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ABSTRACT

The emergence of in-context learning (ICL) in large language models (LLMs) re-
mains poorly understood despite its consistent effectiveness, enabling models to
adapt to new tasks from only a handful of examples. To clarify and improve these
capabilities, we characterize how the statistical properties of the pretraining dis-
tribution (e.g., tail behavior, coverage) shape ICL on numerical tasks. We develop
a theoretical framework that unifies task selection and generalization, extending
and sharpening earlier results, and show how distributional properties govern sam-
ple efficiency, task retrieval, and robustness. To this end, we generalize Bayesian
posterior consistency and concentration results to heavy-tailed priors and depen-
dent sequences, better reflecting the structure of LLM pretraining data. We then
empirically study how ICL performance varies with the pretraining distribution
on challenging tasks such as stochastic differential equations and stochastic pro-
cesses with memory. Together, these findings suggest that controlling key statisti-
cal properties of the pretraining distribution is essential for building ICL-capable
and reliable LLMs.

1 INTRODUCTION

In-context learning (ICL) is the phenomenon whereby a model generalizes to a new task from a
handful of examples provided in the input context without any model weight updates. This emergent
behavior has been observed across models in multiple domains, including in language (Brown et al.,
2020), vision (Radford et al., 2021), and reinforcement learning (Moeini et al., 2025). ICL is a par-
ticularly appealing feature in domains where data for a specific task is scarce such as robotics (Ahn
et al., 2023b), healthcare (Singhal et al., 2023), or chemistry (Stokes et al., 2020).

Despite growing interest, the conditions under which ICL emerges are still poorly understood. Sev-
eral lines of works have emerged to address this question. The algorithmic view focuses on studying
which learning algorithms over the context can be implemented by transformer and thereby perform
ICL (Garg et al., 2022; Akyürek et al., 2023). Others have suggested modeling ICL as Bayesian in-
ference (Xie et al., 2021; Lin & Lee, 2024; Zhang et al., 2025b; Jeon et al., 2024). Empirical works
have sought to design controlled settings in which ICL can be carefully studied, and these works
highlight how sensitive to pretraining choices ICL is (Chan et al., 2022; Raventós et al., 2023), indi-
cating that distributional aspects of pretraining play a central role. A crucial line of work also seeks
to assess ICL performance on numerical tasks through out-of-distribution robustness of ICL (Wang
et al., 2025b; Kwon et al., 2025; Goddard et al., 2025) but its behavior remains poorly understood.

Yet existing modeling frameworks often focus on restricted settings and lack general tools that links
properties of the pretraining distribution to ICL behavior at test time. Three aspects remain partic-
ularly underexplored: (i) heavy-tailed distributions that better reflect real-world pretraining corpora
and have been identified as key drivers of ICL (Chan et al., 2022; Singh et al., 2023), (ii) non-i.i.d.
and dependent structures (e.g., long-range dependencies in language sequences) that fall outside
standard i.i.d. or Markovian ICL modeling (Alabdulmohsin et al., 2024), and (iii) how these distri-
butional properties govern the robustness of ICL under shifts at test time, which is a key feature of
ICL (Wang et al., 2025b; Kwon et al., 2025; Goddard et al., 2025).
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We thus develop a study of ICL with a focus on the influence of the pretraining distribution. We
decompose ICL performance into two components: task selection (identifying the right task from
the context) and generalization (performing well on tasks and sequences unseen during training) and
focus on the following questions:

How does the pre-training distribution shape ICL performance on new tasks?
How does it affect task selection and generalization errors?

Our contributions are as follows:

• Framework. We develop a general theoretical framework for ICL that focuses on the role of
pretraining distributional properties, handling both the task selection error and the ICL general-
ization error.

• Theory under heavy tails and dependence. We extend Bayesian consistency and concentra-
tion guarantees to heavy-tailed priors and dependent sequences, providing conditions that better
reflect pretraining data used for LLMs and highlighting the role of these key distributional prop-
erties.

• Empirical validation on numerical tasks. We validate the framework on challenging numerical
tasks—including stochastic differential equations and processes with memory, assessing ICL via
robustness to new tasks and distribution shift, and finding outcomes consistent with our theory.

Together, our results suggest that controlling key statistical properties of the pretraining distribution
is essential for building ICL-capable and reliable transformer models.

2 RELATED WORK

A number of works study ICL through varying perspectives and definitions of ICL. We will focus
on the perspectives most relevant to what we study.

Conditions for ICL. Other works devoted to studying the conditions under which ICL occurs.
From a pre-training perspective, Chan et al. (2022) studied the distribution qualities of a pretraining
distribution that leads to ICL while Raventós et al. (2023) studied the influence of regularization
and training distribution on linear regression tasks. However, these do not consider a unified theory
for predicting how ICL behaves under a particular pre-training distribution and only consider a
limited class of experiments. Singh et al. (2023) showed that ICL is transient and conditions must
be carefully chosen such that the model performs ICL rather than in-weight learning.

Bayesian Perspectives. From a statistical perspective, a series of questions were raised as to how
ICL can be studied through a Bayesian framework where the pre-training distribution acts as a prior.
Xie et al. (2021) proposed viewing ICL as Bayesian model averaging. Lin & Lee (2024) studied how
ICL involves two modes of operation where one case the model generalizes and the other case the
model retrieves similar tasks. Zhang et al. (2025b) considered a theory for a Bayesian perspective
of ICL and provided error bounds on the task loss as a function of the number of tasks and the
number of points within each task. However, they do not study specific properties of the pre-training
distribution that lead to good ICL performance. Jeon et al. (2024) provide an information theoretic
perspective on task retrieval for ICL but do not model the distribution of tasks. Park et al. (2025);
Wurgaft et al. (2025) study the competition and transition between in-weight learning, a memorizing
and retrieving mode, and ICL, and obtain scaling laws for the emergence of ICL in transformers.
Nguyen & Reddy (2025) study the question of this transition with a differential kinetics model. In
contrast to these works, we focus on underlining the role of the pre-training distribution on the ICL
performance.

Generalization. Several works have studied the generalization properties of ICL. Li et al. (2023)
obtain such results by studying the stability of the transformer architecture but they consider the
same fixed and finite task distribution during both pre-training and testing. Zhang et al. (2025b);
Zekri et al. (2024) both provide generalization bounds for ICL on Markov chains but without mod-
elling the distribution of tasks during pre-training, which is our focus here. Lotfi et al. (2024)
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provide generalization bounds for transformers on arbitrary sequences but with a restrictive notion
of generalization that does not capture the ICL setting.

Numerical Tasks. Related to the experiments we consider is a line of work studies ICL on small
transformer models and simple tasks. Zhang et al. (2024); Wu et al. (2024) study ICL on linear
regression tasks with a single-linear attention model, characterizing the ICL error of the trained
model and the sample complexity of learning ICL. Most recently, Lu et al. (2025) consider a linear
attention layer and obtain a precise characterization of the emergence of ICL on a linear regression
task, including out-of-distribution tasks. Chan et al. (2025) study a simple model of a Bayesian
predictor to understand the different modes of in-weight learning and ICL. Finally, Liu et al. (2024)
study the performance of pretrained large language models at performing ICL on Markov processes,
exhibiting a power-law scaling law.

Algorithms and Out of Distribution. Several works focus on the training dynamics of transform-
ers for ICL, as well as how the transformer architecture is expressive enough to implement a wide
variety of algorithms for ICL. This is an important and desirable quality since it would allow for
generalization across out of distribution tasks. Wang et al. (2025b); Kwon et al. (2025); Goddard
et al. (2025) all study this question from different perspectives and ultimately conclude that certain
conditions on the pretraining distribution allow for some level of out of distribution performance.
We defer a more detailed review of these works to Appendix A.

