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ABSTRACT

When compressing continuous data, some loss of information is inevitable, and
this incurred a distortion when reconstruction the data. The Rate—Distortion
(RD) function characterizes the minimum achievable rate for a code whose de-
coding permits a specified amount of distortion. We exploit the connection be-
tween rate-distortion theory and entropic optimal transport to propose a novel
stochastic-control formulation of the former, and use a classic result dating back to
Schrodinger to show that the tradeoff between rate and mean squared error distor-
tion is equivalent to a tradeoff between control energy and the differential entropy
of the terminal state, whose probability law defines the reconstruction distribu-
tion. For a special class of sources, we show that the optimal control law and
the corresponding trajectory in the space of probability measures are obtained by
solving a backward heat equation. In more general settings, our approach yields a
numerical method that estimates the RD function using diffusion processes with
a constant diffusion coefficient. We demonstrate the effectiveness of our method
through several examples.

1 INTRODUCTION

As is well-known from information theory (Shannon| [1948} |Cover and Thomas|, [2012)), when com-
pressing any probabilistic data source at an encoding rate lower than its entropy, it is inevitable to
suffer some loss of information, which results in a distortion at reconstruction. This is particularly
true for continuous sources, where distortion may arise, e.g., due to quantization. Rate distor-
tion (RD) theory (Shannon, |1959; Berger, 2003; |Cover and Thomas) |2012)) addresses the trade-off
between the encoding rate and the decoder’s reconstruction: Given a distortion measure between
pairs of data samples, the reconstruction loss is the total accumulated distortion between the source
samples and reconstructed samples produced by the decoder from the compressed bits sent by the
encoder. The operational RD function thus characterizes the minimal encoding rate required for a
given average distortion level D, in the limit of a large number of samples.

For independent and identically distributed (i.i.d.) samples, the celebrated lossy source-coding the-
orem of information theory (Shannon, |1959; Berger, [2003; |Cover and Thomas| 2012)) establishes
that the operational RD function equals the informational RD function R(D), where the latter is
expressed as a single-letter expression (though a single sample may itself be a vector). Specifically,
the RD function is the minimum of the mutual information (MI) between a random variable X,
representing a single sample from the source, and a random variable X, representing a single re-
construction sample. This minimization is over the test channel — the conditional distribution of X
given X —under the constraint that the average distortion between X and X is below D (see §.

The optimization problem involved in the computation of R(D) should therefore be solved for the
given distortion measure and distortion level. However, although this problem has been extensively
studied for almost 70-years (Shannon, [1959), closed-form solutions of this problem are only known
for a few canonical examples, such as binary sources under Hamming distortion or a Gaussian source
under the mean squared error (MSE) |Cover and Thomas|(2012). Efficient algorithms for computing
the RD function are therefore necessary. When the data source alphabet is discrete and finite, the
classical Blahut—Arimoto (BA) algorithm (Arimoto, |1972; Blahut, |1972) provides such a method



Under review as a conference paper at ICLR 2026

and is especially effective for small alphabets. However, the typical setup for lossy compression in-
volves a continuous data source, and in this setting efficient computation of the RD function remains
a long-standing challenge. Recently, [Lei et al| (2023); |Yang et al.| (2024)) identified an interesting
connection between the BA algorithm and entropy-regularized Optimal Transport (OT), which al-
lows approximation of the RD function in cases where BA is intractable (Yang et al. 2024). OT
(Ambrosio et al.l [2008) is a widely used formulation, which underlies the training of deep genera-
tive models, such as generative adversarial networks (GANs) (Arjovsky et al.||2017) and variational
auto-encoders (VAEs) (Tolstikhin et al., 2017), and is defined as follows: Given a pair of distribu-
tions, the objective of OT is to find an optimal plan between them, namely, a joint distribution with
the given marginals (called a coupling) that minimizes a prescribed metric. Entropy-regularized
optimal transport (a.k.a. weak OT, entropic OT, or EOT) was introduced by [Cuturi| (2013) as an ap-
proximation to OT, for which efficient solution methods exist, e.g., Sinkhorn’s algorithm (Altschuler
et al., 2017). More recently, Gushchin et al.| (2022)) suggested finding the optimal plan of an EOT
problem using diffusion processes. Their method is based on a well-known connection (Léonard,
2013; |Chen et al., 2021) between EOT and a stochastic control problem known as the Schrodinger
bridge (SB) (Schrodinger, |1932; |Chetrite et al., 2021} |Chen et al., 2021)).

Diffusion processes are popular for generative modeling (Ho et al., [2020; |Song et al.| 2020), where
a sample from a data distribution is gradually drifted and becomes noisier as it approaches a com-
pletely noisy sample, typically Gaussian. The celebrated paper of [Song et al.| (2021) suggested
finding the drift term of the model by learning the score function and plugging it back into the re-
verse stochastic differential equation (SDE) (Anderson, [1982). As we state later, a solution to SB
can be written as a finite-energy diffusion process. It then becomes natural to investigate diffusion
processes in the context of RD theory, as generative models casting the source probability to the
distortion-optimal reconstruction distribution. As we show in this work, this fresh point of view
reveals surprising analytical results as well as novel estimation methods.

In this paper, we focus on the computation of the RD function for continuous data sources under
the MSE distortion. This leads to an OT problem with quadratic cost. More specifically, we exploit
the connection between RD and EOT to propose a novel stochastic control formulation to RD, where
the classical result of Schrodinger| (1932) implies that the tradeoff between rate and MSE distortion
is equivalent to a tradeoff between the control energy and the differential entropy of the terminal
state, whose probability law yields the reconstruction distribution. For a special class of sources,
we show that the optimal control law and trajectory in the space of probability measures are given
by solving a Backward Heat Equation (BHE). In the more general case, our approach gives rise to a
numerical solution method in which the RD function is estimated using diffusion processes, with a
constant diffusion coefficient.

Our contributions: (1) We establish a novel connection between RD and optimal control by pre-
senting Terminal-Entropy Control (TEC), a stochastic-control formulation regularized by terminal
uncertainty, and showing that this formulation is equivalent to the RD problem. (2) We characterize
the optimal solution to TEC under certain regularity conditions. (3) Using this characterization, we
provide a closed-form solution for the reconstruction distribution of a Gaussian-mixture source. We
also demonstrate our approach on mixture distributions with non-Gaussian components via Fourier
analysis. To the best of our knowledge, such results were previously unknown, which emphasizes
the theoretical contribution of our approach. (4) Based on our approach, we propose R2D2, a novel
neural method for estimating the RD function and the reconstruction distributions using a simple
diffusion model.

