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Abstract

Capturing the correct tail behavior is difficult, yet essential for a faithful generative model.
In this work, we provide an improved framework for training flows-based models with robust
capabilities to capture the tail behavior of mixed-tail data. We propose a combination of a
tail-flexible base distribution and a robust training algorithm to enable the flow to model
heterogeneous tail behavior in the target distribution. We support our claim with extensive
experiments on synthetic and real world data.

1 INTRODUCTION

Real-world data often show mixed tails - both heavy (representing ’black swan’ events, seen in communication
networks traffic and actuarial risk (Wang et al., 2006; Afify et al., 2020)) and light (indicating events within
narrow outcome ranges, seen in certain pricing models and extreme engineering events (Singh & Gor; Jamissen
et al., 2022)). Capturing tail behavior accurately is vital in data synthesis, especially in sectors such as
healthcare, where mis-estimation can cause significant inaccuracies in analyses based on the synthesized data,
leading to misinferred risks (Ibragimov et al., 2015).

Normalizing flows (Papamakarios et al., 2021) present an attractive model for mixed-tailed data synthesis.
This is due to the fact that the tail behavior of the base distribution directly and transparently affects
the tail of the generated data (Jaini et al., 2020). Other classes of deep generative models do not provide
such an explicit mechanism to control their tails. Figure 1 demonstrates the impact of mis-specification of
parameterization of base density on the capabilities of normalizing flows on capturing the tail behavior of
targets with different tail behaviors.
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Figure 1: The impact of mis-specification of base density on the capabilities of normalizing flows to capture
the tail behavior of the target density. We train an RNVP on three short, normal and heavy-tailed Generalized
Gaussian (GGD) targets (columns 2-4) with short, normal and heavy-tailed GGD base densities (rows 1-3).
We plot the probability density of the plot. Mis-specified parameterization of base leads to flow being only
able to estimate the target with the same tail behavior as its base density accurately

The task of synthesizing mixed-tail data using normalizing flows is an intriguing research domain within
generative modeling. Previous methods (e.g. (Jaini et al., 2020; Laszkiewicz et al., 2022)) select the base
distribution to match the target tails. One potential concern with applying these methods to mixed-tail
targets is that the base distribution might be overly conditioned on the estimated or perceived tail of the
target. This makes the flow model brittle, as will be discussed in Section 3. We also posit that mixed-tail data
can negatively impact model gradients during training regardless of the choice the family and tail behavior of
the base density.

In this work, we focus on improving the flow model for mixed-tail targets. In contrast with previous methods
which select the base density, we make the base density of the flow adapt to the target tail characteristics
across a broad family by making it flexible enough to capture the tailedness of the target through a flexible
mixture of Generalized Gaussians without binding the base to the tail properties of the target distribution. To
make the flow model itself capable of capturing the tail of the target distribution we make the training process
robust to heavy-tailed gradients. By making the Monte Carlo estimator robust we stabilize the training
process and enable model to capture the tail behavior of the target distribution and admit gradient-based
adaptation of the tail behavior. Following prior works in this area (Jaini et al. (2020); Laszkiewicz et al.
(2022)), we validate our method on a range of data synthesis tasks, benchmarking it against other state of
the art tail-adaptive flows and empirically show the advantage of our method for mixed-tail targets. We show
general improvements in capturing the tail behavior of mixed-tail targets while maintaining high general
utility.

Our contributions include:

• Highlighting the problem with pre-hoc selection and estimation of base density tail and proposing a
flexible tail-adaptive mixture for base density to fix these issues.
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• Discussing the problem with maximum likelihood training of normalizing flows on mixed-tailed
targets and propose a robust method to counter the impact of heavy-tailed gradients.

• Empirical results showing generally favorable performance compared to other tail-adaptive flow
methods.

2 BACKGROUND

Notation We denote univariate and multivariate random variables with bold letters and observations with
non-bold letters. We denote data by x and its observation by x. The kth component of x is denoted by xk.

2.1 Characterizing Tail Behavior

A random variable X is said to follow a heavy-tailed distribution if its tail is not exponentially bounded.
This can be formally defined using the moment generating function (MGF): MX(t) = E[etX ]. A distribution
is heavy-tailed if there exists some t > 0 such that MX(t) is infinite or does not exist. An example of this
category is the Pareto distribution with scale parameter γ > 0, for which the MGF is MX(t) = γ

γ−t , which is
undefined for t ≥ γ.

The tails of a light-tailed random variable X decay sub-exponentially. The Gumbel distribution, with location
parameter µ and scale parameter β > 0, is an example of a light-tailed distribution as its survival function
SX(x) = e−e−(x−µ)/β indicates a sub-exponential decay for large x.

In many real-world scenarios, we encounter data with mixed tail properties. We define such data as having
mixed tails if some of its marginal distributions exhibit heavy tails and others light tails. This underscores
the multifaceted nature of real-world data, where different variables or features may be governed by distinct
distributional properties.

Tail Index Estimation The tail behavior of a probability distribution is primarily characterized by their
tail index. The tail index, which we denote as α, is defined as the exponent in the power-law tail of the
distribution:

F (x) = P (X ≤ x) ∼ 1 − x−α

where P (X ≥ x) is the probability of the random variable X being greater than or equal to a certain value
x, and F (x) is the cumulative distribution function of X. As α approaches zero, the distribution follows a
power law to a greater degree. Hill’s estimator (Hill, 1975) is a widely-used method for estimating the tail
index. It is defined as follows:

α̂H =
[

1
k

i=1∑
k

(log(Xn−i+1) − log(Xn−k))
]−1

Here, n represents the sample size, k is the number of upper order statistics, and Xn−i+1 denotes the ith
largest observation in the sample. The parameter k is of crucial importance: a large k inflates the variance of
the estimator, while a small k increases the bias (Fedotenkov, 2020).

