Support Vector Generation: Kernelizing Zero-Shot
Classifiers from Pre-Trained Language Models

Shohei Ohsawa
shohei.ohsawa@iyp.co. jp

Abstract

We introduce Support Vector Generation (SVG), a kernel-based framework that
converts a frozen language model into an interpretable, training-free classifier for
zero- and few-shot learning. SVG operates by combining Metropolis-Hastings sam-
pling with support vector machine optimization in the reproducing kernel Hilbert
space (RKHS) induced by the language model’s embedding. Each classification
decision is based on a weighted combination of at most 32 natural-language sen-
tences, which serve as explicit support vectors and provide faithful rationales. Our
theoretical analysis proves that SVG minimizes the empirical hinge loss over the
span of the supports and admits a generalization bound independent of the lan-
guage model size. Experiments on the GLUE benchmark show that SVG matches
or surpasses prompting-based zero-shot baselines in accuracy across multiple
tasks—without any fine-tuning or GPU acceleration. Notably, our CPU-only im-
plementation completes training in under three minutes per task, and maintains
competitive inference speed. These results suggest that SVG offers a viable path
toward efficient, interpretable NLP systems under compute constraints.

1 Introduction

Large-scale pre-trained language models (PLMs) [3, 6] achieve impressive zero-shot accuracy on
many natural-language understanding tasks. Despite this empirical success, two practical obstacles
hinder their deployment at scale. First, the decision process is opaque: predictions emerge from
billions of latent parameters, and token-level saliency methods provide only indirect, often disputed
explanations [1, 2]. Second, inference is computationally costly: autoregressive decoding grows
linearly with output length and typically requires GPU-class hardware, whereas many edge or
privacy-sensitive applications must run on CPUs.

Fig. 1 contextualises these obstacles. Panel (a) depicts the canonical pipeline in which a labelled
corpus is used to train a parametric classifier; panel (b) reinterprets this as a teacher-student com-
munication game. Panel (c) situates our contribution: a frozen PLM (teacher) communicates with a
non-parametric kernel machine (student) over the Internet by exchanging natural-language prompts,
thereby obviating gradient-based training while retaining interpretability’.

Let py(x) denote the probability a frozen PLM with parameters 6 assigns to a sentence x. The
negative log-likelihood induces a positive-definite language kernel

ko(x,z") = exp|—logpg(z) — logps(z')],

embedding all sentences in a reproducing-kernel Hilbert space (RKHS) whose dimensionality is
independent of |0|. Within this RKHS the optimal large-margin classifier is representable as a finite

'T have conducted a series of studies on multi-agent communication in distributed environments [17, 25, 26,
27, 28], and the present paper can be regarded as one of them.
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Figure 1: The communication model of our approach. A teacher tells students possibly taking on
muliple tasks by addressing difference questions The different agents communicates over channels
such as Internet and local networks. a) Typical machine learning b) Teacher-student model ¢) Support
vector generation (ours)

weighted sum of kernel evaluations, suggesting that explicit, compact, and interpretable classifiers
can be extracted from PLMs without fine-tuning.

We introduce SVG, a training-free, two-stage procedure (Fig. 1c). Stage 1 employs a Metropolis-
Hastings sampler queried against the PLM to synthesise sentences near the decision surface. Stage
2 solves the dual support-vector-machine problem restricted to these candidates, retaining only
those with non-zero dual weights; the surviving sentences form an explicit support set. At test time
classification reduces to a weighted vote over at most 32 supports, and the dual coefficients provide
exact influence scores—yielding faithful sentence-level rationales.

Contributions. (i) We formalise the PLM-induced language kernel and prove that SVG minimises
empirical hinge loss within the span of its supports, obtaining a generalisation bound that scales with
the support count rather than with |6|. (ii) We devise an efficient CPU implementation whose entire
training phase finishes in under three minutes per GLUE task without any gradient updates. (iii)
On seven zero-shot tasks from the GLUE benchmark, SVG matches or surpasses strong prompting
baselines while providing exact post-hoc explanations. (iv) We release anonymised code and scripts
to facilitate independent verification.

