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ABSTRACT

Hand motion plays a central role in human interaction, yet modeling realistic 4D
hand motion (i.e., 3D hand pose sequences over time) remains challenging. Re-
search in this area is typically divided into two tasks: (1) Estimation approaches
reconstruct precise motion from visual observations, but often fail under hand oc-
clusion or absence; (2) Generation approaches focus on synthesizing hand poses
by exploiting generative priors under multi-modal structured inputs and infilling
motion from incomplete sequences. However, this separation not only limits the
effective use of heterogeneous condition signals that frequently arise in practice,
but also prevents knowledge transfer between the two tasks. We present UniHand,
a unified diffusion-based framework that formulates both estimation and genera-
tion as conditional motion synthesis. UniHand integrates heterogeneous inputs
by embedding structured signals into a shared latent space through a joint vari-
ational autoencoder, which aligns conditions such as MANO parameters and 2D
skeletons. Visual observations are encoded with a frozen vision backbone, while
a dedicated hand perceptron extracts hand-specific cues directly from image fea-
tures, removing the need for complex detection and cropping pipelines. A latent
diffusion model then synthesizes consistent motion sequences from these diverse
conditions. Extensive experiments across multiple benchmarks demonstrate that
UniHand delivers robust and accurate hand motion modeling, maintaining perfor-
mance under severe occlusions and temporally incomplete inputs.

1 INTRODUCTION

The human hand plays a central role in our interactions with the world. It not only allows us to
manipulate tools with dexterity but also to communicate through gestures. Given this importance,
modeling realistic 4D hand motion (i.e., 3D hand pose sequences over time) has emerged as an active
research problem in computer vision and graphics. Progress in this field is crucial for applications
such as virtual reality (VR), digital avatars, and robotics (Qi et al., 2024; Zuo et al., 2025).

Existing research in 4D hand modeling is predominantly divided into two distinct tasks, each typ-
ically addressed by specialized models. Estimation approaches aim to reconstruct precise motion
directly from visual observations, such as monocular or multi-view videos. These methods, however,
often struggle with hand occlusions (Duran et al., 2024), temporally incomplete frames (Pavlakos
et al., 2024; Dong et al., 2024), and tasks requiring flexible editing. Generation approaches, on
the other hand, focus on synthesizing hand poses by exploiting generative priors under multi-modal
structured inputs, such as 2D and 3D skeletons (Wan et al., 2017; Yang et al., 2019; Li et al., 2024),
and infilling motions from incomplete sequences (Zhang et al., 2025; Yu et al., 2025).

This separation between estimation and generation not only restricts the effective use of heteroge-
neous condition signals that commonly arise in real-world scenarios, but also prevents the transfer
of knowledge and motion priors across the two tasks. When accurate reconstruction is required, rich
visual observations, such as images or videos, are indispensable. In contrast, for motion synthesis or
editing, structured conditions such as 2D skeleton keypoints and MANO parameters are often more
suitable due to their ease of manipulation. In practice, visual inputs may be affected by hand occlu-
sions or absence, while other condition signals can exhibit temporal discontinuities. These diverse
and potentially incomplete conditions underscore the need for a unified framework that can flexibly
integrate heterogeneous conditions and information.
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Recent research has highlighted the potential synergy between estimation and generation. Some
studies adopt multi-stage frameworks that exploit generative priors to refine or complete the hand
pose sequences detected by estimation methods (Zhang et al., 2025; Yu et al., 2025). Other works
explore unified generative approaches that support multiple modalities of input, thereby bridging the
two tasks within a single formulation (Li et al., 2024). Building on these insights, we further extend
this direction by exploring multimodal alignment and flexible condition integration, and introduce
UniHand, a unified diffusion-based framework for 4D hand motion modeling under heterogeneous
conditions. For structured signals such as MANO parameters and 2D skeleton keypoints, UniHand
employs a joint variational autoencoder to align multiple encoders within a shared latent space,
enabling all structured signals to be fused during the diffusion process. For visual observations,
which are common and information-rich, particularly in estimation scenarios, UniHand uses a frozen
vision backbone to extract features from full-size frames and a hand perceptron module to attend to
hand-relevant tokens. A latent diffusion model then integrates multiple conditions to generate the
final motion sequence. Motion is generated in a canonical camera space defined by the first frame,
ensuring consistency under both static and dynamic cameras without relying on extrinsic calibration.
By integrating diverse structured and visual conditions, UniHand unifies accurate estimation and
flexible generation within a single framework. Our contributions can be summarized as follows:

• We propose UniHand, the first unified model that formulates both 4D hand motion estimation
and generation as conditional motion synthesis. Our diffusion-based model flexibly integrates
heterogeneous conditions.

• We design a joint variational autoencoder that aligns structured signals into a shared latent space,
and introduce a hand perceptron module that directly attends to hand-related features from dense
tokens extracted from full-size frames.

• We conduct extensive experiments on multiple benchmarks and demonstrate that UniHand
achieves robust and accurate motion generation, particularly under challenging scenarios such
as severe hand occlusions and temporally incomplete signals.

2 RELATED WORKS

2.1 HAND MOTION ESTIMATION

We first review research on hand pose estimation, where methods take visual observations as in-
put to reconstruct hand pose or motion. Early works relied on depth cameras to reconstruct 3D
hands (Ge et al., 2016; Oikonomidis et al., 2011). With the introduction of the MANO paramet-
ric hand model (Romero et al., 2017b), Boukhayma et al. (2019) proposed the first learning-based
approach that directly regresses MANO parameters from RGB inputs, inspiring a line of follow-up
studies (Baek et al., 2019; Zhang et al., 2019). Other works adopt a non-parametric strategy and
directly predict the 3D mesh vertices of the MANO model (Kulon et al., 2019; Ge et al., 2019;
Choi et al., 2020; Lin et al., 2021b). Recent studies have emphasized the importance of scaling both
data and model capacity. HaMeR (Pavlakos et al., 2024) investigates this direction by combining
large-scale training data with large Vision Transformers (ViT), while WiLoR (Potamias et al., 2025)
introduces a data-driven pipeline and refinement strategy for efficient multi-hand reconstruction.

