
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUAL TASK LEARNING THROUGH ADAPTIVE
POLICY SELF-COMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training a generalizable agent to continually learn a sequence of tasks from of-
fline trajectories is a natural requirement for long-lived agents, yet remains a
significant challenge for current offline reinforcement learning (RL) algorithms.
Specifically, an agent must be able to rapidly adapt to new tasks using newly col-
lected trajectories (plasticity), while retaining knowledge from previously learned
tasks (stability). However, systematic analyses of this setting are scarce, and it
remains unclear whether conventional continual learning (CL) methods are ef-
fective in continual offline RL (CORL) scenarios. In this study, we develop the
Offline Continual World benchmark and demonstrate that traditional CL meth-
ods struggle with catastrophic forgetting, primarily due to the unique distribution
shifts inherent to CORL scenarios. To address this challenge, we introduce Com-
poFormer, a structure-based continual transformer model that adaptively com-
poses previous policies via a meta-policy network. Upon encountering a new
task, CompoFormer leverages semantic correlations to selectively integrate rele-
vant prior policies alongside newly trained parameters, thereby enhancing knowl-
edge sharing and accelerating the learning process. Our experiments reveal that
CompoFormer outperforms conventional CL methods, particularly in longer task
sequences, showcasing a promising balance between plasticity and stability.

1 INTRODUCTION

Similar to human cognition, a general-purpose intelligent agent is expected to continually acquire
new tasks. These sequential tasks can be learned either through online exploration (Malagon et al.,
2024; Yang et al., 2023; Wolczyk et al., 2021) or offline from pre-collected datasets (Huang et al.,
2024; Gai et al., 2023; Hu et al., 2024a), with the latter being equally critical but having received
comparatively less attention. Furthermore, online learning is not always feasible due to the need for
direct interaction with the environment, which can be prohibitively expensive in real-world settings.
Thus, the study of continual offline reinforcement learning (CORL) is both crucial and valuable for
advancing general-purpose intelligence, which integrates offline RL and continual learning (CL).

Although offline RL has demonstrated strong performance in learning single tasks (Chen et al., 2021;
Hu et al., 2024b;c), it remains prone to catastrophic forgetting and cross-task interference when ap-
plied to sequential task learning (Bengio et al., 2020; Fang et al., 2019). Moreover, there is a lack
of systematic analysis in this setting, and it remains unclear whether conventional CL methods are
effective in CORL settings. CORL faces unique challenges, including distribution shifts between the
behavior and learned policies, across offline data from different tasks, and between the learned pol-
icy and saved replay buffers (Gai et al., 2023). As a result, managing the stability-plasticity tradeoff
in CL and addressing the challenges posed by distribution shifts in offline RL remains a critical issue
(Yue et al., 2024). To tackle this, we leverage sequence modeling using the Transformer architecture
(Hu et al., 2024d; Vaswani, 2017), which reformulates temporal difference (TD) learning into a be-
havior cloning framework, enabling a supervised learning approach that aligns better with traditional
CL methods. While Transformer-based methods help reduce distribution shift between the behav-
ior and learned policies and facilitate knowledge transfer between similar tasks due to the model’s
strong memory capabilities (Chen et al., 2021), they may exacerbate shifts between time-evolving
datasets and between the learned policy and replay buffer (Huang et al., 2024). Consequently, these
methods still face significant stability-plasticity tradeoff problems, even when combined with CL
approaches for learning sequences of new tasks (see Section 5.2 for details).
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Figure 1: Adaptive policy self-composition architecture. When a new task arises (represented by a
star), its textual description is processed by the frozen S-BERT model to compute attention scores
with previous task descriptions. After several update iterations of the attention module, if the com-
posed policy is sufficient for the current task, it is used directly; otherwise, new parameters are
incorporated alongside the composed policy to construct the new policy π(k).

To overcome the limitations of previous approaches and better address the plasticity-stability trade-
off, we explore how to train a meta-policy network in CORL. Structure-based methods typically
introduce new sub-networks for each task while preserving parameters from previous tasks, thereby
mitigating forgetting and interference (Mallya & Lazebnik, 2018). These methods transfer knowl-
edge between modules by transferring relevant knowledge through task-shared parameters. How-
ever, as the number of tasks increases, distinguishing valuable information from shared knowledge
becomes increasingly challenging (Malagon et al., 2024). In such cases, knowledge sharing may
offer limited benefits and could even impede learning on the current task. Therefore, in this paper,
we propose leveraging semantic correlations to selectively compose relevant prior learned policy
modules, thereby enhancing knowledge sharing and accelerating the learning process.

As illustrated in Figure 1, when a new task is introduced, our model, CompoFormer, first utilizes its
textual description to compute attention scores with descriptions of previous tasks using the frozen
Sentence-BERT (S-BERT) (Reimers, 2019) module and a trainable attention module. After several
update iterations based on the final output action loss, if the composed policy output is sufficient
for the current task, it is applied directly. Otherwise, new parameters are integrated alongside the
composed policy to construct a new policy for the new task. This process naturally forms a cascading
structure of policies, growing in depth as new tasks are introduced, with each policy able to access
and compose outputs from prior policies to address the current task (Malagon et al., 2024). This
approach could effectively manage the plasticity-stability trade-off. Specifically, relevant tasks share
a greater amount of knowledge, facilitating a faster learning process, while less knowledge is shared
between unrelated tasks to minimize cross-task interference. This mechanism enhances plasticity
and accelerates the learning process. Simultaneously, the parameters of previously learned tasks
remain fixed, preserving stability and reducing the risk of forgetting.

In our experiments, we extend the Continual World benchmark (Wolczyk et al., 2021) to the Of-
fline Continual World benchmark and conduct a comprehensive evaluation of existing CL methods.
Our approach consistently outperforms these baselines across different benchmarks, particularly in
longer task sequences, achieving a marked reduction in forgetting (Table 1). This demonstrates its
ability to effectively leverage prior knowledge and accelerate the learning process by adaptively se-
lecting relevant policies. Additionally, we highlight the critical contributions of each component
in our framework (Figure 4) and show the generalizability of our method across varying task or-
der sequences (Table 2). Compared to state-of-the-art approaches, CompoFormer achieves the best
trade-off between plasticity and stability (Figure 5).