General Concentration Results. Finally, we briefly review relevant concentration results. The pi-
oneering work of Yu (1994) provides concentration inequalities for dependent processes with a total
variation condition, opening up a fruitful line of research, see e.g., Kontorovich & Ramanan (2008);
Mohri & Rostamizadeh (2008; 2010); Maurer (2023); Abélès et al. (2025) and, for related coupling
techniques, see (Chazottes et al., 2007; Paulin, 2015), as well as references therein. Though these
frameworks can handle non-linear functions of dependent sequences, they require boundedness as-
sumptions that are not suitable for our setting. Another line of work has studied so-called functional
dependence conditions (Wu, 2005; 2011) and provided concentration inequalities for sums of sta-
tionary dependent sequences (Liu et al., 2013). However, our ICL setting requires concentration
inequalities for more general function classes and non-stationary sequences, which to the best of
our knowledge are not available in the literature. Concerning heavy-tailed concentration bounds, we
refer to the recent frameworks of Bakhshizadeh et al. (2023); Li & Liu (2024b); Li et al. (2024);
Li & Liu (2024b) which provide concentration inequalities for non-linear functions of independent
heavy-tailed random variables and which we extend to the dependent setting.

3 THEORETICAL FRAMEWORK

3.1 IN-CONTEXT LEARNING SETTING

In line with existing ICL works, we model the training data as a mixture of tasks, with each task
defining its own distribution. Formally, denote by Θ ⊂ ℝ𝑑 the space of tasks 𝜃 and by 𝜋(𝜃) the
density of the pretraining task distribution. Given a task 𝜃, the data is generated according to a task-
specific distribution with density p(· | 𝜃) The training data is then generated by first sampling a task
𝜃 from the task distribution 𝜋, and then sampling data points (𝑥𝑡 )𝑡≥1 according to

𝑥𝑡+1 ∼ p𝑡+1 (· | 𝑥1:𝑡 , 𝜃) , where 𝑥1:𝑡 = (𝑥1, . . . , 𝑥𝑡 ).

We first present some running examples to illustrate the setting.
Example 3.1 (Classification). Several ICL benchmarks for LLMs such as Bertsch et al. (2025); Zou
et al. (2025); Li et al. (2025b) are built on classification tasks. Each task 𝜃 represents a small subset
of classes from a larger classification problem and the data sequence 𝑥1, . . . , 𝑥𝑡 is a sequence of
inputs and labels from these classes. The challenge is therefore to both identify the classes and learn
to classify them from the in-context examples.
Example 3.2 (Linear Regression). Introduced by Garg et al. (2022), the regression setting is a
popular testbed for ICL. Each task 𝜃 ∈ ℝ𝑑 defines a linear model 𝑦 = 𝜃𝑇𝑞 + 𝜖 where 𝜖 is some
noise. The data sequence 𝑥1, . . . , 𝑥2𝑡 is a sequence of input-output pairs 𝑞1, 𝑦1, . . . , 𝑞𝑡 , 𝑦𝑡 generated
according to the linear model defined by 𝜃.
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Example 3.3 (Next-sample prediction for stochastic processes). More generally, we can consider
the setting where each task 𝜃 defines a stochastic process 𝑥𝑡+1 ∼ p𝑡+1 (· | 𝑥1:𝑡 , 𝜃). We will consider
later the specific case of the Ornstein-Uhlenbeck process: each task 𝜃 = (𝜏, 𝜇) defines a mean-
reverting stochastic process with mean 𝜇 and reversion speed 𝜏:

d𝑋𝑡 = 𝜏(𝜇 − 𝑋𝑡 )d𝑡 + 𝜎d𝑊𝑡 , (1)

where 𝑊𝑡 is a standard Brownian motion and 𝜎 is the volatility parameter. The data sequence
𝑥1, . . . , 𝑥𝑡 is then a discretization of the stochastic process defined by 𝜃. In this setting, the learning
objective is to both identify the parameters of the stochastic process and predict the next sample
given the previous ones. We will also consider more intricate processes that are not Markovian.

Let us also present examples of prior distributions 𝜋 over tasks that will illustrate our theoretical
results.
Example 3.4 (Priors in 1D). For simplicity, consider the case where tasks are one-dimensional, i.e.,
Θ ⊂ ℝ. Student’s 𝑡-distributions with 𝜈 > 1 degrees of freedom are an example of heavy-tailed
priors with polynomially decaying tails: for large 𝜃, 𝜋(𝜃) ∝ 1/|𝜃 |𝜈+1. 𝜋(𝜃) thus decays more slowly
as 𝜈 decreases, leading to heavier tails. By convention, Student’s 𝑡-distribution with 𝜈 = ∞ degrees
of freedom corresponds to the Gaussian distribution, whose tails decay exponentially.

Generalized Normal distributions, by contrast, still retain exponentially decaying tails but allow to
control the rate of decay: for a scale parameter 𝛼 > 0 and a shape parameter 𝛽 ≥ 1, it has density
𝜋(𝜃) ∝ exp(−|𝜃/𝛼 |𝛽). 𝜋(𝜃) thus decays more slowly as 𝛽 decreases, leading to heavier tails.

Given a dataset of tasks 𝜃1, . . . , 𝜃𝑁 and associated samples 𝑥 (1)1:𝑇 , . . . , 𝑥
(𝑁 )
1:𝑇 , a model 𝑓 is trained by

minimizing the next-sample prediction loss

𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) =
1
𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑓 (𝑥𝑛1:𝑡−1), 𝑥𝑡
𝑛) , (2)

where ℓ𝑡 is a per-sample loss which depend on 𝑡 to encompass regression and classification tasks.
Note that the model is trained to predict the next sample 𝑥𝑡 given the previous samples 𝑥1:𝑡−1, without
any explicit supervision on the task 𝜃. This is why ICL is referred to as an emergent ability of large
models (Wei et al., 2022).

We consider two kinds of error for ICL: (i) the ability of the model to identify the correct task
given some in-context examples, which we refer to as task selection, and (ii) the generalization
error of the trained model 𝑓̂ obtained by minimizing (2) on a training dataset, which we refer to as
generalization error. We first study task selection, before turning to the generalization error, which
is more involved.

3.2 TASK SELECTION

Our first main result concerns the ability of a trained model to perform ICL and in particular to
retrieve the correct task given some input sequence. For this, we adopt the Bayesian point of view,
similarly to Lin & Lee (2024); Zekri et al. (2024); Jeon et al. (2024); Zhang et al. (2025b); Wang
et al. (2025b). Indeed, if 𝑓 is arbitrarily powerful and trained to optimality, 𝑓 learns the Bayesian
optimal predictor. If we denote the posterior 𝑝𝑡 (𝜃 | 𝑥1:𝑡−1) the posterior distribution over tasks given
the input sequence 𝑥1:𝑡−1, the Bayesian optimal predictor is given by

𝑓 (𝑥1:𝑡−1) = arg min
𝑥̂𝑡

𝔼𝜃∼𝑝𝑡 ( · |𝑥1:𝑡−1 )
[
𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃 ) [ℓ𝑡 (𝑥̂𝑡 , 𝑥𝑡 )]

]
. (3)

For a model to perform ICL given in-context examples 𝑥1:𝑡−1 generated from a task 𝜃∗, it is there-
fore necessary that the posterior 𝑝𝑡 (𝜃 | 𝑥1:𝑡−1) concentrates around the true task 𝜃∗ as the number
of in-context examples 𝑡 increases. Our first main result provides a quantitative guarantee of this
concentration and highlights the role of the properties of the pretraining distribution 𝜋.