2.2 Normalizing Flows

Normalizing flows (NFs) (Tabak & Turner, 2013; Rezende & Mohamed, 2015; Papamakarios et al., 2021) are
models represented by a sequence of invertible transformations that warp a simple base distribution (such as
a standard normal) into a richer target distribution. The transformations are chosen such that their (log)
Jacobian determinant is easy to compute, allowing for efficient computation of the likelihood. Let u ∼ pu(u)
denote the base density, and let the sequence of invertible transformations be denoted Tϕ = TN−1 ◦ . . . ◦ T0,
where ϕ denotes the neural network parameters. We can evaluate the density of observation x by applying
the change of variables formula:

pϕ(x) = pu

(
T−1
ϕ (x)

) ∣∣∣det JT−1
ϕ

(x)
∣∣∣
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where JT−1
ϕ

is the Jacobian matrix of the inverse transformation. Due to the availability of the exact density
function, maximum likelihood training can be carried out as usual:

L(θ) = KL [ p∗(x) ∥ px(x;θ) ] = −Ep∗

[
log pu

(
T−1(x;ϕ);ψ

)
+ log |det JT−1(x;ϕ)|

]
+ C (1)

where C is a constant, p∗(x) denotes the true distribution of the data and ψ and θ represent the parameters of
the base distribution pu and the collective parameters of the model respectively. In practice, the expectation
is calculated via a Monte Carlo approximation using the training set.

3 CHALLENGES OF TRAINING TAIL-ADAPTIVE NORMALIZING FLOWS FOR
MIXED-TAIL TARGETS

Reviewing literature indicates that to adapt a flow model’s base density to the target tail, existing methods
either incorporate assumptions about tail behavior into the model through a specific base density selection, as
in Jaini et al. (2020), or directly estimate the target’s tail behavior, as in the marginal adaptive base method
by Laszkiewicz et al. (2022). Furthermore, previous research (Behrmann et al., 2021) shows flow-based models
suffering from the exploding/vanishing gradients problem, which will be exacerbated in presence of tailed
mini-batches during training. We explore the limitations of these approaches in modeling mixed-tailed data.

3.1 Challenges in Adjusting the Tail Behavior of the Flow Model’s Base Density

Pre-Hoc Selection of Base Density Tail Behavior for Mixed-Tail Targets Real-world data may have
tail behavior that deviate from any specific choice of base distribution family such as having a multi-modal
mixed-tail distribution. Therefore, choosing a specific heavy-tailed parametric distribution family as the flow
base as suggested by Jaini et al. (2020) a priori will inherently restrict the range of possible tail shapes and
asymptotic decay rates that can be represented. The other issue with this method for mixed-tail targets is
based on the fact that normalizing flow transforms on top of the base distribution can either alter its tail
behavior significantly or not converge due to exploding/vanishing gradients. Thus to make the flow robust,
the tail modeling capabilities must come more from the flows rather than the base distribution alone.

Pre-Hoc Estimation of Base Tail Index for Mixed-Tail Targets Adapting the tail behavior of
the flow’s base density directly on the target distribution is another way to make the base distribution tail
adaptive, with a prominent example being Marginal Tail Adaptive Flows (mTAF) by (Laszkiewicz et al.,
2022). mTAFs calculate the tail index of each marginal of x. Since tail estimation is notoriously difficult,
Laszkiewicz et al. combine the results from three different tail index estimators. The base density for light-tail
marginals is set to a Gaussian and a univariate Student’s t with a degree of freedom equal to the estimated
tail index for heavy tail marginals.

The limitation of these methods for modelling complicated mixed-tail targets is their reliance on estimated
tail index of the target distribution. Tail index estimators generally suffer from high variance and sensitivity
to tuning parameters, especially for small sample sizes or multidimensional settings. For example, a major
drawback of Hill’s estimator is its sensitivity to the choice of k. Mason (Mason, 1982) demonstrated that α̂H
is inconsistent if k stays fixed as n approaches infinity.

3.2 Challenges in Maximum Likelihood Training of Flow Models for Mixed-Tailed Targets

Regardless of the choice for the base distribution and its tail properties, we argue that it is simply not enough
to enable the flow to be trained properly and capture the tail behavior of a mixed-tail target distribution.
The reason is unstable training due to increased variance of the gradients when the target is heavy-tailed.

Consider the likelihood term in the maximum likelihood training objective (Equation (1)). Let u = T−1(x;ϕ)
be the inverse transformation of the observation x. The term log pu(u) in the likelihood involves the logarithm
of the base density evaluated at u. In the presence of heavy tails, the density can have slower-than-exponential
decay, resulting in higher likelihood contributions from extreme values of u (and consequently, x). Similarly,
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log |det JT−1(u;ϕ)| can become large in magnitude when u falls in the tails of the distribution since the
Jacobian determinant accounts for the local expansion or contraction of the transformation and heavy tails
can amplify this effect, leading to large values of the determinant.

4 METHOD

Our approach to tail adaptiveness in any normalizing flow hinges on: a) ensuring the base distribution’s
flexibility to align with the target’s tail behavior, and b) enhancing the flow’s training process robustness to
adequately capture the tail dynamics of the target distribution.

4.1 Tail-Adaptive Base Density for Mixed-Tail Targets

We propose using a mixture of Generalized Gaussian Distributions (GGDs) as the base density of the flow.
The Generalized Gaussian represents a family of continuous probability distributions that extend the concept
of the Gaussian distribution by incorporating a shape parameter, denoted as β > 0. Formally, the probability
density function (PDF) of a GGD with mean µ, scale parameter α > 0, and shape parameter β > 0 is defined
as:

f(x;µ, α, β) = β

2αΓ(1/β) exp
(

−
(

|x− µ|
α

)β)

where Γ(·) is the gamma function. This distribution encompasses a wide range of density shapes including
but not limited to the Gaussian distribution (β = 2) and Laplacian distribution (β = 1). Higher values of
β give rise to light-tailed distributions, whereas lower β values lead to heavy-tailed distributions. Figure
2 shows the flexibility of the tail behavior of GGD with different shape parameters (for a more thorough
discussion on GGDs, see (Dytso et al., 2018)).

A trainable mixture model as the base distribution is defined as:

pu(u;π1, . . . , πM , ψ1, . . . , ψM ) =
M∑
m=1

πm p(u;ψm)

where m is the component index, πm ∈ [0, 1] is the weight of the mth component such that
∑
m πm = 1, and

ψm are the parameters of the mth GGD component parameterized by (µ, σ, β).