2 PRELIMINARIES

2.1 THEORETICAL BACKGROUND

Rate-Distortion theory Let X ~ px = Py € P(R?) for d > 1 denote a single sample from the
source, where P(Rd) is the set of probability measures on R, and where the different source sam-

ples are i.i.d.. Let X € R4 denote a reconstruction sample, where the pair (X, X ) follows the joint
distribution (X, X) ~ py ¢ € P(R?xR?). Inaddition, let p | y denote the induced conditional dis-
tribution, which is also called the reconstruction law. Let d(-,-): R x R — R, denote a distortion
measure between € R? and # € RY, and let the average distortion be D(X, X) £ E[d(X, X)],
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which is an implicit function of p ¢. For a given pair of probability measures Py, P; € P(RY),
let Dk, (Po||P1) £ Exp,[log % (X)] denote the Kullback-Leibler divergence, and let the mutual

information be Z(X; X) = Dxy, (py ¢|lpx ®pg ). The lossy compression theorem (Shannon, [1959;
Berger, 2003} |Cover and Thomas|, [2012) states that the operational RD function is equivalent to the
informational RD function

R(D) £ min  I(X; X), (1)
pxx: DX, X)<D

on which we will focus. The BA algorithm (Cover and Thomas, [2012) computes R(D) by optimiz-
ing the Lagrangian (with a Lagrange multiplier € > 0)

Lpa(pg)x Po€) = D(X, X) + Z(X; X) 2)

w.rt. p X)X Alternatively, if we let Py, = p ¢ be the marginal distribution of the reconstruction, then
an equivalent formulation is (Yang et al., [ 2024)

min L ¢1vsPo,€) = min min {D X,X + eDky(7||[Pg @ P }, 3
s Lpalpsx Fo.) P1EP(RY) (X, X)~mell(Po,P:) R A

where II(IPy, ) is the set of all couplings, that is, the set of joint distributions p ¢ € P(RY x RY)

whose X -marginal (resp. X -marginal) is [Py (resp. IP1). In this work, we focus on the quadratic cost
d(2,x) = }||& — z||*. The average distortion is then given by D(X, X) £ 1E[|X — X||?], and the
minimization problem Eq. (3)) reads

1 N
min LBA(pxlX,Pg,e):min ~ min {IE,T [HX - XHQ} + eDxy, (7| |Po ®IP’1)} )]
Px|x P1 (X, %)~mell(Po,Py) | 2

Entropic optimal transport For a probability measure P € P(R?) with density p(z), H(P) £
—Ex.~plog(p(X)) denotes its differential entropy. Now, considering probability measures Py, P; €
P(R9), the EOT problem (Cuturi, 2013) is given by

_ a2

inf { / Nz =21 4, 3) + eDrer (| |Po ® Ipq)} . (5, EOT)
w€II(Po,Py) R4 xRd 2

As one may readily recognize, for values of € where the optimal reconstruction has a density, the

inner minimization of Eq. (@) coincides with Eq. (Cet et al} 2023} [Yang et al} [2024).

The Schrodinger Bridge The SB problem (Schrodinger, [1932) with parameter e is formulated as

1 1 Xog~Py, X; ~P
inf ~IE X, )|2dt| st. Q0T 0 AL 6, SB
inf 5 [/0 [[u(Xe, 1) } s {dXt:u(Xt,t)dt—k\/Eth ; ( )

where PPy, IP; are absolutely continuous probability measures w.r.z. the Lebesgue measure on R%, and
W, is a standard Wiener process, independent of Xg. The drift u : R? x [0, 1] — R< can be seen as
a controller designed to steer Xo ~ Py into X; ~ Py with minimal average energy, acting against a
‘natural’ force W;. Recently, |Gushchin et al.| (2022)) have utilized the well-established equivalence
(up to an additive constant depending on Py, P1, €) between SB and EOT (Léonard, 2013} |Chen
et al.,|2021), showing that the latter can be optimized via a game-theoretic formulation. The optimal
joint probability 7 in Eq. is then given by the joint probability law of (X, X1).

2.2 RELATED WORK

Neural estimation of information-theoretic quantities Following ongoing research on neural
models, a variety of methods have emerged in recent years for estimating information measures, as
well as for the design of optimal compression methods aimed at achieving these fundamental limits
(see the survey by (Yang et al., 2023)). [Belghazi et al.[ (2018), for example, used the Donsker—
Varadhan identity to estimate MI. [Kholkin et al.| (2025) used samples from Brownian bridges to
estimate both the MI between datasets and differential entropies. [Lei et al.|(2022) suggested approx-
imating the RD function using a deep neural network (DNN) model and proposed an operational
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coding scheme. [Tsur et al.|(2024)) suggested approximating RD by modeling unknown input distri-
butions, both continuous and discrete. Recently, |Lei et al.| (2023)); Yang et al.[(2024) pointed out an
intriguing connection between the BA algorithm and EOT. This connection was further exploited in
Yang et al|(2024) to estimate the RD function using a discrete approximation of the reconstruction
probability law. Finally, |Zou et al. (2025) used the connection between EOT and the Schrédinger
problem to characterize this density. In this paper, we target the reconstruction distribution in RD
problems with MSE loss, i.e., a quadratic cost, by optimizing a continuous diffusion model. Com-
pared to the methods mentioned above, this novel approach allows us not only to offer new analytic
solutions to this classical problem but also to better approximate RD functions, especially for high
rates, as we show in § 5}

Diffusion models for lossy compression Lossy compressors that hinge on diffusion processes
have become popular in recent years. In|Elata et al.| (2025) pre-trained diffusion models were sam-
pled for zero-shot image compression. Recently, [Ohayon et al.| (2025)) replaced the noise at every
timestep of the reverse diffusion with samples from a sequence of predefined codebooks, achieving
high perceptual reconstruction quality. In|Theis et al.| (2022)) a noisy version of the source data was
compressed and then used in a reverse diffusion model for reconstruction. Here, we use a forward
model to obtain the reconstruction distribution and compute both its rate and distortion.

Schrodinger Bridge and EOT Numerical solution methods to SB include iterative fitting (Shi
et al.,|2023), adjoint-state matching (Liu et al.| [2025; |Domingo-Enrich et al.| [2024) and sampling
the potentials of the system (Puchkin et al., 2025ajb; Rapakoulias et al., 2024} (Gushchin et al.,
2024)). [Dai Pral (1991)) further expressed the optimal control and the objective Eq. in terms of
these potentials. This differs from our approach, where we directly optimize the control function w,
avoiding the need to evaluate or sample potentials. The closest method to ours is given in|Gushchin
et al. (2022), which used the equivalence between SB and EOT (Chen et al., [2021} [Léonard, [2013))
to offer a game formulation for the former, which can be solved by optimizing a diffusion model.
In §[3] we propose a modified problem in which the target probability is free. As such, the terminal
constraint is replaced by a penalty on the final state for being uncertain. We show (Thm. [3.1)) that
this formulation is equivalent to the RD problem under the MSE distortion.

Entropy-regularized stochastic control In addition to presenting a novel approach to the RD
problem, our results can also be considered a contribution to control theory. As we stated, Eq.
is formulated as a stochastic-control (‘dynamic’) problem. Both this form and its ‘static’ counterpart
are given in |Chen et al| (2021). Entropy regularization is common in stochastic control (Lambert
et al.l |2025) and reinforcement learning (Haarnoja et al., 2018 |Ziebart et al., 2008). However,
most studies aim to maximize the control-policy entropy, encouraging diverse actions. Alternatively,
Fridman and Shaked (2000) proposed minimizing the steady-state entropy of closed-loop linear
systems in H, control problems with infinite horizons. Here, we focus on penalizing the terminal-
state uncertainty, leading to a novel tradeoff between energy and entropy. After submitting this
manuscript for publication, we became aware of the work of |Pavon|(1989)), which, within the context
of physical systems, derived a variational form similar to Eq. (I5, var-TEC). However, there, the
controlled state and observation have pointwise initial conditions and control is reversed in time.
To the best of our knowledge, our work is the first to present such a formalism in the context of
information theory, which may open the door to additional applications in the broader fields of
statistics and stochastic control, connecting these major disciplines.

