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Abstract

Active learning (AL) selects informative samples for annotation. This is becoming increas-
ingly crucial to medical image segmentation since image annotation is hardly scalable to full
pixel-level labeling of large datasets. However, most research focuses on classification or nat-
ural image segmentation. Uncertainty-based AL methods tend to have sub-optimal batch-
query strategies, and diversity-based methods are computationally expensive. This work
improves uncertainty-based AL for medical image segmentation using stochastic batches
during sampling, computing uncertainty at the batch-level. Experiments on MRI prostate
imaging show this approach’s effectiveness and robustness under various conditions.
Keywords: Active learning, Segmentation, Medical image analysis, Uncertainty.

1. Introduction

The performance of deep learning-based segmentation algorithms relies on annotated train-
ing data. However, manual annotation is laborious and costly, particularly in the medical
domain. To solve this constraint, active learning (AL) (Settles, 2009) identifies the most
valuable samples to annotate, maximizing model performance with minimal labelled data.

AL methods applied to deep learning-based models (deep AL) include uncertainty-based,
representative-based, and hybrid approaches. Uncertainty-based strategies (Wang et al.,
2017; Beluch et al., 2018; Kirsch et al., 2019; Yoo and Kweon, 2019) target samples for
which the current model is least confident, but may focus on outliers. Representative-
based strategies (Sener and Savarese, 2018; Sinha et al., 2019) and hybrid AL approaches
(Ash et al., 2020; Kim et al., 2021; Nath et al., 2021) ensure diversity but struggle with
high dimensionality, often limiting their application to classification tasks. Furthermore,
existing work on pixel-wise annotations primarily targets natural image segmentation. To
our knowledge, few deep AL strategies have explored medical image segmentation, and they
they are often computationally expensive and difficult to scale (Yang et al., 2017; Nath et al.,
2021). There hence remains a gap between active learning and medical image segmentation.

An increasing number of AL studies recognize the difficulty in outperforming random
sampling (Mittal et al., 2019). Gains from AL strategies over random sampling are often
inconsistent across various experimental setups. In addition, the sensitivity of existing
AL methods to factors such as training hyperparameters or regularization often means that
observed improvements can be easily voided (Munjal et al., 2022). These challenges increase
the difficulaty of applying AL to medical image segmentation.

This paper tackles AL limitations by incorporating randomness in uncertainty-based
batch sampling to improve medical imaging segmentation. We propose to use stochastic
batch (SB) querying alongside existing uncertainty-based AL strategies (see Figure 1). Our
novel approach provides several benefits:
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1. a sampling strategy that can tackle medical image segmentation,;
2. a flexible framework compatible with any uncertainty-based AL strategy; and
3. a scalable method ensuring diverse sample selection.
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Figure 1: Stochastic batch AL for uncertainty-based sampling. The diversity from
random sampling is combined with the informativeness of uncertainty-based sampling.

2. Method

We initially train a segmentation model fp(-) on an randomly sampled labeled set Dy =
{(x(i),y(i))}i]\il. After the first training cycle, we select B candidate samples from the

unlabeled set Dy = {in ) jj‘il, which we annotate and add to the labeled training set Dy.
This process is repeated until the annotation budget is exhausted.
Our AL method uses stochastic batches in two stages for guided sampling diversity.

First we generate (Q batches, each with B samples selected uniformly at random from Dy;:
Batch® = {2 202) 20} « Uniform(D,, B).

Then, for each generated batch, we assign an uncertainty score to each unlabeled sample it
contains, according to the current model f; and the chosen uncertainty metric (mync), and
we compute the mean wugqore for the batch:

(i) .
VE=1,...B: U= Munc(fy %(le))’

B )
Batch(® __ 1 a:izk)
score - E Uscore:
k=1

The batch with the highest mean score yields the annotation candidates.

3. Results

We validate our method on the PROMISE 2012 dataset (Litjens et al., 2014), with 248 test
images from 10 patients. Initially, |Dr|=10, |Dy|=1010. After each AL cycle, B=10 new
samples are selected via AL, annotated and added to Dy. The model, a UNet (Ronneberger
et al., 2015), is then retrained from scratch. Each experiment is repeated 5 times.



SHORT TITLE

Table 1: Improvements with Stochastic Batches over varying initial labelled sets.
Mean model performance over all AL cycles. Adding stochastic batches provides an im-
provement at a statistically significant level (indicated by *).
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Figure 2: Improvements with Stochastic Batches over varying hyperparameters.
Stochastic batches improve the model performance of purely uncertainty-based AL strate-
gies, regardless of the initial labelled set.

We set Q= % and compare our stochastic batch strategy with random sampling (RS) and
four purely uncertainty-based methods: Entropy-based sampling (Shannon, 1948), Dropout-
based sampling (Gal and Ghahramani, 2016), Learning Loss (Yoo and Kweon, 2019) and
TTA-based sampling (Gaillochet et al., 2022).

Table 1 depicts the average results over 5 different initial labelled sets, across all AL
cycles. Our stochastic batch selection strategy improves purely uncertainty-based selection
at a statistcally significant level even when we vary the initial labelled set. Figure 2 shows the
mean model performance over trainings with different hyperparameters, across AL cycles.
Adopting stochastic batches during sampling yields a significant boost in terms of 3D dice
score. This jump in performance (orange to blue) is particularly notable during the first
four AL cycles, reaching above the random sampling baseline (dotted grey).

4. Conclusion

Active learning is becoming increasingly crucial in medical image segmentation since an-
notating full large datasets may be unrealistic with clinical time constraints. This paper
tackles three key limitations of AL strategies: the scarcity of AL work in medical image
segmentation, the tendency of uncertainty-based batch sampling to select similar samples,
and the computational burden of diversity-based methods. Our approach computes un-
certainty at the batch level with randomly generated sample batches, offering a simple,
computationally-efficient way to improve AL candidate selection and model performance.
Our method proves effective for the complex task of medical image segmentation, improving
uncertainty-based AL strategy while being robust to variations in training settings.
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