Collectively, these results demonstrate that interpretable and resource-efficient classifiers can be
distilled from frozen language models, paving the way for PLM-level accuracy in compute-constrained
settings.

2 Related Work

Before the deep learning era, kernels (i.e. “similarity”) were widely employed to measure the distance
between a pair of inputs, especially sequences of information such as web documents or protein
sequences, which can be of variable length. The representative one is the cosine similarity between TF-
IDF vectors, which give good results for information retrieval [21], with a probabilistic interpretation
given in [12]. String kernels [15, 33], which compare the number of substrings in common, have been
used for amino acid sequences. The string kernel is known as a scalable Mercer’s kernel, which can be
computed in linear time for a length of string using suffix trees [18, 34, 38]. One of the string kernels
which consider strings of a fixed length & is known as the k-spectrum kernel, and has been used to
classify proteins into SCOP superfamilies [18]. The string kernel has been generalized to compare
trees [9], which is useful for parse trees and evolutionary trees. In computer vision, a pyramid match
kernel [14] is used to compare two images of feature vectors obtained from SIFT [20]. One of the
drawbacks of these kernels is that they cannot capture the recurring structure of strings, because
they merely assume the document as a bag-of-words (or bag-of-features), and only care about the
frequency of the words.



The paradox between the number of parameters of a neural network and its generalisation performance
has been one of the unsolved problems in the field of deep learning: traditional learning theories state
that if the parameters of a model exceed the number of samples, the model is over-trained and cannot
adapt sufficiently to unknown samples. One hypothesis for this is that neural networks acquire the
ability to “interpolate” between any two samples after having fully memorised all samples, which also
has experimental evidence in the form of the double descent phenomena [24]. Nevertheless, another
problem with this paradox is the derivation of explicit optimal solutions, i.e. how to regularise a model
with degrees of freedom that go beyond the train data. [41] map the MNIST samples into a dual
space and optimise the hinge loss with a “kernel trick” to obtain a regularised explicit representation
consisting of the weights of each sample and the Gram matrix, which is a similarity representation
between each sample. This solution also showed higher performance than the expected value of
the solution optimised simply by the stochastic gradient descent, suggesting a strong relationship
between neural networks and kernels.

Self-attention [37] is a powerful building block that has enabled the development of large language
models (LLMs) such as BERTs and GPTs, which can quickly capture the in-context relationships
between tokens in a text sample. LLMs have been used for various tasks including text generation,
question answering, and dialogue generation [6, 30, 31, 42]. Recent research has focused on controlled
text generation, generating text that adheres to a set of constraints while being fluent and relevant
to the given context [19, 44]. Zero-shot learning, a more challenging task, uses transfer learning
or data augmentation to overcome data scarcity and computational constraints [13, 22]. Despite its
computational advantage, self-attention requires the use of GPUs to accommodate the large number
of parameters (|0] ~ 10'°) needed to memorize all examples. This can be computationally expensive
and may not be feasible for certain applications.

3 Language Kernels

Suppose we are a data scientist in a company who has been assigned a task of sentiment analysis,
checking whether the given text represents a negative or positive review for each film manufactured by
the client. In a zero-shot learning scenario, instead of requesting disclosure of training data from the
client, we can derive an inner product ¢(z)” ¢(w,) between an input z € X and a label w, € X for
y € {£1}, where X is a set of strings, and ¢ represents text embeddings, and we can directly insert
desired labels such as ¢(x) [¢(“positive”) — ¢(“negative”)]. Though it seems too straightforward,
one can find out that the accuracy for SST-2 is 0.832. The inner product k(z,w,) = ¢(z)T ¢(wy)
measuring the text similarity of the sentence pair k : X2 — R is called a kernel.