2 RELATED WORK

Offline RL. Offline RL focuses on learning policies solely from static, offline datasets D, without
requiring any further interaction with the environment (Levine et al., 2020). This paradigm signif-
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icantly enhances the sample efficiency of RL, particularly in scenarios where interacting with the
environment is costly or involves considerable risk, such as safety-critical applications. However,
a key challenge in offline RL arises from the distribution shift between the learned policy and the
behavior policy that generated the dataset, which can lead to substantial performance degradation
(Fujimoto et al., 2019). To address this issue, various offline RL algorithms employ constrained or
regularized dynamic programming techniques to minimize deviations from the behavior policy and
mitigate the impact of distribution shift (Fujimoto & Gu, 2021; Kumar et al., 2020; Kostrikov et al.,
2021). Another promising approach for offline RL is conditional sequence modeling (Hu et al.,
2024d; Chen et al., 2021), which predicts future actions based on sequences of past experiences,
represented by state-action-reward triplets. This approach naturally aligns with supervised learning,
as it restricts the learned policy to remain within the distribution of the behavior policy, while be-
ing conditioned on specific metrics for future trajectories (Hu et al., 2023a; 2024b; Yamagata et al.,
2023; Hu et al., 2023b; 2024e; Meng et al., 2023). Given that most continual learning methods fol-
low a supervised learning framework, we adopt the Decision Transformer (Chen et al., 2021) as the
base model and implement various continual learning techniques in conjunction with it.

Continual RL. Continual learning is a critical and challenging problem in machine learning, aiming
to enable models to learn from a continuous stream of tasks without forgetting previously acquired
knowledge. Generally, continual learning methods can be categorized into three main approaches
(Masana et al., 2022): (i) Regularization-based approaches (Kirkpatrick et al., 2017; Aljundi et al.,
2018), which introduce regularization terms to prevent model parameters from drifting too far from
those learned from prior tasks; (ii) Structure-based methods (Mallya & Lazebnik, 2018; Huang et al.,
2024), which allocate fixed subsets of parameters to specific tasks; (iii) Rehearsal-based methods
(Chaudhry et al., 2018b; Wolczyk et al., 2021), which retrain the model by merging a small amount
of data from previously learned tasks with data from the current task. Most of these methods have
been extensively investigated within the context of online RL (Yang et al., 2023; Malagon et al.,
2024), whereas there is a paucity of research focused on adapting them to offline RL settings (Huang
et al., 2024; Gai et al., 2023). Furthermore, these efforts often differ in their experimental settings,
evaluation metrics, and primarily focus on rehearsal-based methods, often leveraging diffusion mod-
els (Hu et al., 2024a). Nonetheless, they continue to grapple with the significant stability-plasticity
dilemma (Khetarpal et al., 2022). In this paper, we introduce the Offline Continual World bench-
mark to perform a comprehensive empirical evaluation of existing continual learning methods. Our
approach demonstrates a promising balance between plasticity and stability.

3 PRELIMINARIES

We begin by introducing the notation used in the paper and formalizing the problem at hand.

The goal of RL is to learn a policy πθ(a|s) maximizing the expected cumulative discounted rewards
E[
∑∞

t=0 γ
tR(st,at)] in a Markov decision process (MDP), which is a six-tuple (S,A,P,R, γ, d0),

with state space S, action space A, environment dynamics P(s′|s,a) : S × S ×A → [0, 1], reward
function R : S×A → R, discount factor γ ∈ [0, 1), and initial state distribution d0 (Sutton & Barto,
2018). In the offline setting (Levine et al., 2020), instead of the online environment, a static dataset
D = {(s,a, s′, r)}, collected by a behavior policy πβ , is provided. Offline RL algorithms learn a
policy entirely from this static offline dataset D, without online interactions with the environment.

In this work, we follow the task-incremental setting commonly used in prior research (Khetarpal
et al., 2022; Wolczyk et al., 2021), where non-stationary environments are modeled as MDPs
with components that may vary over time. A task k is defined as a stationary MDP M(k) =

⟨S(k),A(k),P(k),R(k), γ(k), d
(k)
0 ⟩, where k is a discrete index that changes over time, forming a

sequence of tasks. For each task, a corresponding static dataset D(k) = {(s(k),a(k), s′(k), r(k))} is
collected by a behavior policy π

(k)
β . We assume that the agent is provided with a limited budget of

training steps to optimize the task-specific policy π(k) using the dataset D(k). Once this budget is
exhausted, a new task M(k+1) is introduced, and the agent is restricted to interacting solely with
this new task. The objective is to accelerate and improve the optimization of the policy π(k) for the
current task M(k) by leveraging knowledge from the previously learned policies {π(i)}i=1,...,k−1.

We adopt three common assumptions regarding variations between tasks, following prior work (Wol-
czyk et al., 2021; Khetarpal et al., 2022; Malagon et al., 2024). First, the action space A remains
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Figure 2: The architecture of the meta-policy network. The core module is built upon the Trans-
former architecture, which receives the trajectory as input and outputs the corresponding action.
Upon encountering task M(k), our method presents two variants: the “Grow” variant, which adds
new parameters to the Transformer in a LoRA format, and the “Prune” variant, which utilizes a
masking technique to deactivate certain parameters within the Transformer (where green indicates
activated parameters and grey denotes inactivated ones).

constant across all tasks. This assumption is flexible, as tasks with distinct action sets can be treated
as sharing a common action space A by assigning a zero probability to task-irrelevant actions. Sec-
ond, task transition boundaries and identifiers are assumed to be known to the agent, as is standard in
the literature (Wolczyk et al., 2021; 2022; Khetarpal et al., 2022). Finally, variations between tasks
primarily arise from differences in environment dynamics (P) and reward functions (R), implying
that tasks should have similar state spaces, i.e., S(i) ≈ S(j).

4 METHOD

In this work, given a sequence of previously learned policies {π(i)}i=1,...,k−1, where each policy
π(i) corresponds to task M(i), we identify two scenarios for the current task M(k): (i) M(k) can be
solved by a previously learned policy without requiring additional parameters, or (ii) M(k) requires
learning a new policy that leverages knowledge from previous tasks to accelerate learning without
interfering with earlier policies. Our methods address this by allocating a sub-network for each
task and freezing its weights after training, effectively preventing forgetting. There are two main
approaches to sub-network representation: (i) adding new parameters to construct the sub-network
(Czarnecki et al., 2018; Malagon et al., 2024; Huang et al., 2024), or (ii) applying binary masks
to neurons’ outputs (Serra et al., 2018; Ke et al., 2021; Mallya & Lazebnik, 2018). We provide
solutions for both approaches. The detailed pipeline is summarized in Algorithm 1.

4.1 META-POLICY NETWORK

The underlying network architecture is based on the Decision Transformer (DT) (Chen et al., 2021),
which formulates the RL problem as sequence modeling, leveraging the scalability of the Trans-
former architecture and the benefits of parameter sharing to better exploit task similarities.

