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ABSTRACT

When compressing continuous data, it is inevitable to suffer some loss of informa-
tion, which occurs in some distortion at reconstruction. The Rate-Distortion func-
tion is the lowest rate possible for a code whose decoding allows a given amount
of such distortion. We exploit the connection between rate-distortion (RD) and
entropic optimal transport to propose a novel stochastic control formulation, and
use a classic result dating back to Schrodinger to show that the tradeoff between
rate and mean squared error distortion is equivalent to a tradeoff between con-
trol energy and the differential entropy of the terminal state, whose probability
law yields the reconstruction distribution. For a special class of sources, we show
that the optimal control law and trajectory in the space of probability measures
are given by solving a backward heat equation. In the more general case, our
approach gives rise to a numerical solution method, estimating the RD function
using diffusion processes with a constant diffusion coefficient. We demonstrate
our method in various examples.

1 INTRODUCTION

As is well known from information theory (Shannon, [1948}; (Cover, [1999), any probabilistic data
source cannot be compressed in a lossless manner at an encoding rate lower than its entropy. Rate
distortion (RD) theory (Shannon,|[1959; Berger, 2003} |(Cover, |1999) complements this result by con-
sidering the effect of lower encoding rates on the reconstruction of the decoder. This reconstruction
is inevitably lossy: Given a distortion measure between a pair of data samples, this loss is quantified
by the total accumulated distortion between the data source samples and the reconstruction samples
produced by the decoder from the compressed bits sent by the encoder. The operational RD function
thus characterizes the minimal encoding rate required for a given (average) distortion level D, under
the prescribed distortion measure, in the limit of a large number of samples.

For independent and identically distributed (i.i.d.) samples, the celebrated lossy source-coding the-
orem of information theory (Shannon, [1959; [Berger} [2003; |Cover, |1999) establishes that the oper-
ational RD function is equal to the informational RD function R(D), where the latter is expressed
as a single-letter expression (though a single sample may be a vector on its own). To wit, it is given
as minimization of the mutual information (MI) between a random variable X, representing a sin-
gle sample from the source, and a random variable X, representing a single reconstruction sample.
This minimization is over the test channel — the conditional distribution of X given X, under the
constraint that the average distortion between X and X is below D (see §.

The optimization problem involved in the computation of R(D) should thus be solved for the given
distortion measure and the required distortion level. However, even though being presented for al-
most 70-years (Shannon, |1959), closed-form solutions of this problem are known only for a few
canonical examples, such as binary sources under the Hamming distortion, or a Gaussian source
under the mean squared error (MSE) (Cover| (1999). It is therefore necessary to develop efficient
algorithms for the computation of the RD function. When the data source alphabet is discrete and
finite, the classical Blahut—Arimoto (BA) algorithm (Arimotol |1972; Blahut,|1972) is such an algo-
rithm, especially effective for small alphabets. However, the typical setup for lossy compression is
that of a continuous data source, and in this setting, efficient computation of the RD function is a
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long-standing challenge. Recently, [Lei et al.|(2023));|Yang et al.|(2024) identified an interesting con-
nection between the BA algorithm and entropy-regularized Optimal Transport (OT), which allows
to approximate the RD function in cases where BA is intractable (Yang et al., 2024)). OT (Ambrosio
et al., 2008)) is a widespread and useful formulation, which lies at the theoretical basis of training
deep generative models, such as Generative Adversarial Networks (GANs) (Arjovsky et al.l [2017)
and variational auto-encoders (VAEs) (Tolstikhin et al.l2017), and defined as follows: Given a pair
of distributions, the OT objective is to find an optimal plan between them, namely a joint distribu-
tion with the given marginals (coupling), minimizing some metric. The entropy-regularized optimal
transport (a.k.a. weak OT, entropic OT, or EOT) was suggested by |Cuturi (2013) as an approxima-
tion to OT, for which efficient solution methods exist, e.g., Sinkhorn’s algorithm (Altschuler et al.,
2017). More recently,|Gushchin et al.[(2022) suggested to find the optimal plan of an EOT problem
using diffusion processes. Their method is based on a reduction of the EOT problem to a stochastic
control problem known as the Schrodinger bridge (SB) (Schrodinger], [1932|Chen et al., [2021).

As we state later, a solution to SB can be written as a finite-energy diffusion process. Diffusion
processes are popular for generative modeling [Ho et al|(2020); [Song et al.| (2020), where a sample
from a data distribution is gradually drifted and becomes more noisy towards a completely noisy
data sample, typically Gaussian. The celebrated paper of [Song et al.| (2021) suggested finding the
drift term of the model by learning the score function and plugging it back to the reverse stochastic
differential equation (SDE) (Anderson) |1982).

In this paper we focus on the computation of the RD function for continuous data sources, under
the MSE distortion. This leads to an OT problem with the quadratic cost. More specifically, we
exploit the connection between RD and EOT to propose a novel stochastic control formulation to
RD, where the classical result of |Schrodinger (1932) implies that the tradeoff between rate and MSE
distortion is equivalent to a tradeoff between a controller energy and the differential entropy of the
terminal state, whose probability law yields the reconstruction distribution. For a special class of
sources, we show that the optimal control law and trajectory in the space of probability measures are
given by solving a Backward Heat Equation (BHE). In the more general case, our approach gives
rise to a numerical solution method where the RD function is estimated using diffusion processes,
with a constant diffusion coefficient.

Our contributions: (1) We present Terminal-Entropy Control (TEC), a novel stochastic control for-
mulation that is regularized by terminal uncertainty, and show that this formulation is equivalent to
the RD problem. (2) We characterize the optimal solution to TEC under some regularity conditions.
(3) We find a closed-form solution for the reconstruction distribution of a Gaussian-mixture source.
We also demonstrate our approach on other mixture distributions, with non-Gaussian components,
via Fourier analysis. To the best of our knowledge, such results were unknown to date, which
emphasizes the unique theoretical contribution of our approach. (4) Based on our new approach
we propose R2D2, a novel neural method for estimating the RD function and the reconstruction
distributions, using a simple diffusion model.