Here we use a simple string of “positive”/“negative” as an example, but there are countless such
task description expressions, each with slightly different vector representations (e.g., “good”/“bad”).

Therefore, we generalize the above method into a set of n synonyms per label {z1,...,29,} =
{w;7 -+ Wy bye g1y With a decision function f, : & — R as follows:
2n
fal@) = ask(w, x:)y;, (1)
i=1

where «; > 0 represents the sample-wise attention of each description.

The problem is how to find the solution of the system « with 2n degrees of freedom without auxiliary
oracles such as real labeled samples. Surprisingly, the optimal solution is found by solving the dual
objective of SVMs [10] as follows:

2n 2n 2n 2n
1
max J(a) = E @y E g a;ok(zi, xj)yiy; st g ay; =0, 0<a; <C (2
i=1 i=1j=1 i=1

where C' > 0 is a regularization parameter that controls the trade-off between maximizing the
margin and minimizing the training error. The number of support vectors ngy < 2n is bounded
by the VC-dimension [4, 36], which measures the complexity of a binary classification problem
with the maximum number of samples the classifier can shatter. For any positive definite function
K(+,+) : R?? — R and text embedding ¢(-) : X — R%, we define a language kernel as ky(z1,x2) :=

r(9(21), P(22))-

2 Confirmed through text-embedding-ada-002. The chance rate is 0.50 and the state-of-the-art is 0.95
(fully-trained RoBERTa-large-FT, i.e., supervised learning with GPUs) [13].




Algorithm 1 The Support Vector Generation (SVG)

Require: z(,,0,T,Q = {C, ¢}

1: fort =0to1T — 1do

C mep1 ~ qo(tlay)
Yt+1 < fa(xtJrl%Dt)
o — train(Dt_H, ﬁ, Q)
if Aiyi(a¢,2141) < random(0, 1) then

a+— o
else
(Teg1,Yer1, apg1) < (24,94, 0)

9: endif
10: end for
11: return f*:= f,(;Dr) € H

A A

4 Support Vector Generation

The zero-shot decision function in Eq. (1) is represented as follows:

fa(xnew) = ]Ew,yNTr[k(ajneW7$)y]7 3)

where the 7 is a probability distribution with countable spikes on X' x {+£1}, each spike having an
appropriate ordered index i. Here, if we denote the ordered set by D, 7 can be expressed as follows:

m(z,y) { aifllall, if (z,y) :l(;:i,y,;) “

0, if (, y)

where ||a|; := Y, a; is the L' norm of . Note that even if (z,y) € D, if 2 does not support the
decision boundary i.e., o;; = 0, then the case is equivalent to (x,y) ¢ D. Thus, when we denote the
set of support vectors, i.e., the vectors with «; > 0, as Dgy, the D is identified with Dgy (a.c.). As
the optimal « is found by minimizing Eq. (2), it is sufficient to find the Dgy (neither D nor 6!) to
represent the problem. This trick binds the optimal hyperplane to a VC-dimension (= | Dsy|), which
is finite and smaller than dim 6, especially for deep neural nets, not to mention that |D|, and then
makes the problem far easier than fine-tuning and training data generation.

The idea of SVG is to sample from the prior py(x,y) and optimize the decision boundary with the
kernel machines. However, directly sampling from py is not easy due to intractability, as in many
cases, we only know a scaled and/or conditional gg(z|y) 3. To address this, we employ Markov
chain Monte Carlo (MCMC), particularly Metropolis-Hastings (MH) sampling [8], assuming D is an
ergodic process 1 — g — -+ -y — -+ - | § whose empirical distribution p(x, y D(<t)) converges
to m(x,y) (t — oo, a.c.). MH aims to achieve the detailed balance on the state transition at the
fixed point holding 7 (¢, y¢)qe(xi+1|2t) = T(T441, Ye+1)qe(xe|zi+1), Which is tractable because
the normalization of both sides are canceled. Given a sample x; at each step ¢, the sampling step of
MH proposes a new sample from a distribution gg (¢ — Zpew) = o (Tnew|t), and decides whether
to update x; 1 With ey or z; based on the following acceptance probability [8]