For this, we require some mild assumptions on the data generation process only; they do not restrict
the prior 𝜋. Since our focus is on the influence of the prior 𝜋 on task identification, in the main text
we mainly focus on assumptions and quantities that involve 𝜋, and defer the detailed assumptions
to Appendix B. We will therefore use the notation poly(𝑥) to denote a quantity that is polynomial in
𝑥 with coefficients independent of the prior 𝜋 and the number of samples 𝑇 .
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Assumption 1 (Data generation, informal). Let 𝜃∗ ∈ Θ be the true task. We assume:

(i) Tail control. Sequences 𝑥1:𝑡 generated under the true task 𝜃∗ have controlled tails, at most
poly(𝑇) on typical tail events and 𝜋 admits a second moment.

(ii) Moment bound. For any 𝑇 ≥ 1, 𝔼𝑋∼p𝑇 ( · | 𝜃∗ )
[
log2

(
sup𝜃∈Θ

p𝑇 (𝑥1:𝑇 | 𝜃 )
p𝑇 (𝑥1:𝑇 | 𝜃∗ )

)]
is at most poly(𝑇).

(iii) Local regularity. The prior density 𝜋 is continuous and, for any 𝑅 > 0, 𝑡 ≤ 𝑇 ,

log p𝑡 (𝑥𝑡 |𝑥1:𝑡−1 , 𝜃 )
p𝑡 (𝑥𝑡 |𝑥1:𝑡−1 , 𝜃 ′ ) ≤ poly(𝑅)∥𝜃 − 𝜃′∥ for all 𝑥1:𝑡 , 𝜃, 𝜃

′ such that ∥𝑥𝑠 ∥, ∥𝜃∥, ∥𝜃′∥ ≤ 𝑅

These assumptions are quite mild and are satisfied by our examples, see Appendix D.2.

As a metric to assess the quality of a given retrieved task 𝜃 w.r.t. the true task 𝜃∗, we consider the
Rényi divergence (Rényi, 1961) of order 𝜌 ∈ (0, 1) between the distributions p𝑇 (· | 𝜃) and p𝑇 (· | 𝜃∗):

D𝜌(𝜃 ∥ 𝜃∗) = − 1
𝑇 (1−𝜌) log𝔼𝑋∼p𝑇 ( · | 𝜃∗ )

[∏𝑇
𝑡=1

(
p𝑡 (𝑥𝑡 |𝑥1:𝑡−1 , 𝜃 )
p𝑡 (𝑥𝑡 |𝑥1:𝑡−1 , 𝜃∗ )

)𝜌]
.

We divide by 𝑇 to obtain a per-sample divergence that does not trivially diverge as 𝑇 increases.

Our main theorem below shows that, under Assumption 1, the posterior distribution over tasks con-
centrates around the true task 𝜃∗ as the number of in-context examples 𝑇 increases, at a rate that
depends on the properties of the pretraining distribution 𝜋.
Theorem 1 (Task selection). Let 𝜌 ∈ (0, 1), under Assumption 1, with 𝜋(𝜃∗) > 0 and 𝑥1:𝑇 ∼
p𝑇 (· | 𝜃∗), the posterior distribution over tasks satisfies

𝔼𝑥1:𝑇

[
𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 )

[
D𝜌(𝜃 ∥ 𝜃∗)

] ]
≤ 1+𝜌
(1−𝜌)𝑇 log 1/𝜋(𝜃∗) +O

(
log𝑇
𝑇

)
, (4)

where the terms in O
(

log𝑇
𝑇

)
do not depend on the prior 𝜋 or are negligible compared to the first

term.

To place this result into context, Theorem 1 provides a guarantee on how close the posterior dis-
tribution over tasks is to the true task 𝜃∗ as the number of in-context examples 𝑇 increases. The
right-hand side (RHS) decays as O(1/𝑇), which shows that the posterior concentrates around the
true task as the number of examples in-context increases. The speed of convergence is governed by
the coefficient log 1/𝜋(𝜃∗), which quantifies how well the prior 𝜋 covers the true task 𝜃∗: the smaller
𝜋(𝜃∗), the slower the convergence. Since in ICL we wish to study the capabilities of learning a new
task from in-context examples, this result quantifies the speed at which ICL learns this new task
𝜃∗: the further 𝜃∗ is from the bulk of the prior 𝜋, the slower ICL learns this new task. Thus, when
learning with ICL, the ability to learn a new task and its robustness to new tasks therefore crucially
depends on the tail of the prior 𝜋: the slower the tail of 𝜋 decays, the larger 𝜋(𝜃∗) is for tasks 𝜃∗
far from the modes of 𝜋, and the faster ICL learns these new tasks. This can be observed on the
examples of priors presented in Example 3.4. For a fixed task 𝜃∗ far from the modes of 𝜋, the error
for Student’s 𝑡-distributions with 𝜈 degrees of freedom behaves as (𝜈 + 1) log |𝜃∗ |/𝑇 for large |𝜃∗ | so
that lower values of 𝜈, i.e. heavier tails, lead to smaller errors. For Generalized Normal distributions
with shape parameter 𝛽, it behaves as |𝜃∗ |𝛽/𝑇 so lower values 𝛽 also lead to smaller errors. This
simple statement thus captures a key aspect of ICL that was observed empirically in several works
(Chan et al., 2022; Singh et al., 2023).

From a technical viewpoint, Theorem 1 is proven in Appendix B using ideas from Bayesian statistics
(Zhang, 2003; 2006) is extremely general, covers discrete and continuous task spaces, and does not
require any probabilistic structure on the data sequence 𝑥1:𝑡 nor specific data distributions. Moreover,
unlike most existing results, Theorem 1 provides a guarantee on the posterior distribution given all
𝑇 in-context examples, and not only on the regret, which bounds the average error of the posterior
distributions given 1, . . . , 𝑇 examples. This better reflects the practical use of ICL, where the user
typically only considers the output of the model after all in-context examples have been provided.

Finally, we provide in the appendix, in Appendix B.4 a more refined version of Theorem 1 that
involves not just the prior density at the true task 𝜋(𝜃∗) but also the local geometry of the prior 𝜋
around 𝜃∗, which can provide much sharper bounds in some cases. This refined result also encom-
passes the case where 𝜋(𝜃∗) = 0, in which the ICL error is not vanishing anymore. In this scenario, it
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shows that ICL can struggle on out-of-distribution tasks, as empirically studied previously (Goddard
et al., 2025; Kwon et al., 2025; Yadlowsky et al., 2023).

Takeaway #1: Heavier-tailed priors are beneficial for task identification and its robustness,
as they improve the learning speed on new tasks.

We will now examine the generalization error of ICL and see that there is a trade-off.

3.3 GENERALIZATION ERROR

The second key statistical question for ICL is its generalization error. For the trained transformer
to accurately behave as the Bayesian optimal predictor w.r.t. the prior 𝜋, it is necessary that the
next-token prediction be minimized on the true data distribution, and not just on the training data.