Specifically, during training on offline data for the current task M(k), DT takes the recent M -step
trajectory history τ

(k)
t as input, where t represents the timestep. This trajectory consists of the state

s
(k)
t , the action a

(k)
t , and the return-to-go R̂

(k)
t =

∑T
i=t r

(k)
i , where T is the maximum number of

interactions with the environment. The trajectory is formulated as:

τ
(k)
t = (R̂

(k)
t−M+1, s

(k)
t−M+1,a

(k)
t−M+1, . . . , R̂

(k)
t , s

(k)
t ,a

(k)
t ). (1)

The prediction head linked to a state token s
(k)
t is designed to predict the corresponding action a

(k)
t .

For continuous action spaces, the training objective aims to minimize the mean-squared loss:

LDT =E
τ
(k)
t ∼D(k)

[
1

M

t∑
m=t−M+1

(a(k)m − π(τ
(k)
t )m)2

]
. (2)

where π(τ (k)t )m is the m-th action output of the Transformer policy π in an auto-regressive manner.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on the construction of the new policy sub-network, our method can be divided into two
variants: CompoFormer-Grow and CompoFormer-Prune (Shown in Figure 2).

CompoFormer-Grow. When a new sub-network needs to be added, its architecture is expanded
by introducing additional parameters. Rather than adding fully linear layers, we employ Low-Rank
Adaptation (LoRA) (Hu et al., 2021), which integrates rank-decomposition weight matrices (re-
ferred to as update matrices) into the existing network. Only these newly introduced parameters are
trainable, enabling efficient fine-tuning while minimizing forgetting. Specifically, the form of the
LoRA-based multilayer perceptron (LoRA-MLP) is expressed as:

LoRA-MLP(X) = (W1 +B1A1)(RELU((W0 +B0A0)X + b0)) + b1, (3)

where W0 ∈ Rh×h and W1 ∈ Rh×h are the weights of two linear layers, b is the bias, and
A0 ∈ Rr×h,B0 ∈ Rh×r,A1 ∈ Rr×h and B1 ∈ Rh×r are the update matrices. Here, r signifies
the rank of LoRA, h indicates the hidden dimension, and it holds that r << h. For the first task
M(1), we train all parameters of the DT model. For subsequent tasks M(k) where k > 1, only
the newly introduced parameters, L × [A

(k)
0 ,B

(k)
0 ,A

(k)
1 ,B

(k)
1 ], are updated, where L denotes the

number of hidden layers in the DT.

CompoFormer-Prune. Given a meta-policy network with L layers, where the final layer L serves
as the action prediction head, let l ∈ {1, . . . , L − 1} index the hidden layers. In this context, yl

represents the output vector of layer l, and θl denotes the weights of layer l. The output of the
sub-network at layer (l + 1) is:

yl+1 = f(yl;ϕ
(k)
l+1 ⊗ θl+1), (4)

where ϕ
(k)
l+1 is a binary mask generated for task M(k) and applied to layer l + 1, and f represents

the neural operation (e.g., a fully connected layer). The element-wise product operator ⊗ activates a
subset of neurons in layer (l + 1) according to ϕ

(k)
l+1. These activated neurons across all layers form

a task-specific sub-network, which is updated with the offline dataset.

To efficiently utilize the network’s capacity, each task-specific policy should form a sparse sub-
network, activating only a small subset of neurons. Inspired by Mallya & Lazebnik (2018), dur-
ing training on task M(k), we first employ the full network with parameters θl across all layers
l ∈ {1, 2, . . . , L} to compute actions. The parameters are then updated without interfering with
previously learned tasks by setting the gradients of θl ⊗ ϕ

(k−1)
l to zero in all layers. After several

iterations of training, a fraction of the unused parameters from previous tasks, θl ⊗ (1 − ϕ
(k−1)
l ),

are pruned—i.e., set to zero based on their absolute magnitude. The remaining selected weights,
θl ⊗ ϕ′

l, are then retrained to prevent performance degradation following pruning. This creates the
new sub-network for task M(k), with the updated mask defined as ϕ(k)

l = ϕ
(k−1)
l | ϕ′

l across all lay-
ers, allowing for the reuse of weights from previous tasks. This process is repeated until all required
tasks are incorporated or no free parameters remain.

4.2 SELF-COMPOSING POLICY MODULE

In this subsection, we describe the key building block of the proposed architecture: the self-
composing policy module. The following lines explain the rationale behind these components.

To expedite knowledge transfer from previous tasks to new tasks, we utilize the task’s textual de-
scription with the aid of Sentence-BERT (S-BERT) (Reimers, 2019). Specifically, given a new task
with M(k) an associated description, we process the text using a pretrained S-BERT model to pro-
duce a task embedding ek ∈ Rd, where d denotes the output dimension of the S-BERT model.
Then we introduce an attention module designed to adaptively learn the relevance of previously
learned policies to the new task based on semantic correlations. Specifically, the query vector is
computed as q = ekW

Q, where WQ ∈ Rd×h. As illustrated in Figure 2, the keys are computed
as K = EWK , where E is the row-wise concatenation of task embeddings from prior tasks, and
WK ∈ Rd×h. For the values matrix, no linear transformation is applied, instead, V is the row-wise
concatenation of output features from previous policies {Φ(1:k−1)}, denoted by V = ||k−1

i=1 Φ
(i),

where || denotes concatenation, and Φ(i) represents the output feature of the newly constructed sub-
network for task M(i). Once q, K are computed, the output of this block is obtained by the scaled
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dot-product attention (Vaswani, 2017), as formulated as:

F (ek, {Φ(1:k−1)}) = Attention(q,K,V ) = softmax(
qKT

√
d

)V , (5)

where F represents the function of the attention module, and the learnable parameters in this block
are WQ and WK .

When encountering a new task M(k), we first assign a set of parameters {WQ,WK}(k) and update
them to evaluate whether previous tasks are capable of solving the current task, based on a predefined
threshold. If the threshold is not met, new architecture parameters are assigned according to the
method being used: in the case of CompoFormer-Grow, a new set of LoRA parameters is introduced,
while for CompoFormer-Prune, idle parameters are pruned for the new task. To fully integrate prior
knowledge, the output feature of the newly constructed sub-network, Φ(k), is concatenated with the
output of the attention module to generate the final action output, followed by an MLP layer:

π(k) = MLP(Φ(k) || F (ek, {Φ(1:k−1)})), (6)

where || denotes concatenation. A detailed analysis of the computational cost of inference for our
method is provided in Appendix D.

At the beginning of Section 4, we outlined two scenarios concerning the current task and previously
learned policy modules. The following lines review these scenarios within the proposed architecture:

(i) If a previous policy is capable of solving the current task, the attention mechanism assigns
high importance to it, avoiding the need for additional learnable parameters. This simplifies
both the learning process and computational requirements.

