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Abstract

Second order stochastic optimizers allow param-
eter update step size and direction to adapt to
loss curvature, but have traditionally required too
much memory and compute for deep learning. Re-
cently, Shampoo [Gupta et al., 2018] introduced a
Kronecker factored preconditioner to reduce these
requirements: it is used for large deep models
[Anil et al., 2020] and in production [Anil et al.,
2022]. However, it takes inverse matrix roots of
ill-conditioned matrices. This requires 64-bit preci-
sion, imposing strong hardware constraints. In this
paper, we propose a novel factorization, Kronecker
Approximation-Domination (KrAD). Using KrAD,
we update a matrix that directly approximates the
inverse empirical Fisher matrix (like full matrix
AdaGrad), avoiding inversion and hence 64-bit pre-
cision. We then propose KrADagrad⋆, with similar
computational costs to Shampoo and the same re-
gret. Synthetic ill-conditioned experiments show
improved performance over Shampoo for 32-bit
precision, while for several real datasets we have
comparable or better generalization.

1 INTRODUCTION

Second order stochastic optimization methods adapt to loss
curvature, allowing for smaller parameter update steps in
regions where the gradient changes quickly, avoiding bounc-
ing behavior, and larger ones in flat regions. Traditionally,
they required storing and inverting the Hessian to update
parameters: this requires quadratic memory and cubic com-
putation in the number of parameters. Thus, methods using
only a diagonal Hessian/Fisher approximation [Duchi et al.,
2011, Kingma and Ba, 2015] have dominated the field. How-
ever, diagonal preconditioners only scale gradients in the
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canonical basis, while full preconditioners can potentially
perform scaling in a rotated basis aligning more closely with
loss curavture.

Recently, Shampoo [Gupta et al., 2018, Anil et al., 2020]
proposed approximating the (empirical) Fisher matrices us-
ing Kronecker factorized matrices. The matrix version of
Shampoo factorizes the full preconditioner matrix into left
and right Kronecker factors, which allows storing and in-
verting the smaller factors instead of the full matrix. For pa-
rameters W ∈ Rm×n, this reduces computation costs from
O(m3n3) to O(m3 + n3) and storage costs from O(m2n2)
to O(m2 + n2). AdaGrad [Duchi et al., 2011] uses regret
bound techniques based on Online Mirror Descent (OMD)
Srebro et al. [2011] designed for vector updates. To use
these techniques for matrix/tensor updates, [Gupta et al.,
2018] exploit domination results that relate vector update
preconditioners to their matrix/tensor counterparts. How-
ever, Shampoo still requires inverse matrix roots, which are
numerically unstable or inaccurate for ill-conditioned matri-
ces in 32-bit precision. For preconditioned gradient descent,
it is important for Shampoo to maintain the accuracy of the
smallest eigenvalues (largest when inverted). It thus needs
64-bit precision, which requires some combination of slow
TPU-CPU data transfers, stale preconditioner matrices, or
even new machine learning accelerator hardware [Anil et al.,
2020] supporting fast 64-bit matrix multiplication or fast
accurate eigendecomposition.

A primary motivator to use any optimizer is to reach the
same quality solution in less time or reach a better solution
that other optimizers fail to reach. Second order optimizers
are currently not as popular as first order methods due to:
a) inertia to adoption, with a lack of highly optimized im-
plementations in all major ML frameworks; b) the added
compute and memory requirements; c) numerical stability
and consequently the additional considerations required to
get them to work or to debug them (e.g. numerical linear
algebra, computer number formats); and d) even though
they sometimes reach a solution unreachable by 1st order
methods (or the same solution with lower wall clock time
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(WCT) if properly optimized), they don’t consistently for
every task or architecture.

The key tradeoff is (b, c) vs (d). Shukla [2022] of Weights
and Biases noted that some of their customers using Sham-
poo do find solutions that generalize better than those found
with ADAM for their real world tasks (d), but that 2nd order
optimizers are still more expensive (b) and have additional
considerations (c).

In this paper, we address these limitations (c) by intro-
ducing a novel factorization, Kronecker Approximation-
Domination (KrAD): it has a simple form that updates the
preconditioning matrix without explicitly inverting it. Sham-
poo constructs Kronecker factors of intermediate statistics
such that their Kronecker product dominates the gradient
outer product matrix. Our key idea is to construct factors
for those statistics such that the inverse of their Kronecker
product dominates the gradient outer product matrix. This
leads to preconditioners that require fractional powers rather
than inverse fractional powers of factors. While this does
not decrease the computational complexity compared to
Shampoo, it avoids needing 64-bit precision.

This paper has three primary contributions: 1) we introduce
two new algorithms, both with O(m3+n3) and O(m2+n2)
computational and memory complexity, respectively and
only requiring positive matrix roots, in contrast to previous
work requiring inverse matrix roots; 2) we show domination
properties and use them to prove that our algorithm, which
has similar computation cost to Shampoo, achieves optimal
regret; 3) we show empirically that in 32-bit precision, we
outperform Shampoo in synthetic experiments and perform
similarly on some real experiments.We first describe some
mathematical tools, set up the problem, and describe second
order optimization and established results related to our
method in Section 2. Then we present our method and its
theoretical properties in Section 3. Next, we consider the
practical implementation of our method in Section 4. Then,
we show empirical results in Section 5. Finally, we discuss
implications in Section 6.