While most approaches focus on image-based estimation, they can also be directly applied to videos.
However, this often ignores the temporal information contained in videos and struggles with chal-
lenges such as occlusions and fast motion. Deformer (Fu et al., 2023) implicitly reasons about the
relationship between hand parts within the same image and across timesteps. HMP (Duran et al.,
2024) exploits motion priors to enable video-based hand motion estimation through latent optimiza-
tion. HaWoR (Zhang et al., 2025) reconstructs hand motion by decoupling hand pose reconstruction
in camera space from camera trajectory estimation in the world frame. Dyn-HaMR (Yu et al., 2025)
extends this idea with a multi-stage, multi-objective optimization pipeline that relies on external
hand pose tracking and SLAM methods to model interacting hands under dynamic cameras. How-
ever, existing methods generally rely on multi-stage detection-based pipelines and cannot flexibly
incorporate diverse types of conditions. In this work, we instead view hand pose estimation as a
special case of conditional motion synthesis, which enables a unified hand motion generation.
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2.2 HAND MOTION GENERATION

Human motion generation has been widely studied under diverse condition signals, including
text (Tevet et al., 2023b; Jin et al., 2023), actions (Guo et al., 2020), speech (Alexanderson et al.,
2023), music (Tseng et al., 2023), and scene (Hassan et al., 2021; Yi et al., 2024). In contrast,
hand motion has not typically been conditioned on such a broad range of modalities. Most existing
approaches focus on hand-object interactions (HOI), where object geometry serves as the primary
prior for synthesizing plausible grasps and interaction sequences. For example, GraspDiff (Zuo
et al., 2024) leverages diffusion models to directly generate grasps conditioned on 3D object mod-
els, while MGD (Cao et al., 2024) learns a joint prior across heterogeneous hand–object datasets
for improved generalization. Sequential extension such as Text2HOI (Cha et al., 2024) incorporates
text guidance by decomposing the task into contact and motion generation. Despite these advances,
the reliance on object-specific priors and task-specific pipelines limits their applicability to broader
hand motion modeling.

A more general direction explores probabilistic models to learn the distribution of feasible hand
poses and motions. Unconditional priors aim to capture the distribution p(x) of plausible hand poses
without external inputs. Early approaches relied on biomechanical constraints, manually defining
joint degrees of freedom and rotation ranges (Yang et al., 2021; Spurr et al., 2020). Later studies
adopted data-driven strategies, such as applying principal component analysis (PCA) to MANO pa-
rameters (Romero et al., 2017a) or training variational autoencoders that map hand poses into Gaus-
sian latent spaces (Zuo et al., 2023). Conditional priors instead model the distribution p(x|c) under
external conditions such as RGB images, depth maps, or 2D skeletons. Typical designs employ
VAEs constructed in different domains and align their latent spaces to learn feasible hand configura-
tions across modalities (Wan et al., 2017; Yang et al., 2019). More advanced formulations leverage
score-based models to estimate the pose distribution (Ci et al., 2023). However, these approaches
remain restricted to single-condition settings and struggle with temporally incomplete condition
signals. In contrast, our framework employs a diffusion-based generative model that unifies diverse
signals in a shared latent space and leverages vision inputs to capture hand-related features, enabling
accurate 4D hand motion modeling under multimodal conditions.

3 UNIFIED MODEL FOR HAND MOTION MODELING

3.1 PRELIMINARIES

Problem Definition. UniHand formulates hand motion estimation and generation within a unified
framework of conditional hand motion generation. Specifically, it synthesizes a hand motion se-
quence x = {xi}Ni=1 of length N based on a set of condition signals C and a set of corresponding
condition masks M . The condition set C includes: video frames cvision ∈ RN×H×W×3, 2D skele-
ton keypoints c2D ∈ RN×21×2, 3D skeleton keypoints c3D ∈ RN×21×3, and optionally hand pose
parameters x̃. Each condition c ∈ C is paired with a binary mask m ∈ RN , where mi = 1 if the
condition signal is available at frame i, and mi = 0 otherwise. This formulation allows the model
to flexibly handle varying combinations of condition signals across frames.

Hand Pose and Other Conditions Representation. The 3D hand representation xi is parame-
terized by the MANO model (Romero et al., 2017b), and includes hand pose Θi ∈ R15×3, shape
βi ∈ R10, along with global orientation Φi ∈ R3 and root translation Γi ∈ R3. For 3D hand estima-
tion, hand poses are typically represented in the camera coordinate space to ensure better alignment
with image features. However, for videos with dynamic camera perspectives, the hand motion se-
quence x becomes discontinuous due to changing coordinate systems. While the world coordinate
system can alleviate this issue, it does not facilitate alignment with visual observations. To address
this, we introduce a canonical coordinate system, defined as the camera space of the first frame.
This decouples the hand motion from the dynamic camera, providing a consistent representation
across the entire sequence, while remaining applicable to both static and dynamic camera scenar-
ios. Consequently, the 3D keypoint conditions are transformed into the canonical space to ensure
consistency. More details are provided in Appendix A.1.

Overview. We propose a unified framework for conditional hand motion generation, which con-
sists of a joint variational autoencoder (Joint VAE) and a latent diffusion model. The Joint VAE

3
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Figure 1: Overview of the UniHand framework. (I) The Joint VAE aligns motion and condition
encoders within a shared latent space. An autoregressive decoder iteratively reconstructs motion to
preserve temporal consistency. (II) The latent diffusion model is trained on this latent space, where
multimodal conditions are fused, and hand-relevant vision tokens are integrated into the denoiser.

(Section 3.2) comprises multiple encoders for different modalities and a shared decoder, which to-
gether tokenize motion sequences and condition signals into a shared latent representation. The
latent diffusion model (Section 3.3) is defined on this latent space, where it integrates hand-relevant
vision features and multiple conditions. The framework is illustrated in Figure 1.

3.2 JOINT LATENT REPRESENTATION

Variational Autoencoders (VAEs) (Kingma & Welling, 2014) compress raw data into a latent space
and have proven effective in learning compact yet expressive representations. Encoding motion
in this latent space mitigates the temporal inconsistencies that often arise when training diffusion
models directly on raw motion sequences (Chen et al., 2023; Zhao et al., 2025). We propose a Joint
VAE that encodes both motion sequences and diverse condition signals into a shared latent space.
This alignment between MANO-based motion, 2D skeleton keypoints, and 3D skeleton keypoints
encourages the latent representation to capture motion semantics that generalize across modalities.
The shared space further facilitates flexible condition fusion during controllable generation.

