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Abstract001

Transformer-based large-scale pre-trained mod-002
els achieve great success, and fine-tuning,003
which tunes a pre-trained model on a task-004
specific dataset, is the standard practice to uti-005
lize these models for downstream tasks. Re-006
cent work has developed adapter-tuning, but007
these approaches either still require a relatively008
high resource usage. Through our investigation,009
we show that each adapter in adapter-tuning010
does not have the same impact on task per-011
formance and resource usage. Based on our012
findings, we propose SAFE, which gradually013
freezes less-important adapters that do not con-014
tribute to adaptation during the early training015
steps. In our experiments, SAFE reduces mem-016
ory usage, computation amount, and training017
time by 42.85%, 34.59%, and 11.82%, respec-018
tively, while achieving comparable or better019
performance compared to the baseline. We also020
demonstrate that SAFE induces regularization021
effect, thereby smoothing the loss landscape.022

1 Introduction023

Large-scale pre-trained language models (PLMs)024

have manifested superior performance in various025

tasks (Kenton and Toutanova, 2019; Liu et al.,026

2019; Radford et al., 2019; Yang et al., 2019). How-027

ever, training a PLMs from the scratch is usually028

time-consuming and resource-intensive. Common029

practice has been hence to fine-tune the large-scale030

pre-trained models by adapting all the parameters031

with the downstream tasks, i.e., full parameter fine-032

tuning (full-tuning).033

Recently, Parameter-Efficient Fine-Tuning034

(PEFT), which focuses on optimizing a small035

fraction of parameters for downstream tasks, is036

receiving much attention (Houlsby et al., 2019;037

Lester et al., 2021; Li and Liang, 2021; Liu et al.,038

2022, 2023). Among various PEFT strategies,039

adapter-tuning has emerged as a prevalent method.040

It integrates lightweight modules, termed adapters,041

Figure 1: Comparison between full-parameter fine-
tuning, adapter-tuning and our proposed SAFE on the
BERTlarge model with SQuAD dataset. SAFE signifi-
cantly reduces memory usage while providing compara-
ble accuracy to adapter-tuning.

into each layer of PLMs and only tunes the 042

adapters with the downstream tasks. As shown in 043

Figure 1(a), the adapter-tuning methods (Houlsby 044

et al., 2019; Pfeiffer et al., 2021; Zaken et al., 2022; 045

Hu et al., 2021; Zhang et al., 2022), significantly 046

reduce the number of trainable parameters, 047

compared to the full-tuning, while exhibiting better 048

performance for a downstream task. 049

As adapter-tuning reduces the number of train- 050

able parameters, it is also expected to reduce the 051

resource (i.e., memory) usage accordingly. Un- 052

fortunately, parameter-efficiency does not always 053

translate into resource-efficiency. As shown in 054

Figure 1(b), although adapter-tuning significantly 055

reduces the number of trainable parameters (by 056

99.37%, on average) compared to the full-tuning, 057

the memory usage is not much reduced (only by 058

22.19%, on average). This is because adapter- 059

tuning does not reduce activation memory (i.e., 060

intermediate values for reuse during backpropaga- 061

tion) which account for 76.00% of memory usage 062

— it only reduces optimizer memory (e.g., gradi- 063

ents and momentum vectors). Considering the re- 064

markable increase in model size compared to the 065

modest increase in GPU memory capacity, adapter- 066

tuning methods still face challenges in terms of 067
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memory efficiency. For example, fine-tuning of a068