Our choice for using a mixture for better modelling mixed tail behavior is substantiated by previous work
that successfully used mixtures to model tailed distributions (Feldmann & Whitt, 1998; Okada et al., 2020;
Venturini et al., 2008). Hagemann & Neumayer (2021) show that normalizing flow training can be stabilized
in cases (e.g. disjoint support of base and target) by using a mixture for pu(u). We posit that training a flow
model on mixed-tail targets will similarly introduce optimization difficulties that may only be exacerbated by
having a flexible base density with wide-ranging tail behavior.

Satisfying the Tail Condition of the Base Density Jaini et al. (2020) show that for Lipschitz triangular
flows to be able to capture the tail of the target distribution, their base density should be at least as heavy
tailed. When the tails of the base density pu are fixed, and the determinant of the Jacobian

∣∣∣det JT−1
ϕ

(x)
∣∣∣

is bounded due to the Lipschitz property, it follows that pϕ cannot exhibit heavier tails than pu, as the
transformation Tϕ cannot increase the rate of decay of pu at its tails. This implies that for u ∼ pu(u) with
known tail behavior, and x ∼ pϕ(x), the tail properties of pϕ are essentially inherited from pu and limited by
the expressiveness of Tϕ, ultimately constraining the model’s capacity to represent target densities pϕ with
tails heavier than those of the base density pu.

To comply with this requirement, our choice of a flexible GGD mixture base is motivated by the the ability
of GGD to control its tail behavior through its shape parameter. We argue that the mixture base density
requires only one component to be at least as heavy-tailed as the target density for the flow model to adhere
to the requirement of Jaini et al. (2020), while the flexible nature of the mixture will let the flow capture
complex mixed-tail behavior of the target density.
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Figure 2: Probability density functions (left) and quantile functions (right) of generalized Gaussian distribu-
tions with shape parameter β = 1.0, 2.0, and 10.0. β = 2.0 yields a Gaussian. As β drops below 2.0, the PDF
becomes heavy-tailed and the quantile function transitions from linear to concave down and vice versa.

Formally, consider a mixture model pu where component densities p(u;ψm) decay super-exponentially, i.e.,
p(u;ψm)e−c|x|α

, α ∈ (0, 2), for some c > 0. The slowest decaying component ensures the mixture’s heavy tail,
as pu(u;π1, . . . , πM , ψ1, . . . , ψM ) ∼ πm p(u;ψm) as x → ∞.

Considering a mixture of generalized Gaussians, p(u;ψm) with ψ = (µm, σm, βm), a heavy tail is possible
if there exists component j which satisfies (i) βj < βi ∀i ≠ j and (ii) βj ≤ 2. This indicates the j-th
component’s tail is heaviest and decays super-exponentially. By making βj sufficiently small, we ensure a
heavy tail, leading to pu(u) ∼ πjp(u;ψj) for large u. A single heavy-tailed component is enough to induce
heavy tails in the mixture, while the remaining components can vary to adjust the overall density shape.
This logic extends to creating arbitrarily light tails. It should be noted that this does not preclude the flow
from capturing complex and heterogeneous tail behaviors as would be the case for non-mixture bases. The
controllable tail of GGD lets the flow adapt shorter tails as well. The key advantage of using a mixture of
GGDs as the base density is that it provides more flexibility to match multimodal marginals with complex
tail behaviors, compared to using a single parametric family. Our approach does not make any assumptions
about isotropy or impose identical marginal tail decay rates and each mixture marginal can have distinct tail
properties.

4.2 Training Flows On Mixed-Tail Targets

In the previous section we proposed using a mixture of generalized Gaussians base density for modelling
heavy and mixed-tail targets. We also argued that the flexibility to model the tail behavior should come
from the flow itself and not be put entirely upon the base density. In this section, based on the motivation
provided in the Section 3.2, we propose our method for stabilizing the training process of the flow models by
making it tail adaptive.

4.2.1 Our Proposed Robust Monte Carlo Maximum Likelihood-Based Training

To mitigate the problem described in previous section, we propose using robust estimation methods during the
maximum likelihood estimation. Robust gradient estimators have been employed similarly in the literature
(e.g. Hsu & Sabato (2016)). However, to the best of our knowledge they have not been applied to the problem
of stabilizing MLE in presence of mixed-tail behavior. Specifically, we propose employing the Geometric
Median (GM):

ḡ = arg min
g

B∑
b=1

∥g − ∇θL(θ; xb)∥2 , g ∈ Rd (2)
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during the Monte Carlo estimation of the likelihood while training the flow to mitigate the problem of high
variance gradients when the target is heavy or mixed-tailed.

To motivate this, we pay attention to mean estimation in presence of heavy-tailed data. Let X1, X2, . . . , Xn

be i.i.d. random variables with a heavy-tailed distribution. Let X̄n = 1
n

∑n
i=1 Xi be the sample mean and

Xmed be the sample geometric median. Then Var(X̄n) ≫ Var(Xmed). For heavy-tailed distributions, the
variance can be arbitrarily large. In fact, by definition of heavy tails, the tails of the distribution decay slower
than an exponential distribution. Therefore, for any finite V , there exists some x0 such that:∫

|x|>x0

f(x)dx > V

n

Where f(x) is the probability density function. This means there is non-negligible probability mass in the
heavy tails that can lead to extremely large values of Xi. These extreme values disproportionately increase
the variance of the sample mean X̄n (more in depth discussion can be found in literature, e.g. (Sun et al.,
2015)). On the other hand, the geometric median only depends on the relative ordering of the Xi values, not
their magnitudes. Therefore, it has robust variance in the presence of heavy tails.

