix B.

5.1.2 Evaluation metrics. To verify the performance of the pro-
posed framework, we consider the following metrics perspectives.

• Task Accuracy: For the object detection task, mean aver-
age detection precision (mAP) [13, 27], F1 score, precision,
and recall are used to represent the overall task accuracy.

• Frame Processing Latency: It is defined as the duration
from the frame being captured to the remote detection
results being rendered and displayed by the client device.

• Throughput: The frame processing throughput is critical
to the smoothness of the user experience. It is defined as
the number of frames that are processed per second.

• Bandwidth Consumption: It measures the average size
of transmitted frames, as network bandwidth has become
one of the resource bottlenecks in edge offloading.

5.2 Compared Baselines
We compare with the following baselines in our experiments:

• JPEG [47]: One of the most widely used methods of lossy
compression for RGB images, with a scaled compression
ratio reflecting the tradeoff between image quality and file
size. We set the JPEG configuration with an adaptive encod-
ing quality module according to the available bandwidth.

• DeepCOD [52]: A neural offloading framework using dif-
ferent layers of deep compression to achieve efficient trans-
mission while balancing both reconstruction quality and
downstream task accuracy.

• PNC [49]: An adaptive image offloading framework with
a neural encoder-decoder set achieving selectable compres-
sion rates via stochastic tail-drop according to the impor-
tance of different layers in the feature map.

• Reducto [26]: An adaptive frame selection framework
with a per-frame differential extractor on the client and
offline profiles for scenarios on the server to control which
frames to transmit within a stream.

5.3 Offline Accuracy Profile
An optimal neural codec should reduce the frame into smaller sizes
while sustaining higher downstream task accuracy. We therefore
measure the accuracy and bandwidth tradeoffs between different
configurations in offline profiling, which represents the Pareto
boundaries of the compared frameworks. Specifically, for each con-
figuration, we measure the task accuracy metrics after decoding
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Figure 12: Adaptation accuracy under bandwidth dynamics.
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Figure 13: Adaptation efficiency under bandwidth dynamics.

and the average compressed frame sizes across the test segments
as shown in Figure 10. Each line represents a framework and each
point represents a concrete configuration. ABO reaches the high-
est Pareto limit among all frameworks across all configurations.
Compared with the JPEG pipeline, ABO has an over 15-20% better
task accuracy while only using 30-50% less bandwidth, demon-
strating the importance of task-aware end-to-end code training in
DNN offloading. Besides, although based on the same model archi-
tecture, ABO outperforms the frame-level encoding of DeepCOD
significantly benefiting from its tile-wise encoding and object-free
tile filtering during encoding. Finally, the sole frame selection in
Reducto presents poor bandwidth efficiency in downstream tasks.

5.4 Offline Throughput and Latency Profile
The end-to-end frame processing latency and the throughput un-
der limited bandwidth are directly related to the responsiveness
and smoothness of user experience. Therefore, we upper bound the
wireless network to 20 Mbps and measure the above two metrics for
different configurations within each framework, using all collected
test segments. As illustrated in Figure 11, under the same frame
sizes, ABO achieves the highest throughput and the lowest end-
to-end latency, being the only framework surpassing the 25 FPS
threshold of real-time inference, demonstrating that the advantages
of ABO also come from its higher client-side computation effi-
ciency and system pipelining. Compared to the JPEG pipeline, ABO
increases the throughput by 50% while reducing the end-to-end
latency by 35%, highlighting the savings by parallel demosaicing
and DNN offloading. PNC struggles with 15% lower throughput
and 10% higher latency than JPEG, despite its channel-dropping

effort, because its encoder still has a large scale that leads to high
computation overhead. Other baselines have only improved 3% to
15% of throughput and 5% to 10% of end-to-end latency compared
to JPEG without refactoring the underlying codec.

