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Abstract

Reinforcement Learning with Verifiable Rewards
(RLVR) has recently demonstrated notable suc-
cess in enhancing the reasoning performance of
large language models (LLMs), particularly in
mathematics and programming tasks. It is widely
believed that, similar to how traditional RL helps
agents to explore and learn new strategies, RLVR
enables LLMs to continuously self-improve, thus
acquiring novel reasoning abilities that exceed
the capacity of the corresponding base models.
In this study, we take a critical look at the cur-
rent state of RLVR by systematically probing the
reasoning capability boundaries of RLVR-trained
LLMs across various model families, RL algo-
rithms, and math/coding/visual reasoning bench-
marks, using pass@k at large k values as the eval-
uation metric. While RLVR improves sampling
efficiency towards correct paths, we surprisingly
find that current training does not elicit funda-
mentally new reasoning patterns. We observe
that while RLVR-trained models outperform their
base models at smaller values of k (e.g., k=1),
base models achieve higher pass@Fk score when
k is large. Moreover, we observe that the reason-
ing capability boundary of LLMs often narrows
as RLVR training progresses. Further coverage
and perplexity analysis shows that the reasoning
paths generated by RLVR models are already in-
cluded in the base models’ sampling distribution,
suggesting that their reasoning abilities originate
from and are bounded by the base model. From
this perspective, treating the base model as an up-
per bound, our quantitative analysis shows that
six popular RLVR algorithms perform similarly

!"Tsinghua University >Shanghai Jiao Tong University. Corre-
spondence to: Gao Huang <gaohuang @tsinghua.edu.cn>.

Proceedings of the second Al for MATH Workshop at the 42™ In-
ternational Conference on Machine Learning, Vancouver, Canada.
Copyright 2025 by the author(s).

and remain far from optimal in fully leveraging
the potential of the base model. In contrast, we
find that distillation can introduce new reason-
ing patterns from the teacher and genuinely ex-
pand the model’s reasoning capabilities. Taken
together, our findings suggest that current RLVR
methods have not fully realized the potential of
RL to elicit genuinely novel reasoning abilities in
LLMs. This underscores the need for improved
RL paradigms—such as continual scaling and
multiturn interaction—to unlock this potential.

1. Introduction

The development of reasoning-centric large language mod-
els (LLMs), such as OpenAl-ol (Jaech et al., 2024),
DeepSeek-R1 (Guo et al., 2025), and Kimi-1.5 (Team et al.,
2025), has significantly advanced the frontier of LLM capa-
bilities, particularly in solving complex logical tasks involv-
ing mathematics and programming. In contrast to traditional
instruction-tuned approaches that rely on human-curated an-
notations (Achiam et al., 2023; Grattafiori et al., 2024), the
key driver behind this leap forward is large-scale Reinforce-
ment Learning with Verifiable Rewards (RLVR) (Lambert
et al., 2024; Guo et al., 2025). RLVR starts with a pre-
trained base model or one fine-tuned on long chains of
thought (CoT) data, optimizing it via reinforcement learn-
ing based on simple, automatically computable rewards.
These rewards are determined by whether the model’s output
matches a ground-truth solution in mathematics or passes
unit tests in code, thus enabling scalability without human la-
beling. This framework has gained significant attention due
to its simplicity and practical effectiveness. In traditional RL
settings such as game playing (e.g., Atari, Go), agents of-
ten autonomously discover new strategies and surpass even
human-level performance through self-improvement (Mnih
et al., 2015; Silver et al., 2017). Inspired by this success,
it is widely believed that RLVR similarly enables LLMs
to autonomously develop novel reasoning patterns, includ-
ing enumeration, self-reflection, and iterative refinement,
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Figure 1. (Left) The effect of current RLVR on LLM’s reasoning ability. Search trees are generated by repeated sampling from the base
and RLVR-trained models for a given problem. Grey indicates paths that are unlikely to be sampled by the model, while black indicates
paths that are likely to be sampled. Green indicates correct paths, which has positive rewards. Our key finding is that all reasoning paths
in the RLVR model are already present in the base model. For certain problems like Problem A, RLVR training biases the distribution
toward rewarded paths, improving sampling efficiency. However, this comes at the cost of reduced scope of reasoning capacity: For other
problems like Problem B, the base model contains the correct path, whereas that of the RLVR model does not. (Right) As RLVR training
progresses, the average performance (i.e., pass@ 1) improves, but the coverage of solvable problems (i.e., pass@256) decreases, indicating

areduction in LLM’s reasoning boundary.

surpassing the capabilities of their base models (Guo et al.,
2025). Consequently, RLVR has been considered a promis-
ing path toward continuously self-evolving LLMs, poten-
tially bringing us closer to more powerful intelligence (Guo
et al., 2025).

However, despite its empirical success, the underlying ef-
fectiveness of current RLVR remains underexamined. This
raises a fundamental question: Does current RLVR gen-
uinely enable LLMs to acquire novel reasoning abili-
ties—similar to how traditional RL discovers new strate-
gies through exploration—or does it simply utilize reason-
ing patterns already in the base model?

To rigorously answer this question, we must first assess the
reasoning capability boundaries of both base and RLVR-
trained models. Traditional evaluation metrics rely on aver-
age score from greedy decoding or nucleus sampling (Holtz-
man et al., 2020), which reflects average-case behavior.
However, these metrics risk underestimating the true po-
tential of a model, especially if it fails on difficult problems
after limited attempts, despite being capable of solving them
with more sampling. To overcome this limitation, we adopt
the pass@k metric (Brown et al., 2024), where a problem is
considered solved if any of the k& sampled outputs is correct.
By allowing multiple attempts, pass @k reveals whether a
model has the potential to solve a problem. The average
pass@k across a dataset thus reflects the proportion of prob-
lems a model can potentially solve within k trials, offering
a more robust view of its reasoning boundary. This provides
a rigorous test on whether the RLVR training yields funda-
mentally transcending capacity, enabling the model to solve

problems that the base model cannot.

Using the pass @k metric, we conduct extensive experiments
across various benchmarks, covering multiple LLM families,
model sizes, and RLVR algorithms to compare base models
with their RLVR-trained counterparts. We uncover surpris-
ing findings that offer a more comprehensive assessment of
the effectiveness of current RLVR training and reveal the
gap between existing RLVR methods and the ideal goals of
RL-discovering genuinely new reasoning strategies:

e Current RLVR models exhibit narrower reasoning cov-
erage than their base models. In pass@F curves, although
RLVR models outperform their base models at small &, it is
surprising that base models consistently surpass RLVR mod-
els across all benchmarks and LLM families as k increases.
This suggests that current RLVR training does not expand,
and even reduce the scope of reasoning over solvable prob-
lems. Manual inspection of model responses shows that,
for most problems, the base model can produce at least one
correct CoT, implying that it can already generate correct
reasoning paths for problems that were previously consid-
ered only solvable for RLVR models.

o Reasoning paths generated by current RLVR model
already exist in its base model. To further investigate this
phenomenon, we analyze the accuracy distribution. The
results show that although RLVR improves average per-
formance (i.e., pass@1) by sampling more efficiently on
problems already solvable by the base model, it does not
enable the model to solve new problems. Further perplexity
analysis reveals that the reasoning paths produced by RLVR
models already exist within the output distribution of the
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base model. These findings indicate that RLVR does not
introduce fundamentally new reasoning capabilities and that
the reasoning capacity of current RLVR models remains
bounded by that of its base model. This effect of RLVR is
illustrated in Figure 1 (left).

e Current RLVR algorithms perform similarly and re-
main far from optimal. Treating the base model as an
upper bound, we define the sampling efficiency gap (Asg),
shown in Figure 8 (top), as the difference between an
RL model’s pass@1 and the base model’s pass@Fk (with
k = 256 as a proxy for upper-bound performance). This
metric quantifies how closely an RL algorithm approaches
the optimal bound. Across all algorithms (e.g., PPO, GRPO,
Reinforce++), Agg shows only minor variation yet remains
consistently large, suggesting that current RLVR methods,
while improving sampling efficiency, are far from optimal.