2 BACKGROUND AND RELATED WORK

Here, we set up the notation and the problem and then de-
scribe relevant related works. We briefly describe optimiza-
tion for vector-valued parameters then extend the discussion
to matrix-valued parameters. We can further generalize to
tensors, but continue with matrices in the main text for clar-
ity and leave the tensor formulation for Appendix C.5.

2.1 NOTATION AND PRELIMINARIES

We use bold lower case letters to denote column vectors
(e.g. g ∈ Rn), bold upper case letters to denote matri-
ces (e.g. G ∈ Rm×n), and calligraphic letters to denote

matrices composed of stacking vectors of interest (e.g.
Gk =

(
gk gk−1 . . . g1

)
∈ Rn×k). For square matrix

A ∈ Rn×n, let the trace be tr(A) =
∑n

i=1 ai,i, where ai,j
denotes the element in row i and column j of A. For ma-
trices A,B ∈ Rm×n, let A ·B = tr(A⊤B) be the matrix
(Frobenius) inner product, and the induced Frobenius norm
∥A∥F = (A ·A)1/2. We use ∥A∥2 to denote the spectral
norm, the largest singular value of A. We write A ⪰ 0 to
mean A is symmetric positive semi-definite (PSD), while
A ≻ 0 means A is symmetric positive definite (PD). For
two PSD matrices B ⪰ A means that B − A ⪰ 0 (sim-
ilarly for ≻). For a PSD matrix, take A = VΛV⊤ to be
the eigenvalue decomposition, which results in orthonormal
V (i.e. V−1 = V⊤). Define f(Λ) such that the diago-
nal elements are (f(Λ))i,i = f(λi), the principal values
of the function applied to the scalar eigenvalues. Then we
take f(A) = Vf(Λ)V⊤. In this way, we define a unique
value for functions applied to PSD matrices with eigenval-
ues within the domain of the function. In particular, we have
a definition for real powers of PD matrices.

Let ⊗ denote the Kronecker product, for matrices A ∈
Rm×n and B ∈ Rq×r defined as

B⊗A =

b1,1A . . . b1,rA
...

. . .
...

bq,1A . . . bq,rA

 ∈ Rmq×nr.

Let the vectorization operation for a matrix A ∈ Rm×n be

vec(A) =
(
a⊤1 . . . a⊤n

)⊤ ∈ Rmn:

ai is the i-th column of A, and the corresponding inverse
vectorization for a ∈ Rmn given a target matrix in Rm×n is

vec−1
m,n(a) =

(
a1:m . . . am(n−1)+1:mn

)
∈ Rm×n,

where ai:j =
(
ai . . . aj

)⊤
.

Several properties [Bellman, 1980, Van Loan, 2000, Boyd
and Vandenberghe, 2004, Baumgartner, 2011] of trace and
Kronecker products are important for our results. We list
them in Appendix D due to space constraints.

2.2 OPTIMIZATION IN MACHINE LEARNING

We are interested in iterative empirical risk minimization
under loss f , with x ∼ pn(x) an empirical density and
parameters w ∈ RN

w∗ = argmin
w

Epn
[f(w,x)].

We assume access to gradients ∇wf . Let gk =∑
i∈Bk

∇wf(wk,xi) ∈ RN be the estimated gradient of f
w.r.t. w evaluated at wk with data from batch Bk at iteration
k. From here, we omit but imply “stochastic” gradients.

For step size ηk ∈ R+, gradient-based methods update

wk+1 = wk − ηkPkgk (1)



where Pk ∈ RN×N is a preconditioner matrix (some
sources instead refer to P−1

k as the preconditioner). In some
algorithms, additional intermediate statistics are stored and
updated to aid preconditioner computation. Gradient descent
uses Pk = IN (no preconditioning); Newton’s method takes
Pk = H−1

k to be the (pseudo)inverse of the Hessian.

While vanilla gradient descent updates are trivial to compute,
convergence can require many iterations. Newton updates
are more expensive, but may require far fewer iterations.
In practice, the chosen form of the preconditioner matrix
appears to exist along a trade-off between computational
tractability and improved convergence properties.

2.3 ADAPTIVE GRADIENT PRECONDITIONERS

We can collect gradients through iteration k,

G′k =
(
gk gk−1 . . . gi . . . g1

)
∈ RN×k

and augment this with a scaled identity,

Gk =
(
G′k ϵIN

)
∈ RN×(k+N).

One form of adaptive gradient update is

wk+1 = wk − ηk
(
GkG⊤k

)−1/2
gk.

Expressing this in terms of the non-augmented G′k and tak-
ing δ = ϵ2 gives the full version of AdaGrad [Duchi et al.,
2011]: GkG⊤k can be seen as the statistic that is stored and

updated in each iteration, and
(
δIN + G′kG

′⊤
k

)−1/2
is the

preconditioner computed from the statistic. Unfortunately,
storing the full matrix GkG⊤k is memory intensive at O(N2),
and taking the inverse square root is computationally expen-
sive at O(N3) to compute the SVD.