1.1 RELATED WORK

Neural estimation of information-theoretic quantities Following the ongoing research of neural
methods in Al and ML, a plethora of methods have emerged in recent years for estimating informa-
tion measures such as the RD function, as well as for the design of optimal compression methods
aiming to achieve these fundamental limits (see survey in|Yang et al.|(2023))). [Belghazi et al.|(2018)),
for example, used the Donsker—Varadhan identity to estimate MI. Kholkin et al.|(2025) used samples
from Brownian bridges to estimate both the MI between datasets, as well as differential entropies.
Lei et al.| (2022) suggested approximating the RD function using a deep neural network (DNN)
model, and proposed an operational coding scheme. [Tsur et al|(2024) suggested approximating
RD by modeling unknown input distributions, both continuous and discrete. Recently, |Lei et al.
(2023); [Yang et al.|(2024) pointed out an intriguing connection between the BA algorithm and EOT.
This connection was further exploited in Yang et al.|(2024) to estimate the RD function using a dis-
crete approximation of reconstruction probability law. Finally, Zou et al.[(2025) used the connection
between EOT and the Schrodinger problem to characterize this density. In this paper, we approxi-
mate the reconstruction distribution in RD problems with MSE loss, i.e., a quadratic cost, using a
continuous diffusion model.
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Diffusion models for lossy compression Lossy compression methods that hinge on diffusion pro-
cesses have become popular in recent years. In Elata et al.|(2025)) pre-trained diffusion models were
sampled for zero-shot image compression. Recently, |Ohayon et al.| (2025) replaced the noise at
every time-step of the reverse diffusion with samples from a sequence of pre-defined codebooks,
achieving high perceptual quality at reconstruction. In Theis et al| (2022) a noisy version of the
source data was compressed, and then used in a reverse diffusion model for reconstruction. Here,
we use a forward model to achieve the reconstruction distribution, and compute both its rate and
distortion.

EOT and the Schrodinger Bridge Recently, (Gushchin et al.| (2022)) has drawn an equivalency
between SB and EOT. They offered a game-theoretic formulation for the former, which can be solved
by optimizing a diffusion model. In §[3| we suggest a slightly modified stochastic control problem,
in which the target probability is free, but the total objective is penalized for being uncertain. We
show (Thm. [3.T) that this formulation is equivalent to the RD problem under the MSE distortion.

Entropy-regularized stochastic control In addition to presenting a novel approach to the RD
problem, our results can also be considered as a contribution to control theory. As we state in § 2}
SB can be formulated as a stochastic control problem. This form, as well as its KL-equivalence, are
given in|Chen et al.|(2021)). Entropy regularization is a common practice in stochastic control (Lam-
bert et al.,|2025) and reinforcement learning (Haarnoja et al., 2018; [Ziebart et al., 2008)). However,
most studies aim to maximize the control policy entropy, encouraging diverse actions. Alternatively,
Fridman and Shaked| (2000) proposed to minimize the steady-state entropy of closed-loop linear
systems in H, control problems with infinite horizons. Here, we focus on penalizing the terminal-
state uncertainty, leading to a novel tradeoff between energy and entropy. Surprisingly, maybe, to
the best of our knowledge, this is the first work to present this formalism, which may open the door
for additional applications in the broader field of stochastic control.

2 PRELIMINARIES

Rate-Distortion theory Let X ~ px = Py € P(R?) for d > 1 denote a single sample from the
source, where P(IR?) is the set of probability measures on R?, and where we assume that different

source samples are i.i.d.. Let X € R denote a reconstruction sample, where the pair follows the
joint distribution (X, X) ~ p, ¢ € P(R? x R?). Further let Px|x denote the induced conditional
distribution, which is also called the reconstruction law. Let d(-,-): R? x R? — R, denote a
distortion measure between z € R? and & € R, and let the average distortion be D(X , X) £
E[d(X, X)], which is an implicit function of p « - For a given pair of probability measures Py, IP; €
P(R), let DkL(Po||P1) £ Ex~p,[log $52(X)] denote the Kullback-Leibler divergence, and let
the mutual information Z(X; X ) = Dki(py ¢|lpx ® pg). The lossy compression theorem of

information theory (Shannon, |1959; |Berger, 2003; Cover, |1999) then states that the operational RD
function is equivalent to the informational RD function, given by

=
5
>

min I(X; X). (1)
pxx: DX, X)<D

The BA algorithm (Cover, |1999) computes R(D) by optimizing the Lagrangian (with a Lagrange
multiplier € > 0)
Lpa(pg x,Po,€) = D(X, X) + €Z(X; X) 2

WELPg - Alternatively, if we let P; = p ¢ be the marginal distribution of the reconstruction (Yang
et al.| [2024), then an equivalent formulation is

min Lpa(pg ;Po,€) = min min — {D(X,X) + D(rlPo 0Py}, G
Jnin BA(Pxx: Fo,€) s S (X, X) KL(7[[Po @ Py) ¢, (3)
where II(Py, Py ) is the set of all couplings, that is, the set of joint distributions p ¢ € P(R% x R%)

whose X -marginal (resp. X -marginal) is Py (resp. P1). In this work, we focus on the quadratic cost
d(2,z) = ||& — x||>. The average distortion is then given by D(X, X) £ 1E[||X — X||?], and the
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minimization problem Eq. (3) reads

1 A
min Lpa(py |y, Po,€)=min  min {Eﬂ [HX - XHQ} + eDky(7||Po ®IP’1)} . @
Pxix P1 (X, X)~mell(Po,P1) | 2

Entropic optimal transport For a probability measure P € P(R?) with density p(z), H(P) £
—Explog(p(X)) denotes its differential entropy. Now, considering probability measures Py, P, €
P(R9), the EOT problem (Cuturi, 2013) is given by

_ A2l12
inf {/ de(x, If) + GDKL(WHPQ & ]P)l)} . (5, EOT)
TrEH(Po,IP’l) R4 xR2 2

As one may readily recognize, for values of € where the optimal reconstruction has a density, the
inner minimization of Eq. (@) coincides with Eq. (5, EOT) (Lei et al., 2023} [Yang et al.| 2024).

The Schrodinger Bridge The SB problem (Schrodinger, [1932) with parameter e is formulated as

1 ! Xo ~ Py, X; ~ Py
f=E X 2 A ’ B
2 [/0 (e D) dt} ot {dXt:u(Xt,t)dH—ﬁth ’ (©.58)

where Py, P; are absolutely continuous probability measures w.rt. the Lebesgue measure on R?, and
W, is a standard Wiener process, independent of Xg. The drift u : R% x [0, 1] — R? can be seen as
a controller, designed to steer Xg ~ Py into X; ~ Py with minimal average energy, acting against
a ‘natural’ force IW;. Recent developments (Gushchin et al.,[2022)) has drawn an equivalency (up to
an additive constant, depends on Py, P, €) between SB and EOT, where the latter can be optimized
via a game-theoretic formulation. The optimal joint probability 7 in Eq. is then given by
the joint probability law of (Xg, X1).