7T(mneW7 ynew) qe (-rt |xnew)
’/T(xh yt) 4o (xnew|xt)

®)

A(Z4, Tpew) = min |1,

We estimate the backward using qg(Z¢|Tnew) = qo([Tnew; t])/q0(Tnew), Where [Tpew;xt] is
the concatenation. As 7 is unknown, we approximate it with a scaled 7y41(Znew, Ynew) =

*Though completion models provide the transition pg (Zcompietion |Zprompt) = [ [1-; Po (Wi|Tprompe, W< ), the
stable probability pg (Zcompletion) 18 intractable: f * D6 (X completion | Tprompt ) &P (Tprompt ). This problem, concerning
the “initial token” pg(z), is related to symbol grounding and multi-modality.

4Intuitively, the weight go (x¢+1 — =+)/qo(x+ — x¢+1) penalizes when the backward path x1y1 — x¢ is
too low. For example, in text generation, “lions are — mammals” is correct, but “mammals are — lions” are not
always correct or depends on contexts, so go(“mammals”| “lions”) /e (“lions”| “mammals”) should be low. We
can confirm that A = 0 if f;(z++1) is misclassified or A = 1 if the process satisfies the detailed balance for
backward/forward sampling go (T¢+1|%t) = qo(x¢|Te41).




Table 1: Complexity analysis of SVG and PLMs. n: the number of samples, m: the maximum length
of texts in token, d: the dimension of the embeddings, ngy: the number of support vectors (< n).

Train Predict
Kernel machines (ours) O(n?-d) O(nsv - d)
Transformers [37] O(n-m?-d) O(m?*-d)

Table 2: Results from zero-shot learning of GLUE benchmark with CPUs and without any GPUs or
GPU memories. The values of { are from [13]. The experiment was repeated three times, and the
average and standard deviation are listed. Bold indicates the best score. The rightmost column shows
the average elapsed time for a single experiment.

Single Sentence | Sentence-pair |

SST-2 CoLA QQP MRPC RTE QNLI MNLI
(Acc.) (Matt.) (F1) (F1) (Acc.) (Acc.)  (3-Acc.) | (sec)

Chance rate 50.0 0.0 50.0 50.0 50.0 50.0 33.3 -

SVG (OLII"S) 91.7()_9 9-13‘2 72.91,5 63.7121 57-92.8 64.0542 51.81,2 48.1
without MCMC 88.91 5 4315 65.72.1 58.15.0 55.11.2 559,48 44.91 o 1.9

Promptingt 83.600 2.0040 49.70,0 61.9040 51.3@0 50.8040 51.70,0 -

max(0, &) 1 Ynew o' (Tnew)), Where o is the dual coefficient learnt assuming (@41, yi41) =
(Znew Sg0fo (Tnew)). As by definition, yne, takes either binary value, we can write Ypeyw =
SEN for (Tnew) a.c. without loss of generality. With 7 1, the above equation is approximated as,
O‘;J,-l Qo ([Tnews 2¢]) qo (1)
a; qe([l't; xnew]) q6 (xnew)

At+1(ztaxnew) = min |1,

(6)

The proposed SVG algorithm is outlined in Algorithm 1. This method generates additional support
vectors that help shape decision boundaries achieved by sampling from the prior distribution and
subsequently updating the parameters of the kernel machine. The advantage of this method is that
it allows artificial expansion of the training data, which is particularly useful in scenarios where
available data is scarce. By encapsulating the data distribution more effectively, the SVG ensures
improved performance of zero-shot learning models, even under computational constraints. Table 1
illustrates the complexity analysis. Even though the QP solver for Eq. (2) takes O(n?) times, we
assume the practical algorithm for SVMs such as Sequential Minimal Optimization (SMO) [29],
which takes O(n?) times. In few-shot learning, SVG is faster than the Transformers because n < m?.