¢ RLVR and distillation are fundamentally different.
While RLVR improves reasoning scores by more efficiently
sampling high-reward outputs, it does not elicit new rea-
soning capabilities and remains constrained within the base
model’s capacity. In contrast, distillation can transfer new
reasoning patterns from a stronger teacher to the student.
As a result, distilled models often demonstrate an expanded
reasoning scope beyond that of the base model.

In conclusion, our findings show that current RLVR meth-
ods, while improving sampling efficiency, do not elicit novel
reasoning beyond the base model’s capabilities. This high-
lights a gap between existing RLVR methods and the goals
of reinforcement learning, underscoring the need for im-
proved RL paradigms such as continual scaling, better ex-
ploration, and multi-turn agent interaction.

2. Preliminaries

In this section, we outline the fundamentals of RLVR, intro-
duce the pass @k metric to evaluate reasoning boundaries,
and explain it is preferred over alternatives like best-of-/V.

2.1. Reinforcement Learning with Verifiable Rewards

Verifiable Rewards. Let 7y be an LLM with parameters 6
that generates a token sequence y = (y1,...,yr) condi-
tioned on a natural-language prompt x. A deterministic
verifier V returns a binary reward: r = V(z,y) € {0,1},
where r = 1 if and only if the model’s final answer is exactly
correct. A format reward may also be added to encourage
the model to explicitly separate the reasoning process from
the final answer. The goal of RL is to learn a policy to max-
imize the expected reward: J(0) = By [Eyry(jo)[7]]
, where D is the distribution of prompts.

RLVR Algorithms.  Proximal Policy Optimization
(PPO) (Schulman et al., 2017) proposed using the following

clipped surrogate to maximize the objective:
Lerp = E [min(r(0) Ay, clip(r4(6),1 — €, 1 + €) Ay)] ,

ey

where r4(0) = mo(ye|z,y<t)/To0(yt|z, y<t), and A is

the advantage estimated by a value network V. KL diver-

gence term is optionally applied, to constrain the model

from deviating too far from the original policy. More algo-

rithms are introduced in Appendix D.4.

Policy Gradient. PPO and its variants belong to the policy
gradient class of RL (Williams, 1992; Sutton et al., 1998).
These methods learn exclusively from on-policy samples,
i.e., samples generated by the current LLM. In the context
of verifiable rewards, the training objective generally maxi-
mizes the log-likelihood of samples with correct answers and
minimizes the likelihood of those with incorrect answers.

Zero RL Training applies RL directly to the base model
without any supervised fine-tuning (SFT) (Guo et al., 2025).
To clearly study the effect of RLVR, we follow this zero-RL
setting for all math tasks using pretrained models as start
model. However, for coding and visual reasoning tasks,
open-source work typically uses instruction-tuned models
as starting points, primarily due to the training instability
and limited effectiveness of using a pure zero-RL setting.
Following this convention, we compare the finetuned model
with its RLVR-trained counterpart to focus solely on the
effect of RLVR.

2.2. Metrics for LLM Reasoning Capacity Boundary

Pass@F Metrics. Accurately measuring the reasoning abil-
ity boundary of base and RL models is challenging, as
methods like greedy decoding or the average of nucleus
samplings (Holtzman et al., 2020) only reflect average-case
performance. To accurately measure the reasoning ability
boundary, we extend the commonly used pass@k metric
from code generation (Chen et al., 2021) to all tasks with
verifiable rewards. Given a problem, we sample k outputs
from the model. The pass@Fk value for this question is 1 if
at least one of the k samples passes verification; otherwise,
itis 0. The average pass@Fk value over the dataset reflects
the proportion of problems in the dataset that the model
can solve within k trials, providing a rigorous evaluation
of the reasoning capacity coverage of LLMs. We adopt an
unbiased, low-variance estimator for computing to calculate
pass@k, as detailed in Appendix A.2.

Comparison with Best-of-V and Majority Voting. Best-
of-N (Cobbe et al., 2021) and majority voting are practical
methods for selecting correct answers, but they may over-
look a model’s full reasoning potential. In contrast, we use
pass@F not to assess practical utility but to investigate the
boundaries of reasoning capacity. If a model produces a
correct solution in any of the k samples, we treat the prob-
lem as within its potential scope. Thus, if RL enhances
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Figure 2. Pass@Fk curves of base models and their RLVR-trained counterparts across multiple mathematical benchmarks. When £ is small,
RL-trained models outperform their base versions. However, as k increases to the tens or hundreds, base models consistently catch up and
surpass RL-trained models. More results on GSM8K and AMC23 can be found at Figure 9.

reasoning, the RL-trained model should succeed in more
such problems than the base model. Methods like Best-of-
N or majority voting may miss these successes if the correct
answer is not selected by the verifier or voting.

Random Guessing Issue. For coding tasks, where a com-
piler and predefined unit test cases are used as verifiers, the
pass@F value can accurately reflect whether the model can
solve the problem. In mathematics, the issue of “guessing”
can become pronounced as k increases, where a model may
generate an incorrect CoT but still accidentally arrive at
the correct answer. To address this, we manually check the
correctness of CoT for a subset of model outputs as detailed
in Section 3.1. By combining reuslts on math with manu-
ally checking and coding, we rigorously evaluate the scope
of LLM’s reasoning capacity. Another caveat is that, with

an astronomically large k, even uniform sampling over the
token dictionary would stumble upon the correct reasoning
path—though this is infeasible within today’s time and com-
pute budgets. Crucially, we find that the base model already
produces correct outputs at realistic values (k = 128 or
1024), well within practical resource limits.

3. RLVR’s Effect on Reasoning Capacity
Boundary

With the evaluation metrics for reasoning boundaries es-
tablished, we now conduct a comprehensive evaluation of
the base and RLVR models through extensive experiments.
Our analysis is organized by task category, covering three
representative domains: mathematics, code generation, and
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visual reasoning. The overall experimental setup is summa-
rized in Table 1.

Evaluation Protocol. For sampling procedures for both
base and RLVR models, we use a temperature of 0.6 and
a top-p value of 0.95, allowing a maximum generation of
16,384 tokens. We also show the effect of different tem-
perature settings in Figure 16. For evaluation of the base
model, a common practice is to include few-shot exam-
ples in the prompt to guide the output (Grattafiori et al.,
2024; Yang et al., 2024; Liu et al., 2024). However, to en-
sure a fair and unbiased comparison, we deliberately avoid
using few-shot prompts for base models, eliminating any
potential confounding effects on reasoning that might be
introduced by in-context examples. For evaluating both the
base and RLVR models, we use the same zero-shot prompt
as in RLVR training, or the default prompt provided by the
benchmark, ensuring a consistent setup across both models.
Interestingly, although base models often produce unformat-
ted or non-sensical responses without few-shot guidance, we
observe that with sufficient sampling, they are still capable
of generating correctly formatted outputs and successfully
solving complex problems. Prompt templates for training
and evaluation are provided in Appendix E.