We therefore study the generalization error of the trained model 𝑓̂ obtained by minimizing (2) on
a training dataset. We consider a dataset consisting of 𝑁 tasks 𝜃1, . . . , 𝜃𝑁 sampled independently
from the prior 𝜋, and for each task 𝜃𝑛, a sequence of 𝑇 samples 𝑥𝑛1:𝑇 generated according to the
task-specific distribution p𝑇 (· | 𝜃𝑛): for 𝑛 ≤ 𝑁 , for 𝑡 < 𝑇 , 𝑥 (𝑛)

𝑡+1 ∼ p𝑡+1 (· | 𝑥
(𝑛)
1:𝑡 , 𝜃𝑛).

To the best of our knowledge, existing concentration for dependent sequences do not cover this case.
We thus develop our own framework: we encompass non-independent and identically distributed
(i.i.d.) and non-Markovian data sequences through a weak dependence assumption in Wasserstein
distance, and we handle heavy-tailed task distributions by taking inspiration from the recent frame-
work of Li & Liu (2024a); Li et al. (2024). The resulting framework is therefore quite general and
can be of independent interest beyond ICL, see Appendix C.

Here we again present a simplified version of our assumptions, where we focus on the few key
quantities that are relevant in our study: how dependent the data sequence is and how heavy-tailed
the prior 𝜋 is, quantified through the maximal moment of 𝜋 that exists1. We refer to Appendix C.3
for the complete version of the assumptions. We consider F a class of models 𝑓 : ∪𝑡 (ℝ𝑘)𝑡 → ℝ𝑘

and ℓ𝑡 : ℝ𝑘 ×ℝ𝑘 → ℝ+ a per-sample loss function that can depend on time 𝑡.
Assumption 2 (Generalization, informal).

(i) Moment condition. There is 𝑞 ≥ 2 an integer such that 𝔼𝜃∼𝜋 [∥𝜃∥𝑞] < ∞.

(ii) Influence of the task. There is 𝐴𝑇 > 0 such that, any 𝑡 ≤ 𝑇 , any 𝜃, 𝜃′ ∈ Θ,

𝑊1 (p𝑡 (𝑑𝑥𝑡 | 𝜃), p𝑡 (𝑑𝑥𝑡 ′ | 𝜃′)) ≤ 𝐴𝑇 ∥𝜃 − 𝜃′∥ . (5)

(iii) Weak dependence. There is 𝐵𝑇 > 0 such that, for any 𝑠 < 𝑡 ≤ 𝑇 , any 𝜃 ∈ Θ, any 𝑥1:𝑠 , 𝑥′𝑠 ,

𝑊1 (p𝑡 (𝑑𝑥𝑡 | 𝑥1:𝑠 , 𝜃), p𝑡 (𝑑𝑥𝑡 ′ | 𝑥1:(𝑠−1) , 𝑥
′
𝑠 , 𝜃)) ≤ 𝐵𝑇 (1 + ∥𝜃∥) . (6)

(iv) Average Lipschitzness. There is an 𝐿𝑇 > 0 such that, for any 𝑓 ∈ F , any 𝑥1:𝑇 , 𝑥′𝑡 ,

1
𝑇

∑𝑇
𝑠=1∥ 𝑓 (𝑥1:𝑠−1) − 𝑓 (𝑥1:𝑡−1, 𝑥

′
𝑡 , 𝑥𝑡+1:𝑠−1)∥ ≤ 𝐿𝑇 ∥𝑥𝑡 − 𝑥′𝑡 ∥ , (7)

(v) Usual conditions. The losses ℓ𝑡 are 1-Lipschitz; the class of models F is bounded and uni-
formly Lipschitz with respect to some metric and 𝑥𝑡 conditioned on 𝑥1:𝑡−1, 𝜃 is uniformly
sub-Gaussian.

𝑞, 𝐴𝑇 , 𝐵𝑇 , and 𝐿𝑇 are the key quantities that govern the generalization error of ICL. When 𝜋 has
polynomial tails, 𝑞 quantifies how heavy-tailed the prior 𝜋 is: the smaller 𝑞, the heavier the tail of 𝜋.
For Student’s 𝑡-distribution with 𝜈 degrees of freedom, 𝑞 = ⌊𝜈 − 1⌋. 𝐵𝑇 quantifies how dependent
the data sequence is while 𝐴𝑇 also quantifies how much the task influences the data distribution: in
the case of an i.i.d. sequence, both 𝐴𝑇 and 𝐵𝑇 are bounded w.r.t. 𝑇 , which might not be the case in
general. 𝐿𝑇 quantifies how much the model 𝑓 uses the older examples in context: for transformer
with context length at least 𝑇 , 𝐿𝑇 is typically bounded. If, on the contrary, the context length is

1We focus here on prior distributions with polynomially decaying tails, such as the Student-𝑡 family, since
it is the most representative. A similar result could be established for priors with subexponential tails.
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kept constant and smaller than 𝑇 , as in Zekri et al. (2024), 𝐿𝑇 can decay as 1/𝑇 . In particular,
Assumption 2 skips the assumptions on the size of the hypothesis class F since this is not our main
focus, and we refer to the appendix for details.

Our main result provides a bound on the generalization error of the trained model 𝑓̂ :

ĝen B 𝔼𝜃∼𝜋

[
𝔼𝑥1:𝑇∼p𝑇 ( · | 𝜃 )

[
1
𝑇

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑓̂ (𝑥1:𝑡−1), 𝑥𝑡 )
] ]
− 𝐿̂ ( 𝑓̂ , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) , (8)

for 𝑓̂ being the model obtained using the empirical distribution (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 .

Theorem 2. Under Assumption 2, for any 𝛿 ∈ (0, 𝑒−2), with probability at least 1 − 𝛿, it holds:

(a) If 𝛿 ≥ 𝑁𝑒−𝑞 , then

ĝen ≤ O
(
(log 1/𝛿)3/2𝐿𝑇

√
𝑇

√
𝑁

(
1 + 𝐴𝑇

√
𝑇 + 𝐵𝑇𝑇

))
, (9)

(b) If 𝛿 < 𝑁𝑒−𝑞 , then
ĝen ≤ O

(
𝐿𝑇
√
𝑇

𝛿1/𝑞
√
𝑁

(
1 + 𝐴𝑇

√
𝑇 + 𝐵𝑇𝑇

))
, (10)

where the terms in O(·) depend polynomially on 𝑞, log 𝑁 , the scale of 𝜋 and the size of F .

Like standard concentration inequalities for sums of independent heavy-tailed random variables,
Theorem 2 provides two regimes. For small deviations, i.e., 𝛿 not arbitrarily small, the generalization
error behaves like in a sub-exponential setting. However, for large deviations, i.e., 𝛿 very small, the
behaviour of the generalization error worsens and depends on the moment 𝑞 of the prior 𝜋.

The generalization thus depends critically on the moment 𝑞 of the prior 𝜋: the smaller the moment
𝑞, the heavier the tail of the prior 𝜋 and the worse the generalization error. Indeed, the smaller
𝑞, the higher the threshold 𝑁𝑒−𝑞 separating the two regimes, leading to worse generalization for
small 𝛿. Moreover, the dependence on 𝛿 in the second regime also worsens as 𝑞 decreases. This
can be observed on the examples of priors presented in Example 3.4 and in particular Student’s 𝑡-
distributions: with 𝜈 degrees of freedom, the maximal moment is 𝑞 = ⌈𝜈 − 1⌉ so that smaller values
of 𝜈, i.e., heavier tails, lead to smaller values of 𝑞 and worse generalization.

This provides a counterpoint to the task selection result of Theorem 1 that showed that heavier-tailed
priors are beneficial for task identification. This highlights a fundamental trade-off in the choice of
the pretraining distribution 𝜋: heavier-tailed priors are beneficial for task identification, but harm the
generalization error.