3 RATE-DISTORTION FUNCTIONS AND TERMINAL-ENTROPY STOCHASTIC
CONTROL

3.1 PROBLEM STATEMENT

Let the source Xy ~ Py, where Py € Po (Rd) is absolutely continuous w.r.t. the Lebesgue measure,
and where P (IR?) is the subset of P(R?) for which E [|| X ||?] < co. We further assume that H ()
is finite. As in the BA algorithm, we aim to compute the RD Lagrangian

T ALY
ERD(PO,G)—I%lanEI_IIr(lIéRP”{ze Rdxugf z||*dn(z, &) — H(w) + H(P1) p + H(Po), (7,RD)
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Low-
distortion

Figure 1: Evolution of reconstruction distri-
butions w.r.t. parameter . Typically, we as-
sume the reconstruction density to be close to the
continuous source in the low distortion regime
(small €’s), while eventually becoming singular
for a low enough rate (large €’s).
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Figure 2:  Estimation error on a 1-D Gaus-
sian source. X, ~ A (0,1) and we applied
R2D2 (Alg.[1) to € € [0.05,0.95]. We compare
our algorithm to NERD and WGD, where we ob-
serve the improved accuracy of R2D2 over exist-
ing methods.

which follows from standard decomposition of MI to entropy terms (Cover and Thomas| 2012]),
Dxr(7||Po @ Py) = H(Py) + H(Py) — H(w). Here, € > 0 is a tuning parameter, and H (Py) is not
subject to optimization.

Assumption Al: Eq. (7, RD) admits a solution in which the optimal reconstruction distribution is
absolutely continuous and satisfies P; € Po(R?), with finite differential entropy H (Py).

Although A1 is necessarily violated for low rates (high values of €), in many cases it is still expected
to be valid in the low-distortion regime, where P; is close to Py, as illustrated in Fig. m This holds
in a variety of settings, as we demonstrate in § 3.3]§ [5] Targeting the low-distortion regime is of
special interest because, in modern communication, high bandwidth channels are often available
(Chafii et al} [2023), and thus sources are compressed at high bitrates, allowing low distortion.

Let the process dWf = /edW;, with initial state W§ ~ P, be the (scaled) Brownian motion
starting at Pp, and denote 7° = Py we, the joint law of its start and end points. It is known
(Gushchin et al,[2022}; [Chen et al., 2021)) that

1

2¢

for every m with marginal distribution Py. Let F(Py,P;) be the class of random trajectories T; €
R4t € [0, 1] with a joint distribution 77 = Pr, 7, € II(Pg,P1). For every T € F(Py, Py),

Dk (m||7€) = /Rd y & — x||*dn(z, &) — H(7) + H(Py) + glog(27re) (8)

Dxr,(T[|WF) ZDKL(WTHWE)JF/ D1 (12,2 ||W€|z,2)dmr (2, 2), 9)
R4 xR4
where there exists a process 7y, minimizing D (T||W€) over F(Py,Py) with

Dxr (T3 |2,2[[W€z2) = 0 for all z,2 € R¢ 1Léonardl 2013[, Prop. 4.1,2.3). The process
T, is known to take the form 7', - of an It6 diffusion (Gushchin et al., 2022)

Tu : dXt = U(Xt, t)dt + \/Eth, (10)

with drift up,, where E [ fol |lup, (Xt, 1) szt} < oo. Furthermore, for such a finite-energy process
we have (Pavon and Wakolbinger, [1991)),

1 1
Dra (1%, W) = 5 | [ e, (0Pt an

Considering Eq. (7, RD)-Eq. (TT)), we suggest the following surrogate loss
1 ! d
{IE [/ ||u(Xt,t)||2dt] + H(Pl)} — —log(2me),  (12)
) 2¢ 0 2
where T, is a finite-energy diffusion given by Eq. @) with drift u € U = {u(x,t) : H(Py) >

—oo}, that is P has a finite differential entropy. The above discussion leads to the following equiv-

alence between Eq. (7, RD) and Eq. (12).

AéRD(IE”()7 6) e min

min
Py T,eF(Po,Py
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Theorem 3.1. Given Pq and ¢, under AI we have Lrp = ERD. Furthermore, let w*(x,t) minimize
the surrogate objective

* : 1 ! 2
o corgmip {58 | [ jutxoPar] + m0x)}. (13)

under the law in Eq. @/ Then, the distribution Px - of X} associated with u* through Eq.

the minimizer in Eq. , where P] = Px+ is the optimal reconstruction distribution in Eq.
and * = Pxe x; is the optimal plan.

The proof is given in App. |C, where we also establish the opposite direction; whenever (P, )
minimizes Eq. (7, RD), there exists a drift term u(x, ¢) minimizing Eq. under Eq. (10), where
(X 05 X 1) ~ T.

3.2 CONNECTION TO STOCHASTIC CONTROL: THE ENERGY-ENTROPY TRADEOFF

Motivated by Thm.[3.T} we present the problem of Terminal-Entropy regularized stochastic Control

inf { g /1 lu(Xe, )2t | + e (x1) s, § X0~ Foo P, isfree (14, TEC)
wer | 2 1o b VT dX = w(Xy, t)dE 4 JedW,

where the admissible control set is again U = {u(z,t) : H(P1) > —oo}. In light of Eq. (6, SB),
here u can be viewed as a control law for reducing the terminal-state uncertainty while spending
minimal energy. As a consequence of Thm. 3.1} in order to estimate the RD function for the source
Xo ~ Py, one should solve Eq. with a range of € values. Given the drift term u, X; can
be efficiently sampled (e.g., using the Euler—Maruyama algorithm, see App.[A). Taking Assumption
A1l into account, Eq. (T4, TEC) takes the following variational form

1 1
inf {/ dx/ dt|lu(z, t)||*p:(z) —6/ dap () logpl(x)}, (15, var-TEC)
ued | 2 R4 0 Rd

where, for the diffusion process in Eq. , the density state p;(x) is governed by the Fokker-Planck
equation (Oksendal, 2013

9
atpt

with V- = %e(i) being the divergence operation, and A,, = > aa—; being the Laplace op-

(2) = V- (i)l 1)) + S eBeapi(s), pola) = Po(a), (16, FPE)

erator. Interestingly, under suitable regularity conditions, the solution to Eq. (T4, TEC) can be
characterized by a simple equation, as we show next (proof is given in App.[C):

Theorem 3.2. Let p;(z) € C12([0,1] x Rdﬂ satisfy the backward heat equation (BHE)

0 1

5P (@) = =5 el (2), pg(z) ~ Po, (17, BHE)

such that log p} (x) € CY2([0,1] x R?) and || Vp; (z)||log p; (z) — O as ||x|| — oo forallt € [0,1].
Let u* = €V log p; (z), where V log p,(x) is the Stein score function. Then, (u*,p;) is an optimal

pair in Eq. (I3, var-TEQ)-Eq. ({16, FPE) and the optimal solution to Eq. admits the SDE
dX; = eViogp; (X;)dt + /edW,. (18)

Fourier analysis of Eq. (IT7, BHE) Let us assume d = 1 for simplicity; similar arguments hold in
higher dimensions. Let the source Xy ~ Py in R have density py and characteristic function p(w),

namely po(z) = 5= fooo e™?p(w)dw. It is easy to verify that a solution to Eq. (17, BHE) is
1 Ealy 4+ dew?t A
pe(z) = = etz Th(w)dw, (19)
27 J_ o

whenever the integral converges for all ¢ € [0, 1] and V log p;(x) is defined for all z,¢ € R x [0, 1].