(ii) When previous policies are insufficient to solve the current task, new parameters are intro-
duced, and their output is concatenated with the output of the attention module to facilitate
effective knowledge transfer and accelerate the learning process.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Benchmarks. To evaluate CompoFormer, we introduce the Offline Continual World (OCW) bench-
mark, built on the Meta-World framework (Yu et al., 2020), to conduct a comprehensive empirical
evaluation of existing continual learning methods. Specifically, we replicate the widely used Con-
tinual World (CW) framework (Wolczyk et al., 2021) in the continual RL domain by constructing 10
representative manipulation tasks with corresponding offline datasets. To increase the benchmark’s
difficulty, tasks are ranked according to a pre-computed transfer matrix, ensuring significant varia-
tion in forward transfer both across the entire sequence and locally (Yang et al., 2023). Additionally,
we employ OCW20, which repeats the OCW10 task sequence twice, to evaluate the transferability
of learned policies when the same tasks are revisited.

Evaluation metrics. Following a widely-used evaluation protocol in the continual learning literature
(Rolnick et al., 2019; Chaudhry et al., 2018b; Wolczyk et al., 2021; 2022), we adopt three key
metrics: (1) Average Performance (higher is better): The average performance at time t is defined
as AP (t) = 1

K

∑K
i=1 pi(t) where pi(t) ∈ [0, 1] denotes the success rate of task i at time t. This

is a canonical metric used in the continual learning community. (2) Forgetting (lower is better):
This metric quantifies the average performance degradation across all tasks at the end of training,
denoted by F = 1

K

∑K
i=1 pi(i · δ) − pi(K · δ), where δ represents the allocated training steps for

each task. (3) Forward Transfer (higher is better): This metric measures the impact that learning
a task has on the performance of future tasks (Lopez-Paz & Ranzato, 2017), and is denoted by
FWT = 1

K−1

∑K
i=1 pi((i− 1) · δ)− pi(0).

Comparing methods. We compare CompoFormer against several baselines and state-of-the-art
(SoTA) continual RL methods. As outlined by Masana et al. (2022), these methods can be catego-
rized into three groups: regularization-based, structure-based, and rehearsal-based approaches. Con-
cretely, the regularization-based methods include L2, Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017), MemoryAware Synapses (MAS) (Aljundi et al., 2018), Learning without For-
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Algorithm 1 CompoFormer

1: Initialize: meta-policy network π, performance threshold η, flag = True.
2: Input: training budget Itb, warmup budget Iwp, a sequence of tasks {M(i)}Ki=1 with corre-

sponding offline dataset {D(i)}Ki=1.
3: for k = 1 to K do
4: Assign a new head for task k: head(k).
5: Compute task embedding ek = fS-BERT(textual description of task k).
6: if k > 1 then
7: // Determine if new parameters are needed.
8: Assign parameters {WQ,WK}(k).
9: for i = 1 to Iwp do

10: Sample trajectory τ (k) from D(k).
11: Compute loss with Equation 2 using output feature from Equation 5 and head(k).
12: Update {WQ,WK}(k) and the parameters of head(k).
13: end for
14: Evaluate task k with previous policies and learned attention module. Set flag = False if

performance ≥ η, otherwise flag = True.
15: end if
16: if flag is True then
17: // Add new parameters
18: Add LoRA parameters for CompoFormer-Grow or prune idle parameters for

CompoFormer-Prune to construct the new sub-network Φ(k).
19: for i = 1 to Itb do
20: Sample trajectory τ (k) from D(k).
21: Compute action output with Equation 6.
22: Compute loss with Equation 2 and update corresponding parameters.
23: end for
24: end if
25: end for

getting (LwF) (Li & Hoiem, 2017), Riemanian Walk (RWalk) (Chaudhry et al., 2018a), and Varia-
tional Continual Learning (VCL) (Nguyen et al., 2017). Structure-based methods include PackNet
(Mallya & Lazebnik, 2018) and LoRA (Huang et al., 2024). Rehearsal-based methods encompass
Perfect Memory (PM) (Wolczyk et al., 2021) and Average Gradient Episodic Memory (A-GEM)
(Chaudhry et al., 2018b). Additionally, we include the naive sequential training method (Finetun-
ing) and the multi-task RL baseline MTL (Hu et al., 2024c), which are typically regarded as the
soft upper bound for continual RL methods. A more detailed description and discussion of these
methods, along with training details, are provided in Appendix B and C.

5.2 MAIN RESULTS

Table 1 and Figure 3 present the results of all methods evaluated under two settings, OCW10 and
OCW20, using the metrics outlined in Section 5.1.

Both regularization-based and rehearsal-based methods struggle to perform well, in contrast to their
success in supervised learning settings. This underperformance stems from the unique distribution
shifts inherent to offline RL, which increase the sensitivity of parameters and negatively impact per-
formance. Regularization-based methods impose additional constraints to limit parameter updates
and maintain stability, as evidenced by their lower forgetting rates compared to Finetuning baseline.
However, these methods still experience significant catastrophic forgetting, often exceeding 0.50.
Increasing the weight of the regularization loss can reduce forgetting further, but it also hampers the
learning of new tasks, exacerbating the stability-plasticity tradeoff (Appendix G). Moreover, tuning
these hyperparameters is often challenging and time-consuming, particularly in offline settings.

For rehearsal-based methods, despite their effectiveness in supervised learning, methods like Perfect
Memory and A-GEM exhibit poor performance in offline RL, even when allowed a generous replay
buffer. We hypothesize that this is due to the additional distribution shift introduced between the
replay buffer and the learned policy, as discussed in Gai et al. (2023).
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Table 1: Evaluation results (mean ± standard deviation) across three metrics averaged over three
random seeds on the Offline Continual World benchmark. MT = Multi-task, Reg = Regularization-
based, Struc = Structure-based, Reh = Rehearsal-based, P = Average Performance, F = Forgetting,
FWT = Forward Transfer. Detailed descriptions of baselines and metrics are provided in Section
5.1. The top two results among the continual learning methods for each metric are highlighted.

