
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZING LLM INFERENCE OFFLOADING WITH HI-
ERARCHICAL SCHEDULING AND DYNAMIC SPARSIFI-
CATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) power a new generation of applications. Serv-
ing them efficiently on edge remains a significant challenge due to high compu-
tational and memory costs. Current cloud-centric systems largely overlook the
vast, cost-effective resources of distributed edge servers. In this paper, we in-
troduce a novel inference offloading framework that distributes LLM workloads
across a hybrid edge-cloud architecture to maximize performance and resource
utilization. Our framework employs a Hierarchical Scheduling Architecture that
decouples global, long-term resource planning from real-time, dynamic execution
scheduling. At the kernel level, it uses Dynamic Attention Sparsification (DAS) to
accelerate GPU computations by pruning redundant attention calculations. Exper-
iments show that our hybrid approach improves overall system throughput by up to
1.86 times compared to a cloud-only baseline, effectively parallelizing workloads
and introducing a scalable and robust paradigm for distributed LLM serving.

1 INTRODUCTION

The rapid advancement of mobile edge computing (MEC) has empowered mobile and resource-
constrained devices to offload computation-intensive tasks to nearby edge servers Qu et al. (2025).
By leveraging distributed processing in wireless network environments, MEC enables efficient task
execution with low latency and high energy efficiency Wu et al. (2024). With the emergence of edge
intelligence, the integration of artificial intelligence (AI), particularly deep learning models, into the
edge computing paradigm has attracted increasing attention Dong et al. (2024). In parallel, large
AI models (LAMs), including large language models (LLMs), have shown remarkable capabilities
in natural language tasks. Models such as OpenAI’s GPT series excel in understanding, genera-
tion, and general reasoning, owing to their massive parameter scales and powerful representational
capabilities Fan et al. (2024).

Despite the tremendous potential of LLMs, their large-scale deployment encounters severe chal-
lenges. This is primarily attributed to their substantial computational and memory requirements,
which hinder efficient operation in resource-constrained or latency-sensitive environments Zhou
et al. (2024). Although various techniques, e.g., model compression, pruning, and distributed in-
ference, have been proposed to address these issues, they often fall short of satisfying the real-time
requirements of large-scale edge applications Wang et al. (2024). Consequently, offloading LLM
tasks to appropriate edge or cloud resources has emerged as a promising approach to achieve a better
trade-off among performance, latency, and resource efficiency. For instance, Yang et al. (2024) pro-
posed PerLLM, which uses a learning-based approach to personalize scheduling and minimize en-
ergy costs. To make this offloading paradigm truly effective, especially on the resource-constrained
edge, it is imperative to not only devise intelligent scheduling strategies at the system level but also
to accelerate the fundamental computations at the kernel level.

Unlike traditional MEC optimization, LLMs are distinguished by their enormous parameter scales
and intensive computational requirements He et al. (2024). Driven by advances in hardware capa-
bilities and the increasing availability of large-scale datasets, researchers are continually developing
models with billions of parameters. This rapid growth in model size demands substantial compu-
tational resources and high-performance infrastructure to support both training and inference pro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cesses. The edge deployment of LLMs faces not only constraints in computational resources and
memory capacity but also additional challenges related to communication overhead and multi-device
coordination. As both model size and inference sequence length increase, memory consumption
escalates significantly. For instance, performing single-precision (FP32) inference on LLaMA2-
7B Touvron et al. (2023a;b) requires at least 28 GB of VRAM, and memory overhead increases
quadratically with longer sequence lengths.

LLM inference consists of two phases: the prefill stage and the generation stage. In the prefill stage,
all input tokens from the prompt are processed in parallel, similar to the forward pass in model
training, resulting in high computational efficiency. In contrast, the generation stage produces tokens
one by one in an auto-regressive manner, which requires significantly higher memory bandwidth and
presents greater challenges for parallel execution and scheduling.

The performance objectives of task offloading for LLMs differ significantly from those of traditional
computing workloads. In this study, our goal is to minimize the average inference latency of all of-
floaded LLM tasks while ensuring the predictive accuracy of model outputs. These objectives must
be achieved under a series of practical system constraints, including available bandwidth, compu-
tational capacity, and GPU memory limitations. Against this backdrop, the rapid scaling of LLMs
introduces an additional critical challenge, i.e., significantly increasing inference costs.

This paper investigates the task offloading mechanisms for LAMs/LLMs in edge computing envi-
ronments, aiming to address the key challenges in scalability, efficiency, and deployment flexibility.
Specifically, we explore intelligent partitioning and offloading strategies across edge–cloud hierar-
chies, as well as infrastructure-level optimizations to support efficient inference and fine-tuning of
these models at the edge. Our contributions are as follows:

• In this work, we establish a multi-objective programming model based on model partition-
ing and design a hierarchical scheduling framework, which is applied to address the issues
of inference offloading and resource allocation for large language models (LLMs) in edge
computing environments.

• In the process of task inference, we introduce an attention sparse mask. This mask is
designed to selectively filter and retain only the most critical attention weights, reducing
the computational complexity caused by the dense attention mechanism while ensuring that
the core semantic information required for task inference is not lost.

• We refine the FCFS scheme as a strategy for task offloading and resource scheduling in
LLM inference, capturing the distinct characteristics of the prefill and decode phases by
explicitly modeling the dynamics of edge computing resource allocation and task offload-
ing latency.

• We evaluated the performance of our inference strategy using the int8 Llama2 model series.
Experimental results demonstrate that our method exhibits superior and stable performance
across datasets with prompts of varying lengths. Additionally, we assessed the effectiveness
of network bandwidth to further validate the robustness of the proposed strategy.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we detail the system architecture for distributed LLM inference and formulate the
computational offloading problem. Our objective is to leverage limited computing resources to
minimize operational costs while satisfying Quality of Service (QoS) requirements.

2.1 SYSTEM ARCHITECTURE

We consider a three-layer hierarchical system model. This architecture is designed to support LLM
inference tasks requested by a diverse set of end-user devices.