Next we posit that using the geometric median estimator for gradients instead of the sample mean when
training normalizing flows on mixed-tailed data reduces the variance and leads to more stable optimization.
From the training objective, the gradient is:

∇θL(θ) = Epz [∇θ log px(fθ(z))]

This expectation is typically approximated with Monte Carlo sampling:

∇θL(θ) ≈ 1
n

n∑
i=1

∇θ log px(fθ(zi))

We already established that when px is heavy-tailed, the gradients ∇θ log px(fθ(z)) have very high variance.
Therefore, using the geometric median instead of the sample mean to aggregate the gradients reduces the
variance while still being a consistent estimator. This results in more stable optimization. Robust estimators
like the geometric median can mitigate the training instability induced by mixed-tailed target distributions
for normalizing flows. We demonstrate this phenomenon in Figure 3, which depicts the instability of the
standard maximum likelihood estimation in presence of heavy tails. As can be seen, regardless of whether the
model is mis-specified or not or the tail behavior of the base and target densities, the loglikelihood estimate
is impacted by the heavy-tailed minibatches, resulting in a biased estimation of expectation. This bias is
more prominent when the base density is heavy-tailed, which explains why the proposed method of Jaini
et al. (2020) yields mixed results in practice. We employ the Weiszfeld method (Eftelioglu, 2017) to estimate
the geometric median.

5 EXPERIMENTS

We experiment using a range of simulated and tabular data. We train Real NVP (RNVP (Dinh et al.,
2017) and Masked Autoregressive (MAF (Papamakarios et al., 2017)) flows with GGD mixture base density
(100 components, learnable parameters) and robust MLE. The choice of RNVP is motivated by it being a
Lipschitz-continuous function, which results in the density function having the same tail properties as its
base, making the dynamics of the model simpler and easier to interpret. The shift and scale operations of
RNVPs are modelled by an feed forward network with one hidden layer the width of 1024. The MAF is
potentially more expressive than RNVP, letting us study the performance of our method for different flow
models. Each flow model is 12 steps deep, with the MAFs having 12 autoregressive layers which use a stacked
transformation with 1024 hidden units and 2 blocks to model the conditional dependencies of the variables.
Minibatch size is 1024 and we perform Adam optimization (lr = 10−5) All trainings are over 1000 iterations.
We perform experiments in this section 5 times - unless explicitly mentioned - and report the mean and
standard error.
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Figure 3: The impact of heavy-tailed target and base on the maximum likelihood estimation. We plot the
NLL of a Real NVP flow trained with Student’s t base density on a Student’s t target using mean (dashed
lines) and geometric median (solid lines), with and without tail mis-specification of the base with respect to
the target. The legend denotes (degrees of freedom of the base-> degrees of freedom of the target).

5.1 Data Quality metrics

To measure the performance of our proposed method we perform experiments on synthetic and real data
and report the negative log likelihood. Also following Laszkiewicz et al. (2022) we report the tail-specific
performance metrics of Tail Value at Risk (tVaR) and Area Under Log-Log Plot (AULLP). The details of the
metrics used can be found in the Appendix C.

Average Negative Log Likelihood In the context of normalizing flows, the negative log-likelihood (NLL)
loss is often used as a performance metric to train the model. The NLL loss measures the model’s ability
to approximate the true data distribution. The negative log-likelihood of the model given the dataset D is
defined as:

L(θ; D) = −
N∑
i=1

log pθ(x(i))

Tail Value at Risk Tail Value at Risk (tVaR) is a measure used to estimate expected losses beyond a
certain threshold, known as the Value at Risk (VaR). It calculates the average loss above the VaR level
based on a given quantile. The tVaR is obtained by taking the conditional expectation of the loss variable,
given that the loss exceeds the VaR level. The VaR itself is determined as the minimum value of the loss
variable for which the cumulative distribution function exceeds the specified quantile level. We report the
tVaR difference between test dataset and synthetic dataset.

Area Under Log-Log Plot The Area Under Log-Log Plot (AULLP) involves integrating the logarithm
of the survival function, which represents the probability of a random variable exceeding a given value, in
log-log space beyond a high quantile threshold. We report the The AULLP difference between test dataset
and synthetic dataset.
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5.2 2D Dataset

Data We use a synthetic datasets to demonstrate the performance of our proposed method. For our
mixed-tail dataset, following Jaini et al. (2020) we choose our target distribution as a bi-variate Neal’s funnel:

xi =
{
xi,1 ∼ N(γ, 1),

xi,2 ∼ N(0, exp{xi,1/2 + λ}).

To better control the tail behavior of the distribution, we add an additive offset on the variance of the second
variable via parameter λ ∈ R≥0.

Table 1: General performance metrics for the Neal’s funnel for the average NLL as well as AULLP difference
and tVaR difference for each variable separately.

Base Density NLL ↓ AULLPv1↓ AULLPv2↓ tVaRv1↓ tVaRv2↓
Gaussian 3.93 ± .22 8.15 ± .7 18.09 ± 1.14 2.4e4 ± 2e2 1.1e5 ± 7.6e3
Mx.Gaussian 3.86 ± .2 4.58 ± .19 11.15 ± .56 54.5 ± 2.6 36.45 ± 1.72
Student’s t 3.86 ± .39 89.9 ± 10.9 93.6 ± 11.6 2e30 ± 4e27 2e31 ± 9e28
Mx.Student’s t 3.88 ± .2 5.73 ± .53 14.15 ± .89 8.8e3 ± 1e1 8.8e5 ± 9.2e3
GGD 3.83 ± .31 7.09 ± .45 13.93 ± 1.19 81.1 ± 7.61 161.17 ± 8.32
Our Method 3.77 ± .31 6.1 ± .35 5.81 ± .49 73.72 ± 3.73 33.0 ± 2.62

Figure 4: Performance of RNVP flow with different base distributions for estimation of a mixed-tail target.
Our modified Neal’s funnel with λ = 6.0 has a heavier-tailed and a lighter-tailed variable.

Results Figure 4 compares the performance of our method for an RNVP flow with baselines with multivariate
Gaussian base (as is commonly used in practice), Student’s t and generalized Gaussian base densities. Our
method performs well for both variables while the other methods’ performance is sub-optimal for one or both
variables.

Table 1 shows performance of an RNVP with difference base densities. Results reported here show the
advantage of our proposed method. We observe a meaningful advantage for our method, especially for the
heavier-tailed variable (v2). Of note is the high variance of the flow with Student’s t base (following Jaini
et al. (2020)) which as discussed in section 3 is due to attenuated tail misspecification in the presence of
mixed-tailed targets. The mixture of Gaussian base reports better results for the lighter tailed variable (4.58
vs 6.1 for AULLP, 54.5 vs 73.72 for tVaR)which is to be expected since v1 is a standard Gaussian and has
the same normal tail behavior as the flow base. As can be observed in the next section, for targets with more
complicated tail behavior, the mixture of Gaussian base loses its advantage.