Benchmarks OCW10 OCW20

Metrics P (↑) F (↓) FWT (↑) P (↑) F (↓) FWT (↑)

MT MTL 0.75± 0.04 - - 0.80± 0.02 - -

Reg

L2 0.29± 0.06 −0.01± 0.00 0.03± 0.05 0.20± 0.01 0.00± 0.00 0.01± 0.01
EWC 0.16± 0.02 0.67± 0.02 0.02± 0.03 0.12± 0.02 0.69± 0.02 0.05± 0.01
MAS 0.29± 0.04 0.47± 0.07 0.01± 0.01 0.25± 0.02 0.44± 0.02 0.01± 0.02
LwF 0.21± 0.04 0.62± 0.03 0.06± 0.04 0.10± 0.01 0.70± 0.05 0.06± 0.03
RWalk 0.26± 0.03 0.01± 0.01 −0.02± 0.01 0.17± 0.01 0.05± 0.02 0.00± 0.01
VCL 0.14± 0.03 0.68± 0.04 0.04± 0.03 0.06± 0.00 0.74± 0.04 0.04± 0.01
Finetuning 0.11± 0.03 0.73± 0.04 0.03± 0.01 0.08± 0.00 0.77± 0.03 0.03± 0.02

Struc LoRA 0.54± 0.03 0.00± 0.00 0.01± 0.00 0.54± 0.01 0.00± 0.00 0.02± 0.02
PackNet 0.64± 0.06 −0.01± 0.01 0.03± 0.01 0.57± 0.04 0.00± 0.00 0.05± 0.02

Reh PM 0.26± 0.01 0.56± 0.05 0.04± 0.03 0.26± 0.08 0.57± 0.09 0.11± 0.02
A-GEM 0.12± 0.04 0.70± 0.06 0.02± 0.01 0.09± 0.01 0.73± 0.04 0.06± 0.02

Ours Grow 0.60± 0.06 −0.01± 0.01 −0.01± 0.01 0.61± 0.02 0.01± 0.02 −0.01± 0.03
Prune 0.69± 0.01 −0.01± 0.03 0.00± 0.00 0.73± 0.04 0.00± 0.01 0.03± 0.02
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Figure 3: Performance across 3 random seeds for all methods on the OCW20 sequence.
CompoFormer-Grow and Prune outperform all baselines, demonstrating faster task adaptation.

Structure-based methods, on the other hand, show better performance, benefiting from parame-
ter isolation that prevents interference between tasks. However, these methods fail to effectively
leverage the benefits of transferring relevant knowledge from previous tasks via shared parameters,
which impedes the overall learning process. When the second set of tasks in OCW20 is intro-
duced—identical to the first set—the performance of these methods declines, indicating inefficient
use of network capacity and prior knowledge. Since no new capacity is required, this suggests that
direct parameter sharing without adaptive selection is suboptimal.

In contrast, our method, CompoFormer, addresses these issues by selectively leveraging relevant
knowledge from previous policies through its self-composing policy module. This allows for more
efficient task adaptation, resulting in faster learning of new tasks (Figure 3) and better performance
compared to directly sharing representations. CompoFormer consistently outperforms all other
methods in both forgetting (stability) and new task performance (plasticity) across various settings,
particularly in the OCW20 benchmark, which demands effective utilization of prior knowledge with-
out incurring capacity limitations. However, we observe that most continual learning methods, in-
cluding ours, struggle with forward transfer, highlighting the ongoing challenge of improving future
tasks’ performance by learning new ones. We leave this issue for future work.

5.3 ABLATION STUDIES

Textual description. Does the output of the attention module in CompoFormer capture the semantic
correlations between tasks? To address this question, we visualize the similarity of CompoFormer’s
attention output between each pair of tasks in the OCW10 sequence, as shown in Figure 4a. Detailed

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

task 1
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Figure 4: (a) Visualization of attention scores from the self-composing policy module in the OCW10
benchmark with the CompoFormer-Grow edition, where the diagonal is excluded and set to 1. (b)
Evaluation of the effectiveness of our self-composing policy module through three variants: Sharing,
Addition, and Selection, conducted in the OCW10 benchmark for both the CompoFormer-Grow and
CompoFormer-Prune editions. Each result is averaged over three random seeds.

information regarding the attention scores for the OCW20 sequence can be found in Appendix F.
The heatmap illustrates the attention scores assigned to each task based on previous tasks. For
example, tasks 2 and 4 share a common manipulation primitive—pushing the puck—reflected in
their task descriptions. As a result, when learning the policy for task 4, the model incorporates more
knowledge from task 2. In contrast, for tasks with unrelated descriptions, CompoFormer reduces
attention to those tasks, thereby minimizing cross-task interference and enhancing plasticity.

Effectiveness of design choices. To demonstrate the effectiveness of our self-composing policy
module, we conduct an ablation study on three variants of CompoFormer, each altering a single
design choice from the original framework. We evaluate the following variants: (1) Layer-Sharing:
directly shares the layer representations output by each hidden layer without any selection mech-
anism; (2) Direct-Addition: directly adds the output of previous policies to the current policy; (3)
Attentive-Selection: utilizes an attention mechanism to selectively incorporate the most relevant
previous policies. As illustrated in Figure 4b, incorporating previous knowledge at the policy level,
rather than through direct sharing of hidden layer representations, leads to improved performance.
Additionally, the Attentive-Selection variant further enhances the benefits of knowledge sharing by
minimizing cross-task interference and improving plasticity.

Impact of sequence order. Considering the influence of sequence order on continual learning per-
formance (Singh et al., 2023; Zhou et al., 2023), we use different random seeds to shuffle the task
sequences and conduct experiments on OCW10 (Detailed in Appendix A). The average performance
of these methods is presented in Table 2. For most regularization- and rehearsal-based methods,
changes in task sequence order result in only minor performance variations; however, overall per-
formance remains poor. This suggests that distributional shift continues to play a dominant role,
overshadowing the effect of task order. For structure-based methods, the impact of task order is
more pronounced. In the case of LoRA, which trains the full model parameters on the first task
and only fine-tunes the LoRA-Linear parameters for subsequent tasks, the first task significantly
influences overall performance, leading to substantial performance variation. Conversely, PackNet,
which assigns separate parameters to each task, shows minimal sensitivity to task order changes. Our
method, which attentively selects prior policies, may exhibit varying degrees of knowledge trans-
fer depending on task sequence order. However, it consistently outperforms LoRA and PackNet,
demonstrating robustness to task sequence variations. This indicates that our approach effectively
selects the most relevant knowledge from previously learned policies, regardless of sequence order.

Plasticity. Structure-based methods often maintain stability by fixing learned parameters after com-
pleting a task and directly sharing layer-wise hidden representations. However, this approach may
compromise plasticity, the ability to learn new tasks effectively. To evaluate whether our method
sacrifices plasticity, we conduct ablation studies by assessing the performance of each task in a
single-task setting, using the same network parameters to evaluate the model’s performance on in-
dividual tasks. The single-task performance in the OCW10 setting is then analyzed to determine
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Table 2: Average performance (mean ± standard deviation) across three random seeds for different
task orders in the OCW10 benchmark. Reg = Regularization-based, Struc = Structure-based, Reh
= Rehearsal-based. The top two results are highlighted. “Order 0” refers to the original task order,
while “Order 1”, “Order 2”, and “Order 3” represent random shuffles using seeds 1, 2, and 3.