3.1. RLVR for Mathematical Reasoning

Models and Benchmarks. In math problems, models are
required to generate a reasoning process (i.e., CoT) along
with the final answer. To ensure the robustness of conclu-
sions, we experiment with multiple LLM families, primarily
Qwen2.5 (7B/14B/32B base variants) (Yang et al., 2024)
and additionally LLaMA-3.1-8B (Grattafiori et al., 2024).
We adopt RLVR models released by SimpleRLZoo (Zeng
et al., 2025), which train zero-RL models using GRPO on
GSMSK and the MATH training set, with correctness re-
ward only, excluding any format-based reward. We compare
the pass @£k curves of base and zero-RL models on bench-
marks of varying difficulty: GSM8K (Cobbe et al., 2021),
MATHS00 (Hendrycks et al., 2021), Minerva (Lewkowycz
et al., 2022), Olympiad (He et al., 2024), AIME24, and
AMC?23. Additionally, we include the RLVR model Oat-
Zero-7B and DAPO-32B (Liu et al., 2025b; Yu et al., 2025).
These two models are characterized by strong performance
on the challenging AIME24 benchmark.

The Effect of RLVR: Increased Likelihood of Correct
Samples, Decreased Coverage of Solvable Problems. As
shown in Figure 2, we consistently observe a contrasting
trend between small and large k values. When k is small
(e.g., k = 1, equivalent to average-case accuracy), RL-
trained models outperform their base counterparts. This
aligns with the common observation that RL improves per-
formance, suggesting that RLVR makes models significantly
more likely to sample correct responses. However, as k in-

creases, with steeper curves, base models consistently catch
up to and eventually surpass RL-trained models across all
benchmarks, indicating their broader coverage of solvable
problems. For example, on the Minerva benchmark with
a 32B-sized model, the base model outperforms the RL-
trained model by approximately 9% at k = 128, implying
that it can solve 9% more problems in the validation set.

We further examine RL models trained with Oat-Zero and
DAPO. As shown in Figure 10, although the RL model
initially demonstrates a strong performance, nearly 30%
higher than the base model, it is eventually surpassed by the
base model. Based on these results, we conclude that RLVR
increases the likelihood of sampling correct responses at
low k, but narrows the model’s overall coverage. We further
analyze the root cause of this phenomenon in Section 4.1.

CoT Case Analysis. We present the correct CoTs sampled
from the base model in Figure 19 and Figure 20, manually
selected from 2048 samplings for the hardest questions in
AIME24. The responses from the base model tend to be
long CoTs and exhibit reflective behavior, highlighting the
strong reasoning ability inherent in the base model.

Validity of Chain-of-Thought. For mathematical problems,
the common evaluation is based solely on the correctness
of the final answer, with the risk of “hacking”. To accu-
rately reflect the reasoning ability boundary using pass@#£,
it is important to assess how many solved problems result
from sampling genuinely correct CoTs, rather than from
lucky guesses. Following (Brown et al., 2024), we manually
inspect all CoTs that led to correct answers to the most chal-
lenging solvable problems in the GSM8k dataset — those
with an average accuracy below 5% but above 0%. The
base model answered 25 such questions, with 24 containing
at least one correct CoT. Similarly, the RL-trained model
answered 25 questions, 23 of which included at least one
correct CoT. We also manually check the CoTs for problems
in the challenging AIME24 benchmark with an average ac-
curacy below 5%. Details can be found in Appendix D.2.
The base model answered 7 such questions, with 5 out of
6 containing at least one correct CoT (excluding one am-
biguous case of correctness due to skipped reasoning steps).
Similarly, the RL-trained model answered 6 questions, 4 of
which included at least one correct CoT. These results sug-
gest that the base model can sample valid reasoning paths
to solve the problems.

3.2. RLVR for Code Generation

Models and Benchmarks. We adopt the open-sourced
RLVR-trained model, CodeR1-Zero-Qwen2.5-7B (Liu &
Zhang, 2025), which trains zero-RL models on 12K Leet-
Code and TACO samples over 832 steps, based on Qwen?2.5-
7B-Instruct-1M (Yang et al., 2025). For evaluation, models
are assessed on LiveCodeBench v5, comprising 279 prob-
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Table 1. Experimental setup for assessing RLVR’s effect on the reasoning boundaries of LLMs.

Task Start Model RL Framework RL Algorithm(s) Benchmark(s)
LLaMA-3.1-8B SimpleRLZoo GSMB8K, MATH500
Mathematics Qwen2.5-7B/14B/32B-Base Oat-Zero GRPO Minerva, Olympiad
Qwen2.5-Math-7B DAPO AIME24, AMC23
. Qwen2.5-7B-Instruct Code-R1 LiveCodeBench
CribCamio: DeepSeek-R1-Distill-Qwen-14B DeepCoder CILED HumanEval+
. . MathVista
Visual Reasoning Qwen2.5-VL-7B EasyR1 GRPO MathVision
Qwen2.5-7B-Base PPO, GRPO .
. . Omni-Math-Rule
Deep Analysis Qwen2.5-7B-Instruct VeRL Reinforce++ MATHS500

DeepSeek-R1-Distill-Qwen-7B

LiveCodeBench (2024.8-2025.1)
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Figure 3. RLVR for Coding.

lems that span from August 2024 to January 2025 (Jain
et al., 2025), as well as HumanEval+ and MBPP+ (Liu et al.,
2023). We also evaluate the most powerful open-source
RLVR-trained coding LLM, DeepCoder-14B (Luo et al.,
2025), built on DeepSeek-R1-Distill-Qwen-14B. Here both
models take 32k response length. Due to their high compu-
tational cost, we evaluate them only on LiveCodeBench as
a representative benchmark.

The Effect of RLVR. Since passing all unit tests is nearly
impossible to achieve by guesswork, pass@k provides a re-
liable measure of a model’s reasoning boundary. As shown
in Figure 3, Figure 11, and Figure 4 (left), the effects of
RLVR on three code generation benchmarks exhibit trends
that are highly consistent with those observed in mathemati-
cal benchmarks.

3.3. RLVR for Visual Reasoning

Models and Benchmarks. In visual reasoning, models
must jointly interpret visual and textual inputs to solve com-
plex reasoning problems. This has gained significant atten-
tion in the multimodal community since the rise of LLM
reasoning (Chen et al., 2025; Shen et al., 2025; Zheng et al.,
2025). For our experiments, we select math within visual
contexts as a representative task. We use the EasyR1 frame-

RLOO, ReMax, DAPO

work (Zheng et al., 2025) to train Qwen2.5-VL-7B (Bai
et al., 2025) on Geometry3K (Lu et al., 2021), and evalu-
ate its visual reasoning capabilities on filtered MathVista-
TestMini (Lu et al., 2024) and MathVision-TestMini (Wang
et al., 2024), where multiple-choice questions are removed.

The Effect of RLVR. As shown in Figure 4 (right), the
effects of RLVR on visual reasoning are highly consistent
with those observed in math and coding benchmarks. This
suggests that the original model has broader coverage of
solvable questions even in multimodal tasks.