1¢12(]0, 1] x R?) is the set of functions that are continuously differentiable w.~z. t, and twice continuously
differentiable w.r.t. x.
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3.3 SPECIAL CASES

Backward heat conductance problems are generally ill-posed and unstable (Miranker,[1961;Fu et al.,
2007). However, Thm. [3.2] yields an exact solution for certain special cases, as we show next.

Gaussian source We begin with the canonical example of a scalar Gaussian source Py =
N (0, 08), and show how our formulation recovers its known RD function. For € < o3, a solution to

22

Eq. (17, BHE) is given by p;(z) = ﬁe_ 2(23-<t)  The optimal controller is therefore given
T 0'0 —€

by u(z,t) = €Vlogpi(r) = — . Evidently, under u(z,t), Xo and X are jointly Gaussian
0

where D = 1E[(Xo — X1)’] = le, and R = Z(Xp; X1) = —1 log (ﬁ), and we recover the
0
known closed-form result

2

RGauss(D) log <2D

), 0<2D < ap. (20)

Note that the factor of 2 arises because our distortion definition uses half of the MSE. This result
can be easily generalized to Gaussian vector sources and e values smaller than the eigenvalues of the
covariance matrix Y. In this case, the solution to Eq. (17, BHE) is p;(z) = N (0, X — €tI).

Gaussian-mixture source The Gaussian example can be easily extended to the case of a Gaussian
mixture, for which no closed-form solution for the RD function is known. In this case,

L_e 207 . @21

Because Eq. (17, BHE) is a linear equation, the solution is given by the superposition
N CT
Z e 2(”1'2“”, €€ (O,mjn aiz) . (22)
= 2m (07 —et) i

The optimal controller u(z,t) = €V log p;(x) is derived accordingly. Knowing p,(z) and u(x, ), it
is possible to obtain rate and distortion values through a Monte Carlo simulation of Eq. (I4, TEC),
or via neural estimation as we suggest in § 4]

A non-Gaussian-mixture source To show the wide applicability of Thm. we now apply its
result to a mixture of sinc® functions. Being band-limited, for settings where po(z) > 0, such a
source satisfies the conditions of the theorem and allows the desirable frequency-domain analysis
of § Although this is a toy problem, we emphasize that to the best of our knowledge, no other
approach is known to tackle this case.

We consider the source X drawn from the mixture po(z) = Zl L piC; Fsine? (& -) where
sinc(r) = w € C*(R), and C; = 2Fm; are appropriate normalization factors. In
this case, the characteristic function is po(w) = Zf\ilpiC’; lmiﬁo(miw) where po(w) =
217r [7(1 = |w|)4 * m(1 — F|w|)+], and = is the convolution operation. Now, for non-vanishing
mixture distributions and sufficiently small values of ¢, the Fourier analysis of Eq. (I9) implies that

we can write the solution to Eq. (17, BHE) as

1 ! 2 Lew?
pi(z) = %/ glwrtgew tpo dw— szC mz/ ;I?o(miw)cos(wx)eé tdw. (23)

Fig. demonstrates this result for N = 4,m; = [1,v/2,7, €] and p; = %, where we numerically
integrated Eq. to approximate the reconstruction distribution p;(x) for different values of e.
Parameters were chosen such that p;(z) > 0 everywhere on R.
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Figure 3: Reconstruction distribution p; (z) of non-Gaussian mix source. In the (left) pane, we
approximate reconstruction distribution Eq. by numerical integration. A closer look at different
points is provided in the (middle) and (right) panes.

4 R2D2: NEURAL ESTIMATION OF RATE-DISTORTION FUNCTIONS

Although elegant, as may be pointed out, the assumptions of Thm. [3.2] may be restrictive: They
require p;(z) to be non- Vanishing and twice differentiable everywhere in R%; even under these
requirements, Eq. (I7, BHE) may be ill-posed, depending on the initial condition Py; Finally, the
explicit source distribution is rarely known in practice, and is instead accessible only from samples.
Therefore, in this section, we propose R2D2 (Alg.[I), a sample-based method for solving Eq.
and approximating the RD function in the general case (under Assumption A1).

Algorithm 1 Revealing RD functions with Diffusion (R2D2)

1: Imput: source Xg ~ Py € P(Rd), initial controller ug, batch size M, timestep Ay, €min, €max >
0, learning rate .

2: while Training do > Training

3 Choose € ~ Uniform[€émin, €max)-

4: Sample batch {XJ"}M_| ~ Py.

5:  Sample trajectory {ug(X 5 Mot e), XML« EuMa(ug, { XM e, Ay).

6.

7

8

Estimate energy L§ < 5t >, D, lue(XT t, o |IPA,.
Estimate terminal entropy H (X1) (see App. .
: RD loss Lj < L§ + eH(X1).
9: Step 0 < 0 — aVLj.
10: end while

12: Sample batch { X"} M_ ~ Py > Evaluate specific € € [€min, €max)
13: Sample trajectory {ug (X", t;,€), X{"}N_, < EuMa(ug, {X§"}_1, €, Ay).

14: Obtain RD loss £ (lines 6-8).

15: Estimate distortion: D = 51 S"™ || xm — X772,

16: Estimate rate: R = £e=2 _ 4 log(2me).

17: Output: (R, D).

Our method R2D2 (summarized in Algorithm [I)) is based on modeling the controller function
ug(x,t,€) using a DNN with parameters 6. The flexibility and generalizability offered by DNNs
allow us to capture multiple positions on the RD-curve (different ¢ values) using a single controller
model (cf. |Yang et al.|(2024)). To train our model, we access the data source X to draw a batch of
M samples. Using the Euler-Maruyama method (EuMa, Alg. [2]in App.[A), we sample discretized
random trajectories X;, from Eq. (I0). The minimization objective in Eq. is approximated (up
to an additive factor of 4 log(27e)) by £§ = L+ ¢H (X1), where the estimated controller energy is

Ly ~ 517 Zm 12, ||u9(Xt’”, t;,€)||2A¢. The terminal entropy H (X)) is estimated through the
approx1mated negative entropy or through a kernel method (see App. [B] for details). To evaluate
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3 a
g A R2D2.(ours)
e SLB o~ ¢ =1.56E-02
) —0.5
S s Py(ret.)
= ke (analytic)
0.000  0.002  0.004  0.006  0.008 0.0 _1‘. 0 \T
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Figure 4: The R(D) function for a mixture of Gaussians. X, ~ P is a mixture of Gaussians.
(left) We apply R2D2 (Alg.[1) to € € [4 x 107%,1.64 x 10~2] and compare the result with SLB.
Green markers indicate higher precision. (right) For ¢ = 1.56 x 10~2, we plot the reconstruction
distribution IP;. The empirical distribution matches the analytical result (bold line).