Cloud Server (CS): The top tier houses a centralized cloud server with high-performance server-
grade GPUs. It boasts strong computing power to handle complex, large-scale LLM inference tasks
but incurs high costs.

Edge Servers: The middle tier comprises a set of Mobile Edge Computing (MEC) centers, denoted
as M = {M1,M2, · · · ,MK}. Geographically distributed and user-proximal, they are equipped

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with high-performance consumer-grade GPUs. Though individually less powerful than data center
counterparts, they are abundant and more cost-effective for specific workloads.

End-User Devices: The bottom tier consists of heterogeneous end-user devices, denoted as U =
{U1, U2, · · · , UN}, including PCs and smartphones across diverse scenarios. They generate LLM
inference requests.

We model an LLM inference request Ti from user Ui as a task characterized by its model type and
the number of tokens to generate. The key decision is to determine where to offload this task. Let
xij denote the offloading decision, where j ∈ M∪ CS. We define xij = 1 if task Ti is offloaded to
server j, and xij = 0 otherwise.

2.2 PROBLEM FORMULATION

The challenge of efficient LLM inference offloading is formulated as a multi-goal programming
problem. The primary objective is to devise an optimal task allocation strategy that maximizes
throughput to the greatest extent possible while minimizing the total network transmission latency
across all tasks. This is achieved by intelligently distributing inference requests between a central
cloud server and a set of geographically distributed edge servers, subject to the inherent physical
constraints of the edge infrastructure and the stringent Quality of Service (QoS) requirements of the
inference tasks.

The primary objective is to devise an optimal task allocation strategy that:

• Maximizes system throughput, i.e., the number of inference tasks successfully processed
within their QoS constraints, and

• Minimizes total network transmission latency, i.e., the sum of round-trip latencies for
all offloaded tasks.

The multi-objective optimization problem is defined as:

min {S(t, xij , δij), T (xij , L
trans
ij)}, (1)

s.t. :
∑
j∈S

xij = 1, ∀i ∈ {1, · · · , N}, (1a)

K∑
k=1

yjkMk ≤ Sj , ∀j ∈ M, (1b)

xij ≤ yjk, ∀i ∈ {1, · · · , N}, ∀j ∈ M, (1c)
N∑
i=1

xijWi ≤ Ωj , ∀j ∈ S, (1d)

Ltrans
ij + Lcomp

ij ≤ Lmax, ∀i, j, (1e)

where T = {T1, · · · , TN} is the set of N inference tasks, indexed by i. S = M∪{CS} is the set of
all available servers, including the subset of edge servers M and the central server CS, indexed by j.
t indicates the generation time of tokens. xij is the primary binary decision variable, where xij = 1

if task Ti is offloaded to server j, and xij = 0 otherwise. S(t, xij , δij) = −1
t

∑N
i=1

∑
j∈S xij · δij ,

T (xij , L
trans
ij) =

∑N
i=1

∑
j∈S xij · Ltrans

ij . Indicator δij variable that equals 1 if task Ti can be
completed by server j within its QoS deadline, 0 otherwise. Ltrans

ij is the parameter representing
the round-trip transmission latency for the input and output data of task Ti when processed by server
j.

For Constraints 1b and 1c, K = {C1, · · · , CK} is the set of K unique computing tasks, indexed by
k. Mk is the storage size of the uncompressed Ck. Sj is the available storage capacity of edge server
j. yjk is a secondary binary decision variable, where yjk = 1 if Ck is deployed on edge server j,
and yjk = 0 otherwise. mod(i) is a function mapping task Ti to the specific computing tasks k ∈ K
it requires. For Constraint 1d, Wi is the computational workload of task Ti, Ωj is the total available
computational capacity of server j over a given period. For Constraint 1e, where xij = 1, Lcomp

ij is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the computation latency for server j to execute task Ti. Lmax is the maximum tolerable end-to-end
latency, defining the required Quality of Service.

This is achieved by intelligently distributing inference requests between a central cloud server and a
set of geographically distributed edge servers, while respecting the physical resource limitations of
edge infrastructure and the stringent QoS constraints of inference workloads.

3 INFERENCE OFFLOADING OPTIMIZATION STRATEGY

In this section, we first describe the hierarchical scheduling architecture, which represents the macro-
level strategy for system-wide resource management. Then, we elaborate on Dynamic Sparse Atten-
tion Acceleration, our micro-level strategy to reduce the computational burden on individual nodes,
particularly edge servers. Finally, we present the Optimization Offloading Strategy that integrates
both levels for offloading and resource allocation of LLMs inference tasks in cloud-edge networks,
as shown in Fig. 1.

Schedular

CloudStage 1 Prefill

Input representation:
Tokenizer converts
the original input
text into a sequence.
�= {�1, �2, ⋯, ��,}

Embedding layer

Position encoding

D
ecoder 1

D
ecoder 2

D
ecoder n

Token 1

⋯

KV Cache

⋯

Edge cluster

Network environment Task instructions Device memory

Prefill

Stage 2 Decoding

Token 1

D
ecoder 1

D
ecoder 2

D
ecoder n

⋯

LLM
K

V
 C

ache

K
V

 C
ache

Token 2

D
ecoder 1

D
ecoder 2

D
ecoder n

⋯

LLM

⋯ ⋯

K
V

 C
ache

Em
bedding

Decoding

N
orm

O
utput

KV Cache & Tokens
PCIe

Tensor placement
and

Model Partition

Task offloading decision

Decoding

Prefill
KV Cache & Tokens

Candidate Tokens

Schedular

Verify

Figure 1: Architecture of the inference framework. The framework divides the reasoning process
into two stages, the prefill stage and the decoding stage, and leverages the collaboration between
edge devices and the cloud to improve performance.

3.1 HIERARCHICAL SCHEDULING ARCHITECTURE

The complexity of LLM inference necessitates a sophisticated resource management strategy. This
section proposes a hierarchical scheduling architecture designed to decouple long-term strategic
resource decisions from real-time tactical execution planning.