LLaMA-65B (Touvron et al., 2023) requires more069

than 780GB of GPU memory. As shown in Figure070

1(b), enabling resource-efficient fine-tuning may071

enhance accessibility of fine-tuning to researchers072

and end-users, by reducing memory requirements073

below the capacity of commodity GPU memory.074

According to previous work, the activation mem-075

ory mostly depends on the backpropagation length076

(Chen et al., 2016; Rhu et al., 2016), which is de-077

termined by the number of adapters trained during078

the backward pass. Hence, to reduce the activa-079

tion memory, it is crucial to reduce the number080

of training adapters. However, merely reducing081

the number of training adapters degrades accuracy.082

Here, a pivotal research problem arises:083

Can we reduce the number of training adapters084

without sacrificing accuracy?085

To answer the question, we analyze the impact of086

individual adapters on the accuracy and resource087

usage of training (Figure 2 in Section 3). We ob-088

serve that some adapters are being trained, even089

after they finish contributing to the accuracy im-090

provement, occupying memory. Thus, it is possible091

to stop training (i.e., freezing) such adapters early if092

they do not contribute to the adaptation for a down-093

stream task, de-allocating their activation memory.094

We also observe that such early freezing can even095

lead to the regularization effect on the model (Fu096

et al., 2023), improving the accuracy.097

In this paper, we propose SAFE (Selective098

Adapter FrEezing), which adaptively freezes099

adapters in the early epochs of training. In each100

epoch, SAFE identifies adapters that contribute rel-101

atively less to the accuracy improvement by using102

an importance score (Kornblith et al., 2019). It103

then freezes the adapters whose importance score104

is lower than a pre-defined threshold, reducing105

the memory usage and accelerating training time.106

By early freezing less important adapters, SAFE107

induces regularization effect on the model being108

trained, leading to a flatter loss surface. This is109

beneficial for finding an optimal point with higher110

generalization performance while optimizing neu-111

ral network. In our evaluation, SAFE significantly112

reduces the average memory usage and TFLOPs by113

46.89% and 51.73%, respectively, across various114

models and downstream tasks without compromis-115

ing accuracy compared to the baseline, LoRA (Hu116

et al., 2021). SAFE even improves the accuracy for117

some tasks, compared to LoRA, by up to 4.33%118

while reducing memory usage by 53.60%, by in- 119

ducing the regularization effect. 120

In summary, our key contributions include: 121

• We uncover that adapters exhibit varying de- 122

grees of contribution to model adaptation and 123

resource usage (Section 3). 124

• Motivated by this observation, we propose 125

SAFE, a novel approach that enables resource- 126

efficient fine-tuning by selectively early- 127

freezing less important adapters (Section 4). 128

• Our evaluation on various downstream tasks 129

demonstrates that SAFE not only achieves 130

comparable or even better task performance 131

to baselines but also significantly reduces re- 132

source usage by inducing the regularization 133

effect on the model (Section 5). 134

2 Related Work 135

Parameter-Efficient Fine-Tuning: To efficiently 136

adapt large-scale PLMs to downstream tasks, many 137

adapter-tuning methods (Chen et al., 2023; He 138

et al., 2023; Hu et al., 2021; Houlsby et al., 2019; 139

Karimi Mahabadi et al., 2021; Liu et al., 2022) 140

have been proposed. In general, adapter-tuning 141

methods inject small, trainable, and task-specific 142

adapter modules into each transformer layer of a 143

pre-trained model. Given a pre-trained weight ma- 144

trix W0 ∈ Rd×k and input x ∈ Rk×1, the weight 145

update of adapter-tuning is expressed as W0+∆W . 146

During training, W0 is frozen and does not receive 147

gradient updates, while ∆W contains trainable pa- 148

rameters. For h = W0x, The modified forward 149

pass in adapter-tuning yields: 150

h = W0x+∆Wx. (1) 151

152To further improve parameter efficiency of 153

adapter-tuning, AdaLoRA (Zhang et al., 2022) 154

adaptively adjusts the number of trainable parame- 155

ters among adapters according to their importance 156

score — it reduces the number of trainable param- 157

eters for less important adapters. However, the 158

adapter-tuning methods still use a large amount of 159

memory, as shown in Figure 1, since they do not 160

reduce the activation memory which accounts for a 161

large portion of memory usage. 162

Pruning LLM Model Parameters: To reduce the 163

model memory of fine-tuning, two categories of 164

pruning methods have been proposed (Liang et al., 165

2021): structured pruning and unstructured prun- 166

ing. Structured pruning methods remove grouped 167

parameters (e.g., channels, layers) from the LLM. 168
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Figure 2: We quantify (a) accuracy and (b) memory usage of adapter-tuning by injecting an adapter into each
transformer layer of BERTbase model on MNLI and QNLI dataset from GLUE.

However, they usually degrade the accuracy. Fur-169

thermore, they have a limitation in terms of the170

compression ratio because of the low flexibility.171

LLM-Pruner (Ma et al., 2023) compensates the ac-172

curacy drop coming from pruning, by employing173

post-training.174

To overcome the limitation of structured prun-175

ing, unstructured pruning methods remove partial176

values of weight matrices regardless of their struc-177

tures (Li et al., 2022b; Frantar and Alistarh, 2023).178

However, unstructured pruning also degrades the179

accuracy.180

Resource Efficient Fine-Tuning: Several works181

have tried to target resource efficient fine-tuning.182

AdapterDrop (Rücklé et al., 2021), randomly ex-183

cludes partial adapters from each training step.184

However, it cannot de-allocate the activation mem-185

ory for the adapters, because of the random se-186

lections — an adapter excluded from training in187

a step can be included in training in the follow-188

ing steps. SparseAdapter(He et al., 2022) applies189

unstructured pruning to the adapters. However, it190

also does not reduce the actual memory usage —191

this is because the weight matrices pruned with192

zero values still need to be fully allocated in the193

memory. LoRAPrune(Zhang et al., 2023) employs194

structured pruning for LoRA. Unfortunately, the195

aforementioned methods usually have an adverse196

impact on the accuracy. MEFT (Liao et al., 2024)197

applies a reversible model to PEFT. By using the198

reversable network, MEFT calculates activations199

with accumulated outputs of layers, without saving200

the intermediate activations reducing the activation201

memory. However, calculations of the activations202

severely degrades the training time performance.203

Different from the previous works, this work204

freezes less important adapters in early steps of205

training. Since the frozen adapters can only be206

used for the forward pass, early freezing of less207

important adapters can effectively reduce the back- 208

propagation length as well as the activation mem- 209

ory. Moreover, it induces regularization effect on 210

the model, improving its accuracy. 211

3 Motivation 212

In this section, we present a pivotal research ques- 213

tion for resource-efficient fine-tuning. 214

RQ: Do all adapters contribute equally to the
process of adaptation?

215

To answer this question, we analyze the impact 216

of adapters injected into each transformer layer on 217

accuracy and resource efficiency. We measure the 218

accuracy and memory usage of BERTbase model on 219

MNLI and QNLI dataset from GLUE (Wang et al., 220

2018), by attaching an adapter to each transformer 221

layer one-by-one. Figure 2(a) and (b) show the 222

measured accuracy and memory usage respectively 223

— the x-axis indicates the index of transformer layer 224

that the adapter is injected into. 225

As shown in Figure 2(a), each adapter has differ- 226

ent impact on the accuracy, and the importance 227

of each adapter varies depending on the down- 228

stream task. In addition, despite uniform counts of 229

trainable parameters, resource usage decreases for 230

adapters closer to the output layer, as depicted in 231

Figure 2(b). These observations point to the possi- 232

bility that adapters in early layers contribute less to 233

task adaptation, even though they require consid- 234

erable resources. In other words, if we selectively 235

deactivate less impactful adapters, it is possible to 236

co-optimize the resource efficiency and accuracy. 237

To further analyze changes of the feature repre- 238

sentations for each adapter throughout the training 239

process, we quantify the representation similarity 240

between adapters in each training step and those 241

in the final model (which we obtained after the 242
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Figure 3: We visualize the representation similarity
of the trained model and the model during training in
adapter-tuning of the BERTbase model on datasets from
GLUE.