R(D), after training, we recalculate £, and use Eq. (12) to compute the empirical values
1 & L5 —D(e) d
2 _ § m m||2 > _ 7 m. ym\ _ ~0

Remark 4.1. Both methods of |Yang et al.|((2024) and|Lei et al.|(2022) assume an upper bound on
the rate (i.e., R < log M, where M is the batch size or the support size of the atomic probability
model). Our method does not suffer from this substantial limitation. This makes Alg. || suitable for
estimating the RD function at the low-distortion regime (’high-resolution’, high rates).

5 NUMERICAL RESULTS

In this section, we apply our results to both toy and real-world problems. For full details and more
numerical results, we refer the reader to App. [D| For full simulation details, we refer to App.

5.1 GAUSSIAN DATA

In Fig. |2} we demonstrate the efficiency of Alg.|l|on the 1-D Gaussian caseE| of § We compare
our method with NERD (Lei et al.l [2022)) and WGD (Yang et al., [2024) over 64 independent ex-
periments (seeds) and plot median absolute error with interquartile ranges. We observe that R2D2
clearly has lower estimation error then exisiting methods, in both the high-rate and low-rate regimes.

In Fig. @] we show results for a Gaussian mixture Eq. (2I) source, where N = 3, pu;, =
{—.4,0, 4}, 02 = {4,5,6} x 1072, p; = 5. We apply Alg.[I]to € € [4 x 107%,1.64 x 10~?]
and compare the estimated RD function with the approximate Shannon’s lower bound (SLB) (Cover
and Thomas, [2012; Berger, [2003), given here by H (Py) — %log(47reD). For ¢ = 1.56 x 1072,
we further plot the reconstruction distribution P, the law of the diffusion process’s outcome. We
observe that the empirical distribution obtained by Alg. [I| matches the closed-form in Eq. (22).

5.2 REAL DATA

5.2.1 CIFAR10 DATASET

We demonstrate the efficiency of Alg.[Ton a realistic source. More specifically, as input to R2D2, we
sample 4 x 4-pixel grayscale image patches from the ‘CIFAR10’ dataset (Krizhevsky and Hinton,
2009). Fig. [5|left) demonstrates the efficiency of our method in solving this problem, where we
present the RD function, as estimated by R2D2 (Alg.[I). In Fig.[6] we present images, drawn from
the reconstruction distribution IP; for different values of e.

2All our codes will be made publicly available upon publication.
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CIFARIO Speech
—10 ase R2D2 (ours) + R2D2 (ours)
= ° > NERD [Lei et al.22] NERD [Lei et al.22]
— WGD [Yang et al. 2024]
s

B, o
Q: "’w.,_‘o‘% Q: . , o .
0.02 0.04 0.06 0.08 1 2 3 ’ 4 5
IMSE SMSE

Figure 5: Estimating R(D) functions on real data. (left) CIFAR10 images. X is a random
4 x 4 patch from a grayscale image. The RD function, estimated by R2D2 (Alg. [I). (right) Speech
dataset. We observe the efficiency of R2D2 at high-rates (> 20 [nats]), while existing methods are
practically upper bounded by ~ 13 [nats].

e=110E —02 €=5.17TE — 02 €=9.23E —02 e =133 —01

source

5]

-

Rate :

5.25 4.18 3.48
Distortion : 1.11e — 02 3.57e — 02 5.20e — 02 6.77e — 02

Figure 6: Reconstruction distribution for the CIFAR10 dataset. Patches drawn from the recon-
struction distribution X; obtained for different e values.

5.2.2 SPEECH DATASET

We further test our method on the high-dimensional Free Spoken Digit dataset of
(see also [Yang et al| (2023} [2024)). Here, the 33-dimensional samples consist of spoken-
digit recordings. The data are obtained and preprocessed as in [Yang et al] (2023] § A.5.4), and
each feature is then whitened. We present the estimated RD function, compared to the NERD
and WGD estimations, with special attention given to approximating the low-distortion regime (see
Remark . We set the latent dimension size in NERD to 1024, the batch size to M = 1 x 106,
and the number of particles in WGD to n = 2 x 10°, as in |Yang et al|(2024). As we can see
in Fig. BJright), our method is capable of approximating (theoretically) unbounded rate values (>
20 [nats]), whereas previous methods are practically bounded by approximately 13 [nats] or less.

6 CONCLUSION

We considered the computation of the RD function and optimal reconstruction distribution for con-
tinuous data sources under the MSE distortion. We exploited the connection between RD and EOT
to estimate the RD function using diffusion processes through a novel control formulation in which
the RD tradeoff is equivalent to a tradeoff between energy and entropy. Under regularity conditions,
the optimal control is given by a BHE. We demonstrated our results in certain special cases, obtain-
ing closed-form solutions, and in a real-world setting using a numerical method. This work paves
the way for solving RD in settings beyond the MSE loss and continuous distributions.

10
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A EULER-MARUYAMA SAMPLING

Here we review the Euler-Maruyama (EuMa) Algorithm, which we used in our simulations to
sample from the diffusion process Eq. (I0). The sampling procedure is given in Alg.

Algorithm 2 Euler-Maruyama (EuMa)
1: Input: € > 0, drift u(z, ¢, €), initial batch { X" }M_| ~ P, timestep A,;.

2: fort; =0,4,...,1—Ayandm=1,...,M do
3 Sample 2" ~ N (0, 7).

4: X, e X+ u( X3P b, €) Ay + VeAz™
5: end for

6: Return {u(X]",t;,€), X" }A_ ).

B ENTROPY ESTIMATION

For the sake of completeness of Alg.[T] here we present the techniques used in the paper for estimat-
ing entropy (line 9 in the Algorithm). We emphasize, though, that we use the entropy estimator as a
black-box, where any method could be plugged-in, orthogonally to our main ideas.

In our experiments on low-dimensional settings we used the approximated negative entropy method,
for its simplicity and ease of compute. This could be hardly scaled to higher dimensions since it
requires the computation of large covariance matrices. For real-world settings we used the scalable
kernel method of |Pichler et al.| (2022)).

B.1 NEGENTROPY

Negative entropy, or negentropy (Oja and Hyvarinen, 2000) of a random variable X; € R? is the
difference in entropy from the Gaussian distribution with the same second-order statistics. Explicitly

d
1 d
negentropy(X;) 2 H(Z) — H(X;) = —H(X1) + 3 E log \; + 3 log(2me), (25)
i=1

where \; are the eigenvalues of the covariance matrix Xx,. We have the following connection
between negentropy and KL divergence

Lemma B.1. (Kholkin et al.|[2025| Corollary A.3) Let Z ~ N (u1,%1) where j11, %1 are the mean
and covariance of X4, respectively. Then,

H(X1) = H(Z) — Dkn(Px,|[Pz) (26)

Using Eq. (26), we approximate the negentropy through the Donsker—Varadhan identity (Belghazi
et al., 2018)

negentropy(X1) = Dic (Px,[Pz) = sup [Exvrs, (2) — logEenr, /@], 27

which can be estimated from samples (c.f. (Kholkin et al.| 2025, § A.2) and (Franzese et al., 2023}
§3.2)).