As shown in Algorithm 1, we design a joint encoder architecture that incorporates both a motion en-
coder and multiple condition encoders. The motion encoder Em encodes the sequence x = {xi}Ni=1

into a set of latent motion tokens z = {zi}Ni=1, where each token zi represents the hand pose of
a single frame in a d-dimensional latent space. In addition, a global motion token g ∈ Rd is in-
troduced to capture sequence-level information. We introduce learnable distribution tokens Tµ, Tσ ,
and the encoder predicts Gaussian parameters (µg, σg) from which g is sampled. This latent variable
is regularized via a KL divergence loss. Similarly, each condition encoder Ec tokenize a condition
signal c ∈ C into a sequence of condition latent tokens zc = Ec(c) ∈ RN×d, which are aligned in
the shared latent space and can be fused during generation. The decoder D reconstructs the motion
sequence x in an autoregressive manner. At each autoregression step, it predicts a motion segment
x̂i:i+n conditioned on the latent tokens zi:i+n, the global token g, and an anchor token ai represent-
ing the initial state of the segment. The global token provides high-level structural context, while the
frame-wise latent tokens preserve fine-grained motion details and condition alignment. The training
objective is provided in Appendix A.2.

3.3 DIFFUSION-BASED MOTION GENERATION

We perform diffusion-based generation in the latent space learned by the Joint VAE. Diffusion mod-
els (Ho et al., 2020) define a stochastic process that iteratively adds Gaussian noise to a clean latent
representation until it becomes pure Gaussian noise, and then learns to reverse the process for gen-
eration. Given a hand motion sequence x and its latent representation z0 ∈ RN×d obtained by
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Algorithm 1 Latent representation with Joint Variational Autoencoder
Input: hand motion x = {xi}Ni=1, structured conditions c = {ci}Ni=1, motion encoder Em, learnable
distribution tokens Tµ and Tσ , condition encoders Ec, and autoregressive decoder D.
Output: motion latent tokens z = {zi}Ni=1, motion global token g, condition latent tokens zc =
{zic}Ni=1, and reconstructed hand motion x̂.

1: (z, µg, σg)← Em(x, Tµ, Tσ) ▷ encode hand motion to latent representation
2: g ∼ N (µg, σg) ▷ sample motion global token
3: for c in C do
4: zc ← Ec(c) ▷ encode each structured condition to latent representation
5: end for
6: x̂← ∅, a1 ← Linear(x1) ▷ initialize reconstructed motion and anchor token
7: for z in {z, zc} do
8: for i = 1 to N by step size n do ▷ autoregressive rollouts
9: x̂i:i+n ← D(ai, zi:i+n, g) ▷ autoregressive decoding with anchor and global token

10: x̂← CONCAT(x̂, x̂i:i+n)
11: ai+n ← Linear(x̂i+n−1) ▷ update anchor token
12: end for
13: end for
14: return z, g, zc, x̂

the encoder E , The forward process progressively transforms z0 into Gaussian noise zT ∼ N (0, I)
through a Markov chain: q(zt | zt−1) = N

(√
1− βt zt−1, βtI

)
, where {βt} is a predefined noise

schedule. The denoiser model Gθ learns the reverse process, which aims to transform noise back into
clean motion latents conditioned on C: pθ(zt−1 | zt, C) = N

(
µθ(zt, t, C), ΣtI

)
, where C denotes

the available conditions, such as vision frames and 2D skeleton keypoints, and Σt is determined by
the noise schedule. Following prior work in human motion generation (Shafir et al., 2023; Tevet
et al., 2023a; Zhao et al., 2025), which show that predicting the clean sample yields more tempo-
rally coherent motions than predicting noise, we design the denoiser Gθ to predict the clean latent
ẑ0 = Gθ(zt, t, C). The predicted ẑ0 is then used to compute the mean of the reverse distribution:

µt =

√
ᾱt−1βt

1− ᾱt
ẑ0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt, (1)

with αt = 1 − βt and ᾱt =
∏t

i=1 αi. Following Yang et al. (2024), we incorporate the diffusion
timestep t into the modulation module of an adaptive LayerNorm.

Attending to Hand-relevant Vision Tokens. Visual observations, such as images and videos, are
the most common inputs in hand pose estimation and provide the richest information among all
modalities. They capture not only hand pose but also contextual cues from the surrounding envi-
ronment and interacting objects. However, existing approaches often crop around the hand region,
which sacrifices contextual information and, in the case of video, disrupts temporal consistency since
the camera coordinates of the cropped regions differ across time. We instead leverage a pretrained
vision backbone Evision to process a full image or video frame civision and project it into dense tokens
vi ∈ Rh×w×d. To extract hand-relevant information from these dense features, we introduce a hand
perceptron module that selectively attends to hand-related vision tokens while retaining contextual
cues from the environment and interacting objects. Specifically, we employ a set of trainable hand
tokens H = {Hi}N1 , along with an initialization hand pose token a1, as queries. The dense vision
tokens v serve as keys and values. We adopt Rotary Positional Encoding (RoPE) (Su et al., 2024) in
3D formation, following prior work (Kong et al., 2024; Yang et al., 2024), and compute the rotary
frequency matrices separately for the temporal N , height h, and width w dimensions of the vision
tokens. The attention mechanism is then applied as:

Attention(Q,K,V) = Softmax(QKT /
√

dk)V, (2)

Q = RoPE(LayerNorm(WQ(a1, H), P1D)),

K = RoPE(LayerNorm(WK(v), P3D)),

V = LayerNorm(WV(v)).

(3)
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Table 1: Quantitative comparison of SoTA hand pose and motion modeling methods on the DexYCB
test set in the camera coordinate space. Results are reported in terms of MPJPE (mm) and AUC,
with statistics across different occlusion levels.

Method
All Occlusion (25%–50%) Occlusion (50%–75%) Occlusion (75%–100%)

PA-MPJPE ↓ AUCJ↑ PA-MPJPE ↓ AUCJ↑ PA-MPJPE ↓ AUCJ↑ PA-MPJPE ↓ AUCJ↑
Spurr et al. (2020) 6.83 0.864 7.22 0.856 8.00 0.840 10.65 0.788
MeshGraphormer 6.41 0.872 6.85 0.863 7.22 0.856 7.76 0.845
SemiHandObj 6.33 0.874 6.70 0.866 7.17 0.857 8.96 0.821
HandOccNet 5.80 0.884 6.22 0.876 6.43 0.872 7.37 0.853
WiLoR 5.01 0.900 - - 5.42 0.892 5.68 0.887

S2HAND(V) 7.27 0.855 7.74 0.845 7.71 0.846 7.87 0.843
VIBE 6.43 0.871 6.72 0.865 6.84 0.864 7.06 0.858
TCMR 6.28 0.875 6.56 0.869 6.58 0.868 6.95 0.861
Deformer 5.22 0.896 5.71 0.886 5.70 0.886 6.34 0.873
HaWoR 4.76 0.905 - - 5.03 0.899 5.07 0.899
UniHand 4.08 0.918 4.22 0.913 4.25 0.912 4.26 0.912

The trainable hand tokens aggregate vision information associated with the target hand in each
frame, while the initialization pose token anchors the attention process to the correct hand instance
when multiple hands are present, thereby ensuring a consistent one-to-one binding across the se-
quence. As a result, the hand perceptron produces a single hand token hi for each frame.