Benchmarks OCW10

Order 0 1 2 3 Average

Reg

L2 0.29± 0.06 0.20± 0.03 0.23± 0.05 0.29± 0.05 0.25
EWC 0.16± 0.02 0.12± 0.02 0.11± 0.02 0.15± 0.03 0.13
MAS 0.29± 0.04 0.17± 0.01 0.16± 0.06 0.20± 0.04 0.21
LwF 0.21± 0.04 0.15± 0.04 0.18± 0.05 0.19± 0.00 0.18
RWalk 0.26± 0.03 0.17± 0.01 0.25± 0.02 0.20± 0.01 0.22
VCL 0.14± 0.03 0.11± 0.01 0.11± 0.01 0.12± 0.03 0.12
Finetuning 0.11± 0.03 0.12± 0.02 0.15± 0.06 0.12± 0.03 0.12

Struc LoRA 0.54± 0.03 0.47± 0.02 0.35± 0.03 0.43± 0.05 0.45
PackNet 0.64± 0.06 0.67± 0.01 0.65± 0.03 0.65± 0.04 0.65

Reh PM 0.26± 0.01 0.26± 0.10 0.25± 0.03 0.27± 0.01 0.26
A-GEM 0.12± 0.04 0.12± 0.02 0.11± 0.01 0.15± 0.04 0.13

Ours Grow 0.60± 0.06 0.54± 0.05 0.43± 0.01 0.51± 0.05 0.52
Prune 0.69± 0.01 0.70± 0.03 0.70± 0.03 0.68± 0.02 0.69

task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10
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Figure 5: Performance across three random seeds for each task in the OCW10 benchmark. “Single”
refers to the performance of individual task training, while the other methods reflect each task’s
performance after the entire learning process.

if any performance degradation has occurred in these continual learning methods (full analysis in
Appendix E). As shown in Figure 5, LoRA and PackNet exhibit significant performance drops when
compared to single-task evaluations across most tasks, indicating a greater loss in plasticity. While
our method also shows some performance reduction, the incorporation of the self-composing policy
module results in greater performance benefits compared to the base model. This demonstrates that
effectively leveraging prior knowledge can enhance plasticity while still maintaining stability.

6 CONCLUSION

We introduce CompoFormer, a modular growing architecture designed to mitigate catastrophic for-
getting and task interference while leveraging knowledge from previous tasks to address new ones.
In our experiments, we develop the Offline Continual World benchmark to perform a comprehen-
sive empirical evaluation of existing continual learning methods. CompoFormer consistently out-
performs these approaches, offering a promising balance between plasticity and stability, all without
the need for experience replay or storage of past task data.

We believe this work represents a significant step forward in the development of continual offline
reinforcement learning agents capable of learning from numerous sequential tasks. However, chal-
lenges remain, particularly concerning the computational cost, which is critical in never-ending
continual learning scenarios, and thus warrants further research.
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A OFFLINE CONTINUAL WORLD BENCHMARK

We visualize all tasks in the Offline Continual World benchmark in Figure 6, and provide detailed
descriptions in Table 3. The corresponding offline datasets are generated by training a Soft Actor-
Critic (SAC) (Haarnoja et al., 2018) policy in isolation for each task from scratch until convergence.
Once the policy converges, we collect 1 million transitions from the SAC replay buffer for each
task, comprising samples observed during training as the policy approaches optimal performance
(Hu et al., 2024c; He et al., 2024).

In the ablation study described in Section 5.3, we use different random seeds to shuffle the task
sequences and conduct experiments on OCW10. The specific task sequences for each order are as
follows:

• Order 0: [hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2, handle-press-
side-v2, push-v2, shelf-place-v2, window-close-v2, peg-unplug-side-v2]

• Order 1: [push-v2, window-close-v2, peg-unplug-side-v2, shelf-place-v2, handle-press-side-v2,
push-back-v2, hammer-v2, stick-pull-v2, push-wall-v2, faucet-close-v2]

• Order 2: [handle-press-side-v2, peg-unplug-side-v2, push-back-v2, stick-pull-v2, push-v2, shelf-
place-v2, faucet-close-v2, window-close-v2, push-wall-v2, hammer-v2]

• Order 3: [push-wall-v2, handle-press-side-v2, push-v2, hammer-v2, peg-unplug-side-v2, stick-
pull-v2, shelf-place-v2, faucet-close-v2, window-close-v2, push-back-v2]

hammer-v2 push-wall-v2 faucet-close-v2 push-back-v2 stick-pull-v2

handle-press-
side-v2

push-v2 shelf-place-v2 window-close-v2
peg-unplug-
side-v2

Figure 6: The Offline Continual World benchmark comprises robotic manipulation tasks from Meta-
World (Yu et al., 2020). The OCW10 sequence shown above is used in the main experimental results.

Table 3: A list of all tasks in the Offline Continual World benchmark along with a description of
each. The OCW10 sequence is shown below, while the OCW20 sequence consists of the same tasks
repeated twice. Tasks are learned sequentially, with a maximum of 5e5 training iterations per task.

Index Task Description

1 hammer-v2 Hammer a screw on the wall.
2 push-wall-v2 Bypass a wall and push a puck to a goal.
3 faucet-close-v2 Rotate the faucet clockwise.
4 push-back-v2 Pull a puck to a goal.
5 stick-pull-v2 Grasp a stick and pull a box with the stick.
6 handle-press-side-v2 Press a handle down sideways.
7 push-v2 Push the puck to a goal.
8 shelf-place-v2 Pick and place a puck onto a shelf.
9 window-close-v2 Push and close a window.
10 peg-unplug-side-v2 Unplug a peg sideways.
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B AN EXTENDED DESCRIPTION OF COMPARED METHODS

We evaluate 11 continual learning methods on our benchmark: L2, EWC, MAS, LwF, RWalk,
VCL, Finetuning, LoRA, PackNet, Perfect Memory, and A-GEM. Most of these methods are
originally developed in the context of supervised learning. To ensure comprehensive coverage
of different families of approaches within the community, we select methods representing three
main categories, as outlined in Masana et al. (2022): regularization-based, structure-based, and
rehearsal-based methods. The majority of the methods’ implementations are adapted from https:
//github.com/mmasana/FACIL, with their default hyperparameters applied.