Diagonal AdaGrad reduces computational complexity

wk+1 = wk − ηk

(
δIN + diag

(
G′kG

′⊤
k

))−1/2

gk.

This is O(N) complexity in both memory and computation.

2.4 MATRIX VARIABLES AND SHAMPOO

Now, we consider N = mn and optimize w.r.t. a matrix
W ∈ Rm×n. We consider a single matrix for clarity, but
note that the derivations and analyses can be extended to
tensors and applied individually to each tensor-valued pa-
rameter in a given model (e.g. to compute the total costs).
Then we can use the same optimization framework, now
taking w = vec(W) ∈ Rmn. However, in forming a pre-
conditioner, we utilize the fact that our parameter now has
the additional structure of being a matrix. Consider

Gk = vec−1
m,n(gk).

One convenient factorized form of a preconditioner is

Pk = Rk ⊗ Lk,

where Lk ∈ Rm×m and Rk ∈ Rn×n are symmetric. This
reduces storage and computation while not necessarily being
low-rank. To see this, we return to Equation (1) and simplify

wk+1 = wk − ηkPkgk

= wk − ηkvec(LkGkRk) ∵ (P18)

⇒Wk+1 = Wk − ηkLkGkRk. ∵ (vec−1
m,n)

This requires O(m2 + n2) = O
(
N

(
m
n + n

m

))
storage and

O(N(m + n)) compute. Unless otherwise specified, we
assume w.l.o.g. that m ≤ n. Shampoo [Gupta et al., 2018]
tracks statistics

Bk = ϵIm +
k∑

i=1

GiG
⊤
i , Ck = ϵIn +

k∑
i=1

G⊤
i Gi, (2)

and forms the preconditioner from the Kronecker factors

(Lk,Rk) = (B
−1/4
k ,C

−1/4
k ). (3)

Gupta et al. [2018] relies on 3 key conditions to prove Sham-
poo achieves optimal regret. First,

R−2
k ⊗ L−2

k ⪰ ϵImn +

k∑
i=1

gig
⊤
i . (4)

It secondly requires that

R−2
k ⊗ L−2

k ⪰ R−2
k−1 ⊗ L−2

k−1. (5)

Finally it requires that under mild conditions,

tr(Lk), tr(Rk) = O(k1/4). (6)

An additional O(n3 +m3) cost comes from taking the in-
verse fractional powers via a high-precision (64-bit) Newton
iteration (which involves repeated matrix multiplications;
see Equation (25) in Appendix C.3 for further details) or
SVD, which dominates the previous O(N(m+ n)).

The motivation for these properties stems from OMD anal-
ysis. The regret vector parameter wk updates and gen-
eral preconditioners Pk ≻ 0 is initially bounded by sums
of quadratic forms w⊤

k Pkwk. If the domination property
holds, these can be bounded in terms of tr(Pk). Using Prop-
erty (P13), this can be further expressed in terms of tr(Lk)
and tr(Rk). The trace growth rates give the final bound.

2.5 RELATED WORK

Recently, there has been a surge in interest in tractable
preconditioned gradient methods. We briefly contrast some
of the most similar or otherwise notable methods to ours.

Kronecker Factored: KFAC [Martens and Grosse, 2015]
and TNT [Ren and Goldfarb, 2021] use Kronecker fac-
tors to approximate Fisher matrices while reducing stor-
age and computation costs. KFAC requires knowledge of
network architecture and thus modifications or even re-
implementations corresponding to each parametric layer



type within the network. KFAC and TNT reqiore an addi-
tional backward pass and matrix inversion. KBFGS [Gold-
farb et al., 2020] does not require matrix inversion but re-
quires an additional forward and backward pass. We note
that the empirical performance achieved by KBFGS is par-
tially due to initialization using curvature estimated from the
entire training set [Goldfarb et al., 2020], which is not avail-
able in a truly online setting. Shampoo is the most closely
related work, relying on the empirical Fisher matrix rather
than estimating the Fisher matrix, thus not requiring addi-
tional sampling or forward/backward passes. In addition,
only tensor shape knowledge is required. While estimating
the Fisher matrix may have intuitively desirable properties
over the empirical Fisher, the empirical Fisher is more prac-
tical to compute [Martens, 2020], since in distributed data or
model parallel settings, additional forward/backward passes
become prohibitive (both in terms of computation and en-
gineering cost). To our knowledge, Shampoo is the only
second order optimizer that has been successfully imple-
mented in a large-scale, production, deep learning setting
[Anil et al., 2022], which makes it of primary interest.

Limited Memory: GGT [Agarwal et al., 2019] uses a lim-
ited history of h past gradients to form a low-rank approxi-
mation to the full AdaGrad matrix, reducing storage costs
to O(Nh) and compute costs to O(Nh2); however, this
requires many copies (200, for the problems they consider)
of the full gradient to be stored as statistics (h still scales
as a function of N ), which can become prohibitive without
modifications to reduce N .