3.1.1 CENTRALIZED ADAPTIVE TENSOR PLACEMENT

This phase is responsible for global, long-term strategic resource allocation decisions. It is de-
ployed on a central server GPU cluster, which possesses substantial computational power and a
comprehensive view of the entire distributed hardware ecosystem. Its primary task is to characterize
system-wide hardware resources and analyze model parameters to generate an optimal static model
deployment blueprint for subsequent online inference.

The central server GPU cluster first conducts a detailed measurement of all available hardware re-
sources, including Memory capacity C

(d)
mem for each device d ∈ D (GPU/CPU). Computational

throughput T (d)
comp for each device d. Interconnect bandwidth B

(d1,d2)
inter between any two devices

d1, d2 (e.g., PCIe or RDMA).

These hardware specifications, along with the configurations of the target model MT and draft model
MD (including their parameter sets PT ,PD and computational graphs), are fed into the Adaptive
Tensor Placement module. This module solves a global optimization problem to determine the initial
static allocation of model parameters (tensors) across the heterogeneous memory hierarchy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Let xp,d ∈ {0, 1} be a binary decision variable indicating whether tensor p is placed on device d.
To minimize the anticipated data transfer overhead during the online phase, we define Acc(p) as an
indicator function, which denotes whether the tensor p, p ∈ PT ∪ PD is accessed by both devices
d1, d1 ∈ D and d2, d2 ∈ D, d1 < d2 simultaneously.

min
X

∑
p

∑
d1

∑
d2

Acc(p) · xp,d1 · (1− xp,d2)
Size(p)

B
(d1,d2)
inter

. (2)

s.t. :
∑

p∈PT∪PD

xp,d · Size(p) ≤ C(d)
mem, ∀d ∈ D, (2a)

∑
d∈D

xp,d = 1, ∀p ∈ PT ∪ PD. (2b)

According to Constraint 2a, the allocated memory on each device must not exceed its total capacity.
In Constraint 2b, each tensor must be placed on exactly one device. The output of this phase is a
global tensor placement map X∗ = xp,d, which is disseminated to individual edge server GPUs.

3.1.2 DECENTRALIZED DYNAMIC PIPELINE PLANNING

This phase is responsible for scheduling inference execution. It is primarily deployed on individ-
ual edge server GPUs, which directly receive and process batched inference requests. Each edge
server dynamically generates a fine-grained execution plan for the current batch, based on its local
hardware configuration and the tensor placement strategy provided by the central server.

Upon receiving a batched inference request, the allocator on an edge server GPU utilizes the fol-
lowing information. The relevant portion of the global tensor placement map X∗ is pre-computed
during the offline phase. The local hardware capabilities of the current edge device, such as its own
memory capacity C

(edge)
mem and computational throughput T (edge)

comp . Characteristics of the incoming
batch, e.g., sequence length L and batch size N . The allocator dynamically computes an interleaved
pipeline execution plan, specifying critical scheduling parameters.

To minimize the end-to-end inference latency for the current batch. Let the decision variables be
the target model prefill micro-batch size, µpref ∈ Z+. Target model decode micro-batch size,
µdec ∈ Z+. Draft model batch size: bdraft ∈ Z+. Number of candidate tokens to generate in each
speculative decoding step kcand ∈ Z+.

min
µpref ,µdec,bdraft,kcand

L(N,L, µpref , µdec, bdraft, kcand), (3)

s.t. : µpref ≤ N, µdec ≤ N, bdraft ≤ N, (3a)

Req(µpref , µdec, bdraft, kcand, L) ≤ C(edge)
mem . (3b)

where L(·) is a comprehensive function that estimates the total delay based on batch characteristics
(N , L), scheduling parameters, and system resources (e.g., X∗, C

(edge)
mem , T

(edge)
comp), while implicitly

incorporates computational and memory bandwidth bottlenecks. Constraint 3b indicates that the
memory requirements for the KV cache, intermediate activations, and local tensor segments of the
edge GPU must not exceed its local memory capacity. DAS addresses the challenge of executing
tasks on resource-constrained edge servers faster and more efficiently.

3.2 DYNAMIC ATTENTION SPARSIFICATION

DAS is a method that accelerates sparse Flash Attention Zhang et al. (2025) by dynamically filtering
redundant computations within the attention mechanism itself. Attention operations are often the
primary computational bottleneck, and attention maps in many models exhibit structured sparsity,
where semantically similar tokens show high resemblance. We introduce binary block masks Mg

and Mpv .

Definition 1 For query, key, and value blocks Qi,Kj , Vj , and attention weights Peij =

softmax(QiK
⊤
j /

√
dk). If Mg[i, j] = 0, the block matrix multiplication QiK

⊤
j is skipped. If

Mpv[i, j] = 0, the computation of PeijVj is additionally skipped, given that QiK
⊤
j has been com-

puted.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

DAS employs a two-stage online filtering mechanism to generate these masks and accelerate the
process:

3.2.1 ADAPTIVE BLOCK PRUNING

This stage aims to generate task Mg by predicting the sparse structure, thereby avoiding the compu-
tation of the full attention map.

For blocks Bk in Q and K (i.e., Qi or Kj), if their internal self-similarity is high, which is measured
by cosine similarity above a threshold θB , the entire block is compressed into a single represen-
tative token by averaging. A compressed attention map P̂ is then efficiently computed from these
representative tokens.

P̂ij = softmax(Q̂iK̂
⊤
j /
√

dk). (4)

A cumulative distribution function Pianosi & Wagener (2015) is applied to select the most significant
attention score blocks in P̂ , whose cumulative sum reaches a threshold τ . Crucially, to preserve vital
information, computations involving blocks with low internal self-similarity (i.e., less than θB) are
never skipped.

Mg[i, j] =

{
1 (i, j) ∈ STC ∪ SP ,

0 otherwise.
(5)

where STC denotes the set of block index pairs (i, j) selected by the cumulative distribution func-
tion, while SP denotes the set of block index pairs (i, j) where the internal similarity of the query or
key does not exceed the threshold θB . This mask Mg dictates skipping the full QiK

⊤
j computation.