5.5 Adaptation Performance
We further perform end-to-end comparisons when individual con-
figurations are integrated into an adaptive framework under net-
work dynamics. To conduct the adaptation experiments in a repro-
ducible way, we randomly generate network bandwidth traces (as
summarized in Appendix C) and replay the network traces to each
video segment and each framework, respectively. The network band-
width is dynamically bounded using Linux Traffic Control (tc) [2].
The results are shown in Figure 12 and Figure 13. ABO consistently
outperforms the baselines in both downstream task accuracy and
frame processing throughput. Neural encoding frameworks gener-
ally achieve better task performance (ABO, DeepCOD, and PNC),
where ABO demonstrates the best efficiency and accuracy tradeoff.
DeepCOD and Reducto deliver increased throughput than JPG but
still can not meet the smooth browsing requirement (i.e., > 25 FPS).
PNC suffers from long encoding time although the transmitted
frame sizes are compressed through its channel-dropping strategy.
In AR applications, since objects are mostly in high motion to the
user, the frame selection in Reducto leads to poor downstream ac-
curacy. Finally, ABO also achieves the lowest end-to-end latency,
thanks to its demosaic-free offloading pipeline. In summary, the re-
sults prove that ABO provides the highest quality with guaranteed
responsiveness and smoothness to the users.

5.6 Environmental Robustness
Experiments in this subsection evaluate two challenging scenarios
(low-light and high-motion, details explained in Appendix D) in AR
applications that require higher robustness.

5.6.1 Low-Light Scenario. We manually change the luminosity
scale of the collected video frames from 1 to 1/2 and 1/4, and com-
pare the accuracy degradation between ABO and JPEG codec on
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Figure 15: Adaptation performance in high-motion videos.

their highest configurations. As shown in Figure 14, when operating
in low-light conditions, ABO achieves lower accuracy degradation
below 0.1 while JPEG has an unbearable 0.35 at 1/4 luminosity.

5.6.2 High-Motion Scenario. Active user interactions can make
high-motion scenarios common in AR. Therefore, we separately
analyze the downstream accuracy of two video frames (i.e., Seg3
and Seg5 ) that were collected with high camera motions (efficiency
shown in Appendix D). As shown in Figure 15, neural codecs tend
to have better robustness than frameworks using standard JPEG
encoding. Besides, ABO outperforms the baselines with a larger
margin than overall evaluations in Figure 12, being the only frame-
work to sustain over 0.85 mAP in both videos.

5.7 Ablation Study
To inspect the optimization brought by each module, we designed
two ablation experiments. One removes the distillation process
in the offline codec training, while the other one removes the tile
selection module in dynamic transmission control. The results are
shown in Table 2. Knowledge distillation does not affect frame size,
throughput, or end-to-end latency, but brings a huge improvement
in task accuracy (over 5% mAP), making it an essential component
in ABO. Besides, tile selection saves 23% in average frame sizes with
on average 29% tiles dropped, hence the improvement in throughput
and latency, without degrading the downstream accuracy.

5.8 Overhead Quantification
We quantify thememory usage and energy overhead of ABO to eval-
uate its applicability in mobile AR devices. We monitor the power
and memory usage throughout the testing periods. The Power con-
sumption is measured with a Monsoon HV power moniter [19] at
0.2 ms intervals. The cumulative overhead distribution curves of
JPEG and ABO are visualized in Figure 16 In power consumption,
the average power of ABO is 10 W, which increases by < 10% than
9.5 W of JPEG pipeline, demonstrating its high power efficiency.
In memory usage, after utilization, ABO consumes 1080 MB of
memory while JPEG consumes 340 MB. This is reasonable since we
host multiple neural encoders on the edge device, but its absolute
memory consumption is acceptable to current AR device capacities.

Table 2: ABO ablation study results.

F1 Score mAP Avg Frame Size Throughput Latency
ABO 0.941 0.963 19.6 KB 29.0 FPS 37.1 ms

ABO-noDistill 0.875 0.907 20.4 KB 28.9 FPS 37.3 ms
ABO-allTiles 0.942 0.963 25.4 KB 27.2 FPS 39.2 ms
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Figure 16: Energy and memory overhead quantification.

6 RELATEDWORK
Since the emergence of CCD image sensors, Bayer-patterned CFA
has been the go-to solution for creating digital full-color images.
Besides, encoding images with DNN models has been rapidly devel-
oped in recent years [29, 45, 46]. However, despite several works
have encoded CFA raw images [5, 9, 11, 25, 42], there is still a long
way to using neural codecs for CFA images on mobile devices with
insufficient computing power. Traditional DNN methods targeting
to improve the the shear performance (such as PSNR and SSIM) and
human-view-experience use more parameters in the DNN codec,
means that the time overhead and performance consumption are
too much, making it hard to have any practical utilization in mobile
computing scenario. Hardware methods have also been consid-
ered [32], though the performance is outstanding, a custom-made
sensor module is too costly for low-end devices. There are also
attempts to use Bayer image for object detection task [30], but it
requires a distinct model that only targets a single mission.