Sketching: AdaHessian [Yao et al., 2021], SENG [Yang
et al., 2022], and SketchySGD [Frangella et al., 2022] esti-
mate the Hessian (either the diagonal or a low-rank approxi-
mation) via automatic differentiation to compute Hessian-
vector products (HVP), which require additional backpropa-
gation steps and two batches of data per step, one for gradi-
ent computation and one for Hessian sketching. This is less
expensive than a full forward/backward pass, but can still be
expensive in distributed settings. In addition, the low-rank
factorization still requires many times the storage of the full
gradient of the model (100 − 200× in the problems they
consider). While KrADagrad does not use sketching or HVP,
these methods could potentially be combined with KrAD
factorization as future work.

3 KRADAGRAD

Here, we derive a pair of new optimization algorithms,
KrADagrad and KrADagrad⋆, presenting along the way
intermediate results that allow us to attain domination prop-
erties analogous to those in Equations (4)-(5) and trace
growth rates in Equation (6) required for good regret. Si-
multaneously, this maintains low computational complexity
achieved by Kronecker factorized methods. To derive the
algorithms, we present

1. KrAD, a method for producing a Kronecker factoriza-
tion approximating a matrix that yields the property in
Equation (4)

2. Derivation of the basic form of KrADagrad, applying
to AdaGrad style updates KrAD and the Woodbury
matrix identity Woodbury [1950] as the key tricks

3. Statements confirming the property in Equation (5)

4. Extension to KrADagrad⋆.

KrADagrad alternates updates of Kronecker factors of the
statistics and has within ε tolerance of optimal regret. With
additional insights from KrADagrad regret analysis, we for-
mulate KrADagrad⋆, which can be seen as an “average” of
two KrADagrad estimators. KrADagrad⋆ updates both Kro-
necker factors of the statistics simultaneously and achieves
optimal regret. We present theoretical results along the way
in this section as they are needed but defer the proofs to
Appendix B. We derive the algorithm for matrix-valued pa-
rameters for clarity and again leave the extension to tensor-
valued parameters for Appendix C.5.

3.1 KRONECKER
APPROXIMATION-DOMINATION

First, we state a Lemma as the goal of KrAD, which is
needed to achieve the condition in Equation (4) that allows
us to prove optimal regret.

Lemma 3.1. Let PD matrix C ∈ Rn×n, U ∈ Rmn×r, ui

be the i-th column of U , Ui = vec−1
m,n(ui). Then

B=

r∑
i=1

UiC
−1U⊤

i ⪰ 0

⇒ C⊗B⪰ 1

n
UU⊤.

These matrices U and U are fairly general. In our setting, we
will use KrAD on gradient matrices. In context, this result
states that given a PD right matrix, we can express a left
matrix in a quadratic form, and the Kronecker product of
the right and left matrices will dominate the scaled gradient
outer product matrix. We present the proof in Appendix B.1.

3.2 KRADAGRAD UPDATES: DERIVATION

We start with deriving the general statistic update. We out-
line it here and fill in details in Appendix D. Suppose
we have the previous Kronecker factorization of a statis-
tic Qk−1 that dominates the gradient outer product matrix
by a factor t (which we will clarify later) and its inverse
Pk−1

Qk−1 = Ck−1 ⊗Bk−1 ⪰
1

nt
Gk−1G⊤k−1 (7)

Pk−1 = Rk−1 ⊗ Lk−1 = C−1
k−1 ⊗B−1

k−1 = Q−1
k−1, (8)



where Bk−1, Ck−1, Lk−1, and Rk−1 are PD. Our initial
intermediate update, which we will apply our KrAD factor-
ization to, is

Q̃k = 1
ntk

gkg
⊤
k +Qk−1,

for some tk ≤ t. We will then compute an intermediate
version of the update on the inverse of the left statistic
B̃k = L̃−1

k . Letting B̃k = Bk−1 + ∆Bk, we can apply
KrAD to Q̃k with a fixed Ck = Ck−1 (i.e., we use the old
right statistic to update the current left one),

∆Bk =
1

tk
GkC

−1
k G⊤

k (9)

⇒Ck ⊗∆Bk ⪰
1

ntk
gkg

⊤
k ∵ Lemma 3.1 (10)

⇒Ck ⊗ (Bk−1 +∆Bk) ⪰
1

nt
GkG⊤k ∵ (P15). (11)

Then, letting Ĉk = Ck+
1
tk
G⊤

k Lk−1Gk and applying the
Woodbury matrix identity,

L̃k = B̃−1
k = (Bk−1 +∆Bk)

−1 (12)

⪰ Lk−1−
1

tk
Lk−1GkRkG

⊤
k Lk−1︸ ︷︷ ︸

Lk

(13)

(we provide more detail in Appendix D). Note that our
update for Lk neither depends on B, C nor requires any
other expensive matrix inverses to compute. This suggests
that we do not need to actually store B or C to obtain a
computationally tractable implementation.

Here, we state intermediate results that suggest that our
proposed updates are reasonable (proof in Appendix B.2).