In our simulations, we model the argument in Eq. (27) as a parametric model Z,, (-, €), where now
we approximate the negentropy from M samples of X as

M M
1 1 m
negentropy(Xi, €) &~ i E Z, (X7, €) — log lM g el ’6)] . (28)

m=1 m=1

2™ are i.i.d. Gaussian samples with the empirical mean and covariance of X;. The entropy H(X7)
can now be estimated through Eq. (25).
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B.2 KNIFE

The KNIFE estimator (Pichler et al.}|2022) is a Gaussian-mixture plug-in estimator for differential
entropies. For x € R? the empirical distribution is approximated using

prntrE (25 0) = Si urgpar (75 e, Ax), (29)

where gpar(+; i, Ak ) are Gaussian kernels with mean and variance p,, Ay, respectively, and uy, > 0
are weights, Xpug = 1.

The plug-in estimation is then given by

H(X1;0) = —Eq~p, log [prnire(z; 0)] > H(X). (30)

For tight estimation, H (X7; #) is minimized over 6 := {(uy, fu, Ak)}kK;Ol.
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C PROOFS OF THINGS

C.1 PRrROOF OF THM.[3.1]

Theorem C.1. (Thm. in the Main text) Lrp = Lrp. Furthermore, let u* (x,t) minimize the
surrogate objective

1
u* € arg min {IE {216/ |u(Xt,t)|2dt} +H(X1)}, (31)
w 0

under
dX; = u(Xy, t)dt + VedWy, Xo ~ Py. (32)

Then, the distribution Px - of X7 associated with u* through Eq. (32) is the minimizer in Eq. ,
whefre P} =P x; IS the optimal reconstruction distribution in Eq. and ™ =P xz.x; is the
optimal plan.

Here, we also prove the opposite direction; whenever (P, 7) minimizes Eq. (7, RD), there exists a
drift term u(x, t) minimizing Eq. under Eq. (32), where X, X1 ~ .

Proof. Let (P1, ) be a solution to Eq. (7, RD)), where 7 € II(IPy,P;1). Then, we choose
T(w) = / W gz (w)dnm(z, &) (33)

as a probability law in F(Pg, P;). It can be easily deduced that
Dxr(T|z2||W€z2) =0, (34)
hence, from Eq. (8)-Eq. (9) we have

X — X2
2€

which is equal to Eq. (7, RD) up to an additive constant, depends only on Py,[P; and €. Since
7 minimizes Eq. (7, RD) for Py, it minimizes Dxy(7||7"V") over TI(Py, P;), thus 7' minimizes
Dx1(T||W€) over F(IPy,Py) (see|Chen et al.| (2021, Problem 4.2, Eqn. (4.8)); mutatis mutandis).

As a solution to minype (p,,p,) Dxr(T||W¢), T takes the form Eq. with some drift function «
(Léonard, 2013| Prop. 4.1).

Using Eq. (TT) we get

DxL(T|[W*) = Dgp(n||7"V") = E,

] — H(m) + glog(27re). (35)

Lrp < iIE Uol ||u(Xt,t)||2dt] + H(Py) — glog(%’e) (36)
= Dy (T||W€) + H(P;) — glog(%’e) 37)
= Dicu(r|[w) + H(2) ~ 3 log(2re) (38)
= 25 [IX - XI?] - Hn) + HEo) + H(PY) (9)
= LgrD, 40)

implying that Lrp > ERD-

On the other hand, let u* as in Eq. @, and let P} = Px:. Clearly, Px-,u* minimize Eq. @
Furthermore, the law T"* induced by u¥,

T* : dX; = u* (X[, t)dt + VedWr, X5 ~ Py, (41)

minimizes Dk, (T*||[W¢) = +LE [fol ||u*(Xt*,t)||2dt} over F(Po,P%), hence it is a so-
lution to mingez(p, pr) DxL(T||W€).  Thus, according to Léonard (2013, Prop. 2.3),
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DKL(T*“@HWE‘I@) = O,V{,C,i'. Let m* = ]P)XS’XT S H(]P)(),]P)ik) ‘We have from Eq @

X —X|? d
Dy (7*||7¢) = Ep» H2€‘| — H(r")+ H(Py) + 3 log(2me) (42)
= Dk (T*||W°) (43)
1 ! * * 2
= E [/0 Il (X7, )| dt] . (44)
Thus,
%2
Lrp < Eg- ||X2€X] — H(m*) + H(PY) + H(Po) (45)
1 ! * * 2 * d
=—FK / [l (X7, t)|1°dt| + H(PY) — = log(2me) (46)
26 0 2
= Lrp, 47

yielding Lrp = Lr D, which completes the proof. Note that arguments similar to Eq. —Eq.
yield that under A1, Lrp > —oc. O

C.2 PROOF OF THM.
Theorem C.2. (Thm.|3.2|in the Main text) Let p}(x) such that log p}(z) € C12([0,1] x R?) and
IVpi(x)| logpi(xz) — 0as ||x|| = oo forall t € [0,1], satisfying the BHE

0 1

apt(ﬂf) = _§€Am2pt(x)7 pO(l‘) ~ IPO; (48» BHE)

and let u* = €V log p; (z) where V log p;(x) is the Stein score function. Then, (u*, p;) is an optimal

pair in Eq. (15, var-TEQ)-Eq. (16, FPE) and the solution to Eq. admits the SDE
dX; = eVlog p} (X;)dt + /edW;. (49)

Proof. Let us define the Lagrangian
1 ! )
L{u,p,p,A) = 5 | dz | dtfulz,t)|["pe(z)
Rd 0
! 1
+/ dx/ dtu(x,t) (pt(x) + V- (up(z,t)) — QEAmpt(x))
Rd 0

~c [ dmmi(a)logn(@) + [ doA@)p(o) - dBo(@). (60
R4 Rd

where dPy denote the density function of Py.

We now apply the following integration by parts property of the divergence: For g : R? — R and
f: R4 = R? and a bounded domain D C R? with boundary 0D,

/D 9()V - f(x)dz = - /D Vo(z) - f(z)dz + ;{9 sl (@) e (51)

where V, V- are the gradient and divergence operators, respectively. If || g(x) f (z)|| decays as ||z| —
00, we can integrate over domains with large enough diameters, thus ignoring the boundary term and
practically integrate over R?. In our setting, p, iz are scalar functions, and w is a field.