convergence of fine-tuning). We quantify the repre-243

sentational similarity using Centered Kernel Align-244

ment (CKA) by referring to previous works (Li245

et al., 2022a). Figure 3 visualizes the representa-246

tional similarity measured throughout the training247

process for each adapter for BERTbase model on248

MNLI and QNLI dataset from GLUE (Wang et al.,249

2018) — lighter the color becomes, higher the fea-250

ture representation similarity is.251

As shown in Figure 3, even in the early train-252

ing steps, the feature representations of several253

adapters are almost the same as those of the fi-254

nal model — similar patterns are observed in255

other models and datasets. This means that those256

adapters are already representing the features that257

should be represented by the final model, and thus258

they may not further be adapted for the downstream259

task in the rest of the training steps. This is why260

such adapters are less contributing to the accuracy261

improvement of the model on the downstream tasks262

in Figure 2. One intuition is that lower adapters263

generally learn basic understanding of the input264

data, such as data bias and structural characteris-265

tics of the data, while adapters closer to the output266

build features unique to different tasks (Houlsby267

et al., 2019). Motivated by the observation where268

not all adapters consistently contribute to adap-269

tation, in the next section, we propose a selec-270

tive adapter freezing method which preemptively271

freezes adapters that are relatively less important272

for each task.273

4 Selective Adapter Freezing (SAFE)274

In this section, we propose a selective adapter freez-275

ing method, SAFE. SAFE adaptively freezes less276

important adapters in the early training steps, in277

order to reduce unnecessary computation and mem-278

ory usage without compromising the accuracy.279

Figure 4 shows the overview of SAFE. SAFE280

consists of two stages: warm-up stage and freezing 281

stage. In the warm-up stage, SAFE performs sev- 282

eral epochs of fine-tuning while monitoring the fea- 283

ture representation changes (i.e., importance score) 284

of the adapters (Section 4.1). If the important score 285

of all adapters is not much changed for consecu- 286

tive epochs, SAFE enters the freezing stage. In the 287

freezing stage, SAFE gradually freezes adapters 288

that contribute less to the adaptation, based on the 289

importance score (Section 4.2). By early freezing 290

less important adapters, SAFE induces regulariza- 291

tion effect on model (Section 4.3), leading to better 292

performance. 293

4.1 Importance Score 294

In the warm-up stage1, we identify less impor- 295

tant adapters by monitoring the feature represen- 296

tation changes of the adapters. To capture the fea- 297

ture representation changes of the adapters, SAFE 298

uses Centered Kernel Alignment (CKA), which is 299

a representative metric for representation similar- 300

ity — similar practice has been used in previous 301

works (Neyshabur et al., 2020; Raghu et al., 2021). 302

It calculates CKA between the activation of a layer 303

adapted with an adapter and that of the original 304

layer as: 305

CKAi(Xi, Yi) =
∥Y T

i Xi∥2F
∥XT

i Xi∥F ∥Y T
i Yi∥F

, (2) 306

where Xi and Yi are the activations of a layer that 307

is adapted with an adapter and the original layer, 308

respectively, i = Index of Layer, and ∥ · ∥2F repre- 309

sents the square of the Frobenius norm of a matrix. 310

Higher CKA value indicates that the feature rep- 311

resentation of a layer is still similar with that of 312

the original one. To this end, SAFE calculates the 313

importance score of an adapter as: 314

Imp(Adapteri) = 1− CKAi(Xi, Yi) (3) 315

4.2 Adapter Freezing 316

In the freezing stage, SAFE gradually freezes 317

adapters based on their importance score. At tw-th 318

epoch, SAFE compares the importance score of 319

adapters with threshold τT . If the importance score 320

of an adapter is lower than τT , SAFE identifies the 321

adapter as a freezing candidate. After identifying 322

freezing candidates, SAFE gradually freezes them 323

based on a moving threshold τT until tf -th epoch 324

1We define the number of warm-up epochs as the epoch
at which the importance score of all adapters change by less
than 5% for consecutive epochs.
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Figure 4: Design overview of Selective Adapter Freezing (SAFE). At the warm-up stage, SAFE identify important
adapters by calculating importance score. At the freezing stage, SAFE gradually freezes the adapter based on their
importance score with moving threshold τ by following a cubic schedule.

— it increases 0 to τT
2 between tw-th and tf -th325

epochs following a cubic schedule as (Zhang et al.,326

2022):327

τt =


0 0 ≤ t < tw,

τT − τT
(
1− t−tw

tf−tw

)3

tw ≤ t < tf ,

τT o.w.

(4)328

where t is the current epoch, tw is the number of329

initial warm-up epochs, tf is the number of final330

freezing epochs. This ensures that a large num-331

ber of adapters participate in adaptation during the332

early stages of training, allowing SAFE to more333

accurately identify important adapters. As training334

progresses, less important adapters are gradually335

frozen, with different training periods assigned to336

each adapter based on their importance.337

4.3 Regularization Effect of SAFE338

By selectively freezing less critical adapters, SAFE339

induces a regularization effect within the model.340

In transformer-based PLM N0, each of the l trans-341

former blocks Tl is equipped with a distinct set of342

parameters θ0l for l ∈ {1, . . . , n}. To reduce the343

computational overhead of directly fine-tuning all344

parameters θ0l , lightweight adapters ∆θl are intro-345

duced. To clarify how introducing adapters con-346

tributes to performance enhancements, Fu et al. (Fu347

et al., 2023) formalize the optimization function as348

follows:349

min
θ

L(θ) + ∥(I −M)(θ − θ0)∥2, (5)350

where θ = θ0 +M∆θ and M ∈ {0, 1}m×m, with351

m = dim(θ), serves as a diagonal matrix for se-352

lective parameter adjustment. Each diagonal el-353

ement Mii ∈ {0, 1} indicates whether the corre-354

sponding parameter of ∆θi is active (1) or inactive355

2We empirically determine τT and final freezing epochs
tf based on extensive experiments with various models and
datasets.