Integrating Multiple Conditions. Our framework supports multiple forms of conditions, which
can be grouped into structured conditions and visual observations. The first group includes signals
such as MANO parameters, 2D keypoints, and 3D keypoints. These representations are encoded
into the shared latent space by the Joint VAE and can therefore be directly fused with the noisy
motion latent during denoising. The second group consists of visual inputs, from which we extract
one representative hand token per frame. Rather than being fused at the latent level, these tokens are
incorporated into the denoising network through attention layers at every denoising step, allowing
the model to attend to vision information throughout the generation process.

We adopt a two-stage training strategy, where the Joint VAE and the diffusion model are trained sep-
arately, with details provided in Appendix B.2. To further enhance generation quality and condition
flexibility, we adopt classifier-free guidance (CFG) (Ho & Salimans, 2022) with trainable uncondi-
tional tokens. CFG is typically expressed as Ĝθ = Gθ(zt, t, c∅) + w

(
Gθ(zt, t, ct)− Gθ(zt, t, c∅)

)
,

where G denotes the denoising network, zt is the noisy latent at timestep t, and w is the CFG
scale controlling the strength of condition. However, motion latents do not possess natural uncon-
ditional forms c∅. To address this, we introduce independent learnable unconditional tokens for
motion and condition representations, which match the feature dimensions of z and zc, respectively.
During training, a condition latent ztc is randomly replaced with its unconditional form zc∅ with a
predefined probability p. This mechanism ensures that UniHand remains robust under diverse and
potentially incomplete conditioning scenarios, while also allowing fine-grained adjustment of con-
ditional influence during motion synthesis. Further details on training and inference are provided in
the Appendix A.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the performance of UniHand under egocentric views with dynamic cameras
and to compare it with existing methods, we use the DexYCB dataset (Chao et al., 2021), which
contains multi-view videos with hand pose annotations in the camera coordinate system. The degree
of occlusion can be computed, enabling analysis of pose estimation under different occlusion levels.
We further report results on HO3D (Hampali et al., 2020) to assess the generalization ability of
UniHand. Following Zhang et al. (2025); Yu et al. (2025), we also use HOT3D (Banerjee et al.,
2025), which provides hand poses in the world coordinate system along with camera extrinsics, to
evaluate estimation performance under egocentric views with dynamic cameras.
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Table 2: Quantitative comparison of base-
line hand pose estimation methods on the
HO3D dataset in the camera coordinate
space. Results are reported in terms of
MPJPE (mm), AUC scores, and F-scores.

Method PA-MPJPE ↓ AUCJ↑ F@5 ↑ F@15 ↑
HandOccNet 9.1 0.819 0.564 0.963
AMVUR 8.3 0.835 0.608 0.965
HaMeR 7.7 0.846 0.635 0.980
WiLoR 7.5 0.851 0.646 0.983

Deformer 9.4 - 0.546 0.963
Ours 6.7 0.866 0.671 0.988

Table 3: Quantitative evaluation of SoTA meth-
ods on the HOT3D dataset in the world coordinate
space. Results are reported in terms of MPJPE
(mm) under different alignment strategies and ac-
celeration error.

Method PA-MPJPE ↓ G-MPJPE ↓ GA-MPJPE ↓ AccEr ↓
HaMeR-SLAM 9.20 161.31 43.85 15.53
WiLoR-SLAM 7.17 154.74 40.69 10.39
HMP-SLAM 10.68 128.56 38.25 5.41

Dyn-HaMR 8.92 59.04 23.57 5.16
HaWoR 5.47 47.35 18.14 5.88
Ours 4.76 63.97 25.24 4.93

Metrics. We report Procrustes-Aligned Mean Per-Joint Position Error (PA-MPJPE) and the area
under the curve of correctly localized keypoints (AUCJ ) to evaluate hand pose in the camera coor-
dinate space. Following Hampali et al. (2020), we also include the fraction of poses with less than
5mm and 15mm error (F@5, F@15) computed by the official evaluation scripts. In the world coor-
dinate space, we report G-MPJPE and GA-MPJPE following Ye et al. (2023), where alignment with
ground truth is performed using the first two frames or the entire motion. In addition, we compute
the acceleration error (AccEr) to assess the temporal smoothness of the generated motion.

4.2 HAND MOTION IN CAMERA COORDINATE SPACE

Hand pose estimation in the camera coordinate space provides the most direct way to evaluate the
quality of motion generation conditioned on visual observations. Moreover, evaluation under chal-
lenging conditions such as occlusions and missing temporal frames is particularly important, as these
phenomena frequently occur in real-world videos. Following prior work (Fu et al., 2023; Zhang
et al., 2025), we evaluate our method on DexYCB, a dataset that provides frame-level occlusion-
related annotations. We partition the test set into multiple occlusion levels. For our approach and
other video-based methods, we use videos as input and then compute frame-level metrics, ensuring
fair comparison with image-based methods.

As shown in Table 1, we compare UniHand against a wide range of image-based and video-
based baselines across different occlusion categories. Image-based approaches include Mesh-
Graphormer (Lin et al., 2021a), SemiHandObj (Liu et al., 2021), HandOccNet (Park et al., 2022),
and WiLoR (Potamias et al., 2025), which process images independently and are typically sensitive
to occlusion. In contrast, video-based methods such as S2HAND(V) (Tu et al., 2023), VIBE (Ko-
cabas et al., 2020), TCMR (Choi et al., 2021), Deformer (Fu et al., 2023), and HaWoR (Zhang et al.,
2025) leverage temporal context for motion reasoning and are therefore less affected by occlusion.
UniHand achieves a PA-MPJPE of 4.08 and an AUC of 0.918, outperforming all image-based and
video-based baselines. Even under the most severe occlusion level, our method maintains superior
performance with PA-MPJPE of 4.26 and AUC of 0.912. These results highlight not only the ben-
efit of temporal modeling but also the advantages of our generative priors and the hand perceptron
module in effectively exploiting visual input.

To further evaluate generalization, we evaluate our model on the HO3D dataset, which contains
diverse object interaction scenarios and severe occlusions not present in the training data. As shown
in Table 2, despite the domain shift, our model achieves competitive performance, demonstrating
robustness to out-of-distribution inputs.