The offloading technique is proposed to address the restraint
of insufficient computing power of edge devices [33]. Using such
technique in AR/VR scenarios has been a new investigation direc-
tion [6, 14, 18, 23, 24]. Among existing solutions, there are several
frameworks considering the rising trend of using high-resolution
to improve the quality of user experience. [41, 48, 55] However,
there is no investigation into using pre-debayered RAW images in
mobile offloading scenarios, expect ABO.

7 CONCLUSION
In this paper, we introduced ABO, an adaptive RAW frame offload-
ing framework for DNN analytics in AR applications. It relies on
three main designs: First, it decouples demosaicing and offload-
ing into parallel processes through system pipelining for reduced
latency; Second, it contains a tile-wise RAW image neural codec
with multiple configurations; Finally, it adaptively calibrates the
coding configurations based on the content-aware tile selection and
runtime bandwidth. Through evaluations on a prototyped hard-
ware platform, ABO constantly achieves up to 15% improvement in
downstream task accuracy while increasing the frame processing
throughput by 40% and reducing the end-to-end latency by 30%
with similar bandwidth consumption, compared to SOTA baselines.
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A SOBEL-TENENGRAD EDGE CLEARNESS
VALUE

The edge clearness value is calculated by the Sobel-tenengrad op-
erator, which is commonly used to assess the sharpness or clarity
of image edges. The Sobel operator is an edge detection method
used to calculate the gradient of the image intensity in both the
horizontal (x) and vertical (y) directions. The two convolution ker-
nels (horizontal gradient 𝐺𝑥 , vertical gradient 𝐺𝑦 ) for the Sobel
operator are defined as follows:

𝐺𝑥 =


−1 0 1
−2 0 2
−1 0 1

 (4)

𝐺𝑦 =


−1 −2 −1
0 0 0
1 2 1

 (5)

The gradient magnitude at each pixel is then calculated using the
following equation:

𝐺 =

√︃
𝐺2
𝑥 +𝐺2

𝑦 (6)
This magnitude represents the edge strength at each pixel. Larger
values indicate stronger edges, which typically correspond to sharper
image features. Then we can calculate the Tenengrad focus measure
𝑇 , which is used to quantify the overall sharpness of the image, by
summing the squared gradient magnitudes across the entire image.
Higher values of𝑇 indicate a clear or sharper image, as they reflect
stronger edges throughout the image. The formula is given by:

𝑇 =
∑︁
𝑖, 𝑗

𝐺 (𝑖, 𝑗)2 (7)

B DATASET DETAILS
In our experiments, the downstream vision task deployed on the
server is YOLO-based object detection. Existing common datasets
[10, 27] are all collected and labeled with RGB standards like JPEG,
and simulating RAW images from such data is nearly impossible.
On the other hand, existing RAW datasets [5, 11, 22] either simply
do not have the sufficient amount of images to create a persuading
test environment, or are not designed for vision tasks but only
compressive encoding. Thus, for experiments, we construct a new
RAW dataset, the ABO RAW dataset, with 17 types of common
objects in campus offices, containing over 10,000 images with high-
quality labeled bounding boxes. All the images are captured with
a resolution of 3072*2048 under 8-bit non-packing Bayer mode
with the digital gain set to zero to reduce any possible noises and
secure image quality. This dataset is designed not only to serve
the object detection task but also to improve the robustness under
common challenges in AR/VR scenes like dim light or motion blur.
To make the proxy of AR/VR scenario more viable and improve
the robustness, random movements of the camera and objects are
introduced during the data collection process to improve the toler-
ance of motion blur in real-life AR/VR scenarios. Roughly 5% of the
total dataset is collected under insufficient luminosity conditions to
robustness under indoor environments. We also introduced several
frames of pure black and white for gamma calibration.

However, the dataset is collected one frame at a time to maintain
the variety of samples, meaning it cannot be used as frame streams
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Figure 17: Bandwidth Trace 1.
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Figure 18: Bandwidth Trace 2.
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Figure 20: Bandwidth Trace 4.

since the frames are not consecutive. To evaluate the framework,
we also collected 5 segments of consecutive frames at a fixed frame
rate of 30 FPS using the prototype AR device. The segments include
different possible real-world AR/VR scenarios within time lengths
various from 10 to 40 seconds, simulating both short-burst and
long-term services.