(0), with all off-diagonal elements Mij set to 0. 356

The regularization term is crucial for explaining 357

how parameter constraints introduced by adapters 358

can enhance model performance on downstream 359

tasks. The rank(M) is bounded by m, reflecting 360

full capacity for parameter adaptation within each 361

transformer block. However, such an approach can 362

lead to excessive computation. In contrast, our 363

study explores the implications of constraining the 364

rank(M) to a reduced upper limit of m
l by selec- 365

tively activating ∆Wl for Tl. This constraint not 366

only optimizes computational efficiency but also 367

preserves the adaptability essential for superior per- 368

formance on downstream tasks, as evidenced by 369

our empirical results detailed in Section 5.3. 370

5 Experiments 371

5.1 Experimental Setting 372

Models: We assess the fine-tuning efficacy of 373

SAFE using state-of-the-art transformer-based 374

models, including BERTbase, BERTlarge (Ken- 375

ton and Toutanova, 2019), RoBERTabase, 376

RoBERTalarge (Liu et al., 2019), GPT-2medium, and 377

GPT-2large (Radford et al., 2019). 378

Datasets: The aforementioned models are evalu- 379

ated across various tasks that span a broad spectrum 380

of NLP applications, including Natural Language 381

Understanding (NLU), Question Answering (QA), 382

and Natural Language Generation (NLG). Initially, 383

we utilize eight datasets from the General Lan- 384

guage Understanding Evaluation (GLUE) (Wang 385

et al., 2018) which comprises two single-sentence 386

classification tasks, three similarity and paraphrase 387

tasks, and four natural language inference tasks. 388

Furthermore, we conduct experiments on the 389

SQuAD dataset (Rajpurkar et al., 2016) with both 390

BERT and RoBERTa model families. Decoder- 391

only models such as GPT-2large are also tested to 392
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Table 1: Experimental results with BERTlarge on natural language understanding tasks from the GLUE benchmark.
SAFE significantly reduces memory usage while achieving GLUE score comparable to the baseline. Note that we
report memory usage and computation costs on RTE task.

CoLA SST-2 MNLI RTE QQP MRPC QNLI STS-B Avg. Memory Computation

Matthews corr Accuracy Accuracy Accuracy Accuracy F1 Score Accuracy Pearson corr (GB) (TFLOPs)

LoRA 65.24 93.65 85.40 72.66 90.49 87.90 90.06 91.88 84.66 20.35 46,698

+ AdapterDrop 64.24 92.54 85.19 73.38 89.02 86.51 91.51 91.39 84.22 20.35 35,114

+ SparseAdapter 65.25 92.66 85.19 74.10 90.43 88.50 91.61 91.99 84.97 20.35 46,698

+ SAFE 65.26 92.78 85.41 74.10 89.96 88.84 91.78 91.80 84.99 12.1140.47%↓ 30,28535.15%↓

determine if SAFE maintains its effectiveness in393

the E2E NLG Challenge (Novikova et al., 2017).394

Detailed dataset descriptions are available in Ap-395

pendix C.3.396

Baselines: To evaluate the effectiveness of397

SAFE, we benchmark against state-of-the-art PEFT398

method, LoRA (Hu et al., 2021). We com-399

pare SAFE with two effective sparse training400

methods, AdapterDrop (Rücklé et al., 2021) and401

SparseAdapter (He et al., 2022). SAFE’s perfor-402

mance is further compared with other PEFT meth-403

ods such as Houlsby (Houlsby et al., 2019), Pfeiffer404

(Pfeiffer et al., 2020), BitFit (Zaken et al., 2022),405

and the adaptive method AdaLoRA (Zhang et al.,406

2022) to demonstrate its versatility and applica-407

bility across different adapter-tuning frameworks408

(Figure 1, Appendix B). Comprehensive details on409

the experimental setup and hyperparameters, such410

as training epochs and batch sizes, can be found in411

Appendix C.412

5.2 Main results413

5.2.1 Natural Language Understanding414

Table 1 shows the results of different methods415

on GLUE tasks. Since SAFE selectively freezes416

51.04% of less important adapters early through-417

out the training process, SAFE significantly re-418

duces memory usage by 40.47%, from 20.35GB419

(LoRA) to 12.11GB, and decreases computation420

costs (FLOPs) by 35.15%. Even with such im-421

provements in resource efficiency, SAFE improves422

the average GLUE score from 84.66 (LoRA) to423

84.99 — this is because SAFE induces a regular-424

ization effect on less-important adapters improving425

generalization performance of the model (see Sec-426

tion 5.3).427

Compared to AdapterDrop, SAFE provides up to428

2.69% higher score (MRPC) while reducing mem-429

ory usage by 49.47% (0.91% higher GLUE score430

and 40.47% reduced memory usage on average).431

Figure 5: The freezing patterns when fine-tuning
BERTlarge on GLUE with SAFE. Colors indicate
adapters that are frozen, while white represents an
adapter that is not frozen — the lighter the color is,
the higher importance score is.

This is because AdapterDrop reduces computation 432

costs (FLOPs) by randomly dropping adapters for 433

each step, whereas SAFE selectively freezes less- 434

important adapters preserving critical adapters and 435

thus achieving better performance. AdapterDrop 436

also does not lower memory usage because the 437

memory allocated to the dropped adapters can- 438

not be de-allocated for the next step — adapters 439

dropped in a step may not be dropped in the next 440

step. Compared to SparseAdapter, SAFE reduces 441

memory usage by 40.47% and computation cost by 442

35.15% while providing comparable GLUE score. 443

This is because SparseAdapter performs pruning of 444

redundant parameters but uses unstructured prun- 445

ing with masking, which does not actually improve 446

resource efficiency. 447

Figure 5 shows the freezing patterns of 448

BERTlarge fine-tuned with SAFE — we observe 449

similar patterns for other tasks. We find that SAFE 450

tends to freeze adapters more in layers closer to 451

the input layer. Such behavior aligns with our em- 452

pirical observations presented in Figure 2 where 453

adapters closer to the output layer need to be fur- 454

ther adapted to the downstream tasks compared to 455

those in earlier layers, contributing more to model 456

performance. 457
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Table 2: Experimental results on question answering
task from the SQuAD dataset.