4.3 HAND MOTION IN WORLD COORDINATE SPACE

To evaluate the global consistency of reconstructed hand motions, we conduct experiments in the
world coordinate system using the HOT3D dataset, which provides egocentric videos. We consider
two categories of methods: camera-space approaches, which estimate hand poses in the camera
coordinate system and then transform predictions into the world frame using estimated camera poses
from DROID-SLAM (Teed & Deng, 2021), and video-based methods, which jointly infer hand and
camera motion in the world space through temporal models.
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Figure 2: Visualization of generated hand poses and trajectories. The first example shows a static
camera scenario where the subject picks up a red bowl, with significant hand occlusion. The second
example is recorded with a dynamic camera, where the subject picks up and manipulates a magic
cube, involving large hand movements. UniHand produces more accurate hand motion by modeling
motions in a canonical coordinate space, even without relying on explicit camera extrinsics.

As shown in Table 3, UniHand consistently outperforms both camera-space and world-space base-
lines in PA-MPJPE, demonstrating the accuracy of the reconstructed hand poses. Notably, UniHand
achieves the lowest G-MPJPE and GA-MPJPE among all camera-space reconstruction methods,
despite leveraging explicit camera trajectories estimation for world-space conversion. Our method
relies solely on visual observations to model motions in the canonical space. It achieves perfor-
mance comparable to world-space methods, such as HaWoR and Dyn-HaMR (Yu et al., 2025), that
explicitly utilize camera parameters. In addition, UniHand obtains lower acceleration error (AccEr),
confirming the temporal smoothness of the reconstructed hand trajectories in the world frame.

We further visualize the generated 3D hand motions in Figure 2. Compared to Dyn-HaMR, UniHand
recovers more stable and accurate hand motion sequences, particularly under occlusions or large
hand movements. Unlike baseline methods that rely on external SLAM or require per-sequence
optimization, UniHand provides a unified and efficient solution for world-space hand motion gener-
ation without explicit camera estimation.

4.4 ABLATION STUDY

To analyze the effectiveness of the core components and different condition signals, we conduct
ablation studies on the DexYCB dataset under the camera coordinate setting and the HOT3D dataset
under the world coordinate setting. We also report results on the most challenging occlusion level
(75%–100%) of DexYCB. The evaluation metrics follow the same protocol as described in previous
experiments.

Component Ablation. The upper part of Table 4 summarizes the ablation results of different
components and design choices within the UniHand framework. Setup w/o. Condition Encoder
Ec replaces the condition encoders in Joint VAE with an MLP that directly maps condition signals
(e.g., 2D keypoints) to the latent dimension. The performance drop indicates that the Joint VAE
is critical for learning consistent representations, thereby enabling more effective condition fusion.
Setup w/o. Pretrained Evision uses an identical vision backbone without pretraining. The performance
degradation highlights the importance of pretrained visual representations in providing reliable cues
for the hand perceptron module. Furthermore, both replacing the hand perceptron module with

8
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Table 4: Ablation studies on the core components, design choices, and different condition config-
urations during inference, evaluated on the DexYCB and HOT3D datasets. Results are reported in
terms of MPJPE (mm) under different alignment strategies and AUC scores.

Setups
DexYCB-All DexYCB-Occlusion HOT3D

PA-MPJPE ↓ AUCJ↑ PA-MPJPE ↓ AUCJ↑ PA-MPJPE ↓ G-MPJPE ↓ GA-MPJPE ↓
w/o. Condition Encoders Ec 5.21 0.895 5.56 0.889 5.92 75.49 31.03
w/o. Pretrained Evision 6.52 0.869 6.71 0.865 8.73 146.08 39.53
w/o. Hand Perceptron 7.81 0.843 8.75 0.824 12.46 180.59 48.93
w/o. 3D RoPE 4.65 0.906 4.76 0.904 4.95 69.20 28.94

w. cvision 4.24 0.915 4.27 0.915 4.52 53.49 23.28
w. c2D 4.75 0.905 5.43 0.891 6.37 98.17 40.42
w. c3D 3.99 0.920 4.17 0.916 4.15 44.61 20.73
w. cvision and c3D 3.48 0.931 3.67 0.926 3.82 48.11 21.36

Ours (w. cvision and c2D) 4.08 0.918 4.26 0.912 4.76 63.97 25.24

average pooling over dense vision tokens and replacing 3D RoPE with a standard 1D RoPE lead to
clear performance decrease.

Condition Modality Ablation. We further evaluate the contribution of each condition modality
by testing different inference configurations. As shown in the lower part of Table 4, using only 2D
keypoints yields acceptable performance under normal conditions, demonstrating the effectiveness
of latent space alignment in the Joint VAE. However, such structural information cannot be reliably
extracted under severe occlusions, resulting in poor robustness. Its performance on HOT3D is also
limited, indicating that 2D keypoints alone are insufficient for modeling hand motion under dynamic
camera movements. Using only cvision achieves better PA-MPJPE, but its lack of explicit spatial con-
straints leads to weaker performance in G-MPJPE. The combination of cvision and c3D achieves the
best overall performance, showing the complementarity between visual evidence and 3D structural
cues. However, since 3D keypoints are not directly accessible in real-world scenarios and are mainly
applicable to editing tasks, we adopt the cvision and c2D configuration for most of our experiments.
In practice, 2D keypoints can be easily obtained using pretrained detection backbones, making this
setting both effective and practical.

5 CONCLUSIONS AND LIMITATIONS

In this work, we introduced UniHand, a unified diffusion-based framework that formulates both hand
motion estimation and generation as conditional motion synthesis. UniHand employs a joint varia-
tional autoencoder that aligns structured signals such as MANO parameters and 2D skeletons into a
shared latent space, ensuring consistency across modalities. In parallel, a hand perceptron module
attends to hand-related features extracted from dense tokens of full-size vision inputs, enabling the
model to directly exploit rich visual observations without relying on hand detection or cropping.
Building on these components, our diffusion-based framework flexibly integrates heterogeneous
conditions to generate coherent 4D hand motions. Extensive experiments across multiple bench-
marks demonstrate that UniHand achieves robust and accurate hand motion modeling, maintaining
strong performance under severe occlusions and temporally incomplete signals. These results high-
light the effectiveness of unifying estimation and generation within a single framework, and provide
research directions for more general multimodal hand motion modeling in real-world applications.