Integrating by parts, we have

1 1
/0 dtp(e, Opr(x) = ula, Vpa () — i, 0)po(x) / dti(e, )pi() (52)

0
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" / dep(a, )V - (up(a, 1)) = — / depu - Vi, 1) + ]{ ppu - fida 53)
as well as . “
/R dep(, ) Al 1
_ /R (e, )9 - Vp(, 1) (54)
. /R deVu(et) - (e, ) + f 1(Vp(a, 1)) - ida (55)

= —/ daVu(z,t) - Vp(z,t) + fpw -nida + ]{ [1(Vp(x,t)) — pVu] -iida  (56)
]Rd

= / deVgep(z, t)p(x) — %pv,u -nida + j{,u(Vp(x,t)) - fida. (57)
R4

Provided that all boundary terms vanish as ||z|| — oo, and putting everything back together, we
obtain

1
L(u,p, p, \) = %/Rd dx/0 dt||u(z, t)||*pe(2)
- /0 dt /Rd dz {/jt(a:,t) + u(z,t) - Vu(z, t) + %eAmu(amt) pe(x)
+ [ ol 1) = elogm (@) (o)
Rd

= [ dslute.0) = Mamle) ~ [ deA@)aB(o) (58)
R4 Rd

Taking the first variation to zero, ‘;—ﬁ = 0 yields

u*(x,t) = Vu(x,t). (59)

From % = 0 we obtain (Hamilton—Jacobi equation),

. 1 1
() + §||Vu(x,t)\|2 + 5lgpp(a,t) =0, u(z,1) = e(1+log pi(x)). (60)
We also know that (Fokker—Planck equation)

pe(x) + V- (pe(x)Vu(z, t) — %eAmpt(x) = 0,pp(z) = dPy. (61)

We now substitute a solution of the form y(z,t) = €(1 + logp;(z)) into Eq. (60), and verify it
satisfies our equations:

. 1 1
Pe/pe + §€||th/17t||2 + §€V - (Vpe/pe)

. 1 1
= pu/pe + 5e||th/pt||2 + 5 ;(pzizi/pt — (Pai/11)?) (62)
. 1 5 1
= Pe/pe+ 5 (€ = ) Vpe/pell” + S eAaape /e = 0 (63)
where the last equality stems from Eq. (48, BHE). O
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D EXTENDED RESULTS AND TECHNICAL DETAILS

For the sake of completeness and in-depth reading, in this section we extend § [5] with full tech-
nical details and additional results. We also present detailed and full-sized figures for improved
accessibility.

D.1 GAUSSIAN SOURCES
Let Py = N (0,03). A solution to Eq. (17, BHE) is given by

1 -
r)= ——e¢ 2(eg—et) . (64)
Pi(z) 27 (02 — et)

The optimal controller is hence given by

€

u(z,t) = eViogp(z) = il
0

(65)

Let us denote a; = and r = U—% It is easy to see that under u(x,t), Xo and X; are jointly-

_€e
o'g —et
Gaussian where

dXt = —atXtdt + \ﬁth (66)
t
U X, = Xo+ ﬁ/ Ustaws, (67)
0
with .
Uy =e Joasds — 1 _pg. (68)
That is,
Xl = (1—T)X0+N1 (69)
1 2
0%, = e(1— 7”)2/ Uy 2ds = e(1 —1)> 20— — (1 — 7). (70)
0 O'O — €
where [V is a Gaussian noise, independent of X. We can now compute the distortion
E[(X1—X0)?] =r’05 +e(1—1) =€ — €05 > + 205> = ¢, (71)
and the correlation
PEE[XoXi]=(1—-r)o =05 —¢ (72)
and then also compute the MI by plugging
o2 =1—-r)oi+te(l—r)=08 —2c+ 0, +e— o, =0f —¢ (73)
into
T(Xo: X1) = —~log [ 1 P’ (74)
0,A1) — 2 0g 0_%0_(2)
1 (1- r)203)
= ——log (1 - (75)
2 (03 — €)o?
1 (1—r)?
=—=1 1—— 76
2 Og( 1—r > (76)
1 €
——— — . 77
> (3) 7
To summarize, we obtained
1 b1 1 1 €
D:AE[X—X }zf, R=T(Xp: X)) = —=log [ <), 78
5 (Xo 1) 5 (Xo; X1) QOg(og) (78)

19



Under review as a conference paper at ICLR 2026
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=1 > NERD [Lei et al.22]

) © WGD [Yang et al.23]
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0.0 0.1 0.2 0.3 0.4 0.5
IMSE

. — R2D2 (ours)

— NERD
— WGD

0.1 0.2 0.3 0.4
\MSE

Figure 7: The R(D) function of a 1-D Gaussian source. (top) Here, Xy ~ N (0, 1) and we applied
Alg.to € € [0.05,0.95]. Green markers indicate higher precision. We also plot the analytical result
(black line). (bottom) We compare our algorithm to NERD and WGD, where we observe that our
method is more accurate.

and recovered the well-known result
2

Reanss(D) = = log (;g) , 0<2D < o2, (79)

Note that the factor of 2 is due to our convention D = %M S E. This result can be easily generalized
for Gaussian vector sources and €’s smaller than the eigenvalues of the covariance matrix X. In this

case, the solution to Eq. (I7, BHE) is

pe(z) = N (0,2 — et]). (80)

In Fig.[/| we demonstrate the efficiency of Alg. [I]on the 1-D case. We compare our method with
NERD (Lei et all, [2022) WGD (Yang et al.,[2024), where we observe that R2D2 is clearly superior
to the existing methods in terms of estimation error, in both the high-rate and low-rate regimes.

D.2 MIXTURE OF GAUSSIANS

The latter Example can be easily extended to the case of a Gaussian mixture, where

(z m)
(1)
Z \/27‘(0’
As Eq. (I7,BHE)) is a linear equation the solutlon is now given by the superposition
(e—pi)?
Z T R [O,minof) . (82)
\2 O' — et :

20



Under review as a conference paper at ICLR 2026

3 A
B2 A R2D2.(ours)
<
= SLB
—2
o)
m .

0.000  0.002  0.004  0.006  0.008
MSE

—1.75

i)
<

=150

/N

9/1.25

o

+  R2D2.(ours)
SLB

0.002 0.004 0.006 0.008
IMSE

o ¢ =1.56E-02
& ' Po(ref.)
(analytic)
N
0.0 0 1

X

Figure 8: The R(D) function for a mixture of Gaussians. Here, X, ~ P is a mixture of Gaus-
sians where y1; = —.4,0,.4, 02 =4 x 1072,5 x 1072,6 x 1072, p; = £. (top) We apply Alg.
toe € [4x 107%,1.64 x 10~2] and compare the result with SLB. Green markers indicate higher
precision. (middle) A closer look on error bars (inter-quartile range) over 8 evaluations. (bottom)
Fore = 1.56 x 1072, we plot the reconstruction distribution P; which is the distribution of the dif-

fusion process’ outcome, X;. Observe that the empirical distribution matches the analytical result
(bold line).
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e =2.72E-02
coeees Py(ref)
(analytic)

analytic u Ug(x,T)

0.99 t=0.50 t=0.00

£

>

R2D2.(ours)
—— SLB

—_
(@)