F1 Score
Memory Usage

(GB)
Computation

(TFLOPs)

BERTbase
LoRA 86.99 5.95 611,295
+ SAFE 87.22 4.6122.52%↓ 455,27425.52%↓

BERTlarge
LoRA 89.22 15.79 2,117,791
+ SAFE 89.72 7.4452.88%↓ 869,62458.94%↓

RoBERTabase
LoRA 90.95 11.51 1,225,147
+ SAFE 91.16 7.8032.23%↓ 808,23934.03%↓

RoBERTalarge
LoRA 93.39 17.73 2,117,791
+ SAFE 94.13 3.5679.92%↓ 245,54188.41%↓

5.2.2 Question Answering458

Table 2 shows the results of SQuAD dataset. SAFE459

consistently outperforms baseline under all settings.460

Notably, SAFE reduces memory usage and com-461

putation costs by up to 79.92% and 88.41% on462

RoBERTalarge by freezing 91.67% of the adapters,463

while improving the F1 score from 93.39 (LoRA)464

to 94.13. This result also demonstrates that the ben-465

efits and effectiveness of SAFE are not restricted466

to specific model sizes, making it a valuable strat-467

egy for enhancing adapter-tuning outcomes across468

models of varying scales.469

5.2.3 Natural Language Generation470

Table 3 shows that SAFE prevails on natural lan-471

guage generation task with GPT-2. SAFE achieves472

comparable performance to LoRA across all met-473

rics while significantly reducing memory usage.474

This result also demonstrates that SAFE is effec-475

tive not only for encoder models but also works476

well with decoder models.477

To elucidate the underlying mechanisms behind478

SAFE’s enhancements in model performance and479

memory efficiency, we conduct a detailed empir-480

ical analysis. We visualize and compare the loss481

landscapes of the baseline and SAFE. Addition-482

ally, we quantitatively evaluate the flatness of the483

loss surfaces by analyzing the spectrum of Hessian484

eigenvalues. This methodical approach allows us to485

substantiate the improvements attributed to SAFE,486

providing insights into its effectiveness in optimiz-487

ing both performance and resource utilization.488

5.3 Regularization Effect489

Loss Landscape Analysis. The flatness of a loss490

landscape is a recognized indicator of the general-491

ization ability of models (Jiang et al., 2020). Specif-492

ically, flatter landscapes are indicative of enhanced493

robustness to parameter perturbations (Xie et al.,494

Table 3: Experimental results on natural language gen-
eration from the E2E NLG Challenge. For all metrics,
higher is better. We report memory usage reduction in
blue.

BLEU NIST METEOR ROUGE-L CIDEr

GPT-2medium
LoRA 68.91 8.68 46.48 71.33 2.47
+ SAFE 68.67 8.66 46.40 70.88 2.43 34.34%↓

GPT-2large
LoRA 70.27 8.85 46.40 71.63 2.52
+ SAFE 70.26 8.87 46.58 71.68 2.53 25.50%↓

2021), reduced model complexity (Blier and Ol- 495

livier, 2018), and improved generalization capabil- 496

ities (Cha et al., 2021, 2022; Choromanska et al., 497

2015; Park and Kim, 2021; Wu and Su, 2023). To 498

examine these properties, we employ a compara- 499

tive visualization of the loss landscapes for LoRA 500

and SAFE using the BERTbase model on the QNLI 501

and SST-2 datasets, following the methodology 502

outlined in (Park and Kim, 2021)3. Our analysis 503

reveals that SAFE yields a flatter loss landscape 504

compared to LoRA. This flattening is attributed to 505

SAFE’s mechanism of controlling the norm of the 506

weights through regularization effects (See Equa- 507

tion (5)), which consequently enhances resistance 508

to weight perturbations, as depicted in Figure 6(a). 509

Hessian Eigenvalue Spectrum Analysis. To 510

quantitatively assess the visualized loss landscape 511

shown in Figure 6(a), we perform a detailed anal- 512

ysis of the top-5 Hessian eigenvalue spectrum. A 513

pivotal finding in our analysis is the reduced mag- 514

nitude of the maximum Hessian eigenvalue, which 515

correlates with a flatter loss landscape, indicative 516

of enhanced generalization potential. Moreover, 517

the diminution of large Hessian eigenvalues facili- 518

tates more effective model training (Ghorbani et al., 519

2019). Furthermore, the suppression of the largest 520

negative Hessian eigenvalues markedly contributes 521

to a more convex loss landscape, enhancing the 522

stability of the training process. Figure 6(b) demon- 523

strates that SAFE not only effectively reduces the 524

magnitude of Hessian eigenvalues relative to LoRA 525

but also leads to a smoother and more consistent 526

loss landscape. This evidence highlights the advan- 527

tages of SAFE in promoting a more reliable and 528

steady training behavior for adapter-tuning. 529

3This involves generating two orthogonal random vectors
in a 1D flattened parameter space, which are then normalized
and used to perturb the parameters. The strength of these per-
turbations is determined by their x and y coordinates, with the
origin (0, 0) representing the unperturbed state of the param-
eters, and increasing distance indicating greater perturbation
intensity.
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Figure 6: (a) Loss landscape demonstrates that SAFE yields a flatter loss surface compared to the baseline, as shown
in the second and third columns. (b) Hessian eigenvalue spectrum analysis shows that the magnitude of the Hessian
eigenvalues for SAFE is smaller than those for the baseline, indicating a flatter local curvature and potentially better
generalization properties.