Limitations. UniHand models 4D hand motion directly in the canonical coordinate space with-
out relying on explicit camera extrinsics, thereby providing a unified treatment of both static and
dynamic camera scenarios. However, under large camera movements, visual observations or other
structured signals alone are insufficient to ensure globally consistent trajectories. This limitation
is reflected in our evaluation: while UniHand achieves accurate pose generation and outperforms
methods restricted to the camera coordinate space, its global alignment scores remain lower than
optimization-based approaches that explicitly leverage camera extrinsics. Future work could in-
corporate camera estimation into the framework, enabling more accurate trajectory reconstruction
under dynamic camera settings.

9
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A METHOD

A.1 HAND POSE AND CONDITIONS REPRESENTATION

Canonical Coordinate Space. We model 4D hand motion in a canonical coordinate system, de-
fined as the camera space of the first frame. This formulation decouples hand motion from dynamic
camera movement, providing a consistent representation across the entire sequence, while remaining
applicable to both static and dynamic camera scenarios. In the case of static cameras, the canonical
space is identical to the camera space. For dynamic cameras, the camera-to-canonical transforma-
tion is computed as:

Ti
cam→cano = [Ri

cam→cano | ticam→cano]

= Ti
cam→world ×T1

world→cam,
(4)

where Ti
cam→world maps the hand pose from the i-th frame camera space to the world space, and

T1
world→cam maps it back to the camera space of the first frame, which serves as the canonical space.

Representation. A 4D hand motion sequence is denoted as x = {xi}Ni=1 of length N . Each
3D hand pose xi is parameterized by the MANO model (Romero et al., 2017b), including hand
pose parameters Θi ∈ R15×3, shape parameters βi ∈ R10, global orientation Φi ∈ R3, and root
translation Γi ∈ R3. The complete pose xi is therefore represented in the canonical coordinate space
as: xi = {Θi, βi,Φi,Γi}.
The 3D skeleton keypoint condition is obtained by regressing joints from the MANO parameters
using the MANO joint regressor J . All joints are transformed into the canonical coordinate space
to ensure temporal consistency across the sequence. The 2D skeleton keypoint condition is derived
from the projected 3D joints. We preserve the projection defined by the first-frame camera and
normalize the coordinates into the range [0, 1] according to the frame resolution, which serves as a
consistent visual reference throughout the sequence.

A.2 JOINT VAE

Architecture. Our Joint VAE adopts a transformer-based architecture. Both the motion encoder E ,
condition encoders Ec, and the decoderD are composed of 9 transformer encoder layers. Each layer
is configured with a dropout rate of 0.1, a feed-forward dimension of 2048, a hidden dimension
of 512, 8 attention heads, and the GELU activation function. The latent space is defined with a
dimension of 512. The autoregressive decoder processes motion in segments of length 8 at a time.
We apply Rotary Positional Encoding (RoPE) as temporal positional encoding for the hidden states.

Losses. The Joint VAE is trained with a composed loss defined as:

LJointVAE = Lrec + ωKLLKL + ωlatentLlatent + ωauxLaux. (5)

The reconstruction loss Lrec encourages the reconstructed motion sequence x̂ to match the ground-
truth motion sequence x. It consists of two parts, the MANO parameter reconstruction loss Lmano rec
and the joint reconstruction loss Ljoint rec:

Lrec = Lmano rec + ωjoint recLjoint rec. (6)

The MANO parameter reconstruction loss directly penalizes differences between predicted and
ground-truth MANO parameters:

Lmano rec = FL1(x̂, x), (7)
where FL1 denotes the smoothed L1 loss (Girshick, 2015). The MANO joint reconstruction loss
penalizes discrepancies between the 3D joints regressed from the predicted and ground-truth MANO
parameters:

Ljoint rec = FL1(J (x̂),J (x)), (8)
where J denotes the MANO joint regressor.

The Kullback-Leibler divergence regularization term LKL (Kingma & Welling, 2013) regularizes
the latent space learned by the Joint VAE by penalizing the divergence between the predicted latent
distribution q(z | H) and a standard Gaussian N (0, I) as:

LKL = KL(q(g | x)∥N (0, I)), (9)
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where the KL denotes the Kullback-Leibler (KL) divergence. The distribution q(g | x) is parameter-
ized by the Gaussian parameters µg and σg . In our implementation, LKL is used to avoid arbitrarily
high-variance latent spaces of motion global token g.

The latent alignment loss Llatent directly minimizes the distance between the condition latent tokens
zc (from the Condition Encoders) and the motion latent tokens z (from the Motion Encoder). This
encourages the information encoded from the two different modalities to align in the shared latent
space. Including 2D condition encoder and 3D condition encoder alignment constraints:

Llatent = Llatent 2D + Llatent 3D, (10)

Llatent c = FMSE(zc, z), (11)

where FMSE denotes the mean squared error (MSE) loss.

The auxiliary loss Laux regularizes predicted motion x̂c reconstructed from condition latent zc

Laux = Laux 2D + Laux 3D. (12)

Llatent c = FL1(x̂c, x). (13)

A.3 LATENT DIFFUSION MODEL

Architecture. The condition denoiser Gθ is implemented as a transformer-based architecture con-
sisting of 16 transformer layers as illustrated in Figure 1. Each layer is configured with a feed-
forward dimension of 2048, a hidden dimension of 512, 16 attention heads, and the GELU activa-
tion function. The latent space has a dimensionality of 512, consistent with the Joint VAE. Follow-
ing Yang et al. (2024), the diffusion timestep t is injected into the network through the modulation
module of an adaptive LayerNorm. For temporal modeling, we apply Rotary Positional Encoding
(RoPE) as temporal positional encoding to the hidden states. For vision encoding, we adopt the
pretrained DINO-v2 Oquab et al. (2023) backbone, with weights kept frozen.

3D RoPE. We adopt Rotary Positional Encoding (RoPE) (Su et al., 2024), which has been shown
to improve scalability and adaptability. RoPE encodes relative positional information through rota-
tions in the complex space:

Ri(x,m) =

[
cos(mθi) − sin(mθi)
sin(mθi) cos(mθi)

] [
x2i

x2i+1

]
, (14)

where x is the input query or key representation, m is the positional index, i is the feature dimension
index, and θi is the frequency.

Given that the vision backbone extracts tokens v with temporal length N , spatial height h, and width
w, and to capture both spatial and temporal structures, we extend RoPE into a 3D formulation,
following prior work (Kong et al., 2024; Yang et al., 2024). The attention dimension is divided into
three complementary subspaces, each dedicated to one axis. Independent sinusoidal embeddings
are generated for the temporal, horizontal, and vertical dimensions, capturing relative positional
information along each axis. Concretely, we compute the rotary frequency matrix separately for the
coordinates of time, height, and width. The feature channels of the query and key are partitioned
into three segments (dt, dh, dw), and each segment is multiplied by the corresponding coordinate
frequency. The outputs are then concatenated to produce position-aware query and key embeddings,
which are applied in attention computation. Compared to the standard RoPE, this 3D extension
jointly encodes temporal continuity and spatial structure in a unified representation.