B.1 REGULARIZATION-BASED METHODS

Regularization-based methods focus on preventing the drift of parameters deemed important for
previous tasks. These methods estimate the importance of each parameter in the network (assumed
to be independent) after learning each task. When training on new tasks, the importance of each
parameter is used to penalize changes to those parameters. For example, to retain knowledge from
task 1 while learning task 2, a regularization term of the form:

λ
∑
j

Fj(θj − θ
(1)
j )2, (7)

is added, where θj are the current weights, θ(1)j are the weights after learning the first task, and λ > 0
is the regularization strength. The coefficients Fj are crucial as they indicate the importance of each
parameter. Regularization-based methods are often derived from a Bayesian perspective, where the
regularization term constrains learning to stay close to a prior, which incorporates knowledge from
previous tasks.

L2. This method assumes all parameters are equally important, i.e., F (i)
j = 1 for all j and i. While

simple, L2 regularization reduces forgetting but often limits the ability to learn new tasks.

EWC. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) is grounded in Bayesian prin-
ciples, treating the parameter distribution of previous tasks as a prior when learning new tasks. Since
the distribution is intractable, it is approximated using the diagonal of the Fisher Information Matrix:

Fj = Ex∼DEy ∼ πθ(·|x)
(
∇θj log πθ(y|x)

)2
. (8)

MAS. Memory Aware Synapses (Aljundi et al., 2018) estimates the importance of each parameter
by measuring the sensitivity of the network’s output to weight perturbations. Formally,

Fj = Ex∼D

(
∂||πθ(x)||22

∂θj

)
, (9)

where πθ(x) is the model output, and the expectation is over the data distribution D.

LwF. Learning without Forgetting (Li & Hoiem, 2017) utilizes knowledge distillation to preserve
the representations of previous tasks while learning new ones. The training objective includes an
additional loss term:

Ex∼D(π
(k−1)
θ (x)− π

(k)
θ (x))2, (10)

where π
(k−1)
θ (x) and π

(k)
θ (x) are the outputs of the old and current models, respectively, and the

expectation is over the data distribution D.

RWalk. Riemannian Walk (Chaudhry et al., 2018a) generalizes EWC++ and Path Integral (Zenke
et al., 2017) by combining Fisher Information-based importance with optimization-path-based
scores. The importance of parameters is defined as:

Fj = (Fisher
θ
(k−1)
j

+ s
tk−1

t0 (θj))(θj − θ
(k−1)
j )2, (11)

where s
tk−1

t0 accumulates importance from the first training iteration t0 to the last iteration tk−1 for
task k − 1.
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VCL. Variational Continual Learning (Nguyen et al., 2017) builds on Bayesian neural networks
by maintaining a factorized Gaussian distribution over network parameters and applying variational
inference to approximate the Bayes update. The training objective includes an additional term:

λDKL(θ ∥ θ(k−1)), (12)

where DKL is the Kullback-Leibler divergence and θ(k−1) represents the parameter distribution after
learning the previous tasks.

B.2 STRUCTURE-BASED METHODS

Structure-based methods, also referred to as modularity-based methods, preserve previously ac-
quired knowledge by keeping specific sets of parameters fixed. This approach imposes a hard con-
straint on the network, in contrast to the soft regularization penalties used in regularization-based
methods.

LoRA. As introduced by Huang et al. (2024), this method adds a new LoRA-Linear module when
a new task is introduced. According to Lawson & Qureshi (2024), in sequential decision-making
tasks, Decision Transformers rely more heavily on MLP layers than on attention mechanisms. LoRA
leverages this by merging weights that contribute minimally to knowledge sharing and fine-tuning
the decisive MLP layers in DT blocks with LoRA to adapt to the current task.

PackNet. Introduced by Mallya & Lazebnik (2018), this method iteratively applies pruning tech-
niques after each task is trained, effectively ”packing” the task into a subset of the neural network
parameters, while leaving the remaining parameters available for future tasks. The parameters as-
sociated with previous tasks are frozen, thus preventing forgetting. Unlike earlier methods, such as
progressive networks (Rusu et al., 2016), PackNet maintains a fixed model size throughout learning.
However, the number of available parameters decreases with each new task. Pruning in PackNet is
a two-stage process. First, a fixed subset of the most important parameters for the task is selected,
typically comprising 70% of the total. In the second stage, the network formed by this subset is
fine-tuned over a specified number of steps.

B.3 REHEARSAL-BASED METHODS

Rehearsal-based methods mitigate forgetting by maintaining a buffer of samples from previous tasks,
which are replayed during training.

Perfect Memory. This method assumes an unrealistic scenario of an unlimited buffer capacity,
allowing all data from previous tasks to be stored and replayed.

A-GEM. Averaged Gradient Episodic Memory (Chaudhry et al., 2018b) formulates continual learn-
ing as a constrained optimization problem. Specifically, the objective is to minimize the loss for
the current task, ℓ(θ,D(k)), while ensuring that the losses for previous tasks remain bounded,
ℓ(θ,M(i)) ≤ ℓi, where ℓi represents the previously observed minimum, and M(i) contains buffer
samples from task i for 1 ≤ i ≤ k−1. However, this constraint is intractable for neural networks. To
address this, Chaudhry et al. (2018b) propose an approximation using a first-order Taylor expansion:

⟨∇θℓ(θ,Bnew),∇θℓ(θ,Bold)⟩ > 0, (13)

where Bnew and Bold represent batches of data from the current and previous tasks, respectively.
This constraint is implemented via gradient projection:

∇θℓ(θ,Bnew)−
⟨∇θℓ(θ,Bnew),∇θℓ(θ,Bold)⟩
⟨∇θℓ(θ,Bold),∇θℓ(θ,Bold)⟩

∇θℓ(θ,Bold). (14)

C HYPERPARAMETER DETAILS AND RESOURCES

Training Details. To ensure fairness and reproducibility in the presented experiments, all continual
learning methods are implemented using the Decision Transformer (Chen et al., 2021) architecture
with identical hyperparameters for the architectural components, as detailed in Table4.
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Table 4: Hyperparameters of Transformer in our experiments.

Parameter Value
Number of layers 6
Number of attention heads 8
Embedding dimension 256
Nonlinearity function ReLU
Batch size 32
Context length K 20
Dropout 0.1
Learning rate 1.0e-4
Per task iterations 5e4
Performance threshold η 0.8

Training Resources. All methods are trained using an NVIDIA GeForce RTX 4090 GPU. The
training duration varies by method. For example, on the OCW10 benchmark, regularization-based
and rehearsal-based methods typically require 14 to 18 hours, while structure-based methods, which
frequently involve saving and loading model parameters, take approximately 3 to 4 days. Since each
environment is trained three times with different random seeds, the total training time is approxi-
mately three times the duration of a single run.