R(P) [nats|

0.006  0.008  0.010  0.012Z  0.014
IMSE

Figure 9: The R(D) function for a mixture of Gaussians (second example). Here, X is a
mixture of Gaussians where p; = —.8,0,.8, 02 = 4 x 10725 x 1072,6 x 1072, p; = %
(top) The empirical reconstruction distribution for ¢ = 2.72 x 10~2 matches the analytical result.
(middle) Trained controller model ug (for € = 2.8 x 10~2), compared to analytical result at times
t = 0,0.5,0.99. (bottom) RD function estimated over 16 evaluation steps (medians and inter-
quartile ranges).
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The optimal controller u(z,t) = €V log p:(z) is derived accordingly. We illustrate this result in
Fig. ﬁ where N = 3 and y; = —.4,0,.4, 07 =4 x 10725 x 1072,6 x 1072, p; = % We apply
Alg.[l|to € € [4x 107%,1.64 x 10~2] and compare the estimated RD function with Shannon’s lower

bound (SLB)(Cover and Thomas, 2012; Berger, 2003)
1
H(Py) — 3 log(4meD), (83)

approximated here from M = 2! i.i.d. samples X™ ~ P, by

M
N —oF Z log po(X™). (34)
m=1

In practice, we estimated Eq. . ) for 8 independent trials, and used the median value for our ap-
proximation. For e = 1.56 x 107=. We further plot the reconstruction distribution P;, which is the
probability law of the diffusion process’ outcome. We observe that empirical distribution obtained
by Alg.[Tjmatches the closed-form result Eq. (82).

In the setting of Gaussian mixtures, we conducted an additional experiment in which p; = —.8,0, .8.
The results are given in Fig.[9] where we also plot the outcome of the deep controller model we train,
compared to the desired product.

D.3 NON-GAUSSIAN MIXTURE

Consider the source X drawn from the mixture po(x) = Zl L piC; sinet (2 -) where sinc(z) = =

sin@) ¢ ¢oo(R), and C; = 2%m,; are appropriate normalization factors. Recall that the characteris-
tic functlon in this case is

— 00

e} N
Po(w) = / po(t)e "t dt = > piC; ' mipo(maw), (85)
=1

where (with * being the convolution operation)

po(w) = (86)
1 1 1
— 5 |71 - Gl r w1 Gl )
1
= 56" ((w—4)*signw — 4 — 4(w — 2)* signw — 2 (88)
+6w’ signw — 4(2 + w)? sign 2 +w + (4 + w)® signd + w) , (89)

which vanishes outside {|w| < 4}. Now, for non-vanishing mix distributions and small enough €’s,
by Eq. (I9) we can write the solution to Eq. (I7, BHE)) as

1

4
pi(x) = —/ giwatgew “ dw— ZpZC’ ml/ Do(m;w) cos(wx)eée“’%dw. (90)

2

We numerically approximate

K-1

4 4k 4k 4k 2
= 2 oNese(3E)
E plC’ m; ,;0 Po(m;—) cos(—x)e ) 91)

Figure m demonstrates this result for N = 4,m; = [1, V2, e] (m;’s were chosen such that
po(z) > 0 everywhere on R) and p;, = %, where we numerically integrated Eq. with K =

4 x 32 x 10* in order to approximate the reconstruction distribution p; () for different values of e.
We emphasize that although this is a toy problem, to the best of our knowledge, no other technique
is known to tackle this case.
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Figure 10: Reconstruction distribution p; (x) of non-Gaussian mix source. In the (left) pane, we
approximate reconstruction distribution Eq. (90) by numerical integration. A closer look at different
points is provided in the (middle) and (right) panes.

D.4 EXAMPLE: CIFAR10 DATASET

We now demonstrate the efficiency of Alg. [I]on a realistic high-dimensional source. More specifi-
cally, as input to the Algorithm, we sample 4 x 4 grayscale image patches from the ‘Cifar10’ dataset
(Krizhevsky and Hintonl 2009). Pixel values are normalized to [0, 1]. Fig. demonstrates the ef-
ficiency of our method in solving this problem. In the upper pane, we present the RD function, as
estimated by R2D2 (Alg.[I). In the lower pane, we present images, drawn from the reconstruction
distribution IP; for different ¢’s.
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10 ) e R2D2 (ours)
o NERD [Lei et al.22]
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Figure 11: The R(D) function of Cifarl0 images. Here, X, is a random 4 x 4 patch from a

grayscale image. (top) The RD function, estimated by R2D2 (Alg. [I). (bottom) Patches drawn
from the reconstruction distribution X obtained for different €’s.
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E IMPLEMENTATION NOTES

E.1 GENERAL DETAILS
For all experiments, we used 2 fully-connected DNN models:
* The controller uy taking (X¢,t,¢) € R? x [0,1] X [€min, €max) as input and whose output
is in R?,
* The Z,, network for estimating the negentropy, taking (z,€) € R% X [€min, €max] and re-

turning a scalar value (see App. [B]for details).

Despite having different input and output layers, both models are of the same depth and hidden-
layer sizes. We used LeakyRelLU activation following each hidden layer. The two models were
trained in a 1 : 3-ratio of update steps, using the ADAM optimizer (Kingma, |2014)) with parameters
B = (.9,.999) and learning rate c.

At each evaluation step, we draw a batch of samples and evaluate R(D) according to Alg. |1} When-
ever there are more than one evaluation step or independent seeds, the presented (R, D)-values are
the medians over all steps, while error bars indicate the inter-quartile (25%-75%) range.

Codes for the NERD baseline (Lei et al, [2022) are provided by the authors at
https://github.com/leieric/NERD-RCC. Codes for the WGD baseline (Yang et al., [2024) are pro-
vided by the authors at https://github.com/yiboyang/wgd. Our codes will be publicly available upon
publication.

All experiments were implemented in PyTorch (Paszke, |2019) environment, and performed using a
NVIDIA RTX A6000 GPU.

E.2 SIMULATION PARAMETERS
Gaussian sources (Fig. 2)

* €min, €max = 0.025,0.975
* DNN hidden layers: 1

» Hidden layer size: 128

* Step size: Ay = 155

¢ Train steps: 25,000

¢ Batch size (train): M = 512
» Experiments: 64

¢ Batch size (evaluation): 1024

* Learning rate: o = le-3

Mixture of Gaussians (Fig. [d)

® €mins €max =4e‘4,1 .64e-2
* DNN hidden layers: 4

* Hidden layer size: 128

L
100

* Train steps: 3.7M

¢ Batch size (train): M = 256
 Evaluation steps: 8 (32 at high-precision)
» Batch size (evaluation): 1024

* Step size: Ay =

* Learning rate: a = Se-4
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Mixture of Gaussians #2 (Fig.[9)

€min, Emax = 1.2€-2,2.8e-2

DNN hidden layers: 4

Hidden layer size: 100

Step size: Ay = 155

Train steps: 855,000

Batch size (train): M = 256

Evaluation steps: 16 (64 at high-precision)
Batch size (evaluation): 1024

Learning rate: o = le-3

Cifar10 dataset (Fig.

€min; €max = 0.0005,0.026
DNN hidden layers: 3
Hidden layer size: 1024
Step size: Ay = 42

Train steps: 19,531

Batch size (train): M = 256
Evaluation steps: 4

Batch size (evaluation): 256
Learning rate: o = 2.5e-4
KNIFE parameter: K = 512
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