Proposition 3.2. Taking tk = 1 + ∥Lk−1GkRk−1G
⊤
k ∥2

(or the looser but more computationally friendly tk = 1 +
∥Lk−1GkRk−1G

⊤
k ∥F ), the PSD matrix

Mk
∆
= 1

tk
L
1/2
k−1GkRk−1G

⊤
k L

1/2
k−1 ≺ I.

Corollary 3.3. If Lk−1 ≻ 0, the updated 0 ≺ Lk ⪯ Lk−1.

In Corollary 3.3, the second inequality Lk ⪯ Lk−1 has
the effect of not increasing the step size, while the first
inequality Lk ≻ 0 guarantees that we do not reverse the
direction of the gradient. These are both valued theoretical
properties of useful preconditioners for avoiding divergent
behavior. In practice, they may be lightly violated to great
effect; for example, in Adam, it is technically possible to
have increasing step size as shown by [Reddi et al., 2018].
The result from Corollary 3.3 also allows us to leverage
existing techniques to bound the regret of our algorithm.

3.2.1 Update schemes

Thus far, we have glossed over the fact that we have actually
only updated Lk. We may update Rk in the same way;
since we have already achieved domination by just updating

Lk, we are interested in the process for jointly updating
(Lk,Rk). Further, we have only hinted at a method for
updating statistics; we must still compute the preconditioner.

In the next few subsections, we discuss these issues more
concretely, proposing KrADagrad⋆, an algorithm that com-
bines two sets of KrAD preconditioners to obtain optimal re-
gret but requires updating two matrix statistics and involves
higher order matrix roots. This algorithm is reminiscent of
Shampoo, but avoids the numerical difficulty of inverting
ill-conditioned matrices. We also propose, KrADagrad, a
separate scheme that has suboptimal regret but is more intu-
itive, showing why we arrive at this form of update. Due to
space constraints, we leave this to Appendix C.1.

3.3 KRADAGRAD⋆: COMBINING
PRECONDITIONERS

Suppose we have two distinct sets of KrADagrad precondi-
tioners. Here we overload notation a bit, holding the iteration
k fixed and dropping it from the subscript, instead using the
subscript to denote the index for the set of preconditioners
to which each matrix belongs,

R1 ⊗ L1 ⪰ GG⊤, R2 ⊗ L2 ⪰ GG⊤,

recalling that G =
(
G′

ϵIN
)
, the augmented matrix col-

lecting the history of observed gradients. Using the matrix
geometric mean for two matrices [Ando et al., 2004],

Mg(A,B)
∆
= A1/2(A−1/2BA−1/2)1/2A1/2

= A(A−1B)1/2

and due to the geometry of the manifold of PD matrices
[Bhatia, 2009],

Rc ⊗ Lc ⪰ GG⊤.

where Lc = Mg(L1,L2) and Rc = Mg(R1,R2) form
another pair of KrAD estimates1.

In this case, we may need to take additional square roots
of the quantities (L−1

1 L2,R
−1
1 R2) and of (Lc,Rc) them-

selves. We will first show how these combined estimators are
relevant to Shampoo, and use this insight to arrive at a sec-
ond version of preconditioning, which we call KrADagrad⋆.

3.3.1 Shampoo combines inverse KrAD estimates

If we keep a pair of KrAD estimates for Q (an integral
power of the preconditioner inverse) instead of directly for
P, one in which we only update B1 and keep C1 = I fixed,
while in the other we only update C2 and keep B2 = I fixed,
we end up with exactly the Shampoo statistics updates

∆B1 = GC−1
1 G⊤ = GG⊤

∆C2 = G⊤B−1
2 G = G⊤G.

1the subscript c stands for “combined”



Algorithm 1 KrADagrad⋆: Precondition without inversion

Input: Parameters W0 ∈ Rm×n, iterations K, step size
η, exponent α = 1/2.
Initialize: (L0,R0) = (Im, In)
for k = 1, . . . ,K do

Obtain gradient Gk

Compute ∆Lk = 1
tk,L

Lk−1GkG
⊤
k Lk−1

Compute ∆Rk = 1
tk,R

Rk−1G
⊤
k GkRk−1

Update (Lk,Rk)← (Rk−1 −∆Rk,Lk−1 −∆Lk)

Compute (L
α/2
k ,R

α/2
k ) from (Lk,L

α/2
k−1 ,Rk,R

α/2
k−1 )

Apply preconditioned gradient step
Wk = Wk−1 − ηL

α/2
k GkR

α/2
k

end for

Then, the full Shampoo statistics matrices are related to a
combination of these two statistics,

Bc =Mg(B1, I)=B
1/2
1

Cc =Mg(I,C2)=C
1/2
2 ,

These still need to be inverse square rooted to be applied as
the preconditioner, since here we have constructed

Cc ⊗Bc ⪰ GG⊤.

The inverse square root ultimately gets grouped together
with the square roots in the expressions above to yield the
inverse 1/4-th power in the preconditioning,

Wk = Wk−1 − ηB−1/2
c GkC

−1/2
c

= Wk−1 − ηB
−1/4
1 GkC

−1/4
2

(compare with Equations (2)-(3)). Each individual estimator
keeps one Kronecker factor as identity.