5.4 Resource Efficiency530

We evaluate the resource efficiency of SAFE in531

terms of memory usage, computation amount, and532

training time. Table 4 shows the average resource533

efficiency improvement for the main results on534

NLU, QA and NLG tasks. Overall, SAFE reduces535

memory usage, computation amount, and training536

time by 42.85%, 34.59%, and 11.82% compared537

to LoRA, respectively (on average). This means538

that SAFE can fine-tune twice as many downstream539

tasks under the same FLOPs budget and further en-540

able on-device fine-tuning for personalization. For541

example, when fine-tuning a RoBERTalarge model542

with a question answering downstream task, SAFE543

reduces memory usage from 17.73GB to 3.56GB;544

8GB is the usual memory size of the edge devices.545

5.5 Expanded Experimental Results546

Image Classification Task Evaluations. In Ap-547

pendix A, we conduct comprehensive evaluations548

of SAFE on a variety of image classification tasks.549

These experiments consistently demonstrate the ef-550

ficacy of SAFE, confirming its robust performance551

across diverse vision-related applications.552

Compatibility with Advanced Adapters. Fur-553

ther discussions on the integration of SAFE with554

various advanced adapter modules are presented555

in Appendix B. Our results highlight SAFE’s ver-556

satility and compatibility with multiple adapter-557

tuning frameworks (Houlsby et al., 2019; Zaken558

et al., 2022). This adaptability ensures that SAFE’s559

methodology remains effective, independent of spe-560

cific adapter designs, thereby facilitating scalability561

Table 4: SAFE improves efficiency over the baseline
in all aspects including memory usage, computation
amount and training time. Note that we report computa-
tion costs for 1-step training.

NLU QA NLG

Memory Usage LoRA 20.35 12.75 16.97
(GB) + SAFE 12.11 40.47%↓ 5.85 54.08%↓ 11.90 29.91%↓

Computational Cost LoRA 1.24 5.94 8.64
(TFLOPs) + SAFE 0.93 24.74%↓ 2.33 60.86%↓ 6.79 21.42%↓

Training Time LoRA 1 1 1
(Normalized) + SAFE 0.90 10.29%↓ 0.89 10.92%↓ 0.80 19.76%↓

across existing adapter-tuning methods. 562

6 Conclusion 563

In this paper, we propose SAFE, which selectively 564

freezes adapters for enabling resource efficient 565

fine-tuning of PLMs. We observe that not all 566

adapters contribute equally to adaptation. Moti- 567

vated by the observation, SAFE gradually freezes 568

less-important adapters, which do not contribute to 569

adaptation during the early training steps. In our 570

evaluation on various models and datasets, SAFE 571

significantly saves memory usage and computation 572

and accelerating training time, with comparable (or 573

even better) accuracy. We also demonstrate that 574

SAFE induces regularization effect, thereby im- 575

proving generalization performance and accuracy 576

compared to the state-of-the-art PEFT methods. 577

We believe that SAFE can enable resource-efficient 578

fine-tuning of large-scale PLMs, and further pave 579

the path forward to personalized fine-tuning on 580

resource-constrained edge devices. 581
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7 Limitations582

We suggest the need for combination with prior re-583

search on memory-efficient training. These include584

low precision, microbatching, weight sharding, and585

gradient checkpointing techniques. Though we586

have not evaluated SAFE along with such memory-587

efficient training methods, SAFE can be com-588

plementarily used along with the methods since589

SAFE can be applied independently of the training590

method or weight precision. In particular, since the591

quantization-based compression technique is quite592

popular and effective in terms of both compression593

ratio and preservation of final accuracy, favorable594

results are expected from combining the proposed595

technique with the memory-efficient training meth-596

ods (Han et al., 2015).597
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A Results on Image Classification Tasks861

We conduct experiments with 8 datasets including class-level transfer and task-level transfer in the image862

classification tasks within Computer Vision (CV) domain. These datasets include CIFAR-10, CIFAR-100863

(Krizhevsky et al., 2009), Country-211 (Radford et al., 2021), Fashion MNIST (Xiao et al., 2017), Food-864

101 (Bossard et al., 2014), Oxford Flowers (Nilsback and Zisserman, 2008), Standford Cars (Krause et al.,865

2013) and Tiny ImageNet (Le and Yang).866

Table 5 shows that SAFE can effectively reduce memory usage while achieving comparable accuracy867

on eight datasets in the image classification task. For example, SAFE achieves a 50.69% memory usage868

reduction on ViTlarge while maintaining comparable accuracy. Additionally, SAFE remains consistently869

effective regardless of variations in the pre-trained model size and backbone structure.870

Table 5: Experimental results on eight common computer vision tasks. SAFE significantly reduces memory usage
while achieving accuracy comparable to the baseline. Note that blue indicates the memory usage reduction rate of
SAFE compared to the baseline.

CIFAR-10 CIFAR-100 Country-211 Fashion MNIST Food-101 Oxford Flowers Stanford Cars Tiny ImageNet Avg.

LoRA 97.77 95.68 16.56 94.52 88.84 99.41 82.56 88.90 83.03ViTbase + SAFE 98.66 95.55 16.29 93.71 88.78 99.61 82.05 89.16 82.98 24.35%↓

LoRA 99.09 96.71 20.44 94.92 90.32 - 86.97 92.13 82.94ViTlarge + LoRA 99.13 97.00 20.44 94.88 90.69 - 86.83 92.03 83.00 50.69%↓

LoRA 98.92 96.20 20.06 95.12 91.36 99.50 87.14 90.31 84.83SWINbase + SAFE 98.94 96.31 20.26 95.12 91.51 99.71 86.88 90.14 84.86 32.01%↓

LoRA 99.07 97.01 22.19 95.44 92.68 - 85.06 92.02 83.35SWINlarge + LoRA 99.17 96.72 22.66 95.47 92.69 - 85.13 92.11 83.42 25.06%↓

B Results with Various PEFT Methods871

We validate the applicability of SAFE upon advanced adapter modules (Houlsby et al., 2019; Zaken et al.,872

2022; Hu et al., 2021). Table 6 shows that SAFE reduces memory usage by 24.76% on average while873

achieving a comparable GLUE score. This result demonstrates that SAFE can be applied to a variety of874

adapter-tuning methods to enable resource efficient fine-tuning of large language models.

Table 6: Experimental results for various adapter-tuning methods on the GLUE benchmark. Note that blue indicates
the memory usage reduction rate of SAFE compared to the baseline.

CoLA SST-2 MNLI RTE QQP MRPC QNLI STS-B Avg.

BERTbase Matthews corr. Accuracy Accuracy Accuracy Accuracy F1 Score Accuracy Pearson corr.