Validity of Chain-of-Thought. Similarly, we manually
inspect a subset of the most challenging problems, i.e.those
with an average accuracy below 5%. We find that for both
the original and RL models, 7 out of 8 problems have at
least one correct CoT, which supports the validity of CoTs.

4. Deep Analysis

In this section, we conduct a deeper analysis of the effects
of current RLVR training. We also highlight the distinct
characteristics of distillation in comparison to RLVR. In
addition, we design controlled experiments to examine the
impact of different RL algorithms and design choices.

4.1. Reasoning Paths Already Present in Base Models

Accuracy Distribution Analysis. Experiments in Section 3
reveal a surprising trend: the base model covers a wider
range of solvable problems than the RLVR-trained model.
To better understand this, we analyze how the accuracy dis-
tribution changes before and after RLVR training. As shown
in Figure 5, RLVR increases the frequency of high accura-
cies near 1.0 and reduces the frequency of low accuracies
(e.g., 0.1, 0.2). However, a deviation from this trend is the
increased frequency at accuracy 0 — indicating that RLVR
leads to more unsolvable problems. This also explains the
improvement of RLVR in average scores, driven not by solv-
ing new problems but by improving sampling efficiency on
problems already solvable by the base model. Additional
accuracy histograms are provided in Figure 13.
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Solvable-Problem Coverage Analysis. To further inves-
tigate, we compare the set of solvable questions for both
the base model and its corresponding RL-trained version
on AIME24. We find that the set of problems solved by the
RL-trained model is nearly a subset of the solvable prob-
lems of the base model, as shown in Table 4. A similar
trend is observed in coding tasks as shown in Table 5. This
raises the natural question: Do all reasoning paths gener-
ated by RL-trained models already exist within the output
distribution of their base models?

Perplexity Analysis. To answer this question, we utilize
the metric perplexity. Given a model m, a problem z, and a
response Y = (y1,...,yr) (can be generated by the same
model, another model, or humans), the perplexity is defined
as the exponentiated average negative log-likelihood of a

sequence:
JYt—1 )) )

which reflects the model’s ability to predict the given re-
sponse Y conditioned on the prompt . Lower perplexity
indicates that the model has a higher likelihood of generat-
ing this response.

PPL,, (Y | ) = exp (—7ZlogP(yf |z, y1,...
t=1

o e o o
T Y S S e
Figure 6. Perplexity distribution of responses. The conditioning
problem x is omitted in the figure.

We randomly sample two problems from AIME24 and em-
ploy Qwen2.5-7B-Base and SimpleRL-Qwen2.5-7B-Base
to generate 16 responses for each problem, denoted as Yp,ge
and Ygg, respectively. We also let OpenAl-ol (Jaech et al.,
2024) generate 8 responses, denoted as Ygr. As shown
in Figure 6, the distribution of PPLp,e(YRre|z) closely
matches the lower portion of the PPLpyge (Ypase|z) distribu-
tion, corresponding to responses that the base model tends to
generate. This suggests that the responses from RL-trained
models are highly likely to be generated by the base model.

Summary. Combining the above analyses, we arrive at
three key observations. First, problems solved by the RLVR
model are also solvable by the base model; the observed
improvement in average scores stems from more efficient
sampling on these already solvable problems, rather than
learning to solve new problems. Second, after RLVR train-
ing, the model often exhibits narrower reasoning coverage
compared to its base model. Third, all the reasoning paths
exploited by the RLVR model are already present in the
sampling distribution of the base model. These findings
indicate that RLVR does not introduce fundamentally new
reasoning capabilities and that the reasoning capacity of the
trained model remains bounded by that of its base model.
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4.2. Distillation Expands the Reasoning Boundary

In addition to direct RL training, another effective approach
to improving the reasoning ability of small base models is
distillation from a powerful reasoning model (Guo et al.,
2025). This process is analogous to instruction-following
fine-tuning in post-training. However, instead of using
short instruction-response pairs, the training data consist of
long CoT reasoning traces generated by the teacher model.
Given the limitations of current RLVR in expanding reason-
ing capabilities, it is natural to ask whether distillation ex-
hibits similar behavior. We focus on a representative model,
DeepSeek-R1-Distill-Qwen-7B, which distills DeepSeek-
R1 into Qwen2.5-Math-7B. We compare it with the base
model Qwen2.5-Math-7B and its RL-trained counterpart
Qwen2.5-Math-7B-Oat-Zero, including Qwen2.5-Math-7B-
Instruct as an additional baseline.

Figure 7 shows that the Minerva
pass@k curve of the dis- i
tilled model. is _consis- 06 py m"“"&m
tently and significantly ot
above that of the base /‘:(A,A o
model. This indicates §04 A/ 7 /A"
that, unlike RL that is =04/ /
fundamentally bounded & 4
by the reasoning capacity % /
of the base model, distil- < 0.2 A/ —i— Base
lation introduces new rea- RL

. === [nstruct
soning patterns learned —— Distill
from a stronger teacher 05 4§ 163 6318
model. As a result, the Number of Samples k

distilled model is capable
of surpassing the reason-
ing boundary of the base
model.

Figure 7. Coverage comparison
of base, Instruct, RLVR, and dis-
tilled models.

4.3. Effects of Different RL Algorithms

As discussed previously, the primary effect of RL is to en-
hance sampling efficiency rather than to expand a model’s
reasoning capacity. To quantify this, we propose the Sam-
pling Efficiency Gap (Asg), defined as the difference be-
tween the RL-trained model’s pass@1 and the base model’s
pass@Fk (we use k = 256 in our evaluation). Lower Agg is
better. We conduct clean experiments to study the effect of
different RL algorithms in enhancing sampling efficiency.

Experiment Setup. We re-implement popular RL algo-
rithms using the VeRL framework (Sheng et al., 2024)
for fair comparison, including PPO (Schulman et al.,
2017), GRPO (Shao et al., 2024), Reinforce++ (Hu, 2025),
RLOO (Ahmadian et al., 2024), ReMax (Li et al., 2024),
and DAPO (Yu et al., 2025). Following DAPO (Yu et al.,
2025) and Oat-Zero (Liu et al., 2025b), we remove the KL
term to avoid constraining model learning. During training,

we use a prompt batch size of 128 and sample 8 responses
per prompt. We set the maximum rollout length to 8,192
tokens and set the temperature to 1.0.

To assess in-domain and out-of-domain generalization un-
der RLVR, we split Omni-MATH-Rule, a subset of Omni-
MATH (Gao et al., 2025), into a training set (2,000 samples)
and an in-domain test set (821 samples), and use MATH500
as the out-of-domain benchmark.

Results. As shown in Figure 8 (top), although different
RL algorithms exhibit slight variations in both pass@1 and
pass@256, these differences are not fundamental. Differ-
ent RL algorithms yield slightly different Agg values (i.e.,
ranging from GRPO’s 43.9 to RLOO’s best 42.6 on the
in-domain test set). Furthermore, we observe that Agg
remains consistently above 40 points across different al-
gorithms, highlighting that existing RL methods are still
far from achieving optimal sampling efficiency. This sug-
gests that novel RL algorithms or entirely new paradigms
may be necessary to approach the upper bound. Additional
observations can be found at Appendix D.4.