5.3 Ablation Study

Data To measure the impact of each aspect of our method, we perform an ablation study. We use two base
distributions, a GGD and a mixture of GGDs. We train an RNVP model on both bases with and without
robust MLE. For each base, we train flows on a two-dimensional distribution P (X1,X2) such that X1 follows
a generalized Gaussian distribution, and X2 adheres to a Student’s t-distribution. X is parameterized by γ.
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The shape parameter of X1 is transformed by γ via a skew-adjusted Gamma cumulative distribution function,
while X2’s degrees of freedom will be retrieved by 1 + γ. The parameter γ is explored within the interval
[0, 1000] using a non-exhaustive, selective sampling strategy. Our setup enables us to test out method for a
range of distributions with extreme tail behaviors, on one end (γ=0) having a heavy-tailed Cauchy and a
close to uniform short-tailed GGD and at the other end of spectrum ending up with a shorter-tailed Student’s
t and a Laplace distribution. We train our ablation models for each chosen γ, and subsequently report the
AULLP-diff of two samples from the target and the trained model, each with size 50000.

Figure 5 shows the β and ν parameters of the random variable we use for our ablation study as a function of
γ (as shown in the two plots on the right). Furthermore, we provide a visual representation of the probability
density functions (pdf) for X1 and X2 at the extremities of the γ spectrum, namely when γ = 0 and γ = 1000
(illustrated in the two plots on the left).

Figure 5: Ablation study framework. The two graphs on the left depict the probability density functions
(pdf) of our dual random variables at the extreme points of γ. The pair of graphs on the right illustrate how
the shape parameters — ν for the Student’s t-distribution and β for the GGD — vary as functions of γ.

Results The results of our ablation study depicted in Figure 6 show that the flow with mixture of GGD
base outperform single GGD in terms of lower AULLP difference across diverse γ settings, underscoring the
versatility of the mixture in capturing tail behavior of our mixed tail target. Further, robust gradient estimation
generally improves model fidelity, although its efficacy varies with the tail behavior of the distributions, which
can be attributed to stochasticity of the models - since we do not optimize hyperparameters for different
cases individually. These insights reveal that especially for heavier tailed target densities (variable 2) both
the GGD mixture base and the robust gradient estimation are needed for the flow to be able to model the
tail behavior of the target density accurately.

Table 2: Comparison with (Laszkiewicz et al., 2022). We run the same experiment as Laszkiewicz et al.
(2022)’s Table 1 experiment for dh = 4. We repeat our experiment 25 times and report the average results
and standard error.

Method NLL ↓ AULLP-diffl↓ AULLP-diffh↓ tVaR-diffl↓ tVaR-diffh↓
TAF −8.69 0.42 4.05 0.89 4.36
mTAF −8.55 0.25 2.6 0.57 6.74
gTAF −8.57 0.5 3.38 0.98 5.55
Ours −9.03 ± .08 0.26 ± .03 1.53 ± .21 0.61 ± .07 3.8 ± .49

5.4 Performance Comparison with Pre-Hoc Tail Estimation Methods

In this section we report the performance of our method on a synthetic experiment from Laszkiewicz et al.
(2022) to compare the performance of our method to the state of the art in pre-hoc tail estimation-dependent
models.

Data The target dataset is generated by a 8-dimensional Gaussian copula. The marginals of the copula
consist of two Gaussians, followed by a 2-mixture and a 3-mixture of Gaussians. The last four marginals
are a mixture of two t-distributions with ν = 2. Mixtures have randomized means and variances and equal
weights and the correlation matrix is randomized.
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Figure 6: Ablation study results. The AULLP for models trained with two different base distributions are
plotted on different rows. Variables X1 and X2 are plotted on different columns. The gray lines show the
results of models without robust gradient estimation and the black lines show the results with robust gradient
estimation. The results show that a)Mixture of GGD provides an improved and more stable performance in
capturing the tail behavior of the target, b) robust MLE improves the tail-related performance of the model
for both and c) a combination of GGD mixture base density and robust MLE provide the best performance
across the board.

More details can be found in Appendix C.2 of Laszkiewicz et al. (2022).

Results Table 2 compares the performance of our method with that of Laszkiewicz et al. (2022). We report
the results of training our model on an RNVP - with the same architecture used in previous experiments -
with the same setup as per Section 4.1 of Laszkiewicz et al. (2022). Results of Laszkiewicz et al. (2022) are
copied from the dh = 4 section of their Table 1. The metrics are reported for heavy tailed and light tailed
components separately (denoted by h and l subscripts). We observe that our method performs better in case
of heavy-tailed components while Laszkiewicz et al. (2022)’s mTAF reports better results for light-tailed
components. We attribute our method’s slightly lower performance in case of light tails to mis-specification
of tails since Laszkiewicz et al. (2022) use Student’s t base marginals with the same degree of freedom as the
synthetic example (ν = 2) for heavy-tailed target components. This pattern is consistent with results from
Section 5.2.

5.5 Tabular Datasets

Data To test our method in a more realistic setting, following and expanding on the empirical evaluations
done by other methods in this area we train our model on four tabular datasets from the UCI repository,
namely Power, Gas, Miniboone and Hepmass. We focus on tabular data for the ease with which one can
measure and evaluate the tailedness of the training and synthetized data. For other data types such as images
and language, due to their inherent high-dimensionality and the rich spatial (for images) and contextual
(for language) dependencies it is difficult to define, measure and evaluate the tailedness of the data and
the tail-adaptiveness of the model. We follow the same preprocessing steps as Papamakarios et al. (2017)
(According to Appendix Section D of their paper). We train RNVP and MAF flows with different base
densities as well as our own method. We report negative log likelihood and mean AULLP difference and
tVaR difference over all columns.