3.3.2 KrADagrad⋆

Inspired by Shampoo’s optimality, we can maintain a pair of
KrADagrad preconditioners (Lk,1,Rk,1) = (Lk, Im) and
(Lk,2,Rk,2) = (In,Rk), where the second index in the
LHS subscripts denotes the estimator. Since we will hold
the identity matrices constant, we do not need to store or
perform multiplication with them explicitly. In addition, this
means we can unambiguously drop the second index in the
subscripts. On iteration k, we update both Lk and Rk, just
as in shampoo. With

tk,L ← 1 + ∥GkG
⊤
k Lk−1∥F

tk,R ← 1 + ∥G⊤
k GkRk−1∥F ,

we summarize in Algorithm 1. In order to bound the regret,
we need a few intermediate results.

Lemma 3.4. Assume a 1-Lipschitz loss, implying ∥Gk∥2 ≤
1∀k. Suppose by iteration k, Lk is updated in k − k′ of
those steps for 0 ≤ k′ ≤ k (and thus Rk is updated in the

remaining k′ steps). Letting Bk = L−1
k , Ck = R−1

k , and
s = 1+∥L0∥2∥R0∥2,

tr(Bk) ≤ tr(B0)+k′ms∥R0∥2 (14)
tr(Ck) ≤ tr(C0)+(k−k′)ns∥L0∥2. (15)

Next, we restate Theorem 7 from Gupta et al. [2018] in
our notational setting. We additionally make one minor but
straightforward substitution of the smaller matrix dimension
instead of the rank, as the dimensions upper bound the rank.

Lemma 3.5 (From Gupta et al. [2018]). Let w∗ ∈ Rmn

with m ≥ n, t > 0, and D
∆
= max1≤k≤K ∥wk − w∗∥2.

The regret from using a Kronecker factorized preconditioner

Pk = C
−1/2
k ⊗B

−1/2
k

that dominates the empirical Fisher matrix

Ck ⊗Bk ⪰ 1
nt
GkG⊤

k

is bounded∑K
k=1(fk(wk)− fk(w∗)) ≤ D

√
2tn tr(B1/2

K ) tr(C1/2
K )

Now, we have our regret result: a proof is in Appendix B.4.

Theorem 3.6. Assuming a 1-Lipschitz loss, the regret from
using KrADagrad⋆ scales as O(

√
K).

4 IMPLEMENTATION

Now we discuss the algorithmic considerations for actually
implementing KrADagrad⋆2. The main difficulty lies in ef-
ficiently computing the matrix roots. Differentiable matrix
square roots for machine learning have been the subject of
a substantial amount of research [Song et al., 2021]. For
preconditioning, we do not require differentiability for our
roots, so they can be computed using numerical linear alge-
bra methods (e.g. SVD) without concern for the backward
pass. While such algorithms are gaining hardware support
on current GeMM accelerators and software frameworks,
they are still not universal (Pytorch supports SVD on CUDA
in double precision via cuSOLVER and MAGMA [PyTorch
Team, 2021, NVidia Team, 2023, Dongarra et al., 2014], but
TPUs to our knowledge do not [Jouppi et al., 2021]).

However, as [Anil et al., 2020] discovered, accurate inverse
powers require high precision to retain the important con-
tributions of the eigenvectors corresponding to the small-
est eigenvalues, and current general matrix multiplication
(GeMM) accelerators do not prioritize 64-bit computation
(i.e. GPUs see significant speed reductions, while TPUs do
not support it at all). Plus, they assume preconditioners are
a slowly-varying sequence of matrices. Thus, they propose
computing matrix roots iteratively on CPU due to these
algorithmic and hardware architectural constraints.

2http://github.com/jonathanmei/kradagrad

http://github.com/jonathanmei/kradagrad


In contrast, Kradagrad⋆ deals with positive roots, and both
these iterative matrix methods and the numerical linear al-
gebra techniques are otherwise actually amenable to compu-
tation using GeMM accelerators. Ultimately, as a straight-
forward solution for the roots that appear in KrADagrad⋆,
the SVD on GPU suffices. We note that avoiding inversion
is thus not about reducing the computational complexity,
rather we aim to avoid needing 64-bit computation. Further
details of matrix roots are discussed in Appendix C.3.

Additionally, diagonal damping is a common feature of pre-
conditioned methods due to their contribution to numerical
stability. While we do not need this for numerical stabil-
ity, we find empirically that diagonal damping still helps
reduce the effect of gradient noise and smooth out the loss
curve. We describe how this can be applied to KrADagrad⋆

in further detail in Appendix C.4.

So far, our proposed algorithms and analyses apply to matrix
parameters. As noted earlier, we can extend this to tensor
parameters in a fairly straightforward manner as mainly a
matter of additional notation and bookkeeping. Hence, we
relegate the extension to Appendix C.5.

The baseline Pytorch Shampoo implementation we use is
not optimized, so is not totally fair to the true capability of
the baseline. Similarly, our KrADagrad variants, being de-
rived from the mentioned implementation of Shampoo, did
not have optimized implementations. Nonetheless, we have
conducted some preliminary wall clock time comparisons
between our implementation of KrADagrad and Shampoo,
which we summarize in Table 1. For each data set, we report
the time in seconds to run a single epoch for (KrADagrad,
KrADagrad⋆, Shampoo) along with a 2 standard deviation
interval, computed from epochs 5 through 10 on an NVidia
A40 GPU.