C GENERATED BANDWIDTH TRACE
The bandwidth traces are generated by a binomial random algo-
rithm. The traces are applied to the WiFi chip through a shell script
using Linux Traffic Control (tc). The script is started along with the
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Figure 21: The configurable image neural codec in ABO.
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Figure 24: Efficiency under high-motion

main Python script. But since the tc rules need to be erased before
the next utilization, meaning an apply-reset-apply cycle is longer
than the time granularity of which when the trace is generated, the
tc controlling script can only sample from the trace at the corre-
sponding time. The traces are illustrated in Figure 17, Figure 18,
Figure 19, and Figure 20.

D DETAILS OF CAPABILITY EXPERIMENTS
Here we present the visualization of low-light frames (Figure 22)
and high-motion ones (Figure 23). In Figure 24, we present the

efficiency of ABO under two high-motion test segments. The results
show that under the pressure of high-motion frames, ABO not
only achieves high task accuracy but also consistently provides the
highest throughput and the lowest latency, achieving a smooth and
responsive experience.

E DETAILED STRUCTURE OF ABO NEURAL
CODEC

The detailed model structure of ABO neural codec is illustrated
in Figure 21. There are 4 configurations in total, decided by con-
volution kernel strides (2 and 4) and output channels (4 and 8) of
the encoder. Upon being encoded and transmitted, the feature map
will be divided into two types according to the stride and put into
different decoder heads. The feature maps encoded with stride 2
will go through a single convolution layer, while the ones encoded
with stride 4 will go through a ResBlock to be upscaled. At this
point, the dimensions of the two types of feature maps are roughly
aligned. They will go through two different padding layers to be
exactly aligned on all dimensions after being output by the same
ResBlock. After being further processed by other layers, the fea-
ture maps are finally decoded and ready to serve as input for the
downstream DNN model.

F LIMITATIONS AND FUTUREWORK
Here we briefly discuss the existing limitations we identified on
ABO that can be potential future directions for extension.

Pretraining Overhead: Though the neural codec can be univer-
sally utilized for all kinds of data, the downstream DNN model still
needs to be trained with RAW frames of required tasks since the in-
put channel has changed. There is also some room for improvement
in ABO. The possibility of tile-level codec configuration calibration
remains, meaning that the bandwidth consumption can be further
reduced. There is also the potential for using a scene-targeting
online calibration module to further optimize the performance of
the tile-selection module.

Limited RAW Image Data: The current ABO design relies on
large-scale RAW image datasets for pretraining. Although we have
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made a significant amount of effort to collect data simulating daily
AR scenarios, its overall scale is still limited compared to standard
image benchmarks like ImageNet [10] and COCO [27]. It drives us
to think if we can use a large-scale RGB image dataset to pretrain
the autoencoder (i.e., extract the semantic feature patterns) and
adapt it to RAW input with limited RAW images (i.e., learn to deal
with single-channel input), so the data challenges can be greatly
alleviated.

SubframeCodecCalibration:Current design of ABO transmis-
sion controller only calibrates codec configuration on frame-level.
There is a potential for using a scene-aware module to calibrate
codec configuration on a tile level, thus the bandwidth consumption
can be further reduced.

Multi-Modal Fusion: The great success of augmented reality
not only comes from visual DNN analysis but also from close collab-
orations between multi-modal fusion (e.g., image, audio, video) that
creates an immersive experience for users. However, the current

ABO design only considers image data as the input but ignores the
potential optimizations that we can perform within multi-modal
data streams. We believe the general philosophy of decoupling
the edge offloading pipeline from any unnecessary preprocessing
steps could fit into various data formats, with corresponding signal
processing knowledge.

Multi-Task Compatibility: We have used object detection
as the only downstream DNN task in our experiments. However,
in practice, multiple DNN models can be simultaneously applied
to analyze the offloaded frames, serving different application pur-
poses. How to make sure their compatibility within the knowledge
distillation of ABO pretraining could be a challenging problem.
Within this context, we believe a self-supervised learning paradigm
(e.g., contrastive learning or masked autoencoder) that seeks to
learn general data semantics without task information could be
a promising solution to enhance the generalizability of offloaded
RAW frames to heterogeneous tasks.
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