This bound also highlights how much larger the number of tasks must be compared to the number of
in-context examples to ensure good generalization: in general, one needs 𝑁 to be at least much larger
than 𝑇 to ensure a small generalization error. This is in line with our experiments and previous em-
pirical studies. Raventós et al. (2023) shows that to obtain optimal ICL performance with a context
length of 16 or 64 in linear regression, one needs thousands of tasks. However, Park et al. (2025);
Wurgaft et al. (2025) highlight that these numbers significantly vary across settings. Moreover, if
the data sequence is highly dependent, i.e., 𝐴𝑇 and 𝐵𝑇 are large, the requirement on the number of
tasks 𝑁 for ICL to generalize well also increases. This will be demonstrated in Section 4.3.

In Appendix C.6, we provide an extension of this result the case where tasks can be repeated in the
training dataset, which is often the case in practice and improves the dependence on 𝑁 .

Takeaway #2: Heavier-tailed priors and stronger temporal dependences increase the
number of tasks required for reliable ICL generalization.

4 EXPERIMENTS

We conduct a series of experiments to empirically study the behavior of the pretraining distribution
on the performance of ICL2. We aim to answer two main questions: do the qualitative characteristics

2Additional results and figures are in Appendix E.
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Figure 1: Influence of the degree of freedom parameter of a Student-𝑡 pretraining distribution on the ICL error
for different task shifts with and without importance weighting. Weighted samples given by −★marker.
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(a) 𝑛 = 500
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(b) 𝑛 = 1000
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(c) 𝑛 = 5000

Figure 2: Generalization for linear regression with a Student-𝑡 prior of varying 𝜈 as a function of 𝑛.

of the proposed bounds hold in practice? and; how do modifications of the pretraining distribution
affect performance as the test distribution changes in distance from the pretraining distribution? To
do this, we train a transformer under different pretraining distributions to solve different ICL tasks.

ICL evaluation through robustness to distribution shift. The transformer is trained on tasks 𝜃
sampled from a pretraining distribution 𝜋. To assess the ICL performance, we evaluate the trained
model on tasks 𝜃′ = 𝜃 +Δ where 𝜃 ∼ N (0, 𝐼𝑑) and Δ is a deterministic shift and report the ICL error
on these shifted tasks as a function of the shift magnitude ∥Δ∥. Note that these evaluations tasks
are independent of the choice of pretraining distribution. Studying this error as a function of the
shape of the pretraining distribution allows us to validate the theory in Theorem 1. We also study the
performance of ICL as a function of the number of pretraining tasks to test how well the methods
generalize, with an emphasis on relating the theory in Theorem 2.

Distributions and Metrics. The pretraining distributions and their parameter values are given
in Table 1. The parameters are chosen such that changing them produces a change in the shape
of the pretraining distribution. In both cases, lower parameter values indicate heavier tails of the
distribution. The scale parameter is chosen such that all pretraining distributions have the same
variance. For all experiments, we consider mean squared error (MSE) as the metric we compare. We
also consider the best MSE over the context length, which is given by min𝑡 ( 𝑓 (𝑥𝑡 ) −𝑥𝑡+1)2; the mean
MSE given by 1

𝑇

∑𝑇
𝑡=1 ( 𝑓 (𝑥𝑡 ) − 𝑥𝑡+1)

2; and finally the full context length MSE given by ( 𝑓 (𝑥𝑇−1) −
𝑥𝑇 )2. These allow us to see how the different priors perform while taking into consideration the full
context length.

4.1 LINEAR REGRESSION

Table 1: Pre-training distribution parameters.

Dist. Param.

Gen. Normal 𝛽 ∈ {1, 1.5, 2, 2.5}
Student-𝑡 𝜈 ∈ {3, 5, 10}

We first consider the linear regression setting intro-
duced in Example 3.2 where each 𝜃 ∈ ℝ𝑑 defines a lin-
ear regression task 𝑦𝑖 = 𝜃𝑇𝑞𝑖+𝜖𝑖 for 𝑖 = 1, ..., 64 where
64 is the context length. During pretraining, we sam-
ple 𝜃 according to four different distributions, where
the distributions have the same location and scale but
different tail decay. We consider Student-𝑡 distribu-
tions with different shape parameters. In Fig. 1, we
see that the performance for small task shifts, the nor-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4
Task Center (Task Shift)

5

4

3

2

1

lo
g 

M
SE

Best MSE
 =3.0 
 =5.0 
 =10.0 
 =  

0 1 2 3 4
Task Center (Task Shift)

4

3

2

1
Mean MSE

0 1 2 3 4
Task Center (Task Shift)

5
4
3
2
1

Full Context Length MSE

Figure 3: Influence of the degree of freedom parameter of a Student-𝑡 pretraining distribution on the ICL error
for different task shifts with and without importance weighting for predicting the next step in an OU process
with context length of 32. Weighted samples indicated by the −★marker.
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Figure 4: Influence of the shape of a generalized normal pretraining distribution on the ICL error for different
task shifts with and without importance weighting for predicting the next step in an OU process.

mal distribution prior is the highest performing, but for larger shifts the heavier tailed distributions
perform better.

Reweighting. To further investigate the predictions of Theorem 1, we consider reweighting the
pretraining distribution: if we are given samples from a distribution 𝑃 but know that a pretraining
distribution 𝑄 exhibits strong performance, can we improve the performance of distribution 𝑃 by
matching 𝑄 via importance sampling i.e. 𝔼𝑄 [ℓ(𝑋)] = 𝔼𝑃

[
ℓ(𝑌 ) d𝑄d𝑃

]
? We study this in Fig. 1 where

we reweigh samples such that they are approximately uniform over the support of the empirical
distribution. The results indicate small improvement in the performance under large shifts using the
reweighting as compared to without reweighting.

Generalization. We next consider how the error behaves as the number of pretraining tasks
changes for different tail parameters of the pretraining distribution in Fig. 2. The results show
that, though heavier-tailed priors outperform lighter ones for large shifts for large number of tasks,
for small number of tasks, lighter-tailed priors perform just as well on these large shifts. This is
predicted by our theory: Theorem 1 predicts that heavier-tailed prior are beneficial for task selection
on out-of-distribution tasks, but Theorem 2 predicts that lighter-tailed priors lead to better general-
ization when the number of pretraining tasks is small. Thus, for small number of pretraining tasks,
the advantage of heavier-tailed priors for task selection is offset by their worse generalization.

4.2 LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

In the next set of experiments, we follow the setup in Example 3.3 with a stochastic process satis-
fying (1). For our metric of success, we compare ( 𝑋̂𝑡+1 − 𝔼[𝑋𝑡+1 | 𝑋𝑡 ])2 where 𝑋̂𝑡+1 is conditioned
on the context of 𝑋𝑠<𝑡 . We consider 𝜃, 𝜇 sampled from different pretraining distributions and again
compare the performance of ICL on different test tasks. We study both the Student-𝑡 distribution
in Fig. 3 and the generalized normal in Fig. 4. In both instances, we see that the heavier tailed
pretraining distribution performs better for larger distribution shifts. In the generalized normal case,
the effect of reweighting is practically negligible, but in the Student-𝑡 case, we see some benefit,
particularly in the large shift regime.
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(c) 𝑛 = 5000

Figure 5: Generalization of a transformer trained to predict the next step of the Volterra as a function of 𝑛 the
number of tasks with context length of 32.