Losses. The denoiser model is trained with the following losses:

Ldenoiser = Lsimple + ωrecLrec. (15)

We train the denoiser to predict the clean latent variable with the simple objective Lsimple. Training
proceeds by sampling z0 from the dataset, applying the forward process to obtain a noisy latent zt,
predicting ẑ0 using Gθ, and minimizing the reconstruction error. The simple objective is defined as:

Lsimple = E(z0,C)∼q(z0,C),t∼[1,T ],ϵ∼N (0,I)FMSE(Gθ(zt, t, C), z0), (16)
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Original Video Frame Rendered Hand MeshVisible Hand Complete Hand

Figure 3: Illustration of hand occlusion level computation on the DexYCB dataset.

where ẑ0 = Gθ(zt, t, C) denotes the predicted clean latent, and FMSE is a distance function which is
implemented using the mean squared error (MSE) loss.

The reconstruction loss Lrec (same as defined in Eq. (6)) encourages the predicted motion sequence
x̂ to remain close to the ground-truth sequence x by jointly penalizing discrepancies in both MANO
parameters and the regressed 3D joints.

Inference. At inference time, we initialize with Gaussian noise zT ∼ N (0, I). The denoiser is
applied iteratively, where at each step it predicts the clean latent ẑ0 and updates the noisy latent zt
towards a lower-noise state, until a clean latent z0 is obtained. The final latent z0 is then decoded by
the autoregressive decoder in the Joint VAE to generate a hand motion sequence x̂.

Benefiting from the design of the Joint VAE, structured control signals such as 2D and 3D keypoints
are encoded into the shared latent space and can be directly fused with the noisy latent zt. Visual
information is extracted by the frozen vision backbone, processed through the hand-relevant atten-
tion module, and represented as hand tokens, which are integrated into the denoiser at each step. We
further adopt classifier-free guidance (CFG), assigning an independent unconditional token to each
control modality. This design enables flexible integration and combination of different condition
inputs.

B EXPERIMENTAL SETUP

B.1 DATASETS

We train our model on the DexYCB (Chao et al., 2021) and HOT3D (Banerjee et al., 2025) datasets,
and additionally evaluate out-of-domain generalization on HO3D (Hampali et al., 2020). To simplify
learning, we horizontally flip input images and corresponding annotations whenever the targeted
hand is left, resulting in a right-hand-only network. Unless otherwise specified, UniHand is trained
exclusively on the training splits of DexYCB and HOT3D, and all reported results are obtained from
a single unified checkpoint, without dataset-specific fine-tuning or architectural modifications.

Since both DexYCB and HOT3D contain motion sequences, during training, we randomly select a
valid initial pose within a sequence and sample consecutive frames to construct motions of length
N = 48. At the inference stage, the sequence length is required to be an integer multiple of the
autoregressive decoding segment length. If this condition is not satisfied, we pad the sequence by
repeating the control conditions of the final frame.

DexYCB. DexYCB (Chao et al., 2021) is a large-scale dataset containing 8, 000 videos of single-
hand object manipulation. It features 10 subjects performing grasps on 20 objects from the YCB-
Video dataset (Xiang et al., 2018). Each action sequence is captured by 8 synchronized RGB-D
cameras from a fixed third-person viewpoint. For evaluation, we follow the official protocol and
adopt the default split (S0) for training and testing.

To evaluate the degree of hand occlusion, we compute the ratio between the occluded hand region
and the complete hand region. As illustrated in Figure 3, we obtain two types of masks: the visible
hand mask Mvis, where only the non-occluded pixels of the hand are labeled as 1 (provided by the
dataset), and the complete hand mask Mhand, which is obtained by decoding MANO parameters and
rendering the hand mesh, covering the entire hand region regardless of occlusion. Formally, the
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occlusion ratio is defined as:

rocc =
|Mhand| − |Mhand ∩Mvis|

|Mhand|
, (17)

where |M | denotes the number of pixels labeled as 1 in mask M . This metric allows us to categorize
frames in the DexYCB dataset into different occlusion levels.

HOT3D. HOT3D (Banerjee et al., 2025) is a first-person dataset recorded with dynamic cameras,
covering both single-hand and two-hand manipulations. It provides ground-truth camera trajectories
as well as world-coordinate MANO annotations for each frame.

In our experiments, we use the HOT3D-Clips version, which consists of carefully selected sub-
sequences from the original dataset. Each clip contains roughly 150 frames, corresponding to about
5 seconds of video. We adopt the subset collected with the Aria device and use only the main-view
RGB images as vision conditions, since the Quest3 device does not provide RGB data. Ground-
truth poses are available for every modeled object and hand in all frames. Because the official test
split does not provide ground-truth annotations, we use the split based on the official training set,
resulting in 1, 272 clips for training and 244 clips for testing.

B.2 IMPLEMENTATION DETAILS

All experiments are conducted on 4 NVIDIA 80GB H800 GPUs. We adopt DeepSpeed (Rasley
et al., 2020) for training to reduce memory consumption and improve efficiency. The
AdamW (Loshchilov & Hutter, 2017) optimizer is used with an initial learning rate of 1 × 10−4,
scheduled with 100 warmup iterations followed by linear annealing.

We first train the Joint VAE. A small KL weight ωKL = 1×10−4 is applied to maintain an expressive
latent space while preventing arbitrarily high-variance latent variables. The other loss terms are
balanced with weights of ωjoint rec = 0.5 for the joint reconstruction loss, ωlatent = 0.1 for the latent
loss, and ωaux = 0.1 for the auxiliary loss. After training, the motion encoder, condition encoders,
and autoregressive decoder are frozen. The latent denoiser is then trained using DDPM (Ho et al.,
2020) with 50 diffusion steps and a cosine noise scheduler. A weight of ωrec = 1.0 is applied during
training.

At inference time, we employ DDIM (Song et al., 2020) with 10 diffusion steps for efficient gener-
ation while mitigating error accumulation, and set the CFG scale to ω = 2. Following the ablation
study, we adopt vision frames and 2D keypoints as the default condition configuration, since 3D
keypoints are not directly available in real-world scenarios. For 2D keypoint detection, we utilize
the pre-trained ViT backbone from HaMeR (Pavlakos et al., 2024), which is also employed for the
initialization of the first-frame hand pose.