D COMPUTATIONAL COST OF INFERENCE IN COMPOFORMER

In this section, we analyze the computational cost of inference in the CompoFormer architecture
with respect to the number of tasks, expressing the complexity in big-O notation.

As shown in Figure 1 and Algorithm 1, the primary computational cost during inference arises from
the self-composing policy module. In the worst-case scenario, where no task can be solved by
directly composing previous policies, the main inference time for a given task can be simplified as
the cost of attention calculation over the matrix of previous policy outputs, Φ(1:k−1). This matrix
has dimensions (k− 1)×h, where h is constant with respect to the number of modules, but the first
dimension grows linearly with the number of tasks, k. Let d represent the time cost per operation,
the time required to construct Φ(1:k−1) (denoted as matrix V ) is given by:

TΦ(1:k−1)(k) = (k − 1) · dmodel. (15)

The computational cost of calculating the key matrix K and the subsequent dot-product operation
for attention depends linearly on the number of policies, k.1 Let h denote the hidden dimension.
The time complexity for the attention module, Tattn(k), can be expressed as:

Tattn(k) = denc · dlinear︸ ︷︷ ︸
Compute q

+(k − 1) · denc · dlinear︸ ︷︷ ︸
Compute K

+(k − 1) · h︸ ︷︷ ︸
qKT

+ O(k − 1)︸ ︷︷ ︸
Cost of softmax

+ (k − 1) · h︸ ︷︷ ︸
Mult. att. and V

.

(16)
Since each task introduces new parameters that output features, which are combined with previous
output features to construct the final action output, the total time complexity is:

T (k) = TΦ(1:k−1)(k) + Tattn(k) + dmodel. (17)

Given that there are no higher-order terms beyond k, the computational complexity for the inference
operation of a single module is T (k) = O(k).

Given a CompoFormer model consisting of k policy modules, generating the final output requires
sequentially computing the results of all k modules, as each module’s output depends on the results
of the preceding ones. Consequently, although the complexity of inference for each individual
module is linear, the overall complexity of inference in CompoFormer is k ·O(k) = O(k2).

1The computational complexity of multiplying an n×m matrix by an m× p matrix is O(nmp).
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Figure 7: Visualization of attention scores from the self-composing policy module in the OCW20
benchmark with the CompoFormer-Grow edition, where the diagonal is excluded and set to 1.

The computational cost remains a primary limitation in growing neural network architectures, with
memory and inference costs being key considerations in this study. The self-composing policy
module in CompoFormer is designed to address memory complexity by ensuring that the model
grows linearly in terms of parameters as the number of tasks increases, while still retaining the
knowledge from all previously learned modules. Furthermore, when a new task can be solved by
reusing previous policies, no additional computational cost for training is incurred, significantly
reducing the computational burden.

E DETAILED SINGLE PERFORMANCE IN OUR BASELINES

In Section 5.3, we visualized the single-task performance of five methods; here, we present the per-
formance of all methods in Figure 8. As shown in Figure 8, the MT method, which has access to data
from all tasks throughout the learning process, achieves high performance on every task, comparable
to the single-task method. In contrast, regularization-based and rehearsal-based methods introduce
additional loss terms to mitigate catastrophic forgetting. However, during training, these methods
still experience forgetting, particularly for the initial tasks in the sequence, and only show improved
performance towards the end of the learning sequence. Increasing the regularization strength to pre-
vent forgetting results in impaired learning of new tasks, leading to a pronounced stability-plasticity
trade-off. This issue is particularly significant in the offline RL setting, where policy optimization is
more sensitive to parameter changes compared to supervised learning in classification tasks(Masana
et al., 2022; Zhou et al., 2023).

Structure-based methods maintain good stability by freezing task-specific parameters, but their abil-
ity to learn new tasks diminishes as the training progresses. This is due to the decreasing number
of available parameters and cross-task interference from the frozen parameters. Consequently, the
performance on later tasks is often lower than that of regularization- and rehearsal-based methods.
Our self-composing policy module addresses this issue by reducing cross-task interference and en-
hancing the plasticity of structure-based methods, allowing for more efficient learning of new tasks
without compromising stability.

F DETAILED ATTENTION SCORES IN OCW20
In Section 5.3, we visualized the attention scores for the OCW10 benchmark. Here, we extend this
analysis by visualizing the attention scores for the OCW20 benchmark, which repeats the OCW10
task sequence twice. As shown in Figure 7, for the first 10 tasks, the attention scores are similar
to those observed in the OCW10 benchmark. However, for the subsequent 10 tasks, the model
assigns the highest attention to the corresponding tasks from the first sequence, which are most
relevant to the current task. This demonstrates the model’s ability to capture semantic correlations
between tasks and effectively leverage previously learned policies, resulting in superior performance
compared to the baselines.
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G HYPERPARAMETERS OF BASELINES

This section outlines the hyperparameters utilized in each baseline, with particular emphasis on the
weight of the regularization term, as detailed in Section B.

We test the following hyperparameter values: λ ∈ {10−1, 100, 101, 102, 103, 5× 103, 104}, and the
results are presented in Table 5. The hyperparameters corresponding to the best performance are
employed in the main results. Notably, we observe no direct correlation between the model’s final
performance and the hyperparameters, indicating that tuning these settings often requires substantial
manpower and resources.

Table 5: Average performance (mean ± standard deviation) across three random seeds in the OCW10
benchmark, evaluated with varying hyperparameters.

λ 10−1 100 101 102 103 5× 103 104

L2 0.18± 0.03 0.20± 0.03 0.21± 0.04 0.22± 0.03 0.25± 0.05 0.29± 0.06 0.25± 0.05
EWC 0.13± 0.03 0.14± 0.03 0.10± 0.03 0.15± 0.03 0.11± 0.05 0.16± 0.02 0.14± 0.02
MAS 0.12± 0.02 0.15± 0.03 0.29± 0.04 0.18± 0.04 0.13± 0.02 0.10± 0.01 0.15± 0.03
LwF 0.18± 0.02 0.21± 0.04 0.13± 0.03 0.20± 0.02 0.17± 0.03 0.20± 0.02 0.15± 0.03

RWalk 0.13± 0.04 0.15± 0.02 0.15± 0.03 0.11± 0.04 0.26± 0.03 0.19± 0.02 0.21± 0.03
VCL 0.12± 0.03 0.14± 0.03 0.06± 0.03 0.03± 0.04 0.07± 0.03 0.12± 0.02 0.11± 0.02
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