Houlsby 62.38 91.17 83.44 70.50 90.85 89.52 90.59 90.75 83.65

+ SAFE 62.83 93.00 84.15 74.10 90.93 89.70 91.03 91.29 84.6325.70%↓

BitFit 60.92 91.86 82.41 71.94 89.20 88.14 89.80 90.95 83.15

+ SAFE 61.73 93.00 81.85 69.78 89.21 88.85 89.51 90.75 83.09 25.53%↓

LoRA 64.46 91.63 82.88 71.22 90.01 88.39 90.01 90.86 83.68

+ SAFE 66.80 90.83 82.03 71.22 89.74 88.51 90.65 90.26 83.7623.06%↓

875
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C Experimental Setup 876

C.1 Model 877

We conduct experiments using a pre-trained model deployed on HuggingFace (Wolf et al., 2019). For 878

experiments on the NLU and QA benchmarks, we use bert-base-uncased and bert-large-uncased trained 879

on BookCorpus, a dataset consisting of 11,038 unpublished books and English Wikipedia. We use roberta- 880

base and roberta-large trained on 5 datasets (BookCorpus, English Wikipedia, CC-News, OpenWebText, 881

and Stories) for the RoBERTa model. For experiments on the NLG benchmark, we use GPT-2 medium and 882

GPT-2 large distributed by OpenAI. We use vit-base-patch16-224-in21k and vit-large-patch16-224-in21k 883

distributed by Google for experiments in the ViT model. Finally, We use the swin-base-patch4-window7- 884

224 and swin-large-patch4-window7-224 models distributed by Microsoft for experiments in the SWIN 885

model. 886

C.2 Computing Resources 887

Our experimental setup leverages 2 RTX4090 with 24GB memory for NLU, QA, and NLG tasks and 1 888

RTX 4090 for CV downstream task. 889

C.3 Dataset Statistics 890

We present the dataset statistics of GLUE and SQuAD in following table.

Table 7: Summary of the NLP and QA benchmarks.

NLU Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

Single-Sentence Classification (GLUE)

CoLA 8,551 521 522 2 Acceptability Matthews corr
SST-2 66,349 1,000 872 2 Sentiment Accuracy

Pairwise Text Classification (GLUE)

MNLI 392,702 9,832 9,815 3 NLI Accuracy
RTE 2,490 138 139 2 NLI Accuracy
QQP 362,846 1,000 40,431 2 Paraphrase Accuracy
MRPC 3,668 204 204 2 Paraphrase F1 score
QNLI 103,743 1,000 5,463 2 QA/NLI Accuracy

Pairwise Text Classification (GLUE)

STS-B 5,749 750 750 1 Similarity Pearson corr

QA Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

SQuAD 87,600 5,300 5,300 2 Question Answering F1 score

NLG Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

E2E NLG Challenge 42,061 4,672 4,693 Generation BLEU, NIST, METEOR, ROUGE-L, and CIDEr

891
The following table lists dataset statistics evaluated in the CV domain.

Table 8: Summary of CV benchmark.

CV Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

CIFAR-10 45,000 5,000 10,000 10 Classification Accuracy
CIFAR-100 45,000 5,000 10,000 100 Classification Accuracy
Fashion MNIST 54,000 6,000 10,000 10 Classification Accuracy
Oxford Flowers 6,453 717 1,020 102 Classification Accuracy
Food-101 68,220 7,580 25,300 102 Classification Accuracy
Country-211 25,920 2,880 21,100 211 Classification Accuracy
Stanford Cars 7,326 814 8,040 196 Classification Accuracy
Tiny ImageNet 90,000 10,000 10,000 200 Classification Accuracy

892
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C.4 Hyperparameter Settings893

We explore 10% of all epochs for at least 5 learning rates. Hyperparameter settings, including learning894

rate, are made by referring to previous works (He et al., 2023; Houlsby et al., 2019; Hu et al., 2021; Zaken895

et al., 2022). We use the AdamW optimizer (Loshchilov and Hutter, 2018) and LinearLR learning rate896

scheduler and set weight decay to 0 in experiments. In our evaluation, we configure LoRA as follows: r =897

4, alpha = 16, target modules = ["query", "value"], and LoRA dropout = 0.1.898

Table 9: Hyperparameter settings on the NLU and QA tasks.

pre-trained model dataset method final learning rate batch size # epochs

BERT-base-uncased

GLUE / CoLA
LoRA, LoRA + SAFE 6.00E-04 32 100
BitFit, BitFit + SAFE 9.00E-04 32 100
Houlsby, Houlsby + SAFE 5.00E-04 32 100

GLUE / SST-2
LoRA, LoRA + SAFE 7.00E-04 32 75
BitFit, BitFit + SAFE 7.00E-04 32 75
Houlsby, Houlsby + SAFE 2.00E-04 32 75

GLUE / MNLI
LoRA, LoRA + SAFE 9.00E-04 32 50
BitFit, BitFit + SAFE 8.00E-04 32 50
Houlsby, Houlsby + SAFE 4.00E-04 32 50

GLUE / RTE
LoRA, LoRA + SAFE 9.00E-04 32 100
BitFit, BitFit + SAFE 8.00E-04 32 100
Houlsby, Houlsby + SAFE 4.00E-04 32 100

GLUE / QQP
LoRA, LoRA + SAFE 4.00E-04 32 50
BitFit, BitFit + SAFE 6.00E-04 32 50
Houlsby, Houlsby + SAFE 4.00E-04 32 50

GLUE / MRPC
LoRA, LoRA + SAFE 5.00E-04 16 50
BitFit, BitFit + SAFE 5.00E-04 32 50
Houlsby, Houlsby + SAFE 5.00E-04 32 50

GLUE / QNLI
LoRA, LoRA + SAFE 5.00E-04 32 50
BitFit, BitFit + SAFE 5.00E-04 32 50
Houlsby, Houlsby + SAFE 4.00E-04 32 50