4.3 STOCHASTIC VOLTERRA EQUATIONS

We finally consider stochastic Volterra equations as a model of nonlinear stochastic processes that
have long range dependencies. These processes are, under certain conditions, known to model
fractional Brownian motion, which exhibit self-similarity which has been thought to represent the
distribution of tokens in LLMs (Alabdulmohsin et al., 2024). Each task 𝜃 parametrizes a multi-layer
perceptron 𝑏𝜃 and induces the process: 𝑋𝑡 = 𝑋0 +

∫ 𝑡
0 (𝑡 − 𝑠)

−𝛼𝑏𝜃 (𝑋𝑠)d𝑠 +
∫ 𝑡
0 (𝑡 − 𝑠)

−𝛼d𝑊𝑠 , where
𝑊𝑡 is a standard Brownian motion and 𝛼 > 0 controls the temporal dependence of the process:
the smaller 𝛼 is, the more past values influence the current value. The dependency coefficients in
Theorem 2 thus depend explicitly on 𝛼, they are larger for smaller 𝛼, see Appendix D.1. We consider
the generalization capabilities as a function of the number of pretraining tasks in Fig. 5 and as a
function of 𝛼. Theorem 2 predicts that generalization should suffer for smaller 𝛼 due to the increased
dependencies, which is validated in the experiments: the performance gap between the different 𝛼
is larger for smaller number of tasks. More precisely, sequences with lower kernel exponents such
as 1.0 (higher dependence) have worse performance and degrades faster as the number of tasks
decreases compared to sequences with higher kernel exponents such as 2.0 (lower dependence).

5 CONCLUSION

In this work we study ICL through the perspective of task selection and generalization. Our main
theoretical contributions describe error bounds of ICL in terms of both task selection and general-
ization. We show that a pre-training distribution must be carefully chosen such that the effects of
both of these error terms are appropriately balanced. Consequently, the theory allows one to explic-
itly design a prior distribution based on robustness considerations. We design experiments which
consider to what extent ICL can generalize on new tasks that may be out of distribution. The key
takeaways are that a heavier tailed prior is appropriate when considering distribution shifts or when
many task examples are available. These experiments shed light on how to appropriately pre-train
transformers for their use with ICL, with specific emphasis on numerical tasks.

Limitations and Future Directions While our theoretical results are general, the experiments are
limited to numerical data: it remains to be seen how this applies to training LLMs when large
numbers of documents need to be considered. The reweighting experiments most closely correspond
to the possible interventions one may make during pre-training or fine-tuning to improve ICL. A
natural follow-up study would consider how to leverage these insights to improve ICL on LLMs
with tokens rather than continuous numerical data.

REPRODUCIBILITY STATEMENT

For the theoretical statements, all proofs for task selection are located in Appendix B and all proofs
for generalization statements are located in Appendix C. Details regarding experimental setups are
available in Appendix F. Finally, code is available with the submitted manuscript in the supplemental
files.
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A ADDITIONAL RELATED WORK

Training dynamics of ICL Varre et al. (2025) shows that 𝑛-grams are approximate stationary
points in the training of two-layers transformers. Zhang et al. (2025a) studies the training dynam-
ics of a one-layer linear transformer with linear attention on linear regression tasks. Sander et al.
(2024) characterize the training dynamics of a one-linear layer transformer on auto-regressive tasks,
showing how ICL emerges. Ahn et al. (2023a) show that for linear regression problems and a linear
transformer, the global minimizer of the training loss corresponds to performing one step of pre-
conditioned gradient descent. In contrast, our approach focuses on the influence of the pre-training
distribution on ICL. We therefore assume that the model is sufficiently expressive and trained opti-
mally enough to approximate the Bayes optimal predictor. We refer to recent works on optimization
dynamics of transformers Gao et al. (2024); Barboni et al. (2025); Azizian et al. (2025) and on the
approximation capabilities of transformers.

Approximation capabilities of transformers The foundational works of Von Oswald et al.
(2023); Akyürek et al. (2023) demonstrate that transformers can implement gradient descent. This
has led to a fruitful line of work studying the algorithmic capabilities of transformers. Bai et al.
(2023) show that transformers can implement a wide variety of statistical methods. Wang et al.
(2025a) shows how transformers can implement functional gradient descent on categorical data,
generalizing previous works. Wu et al. (2025) shows how attention transformers can implement gra-
dient descent on a ReLU network. Sander & Peyré (2025) explicitly constructs a transformer that
implements kernel causal regression. On a more abstract perspective, Furuya et al. (2025); Kratsios
& Furuya (2025) show that (causal) transformers can approximate any (causal) map between mea-
sures. Wang & Weinan (2024) studies quantitatively the approximation properties of transformers
on "sparse memory" target functions. Li et al. (2025a) obtains explicit approximation bounds for
numerical ICL tasks.
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B TASK SELECTION

In this section, we study how tasks are selected at test time in ICL. This section is structured as
follows. First we consider an abstract setting for Appendices B.1 and B.2 where in Appendix B.1
we state a few preliminary lemmas that will be useful in the analysis, and in Appendix B.2 we prove
a template task selection bound under minimal assumptions. Then, in Appendix B.3, we reintroduce
the ICL setting along with the detailed assumptions before proving the main task selection bound in
Appendix B.4, which is where the main contribution of this section lies.

B.1 PRELIMINARY LEMMAS

Definition 1 (Kullback-Leibler divergence). For ℙ and ℚ two probability measures on a measurable
space X , the Kullback-Leibler (KL) divergence from ℙ to ℚ is defined as

KL(ℙ ∥ ℚ) =
{∫

X log
(
𝑑 ℙ
𝑑ℚ
(𝑥)

)
𝑑 ℙ(𝑥) if ℙ ≪ ℚ

+∞ otherwise.
(B.1)

We now state the Donsker-Varadhan lemma, also known as the Gibbs variational principle.

Lemma B.1 (Donsker-Varadhan lemma, Gibbs variational principle). Consider ℙ probability mea-
sure on a measurable X and 𝑔 : X → ℝ a measurable function such that 𝔼ℙ [exp(𝑔)] < ∞. Then,
we have

log𝔼ℙ [𝑒𝑔(𝑥 ) ] = sup
ℚ

{
𝔼ℚ [𝑔(𝑥)] − KL(ℚ ∥ ℙ)

}
, (B.2)

with equality attained in particular for 𝑑ℚ

𝑑 ℙ
(𝑥) ∝ 𝑒𝑔(𝑥 ) .

See for instance Hellström et al. (2025); Rodríguez-Gálvez et al. (2024) for original references and
proofs.

Let us state a technical consequence of this lemma that essentially corresponds to Zhang (2003,
Lem. 3.1).