3.2.2 ONLINE VALUE PRUNING

Following the initial block filtering via Mg , this stage employs a sparse online Softmax method
to prune computations further. The specific generation logic for Mpv is determined by the sparse
online Softmax mechanism, whose objective is to identify and prune value matrix multiplications
with negligible impact on the final output. It generates the mask Mpv , used to skip the PeijVj

multiplication for blocks that, even if computed, would have a negligible contribution to the final
output.

Mpv[i, j] =

{
1 Vj = f(Peij),

0 otherwise.
(6)

where f(.) means Peij has significant contribution to Vj .

3.3 OPTIMIZATION OFFLOADING STRATEGY

3.3.1 THROUGHPUT-OPTIMAL OFFLOADING PRINCIPLE

An offloading strategy is deemed to achieve a specific throughput rate λ if it can maintain stability
of the system-wide request queue under this task arrival rate. In the parlance of queuing theory, this
implies that the underlying discrete-time Markov chain (DTMC) Li et al. (2025) representing the
system state is irreducible and positive recurrent.

Definition 2 (Work-Conserving Offloading) An offloading strategy π is defined as work-
conserving if it never leaves a capable compute resource (either the Central Server (CS) or an
Edge Server (ES), i.e., an MEC server Mk ∈ M) idle, provided there exists at least one pending
inference task in the global request queue that that specific resource can process.

It prioritizes the immediate assignment of a pending task to an available server rather than, for
instance, delaying batch requests for a specific server type while other resources remain unutilized.

3.3.2 THE K-PRIORITY FCFS OFFLOADING ALGORITHM

While the work-conserving principle offers a high-level guideline, its practical implementation ne-
cessitates a concrete algorithmic framework. Anticipating the use of stability analysis, we introduce
the K-Priority First-Come-First-Serve (K-P-FCFS) family of offloading algorithms.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Let Kq ≥ 1 be an integer representing the look-ahead window. The central scheduler operates on
the global queue of incoming requests, denoted as Q.

Limited Decision Space: At each scheduling instance, the scheduler restricts its decision space by
considering only the Kq oldest requests residing in Q. This limitation is pragmatic, as it bounds the
computational overhead of the scheduler itself, preventing it from becoming an internal bottleneck
within the Sparge-Offload architecture.

Prioritization Rule: Among these Kq selected requests, a specific prioritization rule is applied.
This rule can range from a simple First-Come-First-Served (FCFS) Zhao & Stankovic (1989) disci-
pline to more sophisticated heuristics.

Task Assignment: The highest-priority request is then assigned to an available server j ∈ M∪{CS}
that satisfies all task-specific constraints, required model availability, and maximum permissible
latency for the specific request type.

This framework is inherently work-conserving (as long as a valid assignment is made whenever
possible) and sufficiently flexible to incorporate various optimization heuristics and real-world op-
erational constraints.

4 EXPERIMENT

This section presents a comprehensive evaluation of our proposed method within a collaborative
edge computing environment. We first outline the experimental setup, including the testbed, bench-
mark models, datasets, and workloads, as well as baseline methods for comparison and evaluation
metrics. Subsequently, we present and analyze the overall performance of the method against the
baselines in terms of inference latency and throughput.

4.1 EXPERIMENTAL SETUP

4.1.1 ENVIRONMENT AND RESOURCE LIMITATION

Our experiments were conducted on a physical testbed composed of five heterogeneous compu-
tational devices. The hardware configuration includes four edge servers, each equipped with an
NVIDIA GeForce GTX TITAN X GPU, and a central cloud server. The cloud server is equipped
with an NVIDIA RTX 4090 GPU. All devices are interconnected via a router and a switch, with
a physical bandwidth of 50 Mbps. To emulate variable network conditions found in real-world de-
ployments, we employed the Linux TC utility Hubert et al. (2002) to dynamically adjust the network
bandwidth and communication latency between devices. Due to the limited VRAM, we use the int8
precision model for inference in all the following experiments.

4.1.2 BENCHMARKS AND DATASETS

To validate the effectiveness and scalability of our approach, we selected a suite of state-of-the-art
open-source LLMs from the Llama2 family Touvron et al. (2023a;b), specifically, Llama2-7B, and
Llama2-13B. To thoroughly assess performance across diverse tasks and prompt length distributions,
we utilized several well-established LLM benchmark datasets. These datasets cover a range of tasks,
including code generation, knowledge-based question answering, and text summarization:

HumanEval Chen et al. (2021): An OpenAI dataset comprising 164 handwritten programming
problems to evaluate the model’s code generation capabilities.

C-Eval Huang et al. (2023): A comprehensive Chinese evaluation suite containing 13,948 multiple-
choice questions across various subjects, designed to test the model’s Chinese language understand-
ing and reasoning abilities.

SummEval Fabbri et al. (2021): A dataset focused on news text summarization, which includes
100 articles from the CNN/DailyMail corpus and their corresponding professional summaries.

WikiText-2 Merity et al. (2016): A language model benchmark dataset that contains over 100
million primitives extracted from high-quality Wikipedia articles. Specifically, we extract the subset
of samples where the length of input tokens is 32 and the number of generated tokens is 96.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1.3 EVALUATION METRICS

We employed two key metrics to measure the performance of each method:

Inference Latency: Measured as the total time elapsed from the user’s request to the reception of the
complete generated output, in milliseconds (ms/token). Lower latency indicates better performance.

Throughput: Defined as the number of tokens the system can process per second (tokens/s). Higher
throughput signifies greater processing capacity. To measure throughput, the batch size was set to
the maximum supported by the participating devices.

4.2 PERFORMANCE COMPARISON

To establish a comprehensive performance benchmark, we evaluated all methods on the text gen-
eration task using the Llama2-7B and Llama2-13B models. The end-to-end inference latency and
throughput results are summarized in Table 1.