Table 1: Comparison of wall clock times (in seconds) be-
tween our implementations of KrADagrad variants and
Shampoo on a single epoch and a 2 standard deviation inter-
val computed from 5 epochs for CIFAR-10/100 data sets on
an NVidia A40 GPU.

DATA SET KRADAGRAD KRADAGRAD⋆ SHAMPOO

CIFAR-10 29.50± 0.88 45.76± 0.20 35.62 ± 0.17
CIFAR-100 54.71± 0.36 76.12± 1.72 66.45 ± 0.33

4.1 COMPUTE AND MEMORY COSTS

For Kradagrad, computing ∆Lk has a computational cost
of (2N(2m + n) + 2m2 + 2m3) While we still require
O(m3 +n3) matrix square roots for the KrADagrad update,
this is less difficult numerically and thus computationally
than the −4th root required by Shampoo.

KrADagrad⋆ requires 4th root computation, which is com-
parable in cost to the inverse 4th root, but without the need

for high precision.

Storage involves tracking the two matrix factors, and so is
O(m2 + n2) for all methods.

We summarize these costs in Table 2.

Table 2: Comparison of complexity between our implemen-
tations of KrADagrad variants and Shampoo.

KRADAGRAD KRADAGRAD⋆ SHAMPOO

COMPUTE O(m3 + n3) O(m3 + n3) O(m3 + n3)
MEMORY O(m2 + n2) O(m2 + n2) O(m2 + n2)

5 EXPERIMENTS

We address the following: 1) How sensitive is our method
to matrix conditioning compared to Shampoo? 2) How does
convergence speed compare in the number of training steps?
(as measured by task-specific validation metrics) 3) How
do our methods compare in the achieved model quality
at or near convergence? The goal of each is to compare
optimizers in various challenging loss landscapes, rather
than to achieve state of the art performance.

To answer 1, in a synthetic experiment we minimize a multi-
dimensional quadratic function with a non-diagonal, poorly-
conditioned Hessian that neatly factorizes into a Kronecker
product of two individually poorly-conditioned PD matrices.

To answer 2 and 3, we compare KrADagrad and
KrADagrad⋆ to alternatives across a variety of tasks: im-
age classification (IC), autoencoder problems (AE), rec-
ommendation (RecSys), continual learning (CL). For IC
experiments we train ResNet-32/56 [He et al., 2016] with-
out BatchNorm (BN) on CIFAR-10/100 [Krizhevsky, 2009].
For AE, we train simple autoencoders consistent with [Gold-
farb et al., 2020] on MNIST [Lecun et al., 1998], as well
as CURVE and FACES [Hinton and Salakhutdinov, 2006].
For recommendation, we train H+Vamp Gated [Kim and
Suh, 2019] on MovieLens20M [Harper and Konstan, 2015].
In the continual learning setting we train on two bench-
marks from [Lomonaco et al., 2021]: GEM [Lopez-Paz and
Ranzato, 2017] on Permuted MNIST [Goodfellow et al.,
2013] and LaMAML [Gupta et al., 2020] on Split CI-
FAR100 [Zenke et al., 2017].

We choose Shampoo as a baseline 2nd order optimizer as:
a.) KrADagrad variants are most similar to Shampoo b.) we
expect at best similar performance unless KrADagrad’s ap-
proximations and lower precision are in practice detrimental.
To ground all comparisons, we always include SGD, Adam,
plus any unique optimizer from an existing benchmark.

In all our experiments, we initialized from common seeds
across optimizers. However, the first points on the training
curves follows the number of training steps per evaluation
interval, so they do not visually appear to start from the



Figure 1: Loss on synthetic quadratic in log scale, relative
to SGD. Each curve is divided by that of SGD.

same point. Doing so would have required modifying the
codebases separately for each experiment. In addition, ide-
ally we would have had the resources to run multiple shared
seeds for the selected HPs of every task we explored. For
smaller tasks where convergence is achieved quickly, such
as the autoencoder experiments, it was feasible for us to do
this and we share this in Figures 3 and 8. In the tradeoff
of how to use our compute and time resources, we opted
to present fair evaluations of the optimizers (i.e. ensuring
shared seeds and optimized HPs per optimizer per task)
across a diversity of tasks, and repeatability statistics from
different initial guesses as much as possible.

5.1 CONDITIONING EXPERIMENT

To see the effects of Hessian conditioning on optimizers of
interest, we create a synthetic deterministic convex problem.
For X ∈ R128×128, we minimize a quadratic loss function

minX tr(X⊤AXB)

where A,B ≻ 0 are non-diagonal and have condition num-
bers κ(A) = κ(B) = 1010. We seed each optimizer with
the same starting point and sweep learning rates and pick
the one with the lowest loss for each optimizer. We provide
further details in Appendix G. While this stationary prob-
lem without a validation or test dataset is different from the
online setting assumed in Theorem 3.6, and even from a
typical offline machine learning problem, it helps isolate
differences in behavior between optimizers in a badly con-
ditioned convex loss landscape.
In Figure 1, while Shampoo in double precision outperforms
the others in terms of final loss achieved, single precision
KrADagrad⋆ outperforms single precision Shampoo. Adam
does not converge quite as quickly or to as good a loss, as
the adaptivity it provides is aligned to the canonical axis,
while A,B being non-diagonal act in a rotated basis.