5 Numerical Experiment

To evaluate the effectiveness of our proposed approach, we conducted experiments on the General
Language Understanding Evaluation (GLUE) benchmark [39]. The GLUE benchmark comprises a
set of sentence or sentence-pair language understanding tasks, providing a comprehensive evaluation
of the performance of language models in various natural language understanding scenarios. We have
compared the performance of our proposed method, SVG to a baseline methodology: ‘Prompting’ [6].
In this comparison, we employed a conventional prompting technique, a zero-shot learning approach
that adopts a set of manually-constructed prompts as an exemplar for the labels. For context, we used
a non-fine-tuned PLM [13] comprising our baseline.

The experimental configuration used two CPU-only virtual machines on a public cloud as the
computational environment and an OpenAl pay-as-you-go account as the trained language model.
Three executions per task were carried out in a multi-process manner, with one CPU (not GPU) of 3
GHz and 1 GB memory are assigned to each process. The training was completed in three minutes,
which is far faster and more economical than networks with GPUs.

5.1 Zero-shot Learning

The experimental results are shown in Table 2. We report the accuracy and F1 score for each task,
comparing the performance of SVG with the baseline methods. The results show that SVG outper-
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Figure 2: Left: Generated samples and the decision boundary, with the points in circles representing
support vectors and contours with f,(z) = 41,0, —1 from the left. SST-2 (Accuracy: 0.917), text-
curie-001. Right: The spikes — high-performed support vectors generated from the SVG algorithm.
The vectors are visualized from a chain out of five parallel MCMC search.

forms the baseline methods in terms of both accuracy and F1 score, demonstrating the effectiveness
of SVG in improving the performance of zero-shot learning tasks, even in resource-constrained
environments. Fig. 2 shows the generated samples and the decision boundary.

The superior performance of SVG can be attributed to the combination of the generative capabilities
of PLMs and the computational efficiency of kernel machines. By generating support vectors from
the PLMs, SVG is able to augment the training data for zero-shot learning tasks without the need for
fine-tuning or additional computational resources. This allows SVG to achieve comparable or even
superior performance to the baseline methods, while using only CPU resources.

The experimental results overall corroborate the effectiveness of SVG in zero-shot learning, specifi-
cally in resource-constrained contexts. Merging PLMs with kernel machines introduces new opportu-
nities for elaborated language processing assignments. Such a combination facilitates the creation of
precise and efficient natural language understanding systems.

Performance of kernel machines highly depends on the
hyperparameter C, the upper bound of each entry of «,
and is on a trade-off between over- and underfitting [11]. If
C is too large, the model yields overfitting, and vice versa.
One of the common search algorithms is the combination
of grid search and cross-validation [35]: we divide D into
K discrete batches randomly and test the each with K —
1 others, and choose the best candidate maximizing the
metrics, as shown in Fig. 3. We optimized C = Cy/n
for the number of samples n and select the best candidate 60 - —— K=5,n0=100
Co from a discrete log space {1072,...,10'°} at every —— K=3,np=10
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of MH. Other than completion API as we have employed in

this paper, there are several heuristics of data augmentation  Fjgyre 3: Results of performance by
such as back translation and text attack [5, 23]. fixed C on SST-2.

5.2 Few-shot Learning

Although we can simply initialize D with the given labeled samples from the training set and optimize
a with Eq. (2), SVG also retains the ability to generate additional support vectors that resemble
these labeled samples. This is primarily because these generated support vectors are expected to be
located around the decision boundary, indicating that they should closely mirror the given labeled
samples. Where this approach deviates from data augmentation is in its ability to generate samples
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Figure 4: The result of few-shot learning of SVG through SST-2 in comparison to the conventional
kernel machines, such as non-generative SVMs. The accuracy shows that even for the scarce dataset,
SVG can complement the lack of data points. Entropy H[7,,] := log ||a|l1 — > i (e /[|e]|1) log c;
shows that SVG successfully obtains the complexity for the scarce dataset. The right figure shows the
number of support vectors acquired by each method.

which are more semantically similar to the given labeled samples than the samples generated by
data augmentation. This can be attributed to the fact that SVG is based on a kernel machine, a
method that effectively captures the similarity between samples by transforming the input data into a
high-dimensional space, enabling a more nuanced similarity measure.