Model Configuration HumanEval C-Eval SummEval WikiText-2
Latency Throughput Latency Throughput Latency Throughput Latency Throughput

Llama2-7B
Edge Only 97.90 10.09 92.18 5.54 104.79 4.41 88.24 7.74
Cloud Only 43.96 25.09 41.08 20.94 47.90 18.50 39.22 23.31

Edge + Cloud 57.94 36.45 54.61 32.09 60.88 29.07 51.96 34.82

Llama2-13B
Edge Only 259.74 6.45 245.49 1.90 279.44 0.72 235.29 4.21
Cloud Only 104.90 10.14 99.20 5.68 111.78 4.32 95.10 7.94

Edge + Cloud 134.87 18.84 128.26 14.53 141.72 12.63 122.55 17.07

Table 1: Performance of LLM inference, Latency: ms/token, Throughput: tokens/s.

Cloud-only outperforms edge-only setups. For Llama2-13B on HumanEval, cloud-only reduces la-
tency by 60% (259.74 ms to 104.90 ms) and increases throughput by 57% (6.45 to 10.14 tokens/s).
High-performance GPUs exhibit low-latency performance in the absence of communication over-
head. The hybrid Edge + Cloud architecture maximizes throughput via parallel processing, outper-
forming both cloud-only and edge-only across models. For Llama2-7B on HumanEval, it boosts
throughput by 45% (25.09 to 36.45 tokens/s), for Llama2-13B, the gain reaches 86% (10.14 to
18.84 tokens/s), demonstrating effective workload distribution. Hybrid systems incur latency trade-
offs due to communication overhead. For Llama2-13B, hybrid latency is 28% higher than cloud-
only (134.87 ms vs. 104.90 ms), attributable to network communication synchronization between
edge and cloud. This underscores a key trade-off: parallelization enhances throughput but increases
single-task response time via communication costs.

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1 5 10 20

Bandwidth (Mbps)
30

40

50

60

70

80

90

100

Av
er

ag
e

La
te

nc
y

(m
s)

Intelligent Scheduler (Latency)
Cloud-Only (Latency)
Edge-Only (Latency)
Intelligent Scheduler (Throughput)
Cloud-Only (Throughput)
Edge-Only (Throughput)

(a) Llama-7B

0

10

20

30

40

50
Th

ro
ug

hp
ut

 (t
ok

en
s/

s)

1 5 10 20

Bandwidth (Mbps)

50

100

150

200

250

Av
er

ag
e

La
te

nc
y

(m
s)

Intelligent Scheduler (Latency)
Cloud-Only (Latency)
Edge-Only (Latency)
Intelligent Scheduler (Throughput)
Cloud-Only (Throughput)
Edge-Only (Throughput)

(b) Llama-13B
Figure 2: Impact of Bandwidth to Collaborative LLMs Inference of Llama-7B and Llama-13B

Fig. 2 evaluates the performance of edge-cloud collaborative inference for Llama-7B and Llama-
13B models under varying bandwidth conditions, focusing on average latency and throughput. For
both models, the Intelligent Scheduler (our work) consistently outperforms the Cloud-Only and
Edge-Only baselines.

As illustrated in Fig. 3, the cloud-only baseline devotes resources to both prefilling and decod-
ing, causing prolonged server occupancy with each draft-verify cycle. In contrast, Edge + Cloud
dedicates the server to adaptive resource allocation while offloading inference tasks to more cost-
effective edge devices, reducing server runtime by approximately 40% in all model configurations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

HumanEval C-Eval SummEval WikiText-2
Dataset

0

20

40

60

80

100

120

140

C
lo

ud
 ru

n
tim

e
(s

)

Llama2-7B Edge+Cloud
Llama2-7B Cloud-Only

Llama2-13B Edge+Cloud
Llama2-13B Cloud-Only

Figure 3: Average cloud run time for a task between Cloud-only and Edge + Cloud.

4.3 ABLATION STUDY

To verify the impact of each module on performance, an ablation study was conducted to compare
the latency and throughput across different component combinations.

DA FA Sche Auto Dec Ran Latency Throughput
✓ ✓ ✓ 145.52 8.13

✓ ✓ ✓ 78.15 10.22
✓ ✓ ✓ 72.3 11.89
✓ ✓ ✓ 65.71 18.55
✓ ✓ ✓ 57.94 36.54

Table 2: Ablation study of proposed techniques on HumanEval dataset based on Llama2-7B. Dy-
namic Attention Sparsification (DA), with impact on latency; Full-Attention (FA), a standard full-
attention baseline without sparsification; Hierarchical Scheduling Architecture (Sche); Autoregres-
sive Model (Auto), a baseline for autoregressive decoding that generates one token at a time; K-
Priority FCFS Offloading Algorithm (Dec), an intelligent priority-based offloading algorithm; and
Random Offloading (Ran), a naive offloading baseline with the worst expected performance. La-
tency: ms/token, Throughput: tokens/s.

As shown in Table 2, the results indicate that Dynamic Attention Sparsification (DA) significantly
outperforms Full-Attention (FA): under the Auto+Ran configuration, latency is reduced by 46%
(from 145.52 ms to 78.15 ms) and throughput is increased by 26% (from 8.13 to 10.22 tokens/sec),
confirming its effectiveness in enhancing computational efficiency. Hierarchical Scheduling Ar-
chitecture (Sche) requires collaboration with intelligent strategies: when combined with K-Priority
FCFS Offloading (Dec), compared to the Auto+Dec configuration, latency decreases by 12% (from
65.71 ms to 57.94 ms) and throughput nearly doubles (from 18.55 to 36.54 tokens/sec), reflecting the
pipeline gains of system-level scheduling. Dec significantly outperforms Random Offloading (Ran):
under the DA+Sche configuration, throughput rises by 206% (from 11.89 to 36.54), demonstrating
the necessity of intelligent offloading.