3 RATE-DISTORTION FUNCTIONS AND TERMINAL-ENTROPY STOCHASTIC
CONTROL

3.1 PROBLEM STATEMENT

Let the source Xy ~ Py where Py € Po(R?) is absolutely continuous w.zt. Lebesgue measure, and
P2(R?) is the subset of P(R?) for which E [|| X ||?] < co. We further assume that H (Py) is finite.
As in the BA algorithm, we aim to compute the RD Largrangian

1

Lap(®o.) 2 min_in {5 [ o~ ol dn(o.d) - H() + HED |+ H(Fo), (7RD)
Py n€ll(Po,P1) | 2€ Jpaxpd

where from standard decomposition of MI to entropy terms (Cover, |1999), Dk, (7]|Po @ P1) =

H(Py)+H(Py)— H(w). Here, € > 01is a tuning parameter and H (IPy ) is not subject to optimization.

Assumption Al: Eq. (7, RD) admits a solution, where the optimal reconstruction distribution is
absolutely continuous and satisfies P; € Py(R?), with finite differential entropy H (IP;).

While A1 is necessarily violated for low rates (high e values), in many cases it is still expected to
be in effect in the low-distortion regime, where P; is close to [Py, as illustrated in Fig. E} This holds
true in a variety of settings, as we demonstrate in §[3.3],§ 5]

Let dW€ = /edW;, W§ ~ P be the (scaled) Brownian motion starting at Py, and denote 7¢ =
]P’W&Wf, the joint law of its start and end points. It is known (Gushchin et al.l [2022; |Chen et al.
2021)) that

1

. d
Dy, (||7w€) = % /Rd » l& — x||2d7r — H(m)+ H(Py) + 3 log(2me) (8)
X

for every 7 with marginal distribution Py. Let F (P, P;) be the class of random trajectories T; €
R< ¢ € [0,1] with a joint distribution 77 = Pz, 7, € II(Pg,P;). For every T' € F(Py,P,),

Dt (TIW) = Dia(arllr) + [ DiwlTlaal|W¥los)dmr(. ), ©)
R4 xR
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Figure 1: Evolution of reconstruction distri- Figure 2: Estimation error on a 1-D Gaussian
butions w.r.t. parameter . Typically, we as- source. Xo ~ N (0,1) and we applied R2D2
sume the reconstruction density to be close to the (Alg. [I) to e € [0.05,0.95]. We compare our
continuous source in the low distortion regime algorithm to NERD, where we observe the im-
(small €’s), while eventually becoming singular proved accuracy of R2D2 over existing methods
for a low enough rate (large €’s). NERD and WGD.

where there exists a process Ty, minimizing Dk (T||W€) over F(Py,P;) with

Dxr(Tg |2,2[[W€z2) = 0 for all z,2 € R¢ 1Léonardl 2013|, Prop. 4.1,2.3). The process
T, is known to take the form 7', - of an It6 diffusion (Gushchin et al., 2022)

Tu : dXt = ’U,(Xt, t)dt + \/Eth, (10)

with drift up,, where E [ fol |lup, (X3, 1) Hth} < oo. Furthermore, for such a finite-energy process
we have (Pavon and Wakolbinger, [1991)),

* € 1 !
Diau (T, 17) = 5. | [ e, (X 0P (1)
0
Considering Eq. (7, RD)-Eq. (IT), we suggest the surrogate loss

. 1 ! d
Lrp(Po, €) = mi i —E Xy, t)|2dt| + H(Py) p — = log(2 12
woBo.) 2min win {08 | [ e 0lPa] + mED | - Gloszed,  a2)
where T, is a finite-energy diffusion Eq. with driftu € U = {u(z,t) : H(P;) > —o0o}, namely
P, has a finite differential entropy. The above discussion leads to the following equivalency between
Eq. (7. RD) and Eq. (T2).

Theorem 3.1. Given Py and ¢, under A1 we have Lrp = L rD- Furthermore, let u*(x,t) minimize
the surrogate objective

(1 !
o carguin {38 | [ jutxoPar] + m0x)}. (13)

the minimizer in Eq. , where ] = Px is the optimal reconstruction distribution in Eq. (7, RD|

under the law Eq. %}Then, the distribution Px: of X{ associated with u* through Eq. (I0) is
and ™ = IP’XS,X; is the optimal plan.

The proof is given in App. |C, where we also establish the opposite direction; whenever (P, )
minimizes Eq. (7, RD)), there exists a drift term u(z, t) minimizing Eq. under Eq. (10), where
(X 0, X 1) ~ Tr.

3.2 TERMINAL-ENTROPY STOCHASTIC CONTROL: THE ENERGY-ENTROPY TRADEOFF

Motivated by Thm.[3.T} we present the problem of Terminal-Entropy regularized stochastic Control

, 1 ! ) Xy ~ Py, Px, is free
516115{2E {/0 lu(Xe, t)|| dt} +€H(X1)} s.t. {dXt —u(Xo, )dt+ e, (14, TEC)

where the admissible control set is again & = {u(x,t) : H(P;) > —oo}. In light of Eq. (6, SB),
here u can be viewed as a control law for reducing the terminal state uncertainty, while spending
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minimal energy. As a consequence of Thm.[3.T} in order to estimate the RD function for the source
Xo ~ Py, one should solve Eq. with a dynamic range of ¢ values. Given the drift term
u, X1 can be efficiently sampled (e.g. using the Euler-Maruyama algorithm, see App. [A). Taking
Assumption A1 into account, Eq. takes the variational form

1
inf {;/ dx/ dt|lu(z, t)||*pe(z) 76\/ dzp:(x) logpl(w)}, (15, var-TEC)
R? 0 R4

ueU
whereas for a diffusion process Eq. , the density state p;(z) is governed by the Fokker-Planck
equation (Oksendal, 2013
0 1
Ept(:E) ==V (pt(m)u(xat)) + §6Awmpt(‘r)7 pO(SC) = Po(ZE), (]6’ FPE)
with V- = > aime(i) being the divergence operation, and A, = > 83—;2 is the Laplace operator.

Interestingly, under suitable regularity conditions, the solution to Eq. QﬂT_TECI) can be characterized
by a simple equation, as we show next:

Theorem 3.2. Let p;(z) € C12([0,1] x Rd satisfy the backward heat equation (BHE)

0
O pt(a) = —gebeapi (@), pi(x) ~ P, (17, BHE)

such that log p} (x) € C12([0, 1] x RY) and || Vp; (x)|| log p} (x) — 0 as ||x|| — oo forallt € [0, 1].
Let u* = €V log p; (), where V log p:(x) is the Stein score function. Then, (u*,p;) is an optimal
pair in Eq. (15, var-TEQ)-Eq. ({16, FPE) and the optimal solution to Eq. admits the SDE

dX; = eVlog p; (X;)dt + edW;. (18)

The proof is given in App.[C]

Fourier analysis of Eq. (17, BHE) Let us assume d = 1 for simplicity; similar arguments hold in
higher dimensions Let the source Xo ~ Py in R with density po and characteristic function p(w),

namely po(r) = 5- f 7 e h(w)dw. It is easy to verify that a solution to Eq. (17, BHE) is given
by
1 * iwm—i—lewzt A~
pi(z) = — e 2 h(w)dw, (19)
27 J_ o

whenever the latter converges for all ¢ € [0, 1] and V log p(x) is defined for all z,¢ € R x [0, 1].