4.4. Effects of RL Training

Asymptotic Effects. Based on the setup in Section 4.3, we
investigate the effect of the training steps on the asymptotic
performance of the model. As shown in Figure 1 (right),
as RL training progresses, pass@1 on the training set con-
sistently improves from 26.1 to 42.5. However, as RLVR
training progresses, pass @256 progressively decreases, in-
dicating a reduced reasoning boundary.

Effect of Number of Rollouts n. The training hyperpa-
rameter n, the number of responses per prompt, can affect
pass@Fk by enabling broader exploration during training.
We increase n from 8 to 32. As shown in Figure 15, pass@Fk
improves slightly over n = 8, but the RL-trained model
is still eventually outperformed by the base model. We
leave the question of whether scaling RLVR training can
eventually surpass the base model to future investigation.

Effect of KL Loss. To control model deviation, some prior
work adds a KL penalty. We ablate this by applying a KL
term with coefficient 0.001. As shown in Figure 15, the
KL-regularized model achieves similar pass@1 to GRPO
without KL, but with a much lower pass@128.

4.5. Effects of Entropy

As RL training progresses, the model’s output entropy typi-
cally decreases (Yu et al., 2025), which may contribute to
a reduced reasoning boundary due to less diverse output.
To investigate this factor, we increase the generation tem-
perature of the RLVR-trained model to match the output
entropy of the base model at ' = 0.6. As shown in Fig-
ure 17, although the RLVR model performs slightly better
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Figure 8. Different RL algorithms. We use a folded y-axis range to better highlight the details at £ = 1 and 256. Unfolded version can
be found in Figure 14. The detailed values for each point at pass@1 and pass @256 are provided in Table 2 and Table 3.

pass@F at higher temperatures compared to its own perfor-
mance at T' = 0.6, it still underperforms the base model
across pass@k. This suggests that while reduced entropy
contributes to the narrowing of the reasoning boundary, it
alone does not fully account for the reduction.

5. Related Work

We summarize key related works on the analysis of RLVR
here and provide a more comprehensive discussion in Ap-
pendix B. While recent RLVR methods have achieved im-
pressive empirical results (Guo et al., 2025; Lambert et al.,
2024), their fundamental impact on reasoning remains un-
derexplored. Several studies (Liu et al., 2025a; Zhao et al.,
2025; Shah et al., 2025) suggest that reflective behaviors
in RLVR models originate from the base models rather
than being learned through reinforcement learning. Dang et
al. (Dang et al., 2025) observed a decline in pass @k perfor-
mance post-RLVR training, but their analysis was limited in
scope. More importantly, they did not explore the relation-
ship between the base model and the RL model. Deepseek-
Math (Shao et al., 2024) also observed similar trends, but
their study was limited to a single instruction-tuned model
and two math benchmarks. In contrast, our work system-
atically investigates a wide range of models, tasks, and RL
algorithms to accurately assess the effects of current RLVR
methods and models. We further provide in-depth analy-
ses, including accuracy distributions, reasoning coverage,
perplexity trends, and comparison against distilled models,
offering a comprehensive understanding.

6. Conclusion and Discussion

In this paper, we systematically investigate the effect of
current RLVR methods on the reasoning capacity bound-
aries of LLMs. Surprisingly, our findings reveal that current
RLVR does not elicit fundamentally new reasoning patterns;
instead, the reasoning capabilities of RLVR-trained mod-

els remain bounded by those of their base models. These
results indicate that current RLVR methods have not fully
realized the potential of reinforcement learning to elicit
novel reasoning abilities in LLMs through exploration and
exploitation. This limitation may stem from the lack of
effective exploration strategies in the vast language space
or the absence of multi-turn agent-environment interactions
needed to generate novel experience. We provide a more
detailed discussion of the possible causes of this gap and
promising future directions in Appendix C.
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A. Implementation Details
A.1. RLVR Algorithms

To reduce memory and computational overhead, several critic-free variants have been proposed. GRPO (Shao et al.,
2024) estimates the advantage with a normalized reward within a group of responses to the same question: A; = [r; —
mean(r)]/std(r), wherer = {r1, ..., ¢} denotes the set of rewards for a group of G sampled responses. RLOO (Ahmadian
etal., 2024) instead adopts a leave-one-out baseline within each batch B. Its advantage is defined as 4; = r; — \‘ﬂ%l > i i

A.2. Low-Variance pass @k Estimation

Directly computing pass @k using only &£ sampled outputs per problem can lead to high variance. To mitigate this, we follow
the unbiased estimation method proposed by Chen et al. (Chen et al., 2021). Specifically, for each problem x; from the
evaluation dataset D, we generate n samples (n > k) and count the number of correct samples as ¢;. The unbiased estimator
of pass@Fk over the dataset is given by:

pass@k :=E,,.p [1 — ( (ﬁ) )1 2)
k

With this formulation, we can easily estimate pass@ k with low variance across all k£ < n.

In our experiments, we set n to the largest (i.e., rightmost) k value in the pass@Fk curves, typically 128, 256, or 1024. For

example, in Figure 2, we use n = 128 for MATHS500, Minerva, and GSM8K, and n = 1024 for AMC23 and AIME24. For

the Olympiad benchmark, we set n = 128 for the Qwen models and n = 1024 for LLaMA-3.1-8B, due to its relatively

lower base model capacity.

B. More Related Works

Reinforcement Learning for LLM Reasoning. Since the emergence of LLMs, the post-training phase has proven crucial to
enhance problem solving and reasoning abilities (Ouyang et al., 2022). This stage typically falls into three main categories:
supervised fine-tuning using human-curated or distilled data (Wang et al., 2023), self-improvement iteration (Zelikman et al.,
2022; Gulcehre et al., 2023), and reinforcement learning (Ouyang et al., 2022). Previously, a reward model or preferences
between responses were employed for reward modeling (Ouyang et al., 2022; Rafailov et al., 2023). Recently, Reinforcement
Learning with Verifiable Rewards (RLVR) has gained significant traction as a method to improve the reasoning capabilities
of LLMs in domains such as mathematics and programming (Lambert et al., 2024; Shao et al., 2024). An encouraging
landmark work is OpenAI’s ol model (Jaech et al., 2024), which was among the first large-scale applications of RL for
reasoning, achieving state-of-the-art results at the time of its release. Following this, Deepseek-R1 (Guo et al., 2025) became
the first open-weight model to match or surpass the performance of ol. A significant innovation introduced with R1 is the
“zero” setting, where reinforcement learning is applied directly to the base LLM, bypassing any intermediate supervised
tuning. This approach inspired a wave of open-source efforts to replicate or extend R1’s methodology and improve RL
algorithms (Zeng et al., 2025; Liu et al., 2025b; Yu et al., 2025; Liu & Zhang, 2025). In parallel, reinforcement learning has
also gained attention in the multimodal domain, driving advancements in multimodal reasoning (Chen et al., 2025; Shen
et al., 2025; Zheng et al., 2025).