Results In Table 3, we present a comprehensive evaluation of our proposed approach for an RNVP
normalizing flow. The results are contrasted against various base distributions with trainable parameters. We
report average tVaR and AULLP over all variables. Our method’s superiority is evidenced by the lowest NLL
and tVar for all datasets. We report lowest AULLPs for all datasets except MINIBOONE (1.19 vs 1.01). Even
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Table 3: Comparison of NLL, AULLP difference and tVaR difference for our proposed method applied to a
RNVP in comparison with the same model with different base distributions. R.MLE refers to the robust
gradient estimation of Section 4.2.1.
*The tVaR metric tends to grow exponentially when the tail is heavily underestimated

GAS HEPMASS POWER MINIBOONE
RNVP + NLL↓ AULLP↓ tVaR↓ NLL↓ AULLP↓ tVaR↓ NLL↓ AULLP↓ tVaR↓ NLL↓ AULLP↓ tVaR↓
Gaussian base 8.86 ± .56 16.57 ± 1.32 0.74 ± .05 10.41 ± .64 3.38 ± .22 1.5e2 ± 9.93 7.8 ± .47 9.28 ± .48 2.02 ± .16 56.29 ± 4.75 1.34 ± .10 67.29 ± 4.07
Mx.Gaussian base 8.01 ± .36 16.51 ± 1.06 0.72 ± .04 10.33 ± .59 3.21 ± .20 1.21 ± .08 7.78 ± .52 9.12 ± .64 1.79 ± .10 52.97 ± 3.58 1.01 ± .05 65.91 ± 2.72
Student’s t base 9.13 ± 1.53 24.6 ± 2.74 100.5 ± 10.14 10.19 ± 1.38 10.07 ± 1.19 2.1e9 ± 3e8∗ 10.33 ± 1.07 21.45 ± 2.28 2.7e6 ± 2.4e5 61.63 ± 6.09 2.05 ± .28 1.6e3 ± 2.5e2
Mx.Student’s t base 7.9 ± .53 16.6 ± 1.01 0.72 ± .06 10.2 ± .83 3.34 ± .27 3.38 ± .29 7.82 ± .50 9.21 ± .75 1.73 ± .17 54.75 ± 5.02 1.25 ± .09 66.32 ± 5.36
GGD base 9.02 ± .82 17.5 ± 1.96 0.69 ± .08 10.41 ± .84 3.38 ± .39 1.5e2 ± 11.76 8.45 ± .89 9.64 ± .56 2.1 ± .13 65.39 ± 6.67 4.37 ± .27 72.17 ± 6.45
Mx.GGD + R.MLE 7.22 ± .54 15.4 ± 1.67 0.44 ± .03 8.17 ± .70 3.18 ± .30 1.12 ± .09 6.02 ± .68 8.64 ± .76 1.59 ± .15 49.68 ± 3.74 1.19 ± .10 63.39 ± 6.77

in this case the difference is relatively small. Notably, the stark tVaR discrepancy, especially in HEPMASS
with Student’s t base (2.1e9 vs 1.12), underscores the challenge of tail estimation which our method effectively
addresses. Our method reports superior results across the board except for tVar in HEPMASS dataset (1.08
vs 1.12), again with a very small margin. This comparison showcases the robustness of our methodology for
capturing the tail behavior of the mixed-tail targets. Also of note is the inferior performance of the Student’s
t and GGD bases. Considering these results alongside results from section 5.2 we conclude that while the
Gaussian base maintains a fixed tail behavior and produces average results dependant on the tail behavior of
the target distribution and its pathologies, since both Student’s t and GGD’s tail behavior is parameterized
and trainable, the flow either pushes them to underestimate the tail - violating the requirements set by Jaini
et al. (2020) - or overestimate the tail, leading to generation of samples with extreme values which will results
in subpar performance in tail-specific metrics.

Table 4: Comparison of NLL, AULLP difference and tVaR difference for our proposed method applied to
a MAF in comparison with the same model with different base distributions. R.MLE refers to the robust
gradient estimation of Section 4.2.1.

GAS HEPMASS POWER MINIBOONE
MAF + NLL↓ AULLP↓ tVaR↓ NLL↓ AULLP↓ tVaR↓ NLL↓ AULLP↓ tVaR↓ NLL↓ AULLP↓ tVaR↓
Gaussian base −3.21 ± .23 18.07 ± 1.38 7.8 ± .70 −54.25 ± 2.99 13.42 ± 1.15 17.27 ± 1.42 2.37 ± .14 9.45 ± .72 3.39 ± .25 −97.12 ± 6.97 3.86 ± .26 7.84 ± .55
Mx.Gaussian base −3.23 ± .19 18.05 ± 1.04 7.77 ± .47 −54.25 ± 2.39 13.34 ± .77 17.1 ± 1.12 2.37 ± .15 9.38 ± .61 3.32 ± .21 −97.12 ± 5.07 3.87 ± .19 7.81 ± .45
Student’s t base −1.72 ± .17 24.35 ± 2.78 17.03 ± 1.56 −27.55 ± 4.33 16.95 ± 2.84 36.23 ± 3.57 1.29 ± .12 15.8 ± 1.57 14.92 ± 2.06 −36.12 ± 3.83 12.9 ± 2.15 13.06 ± 1.93
Mx.Student’s t base −3.18 ± .29 18.17 ± 1.56 7.94 ± .76 −53.48 ± 4.36 13.42 ± 1.15 17.27 ± 1.22 3.81 ± .37 9.7 ± .64 3.11 ± .32 −95.57 ± 10.20 3.89 ± .25 7.11 ± .70
GGD base −1.36 ± .16 27.79 ± 2.04 26.45 ± 2.04 −51.13 ± 5.89 13.68 ± .95 19.08 ± 1.91 −1.1 ± .09 13.47 ± 1.44 11.57 ± 1.25 −81.53 ± 10.37 17.37 ± 1.69 18.52 ± 2.40
Mx.GGD + R.MLE −5.95 ± .58 15.19 ± 1.44 5.36 ± .63 −102.4 ± 7.21 9.94 ± 1.08 8.65 ± .63 1.57 ± .14 6.96 ± .63 1.47 ± .10 −96.13 ± 6.77 3.81 ± .43 7.93 ± .95

We also investigate the efficacy of our method on a Masked Autoregressive Flow. Our findings, summarized
in Table 4, strongly suggest that integrating the GGD mixture base with robust MLE significantly improves
the model’s general performance - in terms of Negative Log Likelihood (NLL) - as well as its capabilities to
capture tail behavior - as evident from metrics AULLP and tVaR, for which we report the difference.