5 CONCLUSION

In this paper, we propose a comprehensive and efficient framework for LLM inference offloading,
designed to maximize throughput in hybrid edge-cloud environments. Our approach involves im-
plementing a Hierarchical Scheduling Architecture to manage system-wide resources from a macro
perspective, decoupling strategic, offline tensor placement from real-time, online execution plan-
ning. Simultaneously, we accelerate individual GPU computations from a micro perspective through
Dynamic Attention Sparsification (DAS), a technique that prunes redundant attention calculations.
The entire system is guided by a throughput-optimal, work-conserving offloading principle, which
we theoretically prove to guarantee system stability under heavy load. Experimental results on
Llama2-7B and Llama2-13B models demonstrate that our hybrid approach significantly boosts sys-
tem throughput, validating the effectiveness of our proposed framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research was conducted in full alignment with the ICLR Code of Ethics. We affirm that our
study did not involve human participants or animal subjects. The datasets utilized, including Hu-
manEval, C-Eval, etc, were procured from public sources and handled in strict accordance with their
respective licensing and usage terms, ensuring no breach of privacy. Our methodology was designed
to be impartial and to prevent discriminatory outcomes, and the research did not involve personally
identifiable information (PII). We are fully committed to upholding the principles of research in-
tegrity and transparency throughout this work.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our research, we provide comprehensive resources for indepen-
dent verification. The source code implementing our primary contributions is included as a Sup-
plementary Material.zip file in the supplementary material submitted with this manuscript. This
package contains a self-contained implementation of our core innovations Furthermore, we offer a
thorough explanation of our core contribution, to support independent implementation.

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Esha Choukse, Pratyush Patel, Chaojie Zhang, Aashaka Shah, Inigo Goiri, Saeed Maleki, Rodrigo
Fonseca, and Ricardo Bianchini. Splitwise: Efficient generative llm inference using phase split-
ting. IEEE Micro, pp. 1–5, 2025. doi: 10.1109/MM.2025.3575361.

Shi Dong, Junxiao Tang, Khushnood Abbas, Ruizhe Hou, Joarder Kamruzzaman, Leszek
Rutkowski, and Rajkumar Buyya. Task offloading strategies for mobile edge computing: A sur-
vey. Computer Networks, 254:110791, 2024.

Alexander R Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391–409, 2021.

Lizhou Fan, Lingyao Li, Zihui Ma, Sanggyu Lee, Huizi Yu, and Libby Hemphill. A bibliometric
review of large language models research from 2017 to 2023. ACM Transactions on Intelligent
Systems and Technology, 15(5):1–25, 2024.

Ying He, Jingcheng Fang, F. Richard Yu, and Victor C. Leung. Large language models (llms) infer-
ence offloading and resource allocation in cloud-edge computing: An active inference approach.
IEEE Transactions on Mobile Computing, 23(12):11253–11264, 2024. doi: 10.1109/TMC.2024.
3415661.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. Advances in Neural Information Processing Systems, 36:
62991–63010, 2023.

Bert Hubert et al. Linux advanced routing & traffic control howto. Netherlabs BV, 1:99–107, 2002.

Yueying Li, Jim Dai, and Tianyi Peng. Throughput-optimal scheduling algorithms for llm inference
and ai agents. arXiv preprint arXiv:2504.07347, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke Zhou, Yingwei Luo, Xiaolin
Wang, and Jie Zhang. Instinfer: In-storage attention offloading for cost-effective long-context llm
inference. arXiv preprint arXiv:2409.04992, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Francesca Pianosi and Thorsten Wagener. A simple and efficient method for global sensitivity
analysis based on cumulative distribution functions. Environmental Modelling & Software, 67:
1–11, 2015.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin
Zheng, and Xinran Xu. Mooncake: trading more storage for less computation — a kvcache-
centric architecture for serving llm chatbot. In Proceedings of the 23rd USENIX Conference
on File and Storage Technologies, FAST ’25, USA, 2025. USENIX Association. ISBN 978-1-
939133-45-8.

Guanqiao Qu, Qiyuan Chen, Wei Wei, Zheng Lin, Xianhao Chen, and Kaibin Huang. Mobile edge
intelligence for large language models: A contemporary survey. IEEE Communications Surveys
& Tutorials, 2025.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE access, 12:26839–26874, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin,
Deng Cai, and Xiaofei He. Model compression and efficient inference for large language models:
A survey. arXiv preprint arXiv:2402.09748, 2024.

Yalan Wu, Jigang Wu, Long Chen, Bosheng Liu, Mianyang Yao, and Siew Kei Lam. Share-aware
joint model deployment and task offloading for multi-task inference. IEEE Transactions on Intel-
ligent Transportation Systems, 25(6):5674–5687, 2024.

Zheming Yang, Yuanhao Yang, Chang Zhao, Qi Guo, Wenkai He, and Wen Ji. Perllm: Personalized
inference scheduling with edge-cloud collaboration for diverse llm services, 2024. URL https:
//arxiv.org/abs/2405.14636.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. arXiv preprint
arXiv:2502.18137, 2025.

Wei Zhao and John A Stankovic. Performance analysis of fcfs and improved fcfs scheduling al-
gorithms for dynamic real-time computer systems. In 1989 Real-Time Systems Symposium, pp.
156–157. IEEE Computer Society, 1989.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan,
Lifang He, et al. A comprehensive survey on pretrained foundation models: A history from bert
to chatgpt. International Journal of Machine Learning and Cybernetics, pp. 1–65, 2024.

11

https://arxiv.org/abs/2405.14636
https://arxiv.org/abs/2405.14636

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

LLMS USAGE DISCLOSURE

The authors disclose that Large Language Models (LLMs) were used only to aid or polish writing.

A APPENDIX

RELATED WORK

In the context of Large Language Model (LLM) inference, the prefill and decode stages Pan et al.
(2024) exhibit distinct computational characteristics: the former is compute-bound, primarily in-
volving the batch processing of input sequences, while the latter is bandwidth-bound, focusing on
token-by-token generation and KV Cache access Raiaan et al. (2024). Addressing these differing
computational demands, two main paradigms currently exist: the Fusion Paradigm and the Separa-
tion Paradigm.

In contrast to the Fusion Paradigm, the Separation Paradigm leverages the computational differences
between prefill and decode by attempting to distribute them across distinct computational devices.
Systems such as Splitwise Choukse et al. (2025), DistServe Zhong et al. (2024), and Mooncake Qin
et al. (2025) are representative examples of this approach, having inherited and further developed
the concept of separation. The primary advantage of the Separation Paradigm lies in its ability to
configure independent levels of parallelism for both the prefill and decode stages, offering greater
system flexibility. However, the principal challenge encountered by the Separation Paradigm is the
efficient transfer of KV Cache between disparate devices. This necessitates high-speed network
interconnects within the cluster, and the associated network costs are substantial.