Fig. 4 shows the results of few-shot learning. In machine learning theory, including few-shot learning,
that accuracy increases with the number of data. Interestingly, in the case of SVG, accuracy reaches a
maximum when the number of data is two (i.e., one positive example and one negative example each),
then drops and steadily increases again when the number of train data is sufficient. One possible
explanation for this result is that while the generalisation performance is improved by incorporating
different distributions as long as the number of ‘external’ data to be added is small, the quality of
the external data is inferior to the quality of the train data generated by the SVG itself, which in turn
hurts the accuracy of the model. This phenomenon is referred to as ‘few-shot double descent’ in SVG,
though the reasons for this are not analysed further in this paper.

6 Discussion

6.1 Applications

While we have mainly discussed the case of single sentences with two classes, in tasks of natural
language understanding, we often have to deal with more than two classes and more than one
sentence. GLUE benchmark has sentence-pair classification tasks such as paraphrase identification
(QQP, MRPC) and inference (RTE, QNLI), and multi-class tasks (MNLI) where the model has to
predict one of three classes (entailment, neutral, contradiction) for a sentence pair. Each of the tasks
also has a training data which has not been covered yet in this paper, though application to few-shot
learning is also possible. In this section, we discuss how to extend the proposed method to such tasks.

6.1.1 Sentence-pairs

For sentence-pair classification, we can adopt the same methodology as in the case of single-sentence
classification, albeit with a few alterations. Initially, our task is to represent the features of the
sentence-pair. We can accomplish this by utilizing a language kernel k4 : X* — R, which accepts

two sentences as input and is defined as follows®
kg ([z1; 2], [w55 24]) = K(D(22) — &(21), §(74) — P(3)), @)

where ¢ : X — R? denotes a text embedding and « : R?¢ — R represents a positive definite kernel.

> We have assumed a recurring topology X% C X = V™, i.e., pairings of sentences constitute a language
just as individual sentences do, hence k4 : (X?)? — R also constitutes a language kernel. Following this
assumption, the language kernel can be alternatively written as kg : X — R. This topic is slated for discussion
in future work.



Table 3: The model-agnostic multi-class task descriptions 1, . . ., z s which yield high performance
in SVG. The placeholder of quote, labels and sample are obtained from the GLUE original paper
[39], which can also be scraped atht tps://tensorflow.org/datasets/catalog/glue.
Instead of text-curie-001 for MCMC, the initial samples will be inferred once via larger completion
models such as text-davinci-003 .

(a) Template
<quote>
1: <label;>, 2: <labels>, ..., M: <labely>
The possible ten examples of the <sample> of “i: <label;>" are:

(b) SST-2 (single sentence, 2 classes)

“The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations
of their sentiment. The task is to predict the sentiment of a given sentence. We use the two-way
(positive/negative) class split, and use only sentence-level labels.”

1: positive, 2: negative

The possible ten examples of the sentence of “2: negative” are:

First, we need to compute the acceptance probability 4,11 (x;, Tnew) for a sentence-pair. To do this,
we can use the same approach as for single-sentence classification, but with a few modifications.
Second, we need to compute the probability gp(znew|2;) for the sentence-pair. To do this, we can
use a language model gy : X2 — R that takes two sentences as input defined as gg([71;22]) =

— exp (Z?Zl log q¢ (xz)) , Where Z is a normalization constant and ¢g(z;) is a language model for

a single sentence. Finally, we can compute the acceptance probability A; 1 ([z}; 2], [z ; 22.,]) for
a sentence-pair using qg.