Analysis of RLVR. Although there are many excellent open-source works and algorithmic designs in the field of RLVR,
there remains a lack of deep understanding regarding the root effects of RLVR on LLM reasoning abilities and its limitations
when starting from the base model. Several studies (Liu et al., 2025a; Zhao et al., 2025; Shah et al., 2025) highlight that
the reflective behaviors observed in R1-like models actually emerge from the base models, rather than being introduced by
RLVR training. Dang et al. (Dang et al., 2025) observed a phenomenon similar to our findings: Pass@k deteriorates rapidly
and fails to recover with reinforcement learning, but this was seen only in a limited experimental setup with Qwen-2.5-0.5B
on GSM8K. More importantly, they did not explore the relationship between the base model and the RL model. In contrast,
our paper conducts systematic and rigorous experiments to show that not only reflective behaviors but all reasoning paths
are already embedded in the base model. We further demonstrate that RLVR does not elicit any new reasoning abilities
beyond the base model.
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C. Discussion

In Section 3 and Section 4, we identified key limitations of RLVR in enhancing LLM reasoning capabilities. In this section,
we explore possible underlying factors that may explain why RLVR remains bounded by the reasoning capacity of the base
model.

Discussion 1: Key Differences Between Traditional RL and RLVR for LLMs are Vast Action Space and Pretrained
Priors. Traditional RL such as AlphaGo Zero and the DQN series (Silver et al., 2017; Mnih et al., 2015; Yue et al., 2023)
can continuously improve the performance of a policy in environments like Go and Atari games without an explicit upper
bound. There are two key differences between traditional RL and RLVR for LLMs. First, the action space in language
models is exponentially larger than that of Go or Atari games (Ramamurthy et al., 2023). RL algorithms were not originally
designed to handle such a vast action space, which makes it nearly impossible to explore the reward signal effectively if
training starts from scratch. Therefore, the second distinction is that RLVR for LLMs starts with a pretrained base model
with useful prior, whereas traditional RL in Atari and GO games often begins from scratch. This pretrained prior guides the
LLM in generating reasonable responses, making the exploration process significantly easier, and the policy can receive
positive reward feedback.

Discussion 2: Priors as a Double-Edged Sword in This Vast Action Space. Since the sampling of responses is guided
by the pretrained prior, the policy may struggle to explore new reasoning patterns beyond what the prior already provides.
Specifically, in such a complex and highly combinatorial space, most responses generated during training are constrained
by the base model’s prior. Any sample deviating from the prior is highly likely to produce invalid or non-sensical outputs,
leading to negative reward. As discussed in Section 2.1, policy gradient algorithms aim to maximize the log-likelihood of
responses within the prior that receive positive rewards, while minimizing the likelihood of responses outside the prior that
receive negative rewards. As a result, the trained policy tends to produce responses already present in the prior, constraining
its reasoning ability within the boundaries of the base model. From this perspective, training RL models from a distilled
model may temporarily provide a beneficial solution, as distillation helps inject a better prior.

Possible Future Work. Developing more efficient exploration strategies may be essential for navigating the vast action
space, facilitating the discovery of out-of-prior reasoning patterns and the development of more capable reasoning models.
Furthermore, current RLVR frameworks are limited to single-turn interactions with the verifier, lacking the ability to
iteratively revise or improve based on environmental feedback. A multi-turn RL agent paradigm—with richer, ongoing
interaction with a grounded environment—could enable models to generate novel experiences and learn from them. This
agent paradigm has been described as the beginning of an “era of experience” (Silver & Sutton, 2025).

15



Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?

D. Detailed Experimental Results

D.1. More Results on Mathematics and Coding
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Figure 9. More results of SimpleRLZoo on GSM8K and AMC23.
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D.2. Validity of Chain-of-Thought on AIME24

We manually check the CoTs for the most challenging AIME24 benchmark. To begin, we introduce a filtering mechanism
designed to eliminate easily guessable problems. Specifically, we prompt Qwen2.5-7B-Base to answer questions directly,
without using chain-of-thought reasoning, and sample answers multiple times. If a problem can be answered correctly with
a low but non-zero probability (e.g., <5%), we consider it to be guessable and remove it. Problems that can be directly
answered correctly with a high probability are retained, as they are likely easier and solvable using valid CoTs.
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Figure 12. Pass@k curves of the base and SimpleRLZoo-7B models in the filtered AIME24.

The base and RL model pass@Fk curves on this filtered AIME24 can be found in Figure 12, showing a similar trending to
previous results. Although this filtering method is heuristic, it proves to be effective. Applying it to AIME24 (30 questions)
results in a subset of 18 questions. We then prompt the models to answer these filtered questions using CoT reasoning.
Then we perform a manual inspection of all CoTs that led to correct answers on the hardest problems — those with an
average accuracy below 5%. The base model answered 7 such questions, with 5 out of 6 containing at least one correct CoT
(excluding one ambiguous case of correctness due to skipped reasoning steps). Similarly, the RL-trained model answered 6
questions, 4 of which included at least one correct CoT. These results suggest that even for the hardest questions in the
challenging AIME24, base model can sample valid reasoning paths to solve the problems.
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D.3. Accuracy Distribution Visulization
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Figure 13. Accuracy histogram before and after RLVR with SimpleRLZoo models.

18



Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?

D.4. Different RLVR Algorithms

We report several additional observations on different RLVR algorithms in Figure 8. First, DAPO achieves slightly
higher pass@1 scores across all three datasets; however, its dynamic sampling strategy requires approximately 3 ~ 6x
more samples per batch during training compared to other algorithms. Moreover, its performance drops significantly at
k = 256. Second, RLOO and Reinforce++ perform consistently well across the entire k range (from 1 to 256), while
maintaining efficient training costs, achieving a good balance between effectiveness and efficiency. Third, ReMax shows
lower performance at both pass@1 and pass@256. We hypothesize that this is due to its use of the greedy response reward
as the advantage baseline, which in the RLVR setting is binary (0 or 1) and highly variable. This likely results in unstable
gradient updates during training.

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Omni-MATH-Train

ki koA AASANA
0.6 e ,A-A.A—l"‘*‘"‘ffﬁI.A-:::-ﬁ%*“
A o~ o
0.5 K’ﬁiﬁﬁ‘;“‘ 08 A/ /AAA
W AP re
0.4 ¥ e
03 /“%A A oo //A
TR /1‘ A
A
021 v/ 0.4 /
011" {
1 2 4 8 16 32 64128256 1 2 4 8 16 32 64128256 1 2 4 8 16 32 64128256
Number of Samples k Number of Samples k Number of Samples k
Omni-MATH-Train 0O7mni-MATH-Test (In Domain) MATHS500 (Out of Domain)
P . ik 1.0 L
AM 0.6 &&:’;ﬁ;h A—Ar‘—mi’“”:‘f:ﬂfﬁff‘-"ég“m
e e Vi A Ve
/(‘-kA"‘:::A“AA A‘A A 0.5 . :f:::‘ 0.8 A‘/ o AA,A"A
/A j» i p " z‘(‘( ) & y ré
A/A A 1"‘ 0.4 _ i e ‘A’KA o /A/A -
A AT= & . X
« /‘A/AA 03 : / A/‘A/A | / a—
/A/‘ 02 // 04 /
X : & .
- 011" {
1 2 4 8 16 32 64128256 1 2 4 8 16 32 64128256 1 2 4 8 16 32 64128256
Number of Samples k Number of Samples k Number of Samples k

Figure 14. Unfolded y-axis version of Figure 8.
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Table 2. Detailed values for each point at pass@ 1 and pass@256 across different RL algorithms in Figure 8.