Our proposed method achieves the lowest NLL for all datasets except POWER and in this exception the
margin of difference is quite small. This improvement is most pronounced in the HEPMASS dataset, where
the NLL reached a remarkable −102.4. Additionally, our approach also yields the smallest AULLP and tVaR
values in most datasets, highlighting its capability to more accurately capture tail distributions and overall
density estimation.

6 DISCUSSION AND FUTURE WORK

In this work we demonstrated the practical utility of using generalized Gaussians for base density coupled
with a robust maximum likelihood training algorithm when training normalizing flows to model mixed-tailed
data. We proposed a new method of making normalizing flows capable of modelling mixed-tail targets
without explicitly binding the tail behavior of the base density to that of the target and instead letting the
gradient-based optimization shape the tail of the base. We showcased the general capabilities of our proposed
method in estimating mixed-tail targets.

Our method could potentially benefit from being able to set the number of modes in the base mixture
adaptively. We varied the number of mixture modes for different tasks and observed an inflection point in
performance enhancement with the increase of mixture components, beyond which the model’s effectiveness
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declines. An extension that uses an infinite mixture model could be a promising future direction. To model
more complicated multimodal and asymmetric tail behaviors, a mixture of mixtures structure could be a
promising direction for future improvements. Our proposed method also enables, with slight modifications
introduced in the Appendix B, selective generation from specific regions of the learned distribution by targeting
components of the latent space mixture model, offering finer-grained control over generated samples. Future
work should explore this selective generation capability further, including its application in downstream tasks
such as fairness-aware machine learning and anomaly detection.
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A Points of Failure in Tail Estimators

Figure 7 shows the accuracy and consistency of the bootstrapped Hill’s estimator α̂H for samples with
varying sizes from a Pareto distribution with different tail indices. We report the difference between true and
estimated tail indices. We observe that α̂H overestimates for heavy-tailed samples and underestimates for
short-tailed ones. We also observe increased variance for smaller batch sizes – closer to the usual minibatch
sizes – from extremely heavy-tailed targets.
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Figure 7: Mis-estimation of tail indices by bootstrapped Hill method for datasets sampled from a Pareto
distribution. Tail indices vary from heavy (α=0.5) to short (α=10.5) and sample sizes from 64 to 2048. Each
experiment is conducted 9 times and the mean - solid lines - and standard error - shades - of the difference
between the true tail index and the estimated one are reported.

B Selective Generation by Exploring the Latent Space

In this section, we introduce an extension on our tail-adaptive normalizing flows method for controlled
data generation, enabling precise sampling from specific regions of complex probability distributions. By
regularizing the training process to encourage the mixture components to spread out in the latent space,
different components specialize in generating different regions of the target distribution, from the tails to the
high-density areas around the mean. This allows for targeted sampling from specific components to generate
samples from desired regions, offering benefits in applications like fairness-aware machine learning where
oversampling minority groups in the tail regions is essential.

We posit that, given our use of a tail-adaptive mixture to model the latent space of our flow model, and
considering that each component of the mixture can exhibit a spectrum of tail behaviors, different individual
components of the mixture – or subsets thereof – will, upon model convergence, be responsible for generating
different parts of the target marginals relative to their tail behavior. In other words, some components will
be responsible for generating the tail of the target distribution while alternate components are assigned
to represent the regions of high probability density, typically centered around the distribution’s mean. To
capture extreme tails, we find that it is helpful for the components of the mixture base distribution to be
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spread-out. We can encourage this behavior by adding an extra term to the maximum likelihood objective:

R(µ1, . . . ,µK) = − 1
K

K∑
k=1

||µg − µk||2 (3)

where µg denotes the geometric median of the component locations (µk). Since the means could, due to
initialization or the stochastic nature of the optimization, have long tails, we calculate the geometric median
of the means, µg and then calculate the sum of the l2 norms of the means and the calculated medians as the
total spread of the means. We add the R term to the model’s loss function. The model is thereby rewarded
during optimization by increasing the distance across the locations.

Our training algorithm including the regularization term will be:

Input: θ: flow, ψ{µ,Σ, β, π}: base for minibatch xi do
R(µ1, . . . ,µK) = − 1

K

∑
k = 1K |µg − µk|2

L = E [p∗(xi)|px(xi;θ)] +R(µ1, . . . ,µK)
gµ = arg min g

∑n
k=1 ∥g − ∇θL(θ;µk)∥2

∆θ ∝ −∇θL
∆ψ ∝ −∇ψL

end
Algorithm 1: Training Algorithm for tail-adaptive normalizing flows with enhanced selective generation

The regularization term in our loss function incentivizes the model to push the means of the mixture modes
apart, covering a larger part of the latest space - including the tail area - instead of being centered around
certain areas. This by design leads to each sample mapped to the latent space having a small subset of
mixture modes as its nearest neighbors. We leverage this aspect of our model for Selective Generation.

To generate samples that are on the tail area of the distribution – or near its mean, or in case of complex
real world dataset in a specific area of the joint density of a subset of its variables – we can map one or
few samples from that area to the latent space, find k nearest mixture modes to these samples – k being a
predetermined number or the radius of a hypersphere around the geometric median of our subsample – and
then generate our desired number of samples from these modes by sampling from them indiscriminately or by
normalizing their weights to form a discrete mixing distribution and forming a separate mixture model.

The advantage of this method is especially evident for areas such as fairness where minority groups are
defined in the joint tail section of several features of the dataset. We can upsample any subgroup within our
population which has been shown to help mitigate some of the problems with fairness and more generally
with performance of ML models. The advantage here is that we are not blindly exploring the latent space.
Rather, we are systematically choosing the components in our base distribution with highest probability of
being responsible for generating samples similar to our target sample or subsample and sample directly from
those components to be pushed forward through the flow model and be transformed into our target.