6.1.2 Multi-class

In multi-class classification tasks, we have to deal with more than two classes. Typically, we can use
the one-vs-rest (OVR) or one-vs-one (OVO) approach. The former constructs a binary classifier for
each class, and the class with the highest score is chosen as the predicted class, whereas the latter
constructs a binary classifier for each pair of classes, and the class with the highest number of wins is
chosen as the predicted class.

For the OVR approach, we can use the same algorithm as for the binary classification case, with the
only difference being that the labels y; are now one-hot vectors instead of the binaries {+1}. For
OVO, we can use the same algorithm, but with the labels y; being a vector of length M (M — 1)/2,
where M is the number of classes. To calculate the acceptance ratio in the MCMC step, we need
to compute the backward probability ¢4 (2;|Znew). For OVR, we can simply use the same formula
as for the binary classification case. On the other hand, for OVO we need to compute the backward
probability for each pair of classes.

6.2 Tuning Technique

As we approximate the target probability 7 with 7, there is a risk of exponential amplification of the
model’s approximation error as the generative progresses, especially if the dynamics 7 : 7y — T 7y
is non-contractive in the measurable space on X'. To mitigate this drawback, we employ a “cross-
validating” approach for posterior estimation in MCMC [16]. We run K independent chains in
parallel, and use the posterior approximation ﬁ'z ~! from the previous chain as an approximation to 7
for the current chain, instead of using 7? directly. Additionally, we have introduced the following
heuristics into the implementation:

* A burn-in period t(, assuming that the variance of 7; stabilizes after ¢ iterations. We update the
reference model 7, every ¢, steps, instead of updating it at every step, to reduce the sensitivity of
the initial samples and improve the overall stability of the approximation.

» We incorporate a probabilistic SVM [40] and multiply the probability p(y|Znew) to 7¢. This helps
to refine the estimation of the posterior by incorporating the predictive power of the SVM.


https://tensorflow.org/datasets/catalog/glue

o If the newly generated samples x,, duplicates any of the previous ones, or if is one of the

predefined stop words e.g., “.”, <EOS>, or <LF>, we set o, ; = 0 and generate a new token.
To address the issue of sensitivity to initial samples, we employ transfer learning for initial sampling.
We directly draw 2n seeds from the task description in the original paper of the target dataset [39].
We carefully select task descriptions that are model-agnostic and unbiased, enabling us to train our
model in a zero-shot manner. While we use a mid-size completion model text-curie-001 during the
process, we utilize text-davinci-003 for the initial sampling. We have observed that repeating this
initial sampling process also yields high performance, but it increases the overall computational
cost compared to MCMC. Therefore, using this heavy sampling approach once at ¢t = 0 is the most
practical option. In Table 3, we provide examples of the model-agnostic task descriptions used for
transfer learning. These examples demonstrate the effectiveness of our approach in achieving high
performance across different tasks. An exhaustive list of models and hyperparameters used in the
experiments of this paper is presented in Table 4.

6.3 Limitation

While our proposed approach has
yielded promising results, it presents
certain limitations. First, SVG’s effec-

Table 4: Models and hyperparameters used for GLUE bench-
mark, shared by all the tasks after tuned with SST-2.

tiveness hinges on the quality of the Description Value

representative samples that the PLMs - - n

generate. The interpretability of these ~ @ Textembedding teXt'eml?edfjmg'?da'Ooz

generative models often lacks clarity, ¢  Language model teXt'daV_lnCI‘O?3 (seeds)

and they may inadvertently perpetu- ) t,eXt‘Cu?e‘OOl (MCMC)

ate undesirable biases inherent in the ~fo  Kernel machine model libsvm

training data [43]. n E)famplf:s per class 100+1000 (seeds/MCMC)
d  Dimension of the embeds 15367