3.3 SPECIAL CASES

Backward heat conductance problems are generally ill-posed and unstable (Miranker},|1961};[Fu et al.,
2007). However, Thm.[3.2]yields an exact solution for some special cases, as we show next.

Gaussian source We begin with the canonical example of a scalar Gaussian source Py =
N (0,03), and show how our formulation recovers its known RD function. For e < 03, a solution
22

to Eq. (17, BHE) is given by p;(z) = ——L___¢ G- The optimal controller is hence given

27 (of —et)
by u(x,t) = eVlogpi(r) = — . Evidently, under u(z,t), Xo and X; are jointly-Gaussian
0

where D = 1E[(X, — X% = ie,and R = I(Xo; X1) = —3log (ﬁ), and we recover the
0
known closed-form result
2
ReGauss(D) = 71 g(QB), 0<2D < op. (20)

Note that the factor of 2 is due to our distortion definition has half of the MSE. This result can be

easily generalized for Gaussian vector sources and €’s smaller than the eigenvalues of the covariance
matrix Y. In this case, the solution to Eq. (17, BHE) is p;(z) = N (0,2 — etI).

1¢12(]0, 1] x R?) is the set of functions that are continuously differentiable w.~z. t, and twice continuously
differentiable w.r.t. x.
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Figure 3: Reconstruction distribution p; (z) of non-Gaussian mix source. In the (left) pane, we

approximate reconstruction distribution Eq. by numerical integration. A closer look at different
points is provided in the (middle) and (right) panes.

Mixture of Gaussians The Gaussian example can be easily extended to the case of a Gaussian
mixture, for which no closed-form solution for the RD function is known. In this case,

_(@-up?

Z 2} Q1)

27T0'

As Eq. (17, BHE) is a linear equatlon the solution is now given by the superposition

(@—py)?

RECEoNs (O7min 0—3) . (22)

Zm

The optimal controller u(z, t) = €V log p:(x) is derived accordingly. Knowing p;(z) and u(z, t), it
is possible to acquire rate and distortion values through a Monte-Carlo simulation of Eq. (14, TEC),
or via neural estimation as we suggest in § [

Non-Gaussian mixture To show the wide applicability of Thm. we now apply its result to
a mixture of sinc® functions. Being band-limited, for settings where po(z) > 0, such a source
satisfies the conditions of the theorem, and allows the desirable frequency-domain analysis of §[3.2]
We emphasize that while this is a toy problem, to the best of our knowledge, no other approach is
known to tackle this case.

We consider the source X drawn from the mixture po(z) = Z _piC; smc4( -) where

sinc(z) = % € C*(R), and C; = 2Fm; are appropriate normalization factors. In

this case, the characteristic function is po(w) = Zf\il piC; 'mipo(miw) where po(w) =
o [7(1 = 4{w])4+ * m(1 — 3|w|)+], and = is the convolution operation. Now, for non-vanishing
mixture distributions and small enough €’s, the Fourier analysis of Eq. (I9) implies that we can
write the solution to Eq. as

1ot e 4

pe(z) = —/ eZ”Jr%e“’ztﬁo(w)dw = — Zpl-C’i_lmi/ Po(m;w) cos(wx)e%“%dw. (23)
2T _4 2T P 0

Fig. demonstrates this result for N = 4,m; = [1,v/2,7,¢€] and p; = %, where we numerically

integrated Eq. in order to approximate the reconstruction distribution p; (x) for different values

of e. Parameters were chosen such that p;(z) > 0 everywhere on R.

4 R2D2: NEURAL ESTIMATION OF RATE-DISTORTION FUNCTIONS

Although belng rather elegant, as may be pointed out, the assumptions of Thm.[3.2] - may be restric-
tive: They require p;(x) to be non- vamshlng and twice-differentiable everywhere in R?; even under
these requirements, Eq. (T7, BHE) might be ill-posed, depending on the initial condition Py; Fi-
nally, the explicit source distribution is hardly known in practice, and instead is accessible only from
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samples. Therefore, in this section, we propose R2D2 (Alg. [I), a sample-based method for solving
Eq. (14, TEC) and approximating the RD function in the general case (under Assumption A1l).

Algorithm 1 Revealing RD functions with Diffusion (R2D2)

1: Input: source Xy ~ Py € P(Rd), initial controller ug, batch size M, timestep Ay, €min, €max >
0, learning rate a.

2: while Training do > Training

3 Choose € ~ Uniform[emin, €max)-

4:  Sample batch {XJ"}M | ~ P

5. Sample trajectory {ug(X[", t;, €), X"}, « EuMa(ug, {X§"}M_1, €, Ay).

6

7

8

m=1
Estimate energy L§ < 5t >, Do, e (X3 i, o |I2A,.
Estimate terminal entropy H (X1) (see App. .
: RD loss L§ < Lj + eH(X).
9: Step 0 < 0 — aVL§.
10: end while

12: Sample batch { X" I1M_| ~ Py > Evaluate specific € € [€min, €max)
13: Sample trajectory {ug (X", t;,€), X{"}M_, < EuMa(ug, {X§" 11,6, Ay).

14: Obtain RD loss L (lines 6-8).

15: Estimate distortion: D = -1 S | X7 — X572

16: Estimate rate: 2 = L;;D — 4log(2me).

17: Output: (R, D).

Our method R2D2 is based on modeling the controller function wg(x,t,€) using a DNN with
parameters . The flexibility and generalizability offered by DNNs allow us to capture multiple
positions on the RD-curve (different € values) using a single controller model. To train our model,
we access the data source X to draw a batch of M samples. Using the Euler—Maruyama method
(EuMa, Alg. 2] in App. We sample discretized random trajectories X;, from Eq. (I0). The

E

minimization object Eq. ) is approximated (up to an additive factor of %log(27re)) by L§ =
L§ + eH (X)) where the estimated controller energy is L ~ =17 Z%zl o, lua (X7 i, €2 Ay
The terminal entropy H (X1) is estimated through the approximated negative-entropy, or through

a kernel method (see App. [B| for details). To evaluate R(D), after training, we re-calculate LC§.
According to Eq. (I2Z)), we can compute the empirical values

M
. 1 s o Lo—D(e) d
D) = g S Ixg - xR =20 ) = PO diogare. o9
m=1

The method is summarized in Algorithm T}

5 NUMERICAL RESULTS

In this section, we apply our results to a variety of toy and real-world problems. For full details and
more numerical results, we kindly refer the reader to App.[D] For full simulation details, we refer to
the technical Section of App.[E]

5.1 GAUSSIAN DATA

In Fig.we demonstrate the efficiency of Alg.on the 1-D Gaussian caseE] of § We compare our
method with NERD (Lei et al.,2022)) and WGD (Yang et al.,[2024), over 64 independent experiments
(seeds) and plot median absolute error with interquartile ranges. We observe that R2D2 is clearly
superior to the existing methods in terms of estimation error, in both the high-rate and low-rate
regimes.