5.2 REAL DATASETS

For each task and optimizer we sweep hyperparameters
(HP), select those yielding the best validation metric at some
epoch or iteration, and display the corresponding learning
curves in Figures 2 through 5. We set the preconditioner up-
date rate for Shampoo and KrADagrad⋆ to every 20 training

Figure 2: Vision experiments. Each curve is initialized from
the same single seed and subtracted from that of Adam.
Top: Top 1 Accuracy (in %) of ResNet-32 (without BN) on
CIFAR-10, relative to Adam; Bottom: Top 1 Accuracy (in
%) of ResNet-56 (without BN) on CIFAR-100, relative to
Adam.

steps. For all experiments, Shampoo uses double precision
for negative matrix roots, and SGD includes momentum,
unless stated otherwise. We summarize our observations
here and provide additional detail in Appendix G.
For the three autoencoder experiments, after HP tuning we
retrain the best HPs with 5 unique seeds shared across opti-
mizers, with results in Figures 3 and 8. We also find the auto
encoder tasks to be relevant baselines for evaluating Sham-
poo alternatives because Shampoo consistently outperforms
SGD and Adam. While KrAdagrad⋆ also outperforms SGD
and Adam, Shampoo reaches better solutions or similar so-
lutions in fewer steps. Following the synthetic experiments,
we test the hypothesis that KrAdagrad⋆ might perform better
than 32-bit Shampoo by running our best HPs for Shampoo
with single precision. The 32- and 64-bit versions perform
similarly on these tasks, falsifying the hypothesis in the
general sense. KrAdagrad, slower in the number of steps
and performing worse in general, eventually reaches similar
performance to KrAdagrad⋆ on CURVES, with some runs
reaching that of 32 bit Shampoo (see Figure 8b). One hypoth-
esis is that on these particular tasks, effectively traversing
the loss landscape requires eigenvectors that the KrADagrad
approximation has more difficulty capturing than Shampoo.
While Gupta et al. [2018] performs experiments on “stan-
dard” machine learning tasks, their regret results pertain to
an online setting. We include continual learning problems to
test the limits of the theoretical setting. Figure 4a displays
learning curves for GEM on Permuted MNIST relative to
SGD to illuminate small differences (we include a plot of the
actual accuracies in Appendix G). On average, KrADagrad



Figure 3: Reconstruction validation error for fully connected auto encoder a) mean cross entropy on MNIST b) mean cross
entropy on CURVES c) mean squared error on FACES. The learning curves shown are averaged across 5 unique seeds with
CI95 error bars. We do this analysis for the autoencoder experiments since they’re relatively inexpensive to run.

Figure 4: a) Top 1 Accuracy of GEM on Permuted MNIST,
relative to SGD. Each curve averages multiple seeds, sub-
tracted from the corresponding SGD curve to illuminate
otherwise unobservable differences. See Appendix G for
absolute curves. b) Top 1 Accuracy of LaMAML on Split
CIFAR-100, relative to Adam.

stays slightly ahead of others throughout training, unlike
KrADagrad⋆.
Figure 4b shows similar accuracy curves for LaMAML on
Split CIFAR100 relative to Adam (again, the absolute ac-
curacies are in Appendix G). KraADagrad⋆ closely follows
Shampoo and the adaptive learning rate optimizer from
[Gupta et al., 2020], while KrADagrad performs only better
than Adam.
We also evaluate Shampoo and KrAdagrad variants against
the baseline for H+Vamp Gated3. Shampoo reaches a lower
training loss compared to KrAdagrad⋆, while both Adam
variants converge faster and to lower loss values (Figure 5).

6 CONCLUSION

We introduced KrADagrad⋆, a preconditioned gradient op-
timizer that avoids matrix inversion, and proved that it

3https://github.com/psywaves/EVCF

Figure 5: Training loss of H+Vamp Gated on ML-20M. We
choose to compare the training loss for this experiment be-
cause it comprises a weighted combination of components,
RE + β· KL, where β changes according to a predefined
schedule (causing loss growth in the 1st 100 epochs), which
is not consistent in the validation loss.

has optimal regret properties. We showed that its perfor-
mance exceeds that of Shampoo in single precision on an
ill-conditioned synthetic convex optimization problem. Our
experiments on real datasets show that KrADagrad⋆ often
performs similarly to Shampoo.

Future work includes tractable methods to compute low-
rank updates to matrix roots, for instance with rational
Krylov subspace methods, to improve the performance of
KrADagrad⋆ and other Kronecker-factored preconditioners.
It is also worth considering the application of the optimizer
to other application areas, such as decision making and
controls, or scientific discovery.
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