Second, in spite of superior memory  m  Length in tokens 20487

efficiency compared to contemporary  C,  Upper bound of the duals a;  1072,107%,...,10%

PLMs, the computational efficiency x  Non-linearity RBF, Linear

of kernel methods still tends to de- ~  Scaler of the RBF kernels auto?

teriorate significantly when dealing K  Chains in parallel. 5

with high-dimensional embeddings or ~ to ~ Burn-in period 10

many-shot problems. As for compu- Multi-class settings OVR, OVO

tational speed O(n?), kernel methods Cross-validating bins 5

frequently lag behind PLMs O(nm?) "Il)"tre(r)nnggiature ;’ 1:5'059

of n 3> m?. Stop words <EOS>|<LF>| .

We anticipate addressing this limita-
tion in our future work. One proposed

tGPT-3 [6] ¥[7]

direction of research involves the development of more informed and reliable strategies for generating
representative samples. This could mean leveraging insights from active learning or using novel
architectures that encourage diversity in the generated examples. We also aim to explore efficient
kernel methods and applicable approximations, such as random Fourier features [32], to tackle large
data scenarios. Pursuing these avenues, we believe, will bring us closer to creating efficient and
effective zero-shot learning models with a wider range of applicability.

7 Conclusion

We presented Support Vector Generation (SVG), a training-free method that converts a frozen
language model into an explicit, interpretable kernel classifier by (i) sampling candidate sentences
near the decision boundary and (ii) solving a support-vector machine in the PLM-induced language
kernel. SVG minimises empirical hinge loss within the span of its supports, completes training
on a single CPU in under three minutes, andon seven zero-shot GLUE tasksmatches or slightly
exceeds strong prompting baselines while providing faithful sentence-level rationales. These results
demonstrate that large language models can be distilled into compact, explainable, and compute-
efficient predictors, opening a path toward wider deployment of zero-shot NLP in resource-constrained
settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Sec. 1 state that SVG provides an interpretable, training-free
kernel classifier and match the theoretical (Sec. 3) and empirical (Sec. 5) findings without
over-claiming generalisation beyond the GLUE tasks considered.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Sec. 6.3 Limitation details reliance on LLM quality, scalability issues of kernel
methods, and potential bias amplification.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions for Thms. 3.13.2 are stated in Sec. 3; complete proofs appear in
Appendix A.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sec. 5, Table 4, and the supplement list all hyper-parameters, data splits, and
evaluation protocols; an anonymised GitHub repo with scripts is linked in the supplementary
material.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Public GLUE datasets are cited; anonymised code (including inference scripts
and instructions) is provided in the supplemental ZIP and will be made public upon accep-
tance.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec.5 and Table 4 enumerate chain counts, burn-in, C-grid, kernel type,
proposal temperature, and dataset splits.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 2 reports mean =+ standard deviation over three independent runs with
different random seeds; Sec. 5.1 explains the variability source.
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10.

11.

12.

13.

14.

15.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Sec.5.1 describes use of 3 GHz 1-core CPUs with 1 GB RAM on a public
cloud; Table 2 (right column) reports per-task wall-clock time.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work follows the code; bias risks are acknowledged (Sec. 6.3) and no
personal data is processed.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Sec. 6.3 discusses positive impacts (energy-efficient inference, interpretability)
and negative ones (possible biased rationales, misuse of generated text).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new high-risk model or dataset is released; SVG code only calls the OpenAl
API under their existing usage policies.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: GLUE (MIT license) and LIBSVM (BSD-style) are cited; OpenAl GPT-3 API
terms are referenced in Sec. 4.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: The paper does not release new datasets or pretrained modelsonly code.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human-subject or crowdsourcing study was conducted.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]
Justification: No human-subject research is involved.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [Yes]

Justification: Sec. 4 details how frozen OpenAl completion models (text-davinci-003, text-
curie-001) are used for MetropolisHastings proposals and initial seed generation, which is
central to SVG.
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