2All our codes will be made publicly available upon publication.



Under review as a conference paper at ICLR 2026

3 a
g A R2D2.(ours)
g SLB = B e —156E-02
) —0.5
3 = ... Py(ref.)
= ... (analytic)
0.000  0.002  0.004  0.006  0.008 0.0 _1‘. 0 \IL
sMSE T

Figure 4: The R(D) function for a mixture of Gaussians. Here, X, ~ P is a mixture of Gaus-
sians. (left) We apply R2D2 (Alg.[1) to € € [4 x 107%,1.64 x 10~2] and compare the result with
SLB. Green markers indicate higher precision. (right) For ¢ = 1.56 x 10~2, we plot the reconstruc-
tion distribution IP;. The empirical distribution matches the analytical result (bold line).

source € =514F-03¢ :42E—025 =9.93E-02¢ =1.43E-01

LY

.30.75 . A R2D2.(ours)

= ’

2050

a\ A“"A.,‘.

E/O.QS ..A"'A..‘,..‘,.M--A-m 2 .
0.01 .02 Rate :  0.84 0-29 019 .17
sMSE / [pixel] Distortion :2.56e — 03 1.15¢ — 02 2.02¢ — 02 2.51e — 02

Figure 5: The R(D) function of Cifar10 images. Here, X is a random 4 x 4 patch from a
grayscale image. (left) The RD function, estimated by R2D2 (Alg.[I). (right) Patches drawn from
the reconstruction distribution X; obtained for different €’s. The corresponding locations on the
RD-plane are marked in red.

Results for a Gaussian mixture Eq. are shown in Fig.EI, where N = 3and y; = —.4,0, .4, 02 =
4x1072,5x1072,6 x 1072, p; = 5. We apply Alg.[I|to e € [4x 107*,1.64 x 10~2] and compare
the estimated RD function with the approximated Shannon’s lower bound (SLB)
, given in this case by H(Pg) — 3 log(4meD). For € = 1.56 x 1072, we further plot
the reconstruction distribution Py, which is the probability law of the diffusion process’ outcome.
We observe that empirical distribution obtained by Alg. [I| matches the closed-form Eq. (22).

5.2 AN EXPERIMENT: CIFAR10 DATASET

We now demonstrate the efficiency of Alg. [I]on a realistic high-dimensional source. More specifi-
cally, as input to R2D2, we sample 4 x 4-pixel grayscale image patches from the ‘Cifar10’ dataset
(Krizhevsky and Hinton, 2009). Fig. [5| demonstrates the efficiency of our method in solving this
problem. In the left pane, we present the RD function, as estimated by R2D2 (Alg.[). In the right
pane, we present images, drawn from the reconstruction distribution PP; for different ¢’s. The cor-
responding locations of these reconstructions on the RD-plane are marked in red on the left pane.

6 CONCLUSION

In this paper, we considered the computation of the RD function and the optimal reconstruction
distribution for continuous data sources, under the MSE distortion. We exploited the connection
between RD and EOT to estimate the RD function using diffusion processes, through a novel control
formulation in which the RD tradeoff is equivalent to a tradeoff between energy and entropy. Under
regularity conditions, the optimal control is given by a BHE. We demonstrated our results in some
special cases to obtain closed-form solutions, and in a real-world setting, using a numerical method.
This work paves the way for solving RD in settings beyond MSE loss and continuous distributions.
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A EULER-MARUYAMA SAMPLING

Here we review the Euler-Maruyama (EuMa) Algorithm, which we used in our simulations to
sample from the diffusion process Eq. (I0). The sampling procedure is given in Alg.

Algorithm 2 Euler-Maruyama (EuMa)
1: Input: € > 0, drift u(z, ¢, €), initial batch { X" }M_| ~ P, timestep A,;.

2: fort; =0,4,...,1—Ayandm=1,...,M do
3 Sample 2" ~ N (0, 7).

4: X, e X+ u( X3P b, €) Ay + VeAz™
5: end for

6: Return {u(X]",t;,€), X" }A_ ).

B ENTROPY ESTIMATION

For the sake of completeness of Alg.[T] here we present the techniques used in the paper for estimat-
ing entropy (line 9 in the Algorithm). We emphasize, though, that we use the entropy estimator as a
black-box, where any method could be plugged-in, orthogonally to our main ideas.

In our experiments on low-dimensional settings we used the approximated negative entropy method,
for its simplicity and ease of compute. This could be hardly scaled to higher dimensions since it
requires the computation of large covariance matrices. For real-world settings we used the scalable
kernel method of |Pichler et al.| (2022)).

B.1 NEGENTROPY

Negative entropy, or negentropy (Oja and Hyvarinen, 2000) of a random variable X; € R? is the
difference in entropy from the Gaussian distribution with the same second-order statistics. Explicitly

d
1 d
negentropy(X;) 2 H(Z) — H(X;) = —H(X1) + 3 E log \; + 3 log(2me), (25)
i=1

where \; are the eigenvalues of the covariance matrix Xx,. We have the following connection
between negentropy and KL divergence

Lemma B.1. (Kholkin et al.|[2025| Corollary A.3) Let Z ~ N (u1,%1) where j11, %1 are the mean
and covariance of X4, respectively. Then,

H(X1) = H(Z) — Dkn(Px,|[Pz) (26)

Using Eq. (26), we approximate the negentropy through the Donsker—Varadhan identity (Belghazi
et al., 2018)

negentropy(X1) = Dic (Px,[Pz) = sup [Exvrs, (2) — logEenr, /@], 27

which can be estimated from samples (c.f. (Kholkin et al.| 2025, § A.2) and (Franzese et al., 2023}
§3.2)).

In our simulations, we model the argument in Eq. (27) as a parametric model Z,, (-, €), where now
we approximate the negentropy from M samples of X as

M M
1 1 m
negentropy(Xi, €) &~ i E Z, (X7, €) — log lM g el ’6)] . (28)

m=1 m=1

2™ are i.i.d. Gaussian samples with the empirical mean and covariance of X;. The entropy H(X7)
can now be estimated through Eq. (25).