CONSTRAINT

To achieve the objective function 1, we formulate a set of constraints.

Constraint 1 (Task Assignment Uniqueness) This constraint ensures that every task is executed
exactly once by a single server in the network.∑

j∈S
xij = 1, ∀i ∈ {1, · · · , N}. (7)

This is a fundamental logical constraint that guarantees the integrity of the solution. It ensures that
every task Ti in the set is processed while preventing redundant executions of the same task, which
would waste both computational and network resources.

Constraint 2 (Edge Server Model Placement & Storage) This critical set of constraints ad-
dresses the core challenge of deploying LLMs on storage-limited edge servers.

K∑
k=1

yjkMk ≤ Sj , ∀j ∈ M, (8)

xij ≤ yj,mod(i), ∀i ∈ {1, · · · , N}, ∀j ∈ M, (9)

where K = {C1, · · · , CK} is the set of K unique computing tasks, indexed by k. Mk is the storage
size (e.g., in GB) of the uncompressed Ck. Sj is the available storage (e.g., RAM/VRAM) capacity of
edge server j. yjk is a secondary binary decision variable, where yjk = 1 if Ck is deployed on edge
server j, and yjk = 0 otherwise. mod(i) is a function mapping task Ti to the specific computing
tasks k ∈ K it requires.

Eq. equation 8 models the physical storage limitation of each edge server. It dictates that the sum
of the sizes of all models deployed on an edge server cannot exceed its capacity, Sj . Eq. equation 9
creates a crucial logical link between storage limitation and task assignment. It states that a task Ti

can be assigned to an edge server j (xij = 1) only if the specific computational procedure required
for that task, model(i), is already deployed on server j (yj,model(i) = 1).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Constraint 3 (Server Computational Capacity) The total computational demand placed on any
server must not exceed its processing capabilities.

N∑
i=1

xijWi ≤ Ωj , ∀j ∈ S, (10)

where Wi is the computational workload of task Ti, for instance, measured in Floating Point Oper-
ations (FLOPs). Ωj is the total available computational capacity of server j over a given period.

This constraint addresses the “limited compute” aspect of edge servers. Even if a model can be
stored, the server must have the power to execute the inference task efficiently. This inequality pre-
vents the assignment of an excessive number of tasks to any single server, particularly less powerful
edge nodes, which would result in queuing delays and high computational latency. It effectively
enforces load balancing based on the heterogeneous compute capacities across the system.

Constraint 4 (End-to-End Latency Quality of Service) The total latency for any executed task,
combining both network transmission and on-device computation, must not exceed a predefined
service-level threshold.

Ltrans
ij + Lcomp

ij ≤ Lmax, ∀i, j, (11)

where xij = 1, Lcomp
ij is the computation latency for server j to execute task Ti. Lmax is the

maximum tolerable end-to-end latency, defining the required Quality of Service.

This constraint is paramount for ensuring a satisfactory user experience. While the objective function
(1) focuses on minimizing transmission latency, this constraint provides a hard upper bound on the
total perceived latency. It prevents the model from choosing a server that, despite being geograph-
ically close (low Ltrans

ij), is too slow or heavily loaded to perform the computation promptly (high
Lcomp
ij). This ensures that every task assignment in the final solution is not only network-efficient

but also meets the strict performance criteria required for real-time applications.

ACCURACY PRESERVATION

A critical consideration in any optimization involving model alterations is the preservation of task
accuracy. Our framework ensures high accuracy through two primary mechanisms.

First, regarding the use of int8 precision models, as mentioned in Section 4.1.1, we utilize the official
quantized versions of the Llama2 models. These models are generated using robust post-training
quantization (PTQ) techniques that are widely validated to have a negligible impact on accuracy for
the benchmark tasks evaluated in this paper, such as HumanEval and C-Eval.

Second, our proposed Dynamic Attention Sparsification (DAS) is explicitly designed to be accuracy-
aware. Unlike naive pruning, DAS employs a principled, two-stage filtering process to identify
and remove only computationally redundant attention heads. The thresholds θB (for internal self-
similarity) and π (for cumulative score) are critical hyper-parameters that can be tuned to balance
performance and accuracy. For our experiments, these thresholds were carefully selected to en-
sure that no significant degradation in accuracy was observed on downstream tasks. Specifically,
our pruning strategy preserves vital information by never skipping blocks with high informational
entropy (i.e., low self-similarity) and retaining the most significant attention scores, thereby main-
taining the core semantic processing capabilities of the model.

The core principle behind the accuracy preservation of Dynamic Attention Sparsification (DAS) is
that the pruned computations contribute negligibly to the final output of the attention layer. We can
formalize this by bounding the error introduced by the sparsification process.

Let Ofull ∈ RN×dv be the output of a standard, full attention layer for a sequence of N tokens, and
let ODAS ∈ RN×dv be the output from our DAS-enabled attention layer. The error introduced by
DAS can be represented as the norm of their difference, E = ∥Ofull − ODAS∥. Our goal is to show
that E is bounded by a small value controlled by our pruning hyperparameters.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The output of the attention layer is computed block-wise. Let Qi,Kj , Vj be the i-th query block and
j-th key/value blocks, respectively. The full output is:

Ofull =
∑
i,j

softmax

(
QiK

T
j√

dk

)
Vj =

∑
i,j

PijVj (12)

where Pij is the attention probability matrix between block i and j.

Our DAS framework introduces two binary masks, Mg (Adaptive Block Pruning) and Mpv (Online
Value Pruning). The output of DAS is:

ODAS =
∑
i,j

Mg[i, j] ·Mpv[i, j] · PijVj (13)

The approximation error is the sum of the contributions from the pruned blocks:

E =

∥∥∥∥∥∥
∑

(i,j)∈Spruned

PijVj

∥∥∥∥∥∥ ≤
∑

(i,j)∈Spruned

∥PijVj∥ (14)

where Spruned = {(i, j) | Mg[i, j] ·Mpv[i, j] = 0}. We can analyze the error contribution from each
pruning stage.