Model Omni-MATH-Train | Omni-MATH-Test MATHS00
pass@1 pass@256 | pass@1 pass@256 | pass@1 pass@256

Qwen2.5-7B 9.9 67.2 10.2 69.1 34.5 96.2
GRPO 26.1 66.3 25.1 68.3 74.4 97.2
PPO 27.2 65.8 26.8 69.2 75.2 97.2
ReMax 244 65.5 23.8 67.5 73.5 96.6
RLOO 28.6 66.4 28.1 69.2 75.0 97.4
Reinforce++ 28.2 67.7 28.0 69.7 75.4 96.8
DAPO 31.4 66.1 26.5 67.0 75.6 96.4

Table 3. Detailed values at pass@1 and pass @256 across different RL training steps in Figure 1 (right).

Model Omni-MATH-Train | Omni-MATH-Test MATHS00
pass@1 pass@256 | pass@1 pass@256 | pass@1 pass@256
Qwen2.5-7B 9.9 67.2 10.2 69.1 34.5 96.2
GRPO-step150 26.1 66.3 25.1 68.3 74.4 97.2
GRPO-step300 33.6 65.3 27.1 66.6 75.4 96.0
GRPO-step450 42.5 64.3 28.3 63.9 76.3 95.4
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D.5. Effects of KL and Rollout Number
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Figure 15. Ablation Study on KL Loss and Rollout Number n. For increasing n from 8 to 32, we keep the prompt batch size
unchanged, which results in increased computation per training step. Due to resource constraints, we train for only 220 steps under this
setting, leading to lower pass@1 as the model has not yet converged. Nevertheless, the model with n = 32 achieves a higher pass @128,
highlighting the positive effect of larger rollout numbers in improving pass@#k at higher values of k.

D.6. Solvable Problem Coverage Analysis

Table 4. Indices of solvable problems in AIME24 (starting from 0). An approximate subset relationship can be observed: most problems
solved by the RL model are also solvable by the base model.

Models Problem Indices
Qwen2.5-7B-Base 0,1,4,6,7,8,9,11, 12, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29
SimpleRL-Qwen2.5-7B 0,1,6,7,8,9,12, 14, 15, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29

Table 5. Indices of solvable problems in LiveCodeBench (ranging from 400 to 450, starting from 0).
Model Solvable Problem Indices

400, 402, 403, 407, 409, 412, 413, 417, 418, 419, 422, 423,
427,432, 433, 436, 438, 439, 440, 444, 445, 448, 449

400, 402, 403, 407, 412, 413, 417, 418, 419, 422, 423,
427,430, 433, 438, 439, 440, 444, 445, 449

Qwen2.5-7B-Instruct-1M

Coder-R1
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D.7. Temperature and Entropy Analysis

T=0.6 T=1.0 T=1.2
0.8 08 1 08
s e
—+— Base ““ s
~ & & ,
< 06 RL 0.6 Pz 0.6 Val
[Q\I & & &
m a AAK‘ 4 J‘A
E 2 0.4 ‘AA‘» 0.4 ‘f 0.4 f«‘
?3 A«L‘A ,A‘A "‘
< g S (A"‘A s
50.2 A‘At 0.2 41“ 0.2 Vo
O A uL s
| V2 A/AA( A,AA“AA
—
0 1 4 16 64 256 1024 0 1 4 16 64 256 1024 0 1 4 16 64 256 1024
Number of Samples k
: AAAAR ! NAAAA 1
i iR ckaiol e
o rog p /‘("‘ L o
A '
S 08 0.8 Pa 0.8 -
E / / Ve
= 06¢ 0 / 0.6 /
< - /
= o4 0.4 0.4 /
A
0.2 0.2

T 2 4 8 1632 64128 0.2

1 2 4 8 16 32 64128 1 2 4 8 16 32 64128
Figure 16. We found that the base model’s performance drops when the temperature exceeds 1.0, as it tends to generate more random and
less coherent tokens. In contrast, the RL model’s performance remains relatively stable across different temperature settings. Therefore,

we use 7' = 0.6 in the main experiments, as it allows both models to demonstrate their best reasoning performance.
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Figure 17. Comparison of Base and RLVR Models with Matched Output Entropy. We evaluate the base model (Qwen2.5-7B) on
each dataset using temperature 7" = 0.6 and report its output entropy Epae in the title of each figure. To enable a fair comparison, we
increase the temperature of the RLVR model (SimpleRLZoo) until its output entropy approximately matches Eyq... For example, on
AMC23, we set T' = 0.9 to achieve Eri. = 0.47. We also include RLVR results at 7' = 0.6 as an additional baseline, which has lower
entropy—e.g., 0.22 on AMC23 and 0.33 on MATHS500.
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D.8. Training Dynamics
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in Section 4.
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D.9. CoT Case Analysis

(AIME24 Question No.16)

Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf clubs, and 562 who own a garden
spade. In addition, each of the 900 residents owns a bag of candy hearts. There are 437 residents who own exactly two of these things, and
234 residents who own exactly three of these things. Find the number of residents of Aimeville who own all four of these things.

Response Length: 1058

To solve this problem, we can use the principle of inclusion-exclusion. We will denote the number of residents who own diamond rings, golf
clubs, garden spades, and candy hearts as D, G, S, and C, respectively. We are given the following information:
-D=195
-G =367
-S =562
- C =900 (since every resident owns a bag of candy hearts)
We are also given that 437 residents own exactly two of these things and 234 residents own exactly three of these things.
Let's denote the number of residents who own all four of these things as X. We need to find X.
First, we need to find the number of residents who own at least one of these things. This can be calculated using the principle of inclusion-
exclusion:
Total = D + G + S + C — (number of residents who own exactly two things)
—2 X (number of residents who own exactly three things) — 3 X (number of residents who own all four things)
Since there are 900 residents in total, we can write the equation as:
900 =195 + 367 + 562 + 900 — 437 —2x 234 —3 x X

Now we need to solve for X:

900 = 195 + 367 + 562 + 900 — 437 — 468 —3 x X

900 = 1717 =905 -3 x X

900 =812-3x X

3xX =812-900

3xX=-88
88
3
Since the number of residents cannot be negative, there is an error in our calculations. Let's re-evaluate the problem.
We know that there are 437 residents who own exactly two things and 234 residents who own exactly three things. We can subtract these
from the total number of residents who own at least one thing to find the number of residents who own exactly one thing:

Number of residents who own exactly one thing = (D + G + S + C) — (number of residents who own exactly two things)
—2 X (number of residents who own exactly three things) — 3 X (number of residents who own all four things)
Let's denote the number of residents who own exactly one thing as Y:
Y = (195 + 367 + 562 +900) — 437 —2x 234 -3 x X
Y =1924-905-3x X
Y=1019-3x X
Since every resident owns at least one thing, we can write the equation:
900 =Y +437+2x234+3%xX
Now we need to solve for X:
900 = (1019 —3 X X) + 437 + 468+ 3 x X
900 = 1019 + 437 + 468
900 = 1924
This equation is not true, which means there is still an error in our calculations. Let's try a different approach.
We can use the fact that the total number of residents who own at least one thing is 900. We can write the equation:
900 = (number of residents who own exactly one thing) + (number of residents who own exactly two things)
+(number of residents who own exactly three things) + (number of residents who own all four things)
Let's denote the number of residents who own exactly one thing as Y:

900 =Y +437+2x234+X
900 =Y + 805+ X
Now we need to find Y. We can use the fact that the total number of residents who own at least one thing is equal to the sum of the residents
who own each item minus the residents who own at least two items:
900 = (195 + 367 + 562 + 900) — (number of residents who own exactly two things)
—2 X (number of residents who own exactly three things) — 3 X (number of residents who own all four things)
900 = 1924 — 437 —2x 234 -3 x X
900 = 1924 —-805—-3x X
900 =1119-3 X X
Now we can solve for X:
3xX =1119-900
3xX =219
X=73

So, the number of residents of Aimeville who own all four of these things is[73].
(& J

Figure 19. Qwen2.5-Base-7B Correct Response - Case 1.
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(AIME24 Question No.24)

Find the number of ways to place a digit in each cell of a 2x3 grid so that the sum of the two numbers 00
formed by reading left to right is 999, and the sum of the three numbers formed by reading top to bottom is 9l91
99. The grid below is an example of such an arrangement because 8 + 991 = 999 and 9 + 9 + 81 = 99.