B.1 Selective Generation in Practice

Figure 8 illustrates an example of our method’s capabilities for selective generation. We train an RNVP using
Algorithm 1 with a 20-component GGD mixture base and robust MLE on a target dataset sampled from a
two dimensional Student’s t with ν=2. We then sample a dataset with the size of 100000 from the Student’s
t target and evaluate the probabilities of each sample on our target distribution. We bin the probabilities
into 15 equal sized bins, with samples belonging to bins with lower probabilities assumed to be further down
either tails of the distribution and vice versa. We then evaluate the samples of each bin on every single of the
20 training base mixture components. The component that exhibits the highest average probability value
for each bin is assigned as the primary generator for that bin. Since the samples have the highest average
probability value when evaluated on that specific component. Therefore, if we sample from that component
in the latent space and push the samples through the flow, we will predominantly yield instances that are
belong to that specific bin. In Figure 8, for each bin the component with the highest mean probability values
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Figure 8: Selective generation from an RNVP model with a 20 component GGD mixture base for a 2d
Student’s t target.

is marked. We note that component 0 is primarily responsible for generating instances for the bin with the
lowest average probabilities (i.e., instances on the tail as evaluated on the target distribution itself), while
the majority of the distribution mass is generated by components 3 and 18. Component 15 generates the
remaining instances, notably those that are not extreme on the distribution’s tail but are situated further
from the distribution’s mean. It should be noted that our target is a two dimensional target. However, to
refrain from over-complicating this analysis we do not discriminate between the dimensions when binning
the samples. If each marginal is considered separately, it will offer a more nuanced control over the sample
generation process.

In a scenario with a real world target dataset, we will not bin the samples, but rather select a representative
sample of the type we want to generate from the target dataset. We then map these representative samples
to the latent space. Once we have the mappings in the latent space, we could, for example, choose the top
k components with the highest probability values for our selective generation and use a simple weighting
scheme (e.g., using the average likelihood values or distance to the component mean), creating a sub-mixture
for that particular subset of samples. This sub-mixture will then enable us to upsample our dataset through
generation of samples similar to our representative samples.

While not a primary focus of the main paper, the concept of selective generation through targeted sampling
within the latent space presents a promising avenue for future research. This approach could be particularly
valuable in applications like fairness-aware machine learning, where oversampling minority groups represented
in the tail regions of the data distribution is crucial.

C Extended Definition of Tail-Related Metrics

Tail Value at Risk The Tail Value at Risk (tVaR) at a quantile level α is an expected loss measure for
losses exceeding the Value at Risk (VaR) at the same level, defined as:

tVaRα(X) = E[X | X > VaRα(X)]

with X being the loss variable and VaRα(X):
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VaRα(X) = inf{x ∈ R : F (x) > α}

where F (x) is X’s cumulative distribution function.

The tVaR-difference metric, the absolute difference between empirical (tVaRemp
α ) and model-generated

(tVaRmodel
α ) tVaRs:

tVaR-diffα =
∣∣∣tVaRemp

α − tVaRmodel
α

∣∣∣
evaluates a generative model’s tail capture capability. Smaller tVaR-difference implies better model perfor-
mance in mimicking the distribution’s extreme quantiles.

Area Under Log-Log Plot The Area Under Log-Log Plot (AULLP) involves integrating the logarithm
of the survival function, which represents the probability of a random variable exceeding a given value, in
log-log space beyond a high quantile threshold. We report the The AULLP difference between test dataset
and synthetic dataset.

The Area under the log-log plot (AULLP) measures a model’s ability to capture the far distribution tail,
emphasizing extreme values more than the Tail Value at Risk (tVaR). It involves integrating the survival
function (S(x) = 1 − F (x)), which represents the probability of a random variable X exceeding a value x, in
log-log space beyond a high quantile threshold xα (e.g., 95th or 99th percentile):

AULLP(X) =
∫ ∞

log xα

logS(x) d(log x)

To gauge generative models’ tail capture accuracy, the AULLP difference (AULLP-diff) between the empirical
training data distribution and the model-generated distribution is calculated:

AULLP-diff =
∣∣∣AULLPemp(X) − AULLPmodel(X)

∣∣∣
AULLPemp(X) is the empirical distribution’s AULLP, and AULLPmodel(X) is for the model-generated
distribution.

D Experiments

Our training was done on two types of nodes depending on availability, with either one NVIDIA A40 or one
A100 GPU.

D.1 Data preparation

Following the steps from Papamakarios et al. (2017), we prepared the data. The next parts of this section
will give a short explanation of the preprocessing done for each dataset.

POWER The POWER dataset (Hebrail & Berard, 2012) includes records of household electricity use over
47 months. Although originally a time series, records were treated as separate, identical samples. The time
was changed into an integer representing minutes in the day, and random noise was added. The date and
the global reactive power parameter, which often shows a zero value, were removed to prevent unexpected
changes in the distribution. Uniform noise was added to each feature. The magnitude of the added noise was
large enough to avoid duplication but small enough to keep the data values largely the same. The training
data has 1,659,917 examples featuring 6 variables.
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GAS The GAS dataset (Fonollosa et al., 2015) contains measurements from 16 chemical sensors exposed to
gas mixtures over a duration of 12 hours. Analogous to the POWER dataset, it is a time series that has been
handled as if each instance were an i.i.d sample from the marginal distribution. Data was exclusively used
from the file ethylene_CO.txt, which pertains to an ethylene and carbon monoxide mixture. The removal of
highly correlated attributes resulted in an eight-dimensional dataset. The training data has 852,174 examples
featuring 8 variables.

HEPMASS The HEPMASS dataset (Baldi et al., 2016) contains particle collision measurements in the
field of high-energy physics. Half of the instances denote particle-generating collisions (positive), while the
remainder originate from a background source (negative). For this study, positive examples from the "1000"
dataset were selected. Five features were excluded due to their high frequency of recurring values, as such
repetition can induce spikes in the density and potentially yield misleading outcomes. The training data has
315,123 examples featuring 21 variables.

MINIBOONE The MINIBOONE dataset (Roe et al., 2005), is derived from the MiniBooNE experiment
conducted at Fermilab. Like HEPMASS, it contains positive (electron neutrinos) and negative examples
(muon neutrinos). For this study, only the positive examples were used. Notable outliers (11 instances)
exhibiting a constant value of -1000 across all columns were removed, as well as seven features displaying
excessively high counts for specific values, such as 0.0. The training data has 29,556 examples featuring 43
variables.
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