1. Bounding Error from Adaptive Block Pruning (Mg). This stage prunes blocks based on a
cumulative distribution function applied to a compressed attention map P̂ , with a threshold τ . This
means we keep the blocks that are predicted to have the highest attention scores. The sum of the
scores of the pruned blocks is therefore bounded. Let Sg be the set of blocks pruned by this stage.
We have: ∑

(i,j)∈Sg

∥P̂ij∥1 ≤ 1− τ (15)

Assuming the compressed attention map P̂ is a reasonable proxy for the full attention P , i.e.,
∥Pij∥F ≤ C∥P̂ij∥1 for some constant C related to block size, the error contribution Eg from this
stage can be bounded. Let Vmax = maxj ∥Vj∥F .

Eg =
∑

(i,j)∈Sg

∥PijVj∥F ≤
∑

(i,j)∈Sg

∥Pij∥F ∥Vj∥F ≤ Vmax

∑
(i,j)∈Sg

∥Pij∥F ≤ C ·Vmax(1−τ) (16)

This shows that the error introduced by block pruning is directly controlled by (1− τ). By choosing
τ close to 1 (e.g., τ = 0.99), this error component is kept small.

2. Bounding Error from Online Value Pruning (Mpv). This stage prunes the PijVj computation
for blocks that passed the first stage but whose attention scores in Pij are determined to be negligible.
The sparse online softmax algorithm ensures that for any pruned element (m,n) within a block
(i, j), its value (Pij)mn is below a small threshold ϵpv . Let Spv be the set of blocks pruned at this
stage. For any (i, j) ∈ Spv , all elements of Pij are small. Let the block size be b× b.

∥Pij∥F =

√√√√ b∑
m,n=1

(Pij)2mn <
√

b2 · ϵ2pv = b · ϵpv (17)

The error contribution Epv from this stage is then bounded:

Epv =
∑

(i,j)∈Spv

∥PijVj∥F ≤ Vmax

∑
(i,j)∈Spv

∥Pij∥F < |Spv| · Vmax · b · ϵpv (18)

This error is proportional to the small threshold ϵpv .

Conclusion. The total error is bounded by the sum of errors from both stages:
∥Ofull −ODAS∥ ≤ Eg + Epv ≤ O(1− τ) +O(ϵpv) (19)

This demonstrates that the error is directly controlled by the hyperparameters τ and ϵpv . By selecting
a high value for τ and a low value for ϵpv , we can ensure that the output of the DAS-enabled attention
layer remains arbitrarily close to that of the full attention layer, thus preserving the model’s accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

PROOF SKETCH FOR SYSTEM STABILITY

In Section 3.3, we claim our work-conserving offloading principle can achieve throughput-
optimality. This claim is rooted in queuing theory, specifically leveraging concepts from Lyapunov
stability analysis. Here, we provide a high-level proof sketch.

1. System Model: We model the system as a discrete-time queueing network. The
state of the system at time slot t is defined by the vector of queue lengths Q(t) =
[QCS(t), QM1(t), . . . , QMK

(t)], where Qj(t) is the number of pending tasks for server
j ∈ S = {CS,M1, . . . ,MK}. Let λi be the arrival rate of tasks of type i. The total arrival
rate vector is λ.

2. Capacity Region: The system has a capacity region Λ, which is the set of all arrival rate
vectors λ for which there exists some scheduling policy that can keep all queues stable
(i.e., the expected queue lengths remain bounded over time).

3. Lyapunov Function: To prove stability, we define a quadratic Lyapunov function, which
represents the total squared backlog in the system:

L(Q(t)) =
1

2

∑
j∈S

Qj(t)
2 (20)

4. Lyapunov Drift: We analyze the one-step expected change (drift) in the Lyapunov func-
tion, conditioned on the current state Q(t):

∆(Q(t)) = E[L(Q(t+ 1))− L(Q(t)) | Q(t)] (21)

A key result from queuing theory (based on the Foster-Lyapunov theorem) states that if we
can find a policy that ensures the drift is negative whenever the queue length is large, for
any arrival rate λ strictly inside the capacity region Λ, then the system is stable.

5. Work-Conserving Policy: Our K-P-FCFS offloading algorithm is a work-conserving pol-
icy. This means it never leaves a server idle if there is a compatible task that it can process.
For any arrival rate vector λ ∈ Λ, there exists some ϵ > 0 such that the expected service
rate vector µ can satisfy µj > λj + ϵ for all servers j. A work-conserving policy, by
maximizing service opportunities, aims to satisfy this condition.
Under such a policy, the Lyapunov drift can be shown to satisfy the following inequality:

∆(Q(t)) ≤ B − ϵ
∑
j∈S

Qj(t) (22)

where B is a positive constant that depends on the second moments of the arrival and
service processes, and ϵ > 0. For a sufficiently large total queue length (

∑
Qj(t) > B/ϵ),

the negative term dominates, forcing the drift to be negative. This guarantees that the queue
lengths are bounded and the system is stable.
This result establishes that our policy is throughput-optimal in the sense that it can stabi-
lize the system for any arrival rate that is theoretically serviceable, i.e., any λ strictly within
the capacity region Λ.

15

	Introduction
	System Model and Problem Formulation
	System Architecture
	Problem Formulation

	Inference Offloading Optimization Strategy
	Hierarchical Scheduling Architecture
	Centralized Adaptive Tensor Placement
	Decentralized Dynamic Pipeline Planning

	Dynamic Attention Sparsification
	Adaptive Block Pruning
	Online Value Pruning

	Optimization Offloading Strategy
	Throughput-Optimal Offloading Principle
	The K-Priority FCFS Offloading Algorithm

	Experiment
	Experimental Setup
	Environment and Resource Limitation
	Benchmarks and Datasets
	Evaluation Metrics

	Performance Comparison
	Ablation Study

	Conclusion
	Appendix