13
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B.2 KNIFE

The KNIFE estimator (Pichler et al.}|2022) is a Gaussian-mixture plug-in estimator for differential
entropies. For x € R? the empirical distribution is approximated using

prntrE (25 0) = Si urgpar (75 e, Ax), (29)

where gpar(+; i, Ak ) are Gaussian kernels with mean and variance p,, Ay, respectively, and uy, > 0
are weights, Xpug = 1.

The plug-in estimation is then given by

H(X1;0) = —Eq~p, log [prnire(z; 0)] > H(X). (30)

For tight estimation, H (X7; #) is minimized over 6 := {(uy, fu, Ak)}kK;Ol.

14
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C PROOFS OF THINGS

C.1 PRrROOF OF THM.[3.1]

Theorem C.1. (Thm. in the Main text) Lrp = Lrp. Furthermore, let u* (x,t) minimize the
surrogate objective

1
u* € arg min {IE {216/ |u(Xt,t)|2dt} +H(X1)}, (31)
w 0

under
dX; = u(Xy, t)dt + VedWy, Xo ~ Py. (32)

Then, the distribution Px - of X7 associated with u* through Eq. (32) is the minimizer in Eq. ,
whefre P} =P x; IS the optimal reconstruction distribution in Eq. and ™ =P xz.x; is the
optimal plan.

Here, we also prove the opposite direction; whenever (P, 7) minimizes Eq. (7, RD), there exists a
drift term u(x, t) minimizing Eq. under Eq. (32), where X, X1 ~ .

Proof. Let (P1, ) be a solution to Eq. (7, RD)), where 7 € II(IPy,P;1). Then, we choose
T(w) = / W gz (w)dnm(z, &) (33)

as a probability law in F(Pg, P;). It can be easily deduced that
Dxr(T|z2||W€z2) =0, (34)
hence, from Eq. (8)-Eq. (9) we have

X — X2
2€

which is equal to Eq. (7, RD) up to an additive constant, depends only on Py,[P; and €. Since
7 minimizes Eq. (7, RD) for Py, it minimizes Dxy(7||7"V") over TI(Py, P;), thus 7' minimizes
Dx1(T||W€) over F(IPy,Py) (see|Chen et al.| (2021, Problem 4.2, Eqn. (4.8)); mutatis mutandis).

As a solution to minype (p,,p,) Dxr(T||W¢), T takes the form Eq. with some drift function «
(Léonard, 2013| Prop. 4.1).

Using Eq. (TT) we get

DxL(T|[W*) = Dgp(n||7"V") = E,

] — H(m) + glog(27re). (35)

Lrp < iIE Uol ||u(Xt,t)||2dt] + H(Py) — glog(%’e) (36)
= Dy (T||W€) + H(P;) — glog(%’e) 37)
= Dicu(r|[w) + H(2) ~ 3 log(2re) (38)
= 25 [IX - XI?] - Hn) + HEo) + H(PY) (9)
= LgrD, 40)

implying that Lrp > ERD-

On the other hand, let u* as in Eq. @, and let P} = Px:. Clearly, Px-,u* minimize Eq. @
Furthermore, the law T"* induced by u¥,

T* : dX; = u* (X[, t)dt + VedWr, X5 ~ Py, (41)

minimizes Dk, (T*||[W¢) = +LE [fol ||u*(Xt*,t)||2dt} over F(Po,P%), hence it is a so-
lution to mingez(p, pr) DxL(T||W€).  Thus, according to Léonard (2013, Prop. 2.3),
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DKL(T*“@HWE‘I@) = O,V{,C,i'. Let m* = ]P)XS’XT S H(]P)(),]P)ik) ‘We have from Eq @

X —X|? d
Dy (7*||7¢) = Ep» H2€‘| — H(r")+ H(Py) + 3 log(2me) (42)
= Dk (T*||W°) (43)
1 ! * * 2
= E [/0 Il (X7, )| dt] . (44)
Thus,
%2
Lrp < Eg- ||X2€X] — H(m*) + H(PY) + H(Po) (45)
1 ! * * 2 * d
=—FK / [l (X7, t)|1°dt| + H(PY) — = log(2me) (46)
26 0 2
= Lrp, 47

yielding Lrp = Lr D, which completes the proof. Note that arguments similar to Eq. —Eq.
yield that under A1, Lrp > —oc. O

C.2 PROOF OF THM.
Theorem C.2. (Thm.|3.2|in the Main text) Let p}(x) such that log p}(z) € C12([0,1] x R?) and
IVpi(x)| logpi(xz) — 0as ||x|| = oo forall t € [0,1], satisfying the BHE

0 1

apt(ﬂf) = _§€Am2pt(x)7 pO(l‘) ~ IPO; (48» BHE)

and let u* = €V log p; (z) where V log p;(x) is the Stein score function. Then, (u*, p;) is an optimal

pair in Eq. (15, var-TEQ)-Eq. (16, FPE) and the solution to Eq. admits the SDE
dX; = eVlog p} (X;)dt + /edW;. (49)

Proof. Let us define the Lagrangian
1 ! )
L{u,p,p,A) = 5 | dz | dtfulz,t)|["pe(z)
Rd 0
! 1
+/ dx/ dtu(x,t) (pt(x) + V- (up(z,t)) — QEAmpt(x))
Rd 0

~c [ dmmi(a)logn(@) + [ doA@)p(o) - dBo(@). (60
R4 Rd

where dPy denote the density function of Py.

We now apply the following integration by parts property of the divergence: For g : R? — R and
f: R4 = R? and a bounded domain D C R? with boundary 0D,

/D 9()V - f(x)dz = - /D Vo(z) - f(z)dz + ;{9 sl (@) e (51)

where V, V- are the gradient and divergence operators, respectively. If || g(x) f (z)|| decays as ||z| —
00, we can integrate over domains with large enough diameters, thus ignoring the boundary term and
practically integrate over R?. In our setting, p, iz are scalar functions, and w is a field.