B.3 COMPUTATIONAL COST

Diffusion-based generation methods typically incur additional computation cost due to their multi-
step denoising process. However, UniHand is designed with several optimizations that substantially
reduce this cost. First, the condition encoder is executed only once, and its output remains fixed
throughout the denoising process. Second, we adopt DDIM sampling with only 10 denoising steps,
which significantly accelerates inference. Third, although the latent decoder is autoregressive, it
processes motion segments of length 8.

To better illustrate UniHand’s computation cost, we compare its inference cost with two representa-
tive baselines: HaMeR, an image-level hand pose estimation method, and Dyn-HaMR, a multi-stage
hand motion estimation pipeline. Despite the iterative denoising steps, UniHand generates an entire
sequence in a single multi-step diffusion process, whereas image-level models such as HaMeR must
perform inference for every frame. Dyn-HaMR pipelines include substantial multi-stage cost, in-
cluding per-frame pose initialization, temporal infilling, SLAM-based camera trajectory estimation,
and global trajectory optimization. UniHand avoids these components (including crop preprocess-
ing and camera parameter estimation) and replaces them with a single conditional generative model.
A comparison of the inference cost for 48 frames is shown below.

• HaMeR: 23.8s, including (1) 21.7s: detect hand and crop image, (2) 2.1s: per-frame inference.
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UniHand
(Ours)

Frames

Figure 4: In-the-wild example where both hands and feet appear.

• Dyn-HaMR: 70.5s, including (1) 22.9s: per-frame initialization, (2) 23.0s: infilling and camera
estimation, (3) 24.6s: global optimization.

• UniHand (Ours): 21.2s, (1) optional 19.8s: detect 2D keypoints, (2) 1.4s: diffusion and autore-
gressive decoding.

On the training side, the cost is also moderate. HaMeR trains with an effective batch size of 1024
for 420k iterations. In contrast, UniHand trains the Joint VAE for 50k iterations with a batch size
of 32, followed by the diffusion model for 200k iterations, resulting in a total cost comparable to or
lower than that of existing methods.

C VISUALIZATION

C.1 HAND MOTION IN CAMERA COORDINATE SPACE

To further demonstrate the effectiveness of our method under challenging scenarios such as severe
occlusions and temporally incomplete conditions, we present qualitative comparisons in Figure 6,
Figure 7, and Figure 8. We compare HaMeR (Pavlakos et al., 2024) with our proposed UniHand.
The visualizations show that UniHand reconstructs more temporally stable and geometrically plau-
sible hand poses, particularly when the hand is heavily occluded or interacting with objects. These
results indicate that our unified generative framework effectively leverages heterogeneous conditions
to maintain robustness and fidelity in complex real-world scenarios.

We also provide an in-the-wild case, shown in Figure 4, where our model remains stable even when
both hands and feet are present, since the unified diffusion process leverages full-frame visual con-
text to suppress implausible motions and maintain coherent hand trajectories.

C.2 HAND MOTION IN WORLD COORDINATE SPACE

In Figure 5, we include additional visualizations of generated hand poses and trajectories in world
coordinates. The first example presents a left-hand motion sequence, which illustrates how Uni-
Hand maintains consistent predictions across both hands. As described in the main text, UniHand
horizontally flips input images and their corresponding annotations whenever the targeted hand is
left, resulting in a right-hand-only network that simplifies learning. Thus, the model always predicts
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Frames UniHand (Ours) Groundtruth

Frames UniHand (Ours) Groundtruth

Figure 5: Additional visualization of generated hand poses and trajectories.

right-hand MANO parameters, which is also a standard practice adopted by prior methods such
as HaMeR. For left-hand inputs, we invert the flipping transformation on the predicted right-hand
MANO parameters to obtain the corresponding left-hand result.

D ABLATION STUDY

D.1 CONTRIBUTION OF MULTIMODAL ALIGNMENT

To further examine the role of multimodal alignment in our 4D hand motion estimation framework,
we conduct an extended ablation study on the Joint VAE. In addition to the results reported in the
main paper, we define three alignment configurations to isolate the contribution of different modali-
ties. The first configuration (Setup1) trains the Joint VAE using hand pose only, which corresponds
to the “w/o. condition encoders” setting in Table 4. The second configuration (Setup2) incorpo-
rates hand pose with 2D keypoints, while the third configuration (Setup3) uses hand pose with 3D
keypoints.

Table 5: Ablation on multimodal alignment in the Joint VAE.

Setup PA-MPJPE ↓ AUCJ ↑
Setup1 (pose only) 5.21 0.895
Setup2 (pose and 2D) 5.09 0.897
Setup3 (pose and 3D) 4.40 0.912
Ours (all modalities) 4.08 0.918

We evaluate all three setups on the DexYCB dataset, and the results are summarized in Table 5. The
comparison indicates that multimodal alignment plays a central role in improving motion estimation
accuracy. Among the individual modalities, 3D keypoints provide the strongest alignment supervi-
sion. 2D keypoints also contribute positively and are especially useful in practical scenarios where
2D detections are more accessible.
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E STATEMENT

E.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) only as a writing assistant for language polishing during
the preparation of this paper. LLMs were not used in the ideation, experiments, data collection, or
result analysis. The authors take full responsibility for the content of this paper, including the text
that was refined with the assistance of LLMs.

E.2 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. In the supplementary material,
we provide the core code for the proposed method, data loader, and inference pipeline. A detailed
description of dataset preprocessing, splits, and statistics is included in Appendix B.1. Comprehen-
sive model architectures and implementation details are presented in Appendix A and B.2. These
materials, together with the released code, are intended to facilitate the reproduction of our results
and further research on this topic.
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HaMeR

UniHand
(Ours)

Frames

Figure 6: Qualitative comparison between HaMeR and our UniHand. Our method generates more
continuous and accurate hand pose sequences compared to HaMeR.

HaMeR

UniHand
(Ours)

Frames

Figure 7: Qualitative comparison between HaMeR and our UniHand. In cases of severe hand self-
occlusion, HaMeR misclassifies the right hand as the left hand, resulting in poor reconstruction
quality, whereas UniHand generates reliable and consistent hand motions.

HaMeR

UniHand
(Ours)

Frames

Failed Failed Failed Failed

Figure 8: Qualitative comparison between HaMeR and our UniHand. HaMeR fails to estimate valid
poses in video frames where the hand is absent, whereas UniHand maintains stable reconstructions
by exploiting vision perception and temporal modeling.
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