Lemma B.2. Consider 𝑋 a random variable on X distributed according to ℙ𝑋 and 𝜃 a random
variable on Θ with prior distribution 𝜋(𝑑𝜃) and with posterior distribution such that, conditionally
on 𝑋 ,

ℙ̂(𝑑𝜃 | 𝑋) = 𝑑 ℙ(𝑋 | 𝜃)
𝑑 ℙ(𝑋) 𝜋(𝑑𝜃) . (B.3)

Consider 𝐿 : X × Θ→ ℝ a measurable function. Then,

𝔼
𝑋,𝜃∼ℙ̂( · |𝑋) [𝐿 (𝑋, 𝜃) − log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))]] ≤ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] . (B.4)

Proof. We apply Lemma B.1 with 𝑔(𝜃) = 𝐿 (𝑋, 𝜃) − log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))] conditionally on 𝑋 to
obtain

𝔼
𝜃∼ℙ̂( · |𝑋) [𝐿 (𝑋, 𝜃) − log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))] − KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.5)

≤ log𝔼𝜃∼𝜋 [exp(𝐿 (𝑋, 𝜃) − log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))])] . (B.6)

We then have

𝔼𝑋

[
exp𝔼

𝜃∼ℙ̂( · |𝑋) [𝐿 (𝑋, 𝜃) − log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))] − KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)]
]

(B.7)

≤ 𝔼𝑋,𝜃∼𝜋 [exp(𝐿 (𝑋, 𝜃) − log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))])] = 1 , (B.8)

and the result follows by Jensen’s inequality with the convex function exp. ■

B.2 TEMPLATE TASK SELECTION BOUND

Let us start with a template task selection bound under minimal assumptions. This proof is adapted
from Zhang (2003, Thm. 4.1) to the case of non-i.i.d. data and when the true task is not necessarily
in the support of the prior.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proposition B.1 (Template task selection bound). Consider 𝑋 a random variable on X distributed
according to ℙ𝑋 and 𝜃 a random variable on Θ with prior distribution 𝜋(𝑑𝜃) such that, conditionally
on 𝑋 , 𝜃 is distributed according to

ℙ̂(𝑑𝜃 | 𝑋) = 𝑑 ℙ(𝑋 | 𝜃)
𝑑 ℙ(𝑋) 𝜋(𝑑𝜃) . (B.9)

Then, we have, for any 𝜃0 ∈ Θ, for any 𝜌 ∈ (0, 1), 𝛼 > 1,

𝔼
𝑋,𝜃∼ℙ̂( · |𝑋)

[
− log𝔼𝑋

[(
𝑑 ℙ𝑋 (· | 𝜃)
𝑑 ℙ𝑋 (·)

)𝜌] ]
(B.10)

≤ −𝛼log𝔼𝜃∼𝜋
[
exp

(
−𝔼𝑋 log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

)]
+ 𝛼KL(ℙ𝑋 (·) ∥ ℙ𝑋 (· | 𝜃0)) (B.11)

+ (𝛼 − 1) 𝔼𝑋
[
log𝔼𝜃∼𝜋

[
exp

(
−𝛼 − 𝜌
𝛼 − 1

log
𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

)] ]
(B.12)

Proof. To simplify notations in this proof, unless otherwise specified, 𝜃 indicates a random variable
distributed according to ℙ̂(· | 𝑋). We start from Lemma B.2 with 𝐿 (𝑋, 𝜃) = 𝜌 log 𝑑 ℙ𝑋 ( · | 𝜃 )

𝑑 ℙ𝑋 ( ·) and
rearrange to obtain:

𝔼𝜃

[
− log𝔼𝑋

[(
𝑑 ℙ𝑋 (· | 𝜃)
𝑑 ℙ𝑋 (·)

)𝜌] ]
≤𝔼𝑋,𝜃

[
𝜌 log

𝑑 ℙ𝑋 (·)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] . (B.13)

The left-hand side (LHS) is the quantity we want to bound. We now only need to bound the RHS.
Making 𝜃0 ∈ Θ appear in the bound, we have

𝔼𝑋,𝜃

[
𝜌 log

𝑑 ℙ𝑋 (·)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.14)

= 𝜌𝔼𝑋

[
log

𝑑 ℙ𝑋 (·)
𝑑 ℙ𝑋 (· | 𝜃0)

]
+ 𝔼𝑋,𝜃

[
𝜌 log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.15)

= 𝜌KL(ℙ𝑋 (·) ∥ ℙ𝑋 (· | 𝜃0)) (B.16)

+ 𝔼𝑋,𝜃
[
𝜌 log

𝑑 ℙ𝑋 (·)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] . (B.17)

Introducing 𝛼 > 1 and defining 𝜇 = 𝛼−1
𝛼−𝜌 < 1, we now bound the last two terms in (B.17) as follows:

𝔼𝑋,𝜃

[
𝜌 log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.18)

= 𝛼

(
𝔼𝑋,𝜃

[
log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)]

)
(B.19)

− (𝛼 − 𝜌)
(
𝔼𝑋,𝜃

[
log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝜇𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)]

)
. (B.20)

Let us first focus on the first term. By the equality case in Lemma B.1 and the definition of ℙ(𝜃 | 𝑋),
we have, almost surely,

𝔼𝜃∼ℙ( · |𝑋)

[
log

𝑑 ℙ(𝑋 | 𝜃0)
𝑑 ℙ(𝑋 | 𝜃)

]
+ KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋) = inf

ℚ

{
𝔼𝜃∼ℚ

[
log

𝑑 ℙ(𝑋 | 𝜃0)
𝑑 ℙ(𝑋 | 𝜃)

]
KL(ℚ ∥ 𝜋)

}
.

(B.21)

Passing to the expectation over 𝑋 we obtain that,

𝔼

[
log

𝑑 ℙ(𝑋)
𝑑 ℙ(𝑋 | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.22)

= 𝔼𝑋

[
inf
ℚ

{
𝔼𝜃∼ℚ

[
log

𝑑 ℙ(𝑋 | 𝜃0)
𝑑 ℙ(𝑋 | 𝜃)

]
+ KL(ℚ ∥ 𝜋)

}]
(B.23)

≤ inf
ℚ

{
𝔼𝜃∼ℚ

[
𝔼𝑋

[
log

𝑑 ℙ(𝑋 | 𝜃0)
𝑑 ℙ(𝑋 | 𝜃)

] ]
+ KL(ℚ ∥ 𝜋)

}
(B.24)
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= − log𝔼𝜃∼𝜋
[
exp

(
−𝔼𝑋

[
log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

] )]
, (B.25)

where the last line follows from Lemma B.1 again with 𝑔(𝜃) = −𝔼𝑋
[
log 𝑑 ℙ𝑋 ( · | 𝜃0 )

𝑑 ℙ𝑋 ( · | 𝜃 )

]
. Let us now

bound the second term in (B.20). We have, by Lemma B.1 again,

𝔼𝑋,𝜃

[
log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝜇𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.26)

≥ −𝜇𝔼𝑋
[
log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

)] ]
. (B.27)

Putting together (B.20), (B.25), and (B.27) concludes the proof.

■

B.3 ICL SETTING

Let us now re-introduce the ICL setting from Section 3.1 along with the detailed assumptions.

∥·∥ denotes the Euclidean norm on ℝ𝑑 for any 𝑑 ∈ ℕ. Assume that task vectors live in Θ ⊂ ℝ𝑑 the
space of tasks 𝜃 and by 𝜋(𝜃) the density of the pretraining task distribution. The context sequence is
then generated by first sampling a task 𝜃 from the task distribution 𝜋, and then sampling data points
(𝑥𝑡 )𝑡≥1 according to

𝑥𝑡+1 ∼ p𝑡+1 (· | 𝑥1:𝑡 , 𝜃) . (B.28)

where 𝑥1:𝑡 = (𝑥1, . . . , 𝑥𝑡 ).
We denote the posterior 𝑝𝑡 (𝜃 | 𝑥1:𝑡−1) the posterior distribution over tasks given the input sequence
𝑥1:𝑡−1

Assumption 3 combined with Assumption 4 are the detailed version of Assumption 1 from Sec-
tion 3.1. Recall that we write poly(𝑥) to denote a quantity that is polynomial in 𝑥 with coefficients
independent of the prior 𝜋 and the number of samples 𝑇 . We also denote by 𝔹(0, 𝑅) the closed ball
of radius 𝑅 centered at 0 in ℝ𝑑 for the Euclidean norm ∥·∥.
Assumption 3 (Data generation). Fix 𝜃∗ ∈ Θ the true task and 𝜃0 ∈ Θ a reference task such that
𝜋(𝜃0) > 0.