Integrating by parts, we have

1 1
/0 dtp(e, Opr(x) = ula, Vpa () — i, 0)po(x) / dti(e, )pi() (52)

0
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" / dep(a, )V - (up(a, 1)) = — / depu - Vi, 1) + ]{ ppu - fida 53)
as well as . “
/R dep(, ) Al 1
_ /R (e, )9 - Vp(, 1) (54)
. /R deVu(et) - (e, ) + f 1(Vp(a, 1)) - ida (55)

= —/ daVu(z,t) - Vp(z,t) + fpw -nida + ]{ [1(Vp(x,t)) — pVu] -iida  (56)
]Rd

= / deVgep(z, t)p(x) — %pv,u -nida + j{,u(Vp(x,t)) - fida. (57)
R4

Provided that all boundary terms vanish as ||z|| — oo, and putting everything back together, we
obtain

1
L(u,p, p, \) = %/Rd dx/0 dt||u(z, t)||*pe(2)
- /0 dt /Rd dz {/jt(a:,t) + u(z,t) - Vu(z, t) + %eAmu(amt) pe(x)
+ [ ol 1) = elogm (@) (o)
Rd

= [ dslute.0) = Mamle) ~ [ deA@)aB(o) (58)
R4 Rd

Taking the first variation to zero, ‘;—ﬁ = 0 yields

u*(x,t) = Vu(x,t). (59)

From % = 0 we obtain (Hamilton—Jacobi equation),

. 1 1
() + §||Vu(x,t)\|2 + 5lgpp(a,t) =0, u(z,1) = e(1+log pi(x)). (60)
We also know that (Fokker—Planck equation)

pe(x) + V- (pe(x)Vu(z, t) — %eAmpt(x) = 0,pp(z) = dPy. (61)

We now substitute a solution of the form y(z,t) = €(1 + logp;(z)) into Eq. (60), and verify it
satisfies our equations:

. 1 1
Pe/pe + §€||th/17t||2 + §€V - (Vpe/pe)

. 1 1
= pu/pe + 5e||th/pt||2 + 5 ;(pzizi/pt — (Pai/11)?) (62)
. 1 5 1
= Pe/pe+ 5 (€ = ) Vpe/pell” + S eAaape /e = 0 (63)
where the last equality stems from Eq. (48, BHE). O
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D EXTENDED RESULTS AND TECHNICAL DETAILS

For the sake of completeness and in-depth reading, in this section we extend § [5] with full tech-
nical details and additional results. We also present detailed and full-sized figures for improved
accessibility.

D.1 GAUSSIAN SOURCES
Let Py = N (0,03). A solution to Eq. (17, BHE) is given by

1 -
r)= ——e¢ 2(eg—et) . (64)
Pi(z) 27 (02 — et)

The optimal controller is hence given by

€

u(z,t) = eViogp(z) = il
0

(65)

Let us denote a; = and r = U—% It is easy to see that under u(x,t), Xo and X; are jointly-

_€e
o'g —et
Gaussian where

dXt = —atXtdt + \ﬁth (66)
t
U X, = Xo+ ﬁ/ Ustaws, (67)
0
with .
Uy =e Joasds — 1 _pg. (68)
That is,
Xl = (1—T)X0+N1 (69)
1 2
0%, = e(1— 7”)2/ Uy 2ds = e(1 —1)> 20— — (1 — 7). (70)
0 O'O — €
where [V is a Gaussian noise, independent of X. We can now compute the distortion
E[(X1—X0)?] =r’05 +e(1—1) =€ — €05 > + 205> = ¢, (71)
and the correlation
PEE[XoXi]=(1—-r)o =05 —¢ (72)
and then also compute the MI by plugging
o2 =1—-r)oi+te(l—r)=08 —2c+ 0, +e— o, =0f —¢ (73)
into
T(Xo: X1) = —~log [ 1 P’ (74)
0,A1) — 2 0g 0_%0_(2)
1 (1- r)203)
= ——log (1 - (75)
2 (03 — €)o?
1 (1—r)?
=—=1 1—— 76
2 Og( 1—r > (76)
1 €
——— — . 77
> (3) 7
To summarize, we obtained
1 b1 1 1 €
D:AE[X—X }zf, R=T(Xp: X)) = —=log [ <), 78
5 (Xo 1) 5 (Xo; X1) QOg(og) (78)
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Figure 6: The R(D) function of a 1-D Gaussian source. (top) Here, Xy ~ N (0, 1) and we applied
Alg.to € € [0.05,0.95]. Green markers indicate higher precision. We also plot the analytical result
(black line). (bottom) We compare our algorithm to NERD and WGD, where we observe that our
method is more accurate.

and recovered the well-known result
2

Reanss(D) = = log (;g) , 0<2D < o2, (79)

Note that the factor of 2 is due to our convention D = %M S E. This result can be easily generalized
for Gaussian vector sources and €’s smaller than the eigenvalues of the covariance matrix X. In this

case, the solution to Eq. (I7, BHE) is

pe(z) = N (0,2 — et]). (80)

In Fig. [6| we demonstrate the efficiency of Alg. [I]on the 1-D case. We compare our method with
NERD (Lei et all, [2022) WGD (Yang et al.,[2024), where we observe that R2D2 is clearly superior
to the existing methods in terms of estimation error, in both the high-rate and low-rate regimes.

D.2 MIXTURE OF GAUSSIANS

The latter Example can be easily extended to the case of a Gaussian mixture, where

(z m)
(1)
Z \/27‘(0’
As Eq. (I7,BHE)) is a linear equation the solutlon is now given by the superposition
(e—pi)?
Z T R [O,minof) . (82)
\2 O' — et :
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Figure 7: The R(D) function for a mixture of Gaussians. Here, X, ~ P is a mixture of Gaus-
sians where y1; = —.4,0,.4, 02 =4 x 1072,5 x 1072,6 x 1072, p; = £. (top) We apply Alg.
toe € [4x 107%,1.64 x 10~2] and compare the result with SLB. Green markers indicate higher
precision. (middle) A closer look on error bars (inter-quartile range) over 8 evaluations. (bottom)
Fore = 1.56 x 1072, we plot the reconstruction distribution P; which is the distribution of the dif-

fusion process’ outcome, X;. Observe that the empirical distribution matches the analytical result
(bold line).
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Figure 8: The R(D) function for a mixture of Gaussians (second example). Here, X is a
mixture of Gaussians where p; = —.8,0,.8, 02 = 4 x 10725 x 1072,6 x 1072, p; = %
(top) The empirical reconstruction distribution for ¢ = 2.72 x 10~2 matches the analytical result.
(middle) Trained controller model ug (for € = 2.8 x 10~2), compared to analytical result at times
t = 0,0.5,0.99. (bottom) RD function estimated over 16 evaluation steps (medians and inter-
quartile ranges).
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The optimal controller u(z,t) = €V log p:(z) is derived accordingly. We illustrate this result in
Fig. , where N = 3 and y; = —.4,0,.4, 07 =4 x 10725 x 1072,6 x 1072, p; = % We apply
Alg.[l|to € € [4x 107%,1.64 x 10~2] and compare the estimated RD function with Shannon’s lower

bound (SLB)(Cover,|1999; |[Berger, 2003)
1
H(Py) — 3 log(4meD), (83)

approximated here from M = 2! i.i.d. samples X™ ~ P, by

M
N —oF Z log po(X™). (34)
m=1

In practice, we estimated Eq. . ) for 8 independent trials, and used the median value for our ap-
proximation. For e = 1.56 x 107=. We further plot the reconstruction distribution P;, which is the
probability law of the diffusion process’ outcome. We observe that empirical distribution obtained
by Alg.[Tjmatches the closed-form result Eq. (82).