GLUE / STS-B
LoRA, LoRA + SAFE 8.00E-04 32 50
BitFit, BitFit + SAFE 9.00E-04 32 50
Houlsby, Houlsby + SAFE 5.00E-04 32 50

SQuAD
LoRA, LoRA + SAFE 3.00E-04 16 50
BitFit, BitFit + SAFE 9.00E-04 16 50
Houlsby, Houlsby + SAFE 1.00E-04 16 50

BERT-large-uncased

GLUE / CoLA LoRA, LoRA + SAFE 1.00E-04 32 80
GLUE / SST-2 LoRA, LoRA + SAFE 6.00E-04 32 60
GLUE / MNLI LoRA, LoRA + SAFE 1.00E-04 16 40
GLUE / RTE LoRA, LoRA + SAFE 6.00E-04 32 80
GLUE / QQP LoRA, LoRA + SAFE 3.00E-04 16 40
GLUE / MRPC LoRA, LoRA + SAFE 3.00E-04 4 50
GLUE / QNLI LoRA, LoRA + SAFE 2.00E-04 8 50
GLUE / STS-B LoRA, LoRA + SAFE 8.00E-04 32 50

SQuAD

Full-param Fine-tuning 7.00E-05 16 50
LoRA, LoRA + SAFE 3.00E-04 16 50
BitFit, BitFit + SAFE 9.00E-04 16 50
Houlsby, Houlsby + SAFE 1.00E-04 16 50
Pfeiffer, Pfeiffer + SAFE 3.00E-04 16 50
AdaLoRA, AdaLoRA + SAFE 4.00E-04 16 50

RoBERTa-base SQuAD
LoRA, LoRA + SAFE 5.00E-04 32 50
BitFit, BitFit+SAFE 8.00E-04 32 50
Houlsby, Houlsby+SAFE 4.00E-04 32 50

RoBERTa-large SQuAD
LoRA, LoRA + SAFE 6.00E-04 16 50
BitFit, BitFit+SAFE 7.00E-04 16 50
Houlsby, Houlsby+SAFE 4.00E-04 16 50
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Table 10: Hyperparameter settings on the NLG task.

pre-trained model GPT-2 medium GPT-2 large

Training
final learning rate 1.00E-04 5.00E-05
batch size 8 4
# epochs 10 10
Seq Length 512 512
Label Smooth 0.1 0.1

Inference
Beam Size 10 10
Length Penalty 0.8 0.8
no repeat ngram size 4 4

Table 11: Hyperparameter settings on the CV task.

pre-trained model dataset method final learning rate batch size # epochs

ViT-base-patch16-224

CIFAR-10
BitFit, BitFit + SAFE 3.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

CIFAR-100
BitFit, BitFit + SAFE 3.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

Fashion MNIST
BitFit, BitFit + SAFE 4.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

Oxford Flowers
BitFit, BitFit + SAFE 2.00E-03 64 30
LoRA, LoRA + SAFE 8.00E-04 64 40

Food-101
BitFit, BitFit + SAFE 4.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

Tiny ImageNet
BitFit, BitFit + SAFE 1.00E-03 64 100
LoRA, LoRA + SAFE 8.00E-04 64 100

Country-211
BitFit, BitFit + SAFE 2.00E-03 64 100
LoRA, LoRA + SAFE 4.00E-03 64 100

Stanford Cars
BitFit, BitFit + SAFE 9.00E-03 64 100
LoRA, LoRA + SAFE 7.00E-03 64 100

ViT-large-patch16-224

CIFAR-10
BitFit, BitFit + SAFE 4.00E-03 64 100
LoRA, LoRA + SAFE 6.00E-04 64 100

CIFAR-100
BitFit, BitFit + SAFE 2.00E-03 64 100
LoRA, LoRA + SAFE 5.00E-04 64 100

Fashion MNIST
BitFit, BitFit + SAFE 3.00E-03 64 100
LoRA, LoRA + SAFE 9.00E-04 64 100

Oxford Flowers
BitFit, BitFit + SAFE - - -
LoRA, LoRA + SAFE - - -

Food-101
BitFit, BitFit + SAFE 9.00E-04 64 100
LoRA, LoRA + SAFE 7.00E-04 64 100

Tiny ImageNet
BitFit, BitFit + SAFE 8.00E-04 64 100
LoRA, LoRA + SAFE 6.00E-04 64 100

Country-211
BitFit, BitFit + SAFE 2.00E-03 64 100
LoRA, LoRA + SAFE 9.00E-04 64 100

Stanford Cars
BitFit, BitFit + SAFE 1.00E-03 64 100
LoRA, LoRA + SAFE 1.00E-03 64 100

SWIN-base-patch4-window7-224

CIFAR-10 LoRA, LoRA + SAFE 1.00E-03 64 50
CIFAR-100 LoRA, LoRA + SAFE 1.00E-03 64 50
Fashion MNIST LoRA, LoRA + SAFE 1.00E-03 64 50
Oxford Flowers LoRA, LoRA + SAFE 7.00E-04 64 30
Food-101 LoRA, LoRA + SAFE 9.00E-04 64 50
Tiny ImageNet LoRA, LoRA + SAFE 1.00E-03 64 50
Country-211 LoRA, LoRA + SAFE 7.00E-04 64 50
Stanford Cars LoRA, LoRA + SAFE 1.00E-03 64 50

SWIN-large-patch4-window7-224

CIFAR-10 LoRA, LoRA + SAFE 8.00E-04 64 50
CIFAR-100 LoRA, LoRA + SAFE 7.00E-04 64 50
Fashion MNIST LoRA, LoRA + SAFE 1.00E-03 64 50
Oxford Flowers LoRA, LoRA + SAFE - - -
Food-101 LoRA, LoRA + SAFE 5.00E-04 64 50
Tiny ImageNet LoRA, LoRA + SAFE 6.00E-04 64 50
Country-211 LoRA, LoRA + SAFE 6.00E-04 64 50
Stanford Cars LoRA, LoRA + SAFE 3.00E-03 64 50
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