Qwen-2.5-7B Answer Response Length: 967

To solve this problem, we need to determine the number of ways to place digits in a 2x3 grid such that the sum
of the two numbers formed by reading left to right is 999, and the sum of the three numbers formed by reading
top to bottom is 99. Let's break this down step by step.

1. Define the grid:
Let the grid be represented as:
a b ¢
d e f
The numbers formed by reading left to right are 100a + 10b + ¢ and 100d + 10e + f. The numbers formed
by reading top to bottom are 10a + d, 10b + e, and 10c + f.

2. Set up the equations:
- The sum of the two numbers formed by reading left to right is 999:
100a + 10b + c + 100d + 10e + f = 999
- The sum of the three numbers formed by reading top to bottom is 99:
10a+d +10b + e+ 10c+ f =99

3. Simplify the equations:
- From the first equation:
100a + 10b + ¢ + 100d + 10e + f = 999
This implies:
a+d=9b+e=9c+f=9
- From the second equation:
10a+d+10b+e+10c+ f =99
This is consistent with the previous simplification since:
10a+b+c)+(d+e+f)=99
Givena+d =9,b+e=9,andc + f =9, it follows that:
10a+b+c)+(9—a)+(O—b)+(9—¢c) =99
Simplifying, we get:
10(a+b+c)+27—(a+b+c)=99
9(a+b+c)+27=99
9(a+b+c)=72
a+b+c=8
Sincea+d=9,b+e=9,andc+ f =9,anda + b + c = 8, it follows that:
d=9—ae=9—-b,f=9—-c

4. Determine the possible values:
- a, b, c must be digits (0-9) such thata + b + ¢ = 8.
- For each valid combination of a, b, ¢, d, e, f are uniquely determinedasd =9 —a,e=9—b,f =9 —c.

5. Count the combinations:
- We need to count the number of non-negative integer solutionstoa + b + ¢ = 8 with 0 < a,b,c <9.
- This is a classic "stars and bars" problem with an additional constraint. The number of solutions is given by
the binomial coefficient:
8+3—

L_ Ao
3_1 =)=

(

Therefore, the number of ways to place the digits in the grid is .
\ J

Figure 20. Qwen2.5-Base-7B Correct Response - Case 2.
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E. Prompt Templates

We provide the prompt templates used for training and evaluation in our experiments. The prompt for SimpleRL training
and evaluation is shown in Figure 21, while the prompt for Oat-Zero is shown in Figure 22. For Code-R1 training, prompt
in Figure 23 is adopted. For Code-R1 evaluation, we follow the original codebase and adopt the default templates from the
benchmarks, including LiveCodeBench prompt (Figure 24), HumanEval+, and MBPP+ prompt (Figure 25). The prompt
used for EasyR1 training and evaluation is shown in Figure 26. For VeRL-trained RL models, as discussed in Section 4.3
and Section 4.4, the training and evaluation prompts are provided in Figure 27. To ensure a fair comparison, the base models
use the same prompts as their corresponding RL-trained counterparts during evaluation.

SimpleRL Prompt

<|im_start|>system

You are a helpful assistant.<|im_end|>

<|im_start|>user

{question}

Please reason step by step, and put your final answer within\\boxed{{}}.<|im_end|>
<|im_start|>assistant

J

Figure 21. Prompt for SimpleRL Training and Evaluation. The base model uses the same prompt as the RL. model during evaluation.

Oat Prompt

<|im_start|>system
Please reason step by step, and put your final answer within \\boxed{}.<|im_end|>

<|im_start|>user
{question}<Jim_end|>
<|im_start|>assistant

Figure 22. Prompt for Oat-Zero training and evaluation.

Code-R1 Prompt

<|im_start|>system

You are a helpful programming assistant. The user will ask you a question and you
as the assistant solve it. The assistant first thinks how to solve the task through
reasoning and then provides the user with the final answer. The reasoning process
and answer are enclosed within <think>...</think> and <answer>...</answer> tags,
respectively.<|im_end|>

<|im_start|>user

{question}<|im_end|>

<|im_start|>assistant

Figure 23. Prompt for Code-R1 training.
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LiveCodeBench (Code Generation) Prompt

<|im_start|>system

You are a helpful assistant.<|im_end|>

<|im_start|>user

You will be given a question (problem specification) and will generate a correct
Python program that matches the specification and passes all tests. You will NOT
return anything except for the program.

Question: {question.question_content}

{ i question.starter_code }
### Format:
{PromptConstants. FORMATTING_MESSAGE_WITH_STARTER_CODE}

“python
{question.starter_code}

<|im_end|>

{else}

### Format:
{PromptConstants.FORMATTING_MESSAGE_WITHOUT_STARTER_CODE}

“python
# YOUR CODE HERE

<|im_end|>
<|im_start|>assistant
“python

J

Figure 24. Since Code-R1 does not specify an evaluation prompt, we adopt the original LiveCodeBench evaluation prompt. To encourage
both the base and RL-trained models to generate code, we append ™ *python to the end of the prompt. Using this setup, we reproduce a
pass@1 score of 28.6, which is close to the reported 29.7.

HumanEval+ & MBPP+ Prompt

<|im_start|>system

You are a helpful assistant.<|im_end|>

<|im_start|>user

Please provide a self-contained Python script that solves the following problem in a
markdown code block:

{python_task prompt}

<|im_end|>
<|im_start|>assistant
Below is a Python script with a self-contained function that solves the problem and
passes corresponding tests:
“python
\

Figure 25. Prompt for Code-R1 Evaluation on HumanEval+ and MBPP+.
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EasyR1 Prompt

<|im_start|>system

You are Qwen, created by Alibaba Cloud. You are a helpful assistant. You FIRST
think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process MUST BE enclosed within <think> </think>
tags. The final answer MUST BE put in \boxed{}.<|im_end|>

<|im_start|>user

<|vision_start|>{image_token}<|vision_end|>

{question}<Jim_end|>

<|im_start|>assistant

&

Figure 26. Prompt for EasyR1 training and evaluation.

VeRL Training and Evaluation Prompt

A conversation between User and Assistant. The user asks a question, and the
Assistant solves it. The assistant first thinks about the reasoning process in the mind
and then provides the user with the answer. The reasoning process and answer are
enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here </answer>. User: {}
\Assistant:

J

Figure 27. (1) Prompt for VeRL training on Omni-math-train and evaluation on Omni-math-eval and MATHS500.

F. Broader Impacts

The potential negative social impacts of our method align with those typically associated with general LLM reasoning
technologies. We emphasize the importance of adhering to the principles of fair and safe deployment in LLM systems.
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