In the setting of Gaussian mixtures, we conducted an additional experiment in which p; = —.8,0, .8.
The results are given in Fig. 8] where we also plot the outcome of the deep controller model we train,
compared to the desired product.

D.3 NON-GAUSSIAN MIXTURE

Consider the source X drawn from the mixture po(x) = Zl L piC; sinet (2 -) where sinc(z) = =

sin@) ¢ ¢oo(R), and C; = 2%m,; are appropriate normalization factors. Recall that the characteris-
tic functlon in this case is

— 00

e} N
Po(w) = / po(t)e "t dt = > piC; ' mipo(maw), (85)
=1

where (with * being the convolution operation)

po(w) = (86)
1 1 1
— 5 |71 - Gl r w1 Gl )
1
= 56" ((w—4)*signw — 4 — 4(w — 2)* signw — 2 (88)
+6w’ signw — 4(2 + w)? sign 2 +w + (4 + w)® signd + w) , (89)

which vanishes outside {|w| < 4}. Now, for non-vanishing mix distributions and small enough €’s,
by Eq. (I9) we can write the solution to Eq. (I7, BHE)) as

1

4
pi(x) = —/ giwatgew “ dw— ZpZC’ ml/ Do(m;w) cos(wx)eée“’%dw. (90)

2

We numerically approximate

K-1

4 4k 4k 4k 2
= 2 oNese(3E)
E plC’ m; ,;0 Po(m;—) cos(—x)e ) 91)

Figure |§I demonstrates this result for N = 4,m; = [1, V2,7, e] (m;’s were chosen such that
po(z) > 0 everywhere on R) and p;, = %, where we numerically integrated Eq. with K =

4 x 32 x 10* in order to approximate the reconstruction distribution p; () for different values of e.
We emphasize that although this is a toy problem, to the best of our knowledge, no other technique
is known to tackle this case.
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Figure 9: Reconstruction distribution p; (z) of non-Gaussian mix source. In the (left) pane, we
approximate reconstruction distribution Eq. (90) by numerical integration. A closer look at different
points is provided in the (middle) and (right) panes.

D.4 EXAMPLE: CIFAR10 DATASET

We now demonstrate the efficiency of Alg. [I]on a realistic high-dimensional source. More specif-
ically, as input to the Algorithm, we sample 4 x 4 grayscale image patches from the ‘Cifar10’
dataset (Krizhevsky and Hinton| [2009). Pixel values are normalized to [0, 1]. Fig. [5| demonstrates
the efficiency of our method in solving this problem. In the left pane, we present the RD function,
as estimated by R2D2 (Alg. [I). In the right pane, we present images, drawn from the reconstruc-
tion distribution P; for different €’s. The corresponding locations of these reconstructions on the
RD-plane are marked in red on the left pane.
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Figure 10: The R(D) function of Cifar10 images. Here, X, is a random 4 x 4 patch from a
grayscale image. (top) The RD function, estimated by R2D2 (Alg.[I). (middle) A closer look on
error bars (inter-quartile range) over 8 evaluations. (bottom) Patches drawn from the reconstruction
distribution X; obtained for different €’s. The corresponding locations on the RD-plane are marked
in red.
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E IMPLEMENTATION NOTES

E.1 GENERAL DETAILS
For all experiments, we used 2 fully-connected DNN models:
* The controller uy taking (X¢,t,¢) € R? x [0,1] X [€min, €max) as input and whose output
is in R?,
* The Z,, network for estimating the negentropy, taking (z,€) € R% X [€min, €max] and re-

turning a scalar value (see App. [B]for details).

Despite having different input and output layers, both models are of the same depth and hidden-
layer sizes. We used LeakyRelLU activation following each hidden layer. The two models were
trained in a 1 : 3-ratio of update steps, using the ADAM optimizer (Kingma, |2014)) with parameters
B = (.9,.999) and learning rate c.

At each evaluation step, we draw a batch of samples and evaluate R(D) according to Alg. |1} When-
ever there are more than one evaluation step or independent seeds, the presented (R, D)-values are
the medians over all steps, while error bars indicate the inter-quartile (25%-75%) range.

Codes for the NERD baseline (Lei et al, [2022) are provided by the authors at
https://github.com/leieric/NERD-RCC. Codes for the WGD baseline (Yang et al., [2024) are pro-
vided by the authors at https://github.com/yiboyang/wgd. Our codes will be publicly available upon
publication.

All experiments were implemented in PyTorch (Paszke, |2019) environment, and performed using a
NVIDIA RTX A6000 GPU.

E.2 SIMULATION PARAMETERS
Gaussian sources (Fig. 2)

* €min, €max = 0.025,0.975
* DNN hidden layers: 1

» Hidden layer size: 128

* Step size: Ay = 155

¢ Train steps: 25,000

¢ Batch size (train): M = 512
» Experiments: 64

¢ Batch size (evaluation): 1024

* Learning rate: o = le-3

Mixture of Gaussians (Fig. [d)

® €mins €max =4e‘4,1 .64e-2
* DNN hidden layers: 4

* Hidden layer size: 128

L
100

* Train steps: 3.7M

¢ Batch size (train): M = 256
 Evaluation steps: 8 (32 at high-precision)
» Batch size (evaluation): 1024

* Step size: Ay =

* Learning rate: a = Se-4
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Mixture of Gaussians #2 (Fig.

€min, Emax = 1.2€-2,2.8e-2

DNN hidden layers: 4

Hidden layer size: 100

Step size: Ay = 155

Train steps: 855,000

Batch size (train): M = 256

Evaluation steps: 16 (64 at high-precision)
Batch size (evaluation): 1024

Learning rate: o = le-3

Cifar10 dataset (Fig.

€min, €max = 0.05,0.15

DNN hidden layers: 3

Hidden layer size: 100

Step size: Ay = ie

Train steps: 23,300

Batch size (train): M = 1024
Evaluation steps: 8 (32 at high-precision)
Batch size (evaluation): 512

Learning rate: o = Se-4

26



	Introduction
	Related work

	Preliminaries
	Rate-distortion functions and terminal-entropy stochastic control
	Problem statement
	Terminal-entropy stochastic control: The energy-entropy tradeoff
	Special cases

	R2D2: Neural estimation of rate-distortion functions
	Numerical results
	Gaussian data
	An experiment: Cifar10 dataset

	Conclusion
	Euler-Maruyama sampling
	Entropy estimation
	Negentropy
	KNIFE

	Proofs of things 
	Proof of Thm. 3.1
	Proof of Thm. 3.2

	Extended results and technical details
	Gaussian sources
	 Mixture of Gaussians
	Non-Gaussian mixture
	Example: Cifar10 dataset

	Implementation notes
	General details
	Simulation parameters