• Tail behaviour of (𝑥𝑡 )𝑡≥1: there is 𝑘 ≥ 1 such that for any 𝑇 ≥ 1, 𝑅 ≥ 𝑇 ,

ℙ𝑋∼p𝑇 ( · | 𝜃∗ )

(
sup

𝜃 :∥ 𝜃 ∥≥𝑅
p𝑇 (𝑋 | 𝜃) ≥ p𝑇 (𝑋 | 𝜃0)

)
≤ poly(𝑇)

1 + 𝑅1/𝑘 (B.29)

ℙ𝑋∼p𝑇 ( · | 𝜃∗ )
(
∃𝑡 ≤ 𝑇, ∥𝑥𝑡 ∥ ≥ 𝑅

)
≤ poly(𝑇)

1 + 𝑅1/𝑘 + (B.30)

• Moment bound on (𝑥𝑡 )𝑡≥1: for any 𝑇 ≥ 1

𝔼𝑋∼p𝑇 ( · | 𝜃∗ )

[
log2

(
sup
𝜃∈Θ

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)]
≤ poly(𝑇) . (B.31)

• Regularity of the likelihood: for any 𝑡 ≥ 1, 𝜃, 𝜃′ ∈ Θ ∩𝔹(0, 𝑅),

sup
𝑥1:𝑡 ∈𝔹(0,𝑅) 𝑡

log
p𝑡 (𝑥𝑡 | 𝑥1:𝑡−1, 𝜃)
p𝑡 (𝑥𝑡 | 𝑥1:𝑡−1, 𝜃′)

≤ poly(𝑅)∥𝜃 − 𝜃′∥ . (B.32)

For a sequence (𝑥𝑡 )𝑡≥1, we denote by 𝑥𝑎:𝑏 the subsequence (𝑥𝑎, 𝑥𝑎+1, . . . , 𝑥𝑏) for 1 ≤ 𝑎 ≤ 𝑏 with
the convention that 𝑥𝑎:𝑏 = 𝑥1:𝑡 if 𝑎 < 1.
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B.4 TASK SELECTION BOUND FOR ICL

We begin with a discretization argument and first we generalize the bracketing numbers to the non-
i.i.d. case. This definition generalizes the bracketing numbers used in Barron et al. (1999); Zhang
(2003; 2006) to the non-i.i.d case and the following result generalises the results of Zhang (2006) to
the non-i.i.d. case.

Definition 2. Given a sequence of random variables (𝑥𝑡 )𝑡≤𝑇 on a measurable space X , with para-
metric densities p𝑡 (·|𝜃) parameterized by 𝜃 ∈ Θ, compact sets Θ′ ⊂ Θ and X ′ ⊂ X , the 𝜀-upper
bracketing number of Θ′, denoted by B(Θ′, 𝜀,X ′, 𝑇) is the minimum number of sets 𝑈 𝑗 that cover
Θ′ such that, for any 𝑡 ≤ 𝑇 − 1, any 𝑥1:𝑡+1 ∈ X ′𝑡+1, any 𝑗 ,∫

X ′
sup
𝜃∈𝑈 𝑗

p𝑡+1 (𝑥𝑡+1 | 𝑥1:𝑡 , 𝜃)𝑑𝑥𝑡+1 ≤ 1 + 𝜀 . (B.33)

Lemma B.3. For 𝜇 ∈ (0, 1), for any 𝜀 > 0 and any compact set Θ′ ⊂ Θ, any set X ′ ⊂ X , it holds

𝜇𝔼𝑥1:𝑇

[
log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

)] ]
(B.34)

≤ 2 log(B(Θ′, 𝜀,X ′, 𝑇)) + 6𝑇𝜀 + 𝜋(𝜃 ∉ Θ′)𝜇 (B.35)

+ 𝔼𝑥1:𝑇

[
1

{
sup
𝜃∉Θ′

p𝑇 (𝑥1:𝑇 | 𝜃)
p𝑇 (𝑥1:𝑇 | 𝜃0)

≥ 1
}
· log

(
1 + sup

𝜃∉Θ′

p𝑇 (𝑥1:𝑇 | 𝜃)
p𝑇 (𝑥1:𝑇 | 𝜃0)

)]
(B.36)

+ 𝔼𝑥1:𝑇

[
1
{
𝑥1:𝑇 ∉ X ′𝑇

}
· log

(
sup
𝜃∈Θ

p𝑇 (𝑥1:𝑇 | 𝜃)
p𝑇 (𝑥1:𝑇 | 𝜃0)

)]
. (B.37)

Proof. First, let us consider 𝜃 ∈ Θ′ and 𝑋 = 𝑥1:𝑇 ∈ X ′𝑇 . We have

exp
(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)
= exp

(
1
𝜇

𝑇−1∑︁
𝑡=0

log
p𝑡+1 (𝑥𝑡+1 | 𝑥1:𝑡 , 𝜃)
p𝑡+1 (𝑥𝑡+1 | 𝑥1:𝑡 , 𝜃0)

)
(B.38)

Invoking the bracketing definition (Definition 2), we obtain sets 𝑈 𝑗 , for 𝑗 = 1, . . . ,B(Θ′, 𝜀,X ′, 𝑇)
such that, for any 𝑡 ≤ 𝑇 − 1, any 𝑥1:𝑡+1 ∈ X ′𝑡+1, any 𝑗 , with 𝑔 𝑗 (· | ·) B sup𝜃∈𝑈 𝑗

p𝑡+1 (· | ·, 𝜃),∫
X ′
𝑔 𝑗 (𝑥𝑡+1 | 𝑥1:𝑡 )𝑑𝑥𝑡+1 ≤ 1 + 𝜀 . (B.39)

Therefore, for any 𝜃 ∈ Θ′, any 𝑡 ≥ 1, any 𝑥1:𝑡+1 ∈ X ′𝑡+1, there exists 𝑖 ∈ {1, . . . ,B(Θ′, 𝜀,X ′, 𝑇)}
such that

p𝑡+1 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 , 𝜃) ≤ 𝑔𝑖 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 ). (B.40)

Hence, we can bound

exp
(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)
≤ exp

(
1
𝜇

𝑇−1∑︁
𝑡=0

log
𝑔𝑖 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 )

p𝑡+1 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 , 𝜃0)
+ 𝑇
𝜇

log
1 + 𝜀
1 − 𝜀

)
. (B.41)

We now control the contribution from 𝜃 ∉ Θ′ by simply taking the supremum over this set. We have

𝔼𝜃∼𝜋

[
1{𝜃 ∉ Θ′} · exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)]
(B.42)

= 𝜋(𝜃 ∉ Θ′) sup
𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)1/𝜇
. (B.43)

Combining (B.41) and (B.43), we bound the LHS of the statement as

𝜇𝔼𝑋

[
1{𝑋 ∈ X ′𝑇 } log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)] ]
(B.44)
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= 𝜇𝔼𝑋

[
1{𝑋 ∈ X ′𝑇 } log𝔼𝜃∼𝜋

[
1{𝜃 ∈ Θ′} exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)]
+ 1{𝜃 ∉ Θ′} exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)]
(B.45)

≤ 𝜇𝔼𝑋
[
1{𝑋 ∈ X ′𝑇 } log

( B (Θ′ , 𝜀,X ′ ,𝑇 )∑︁
𝑖=1

exp

(
1
𝜇

𝑇−1∑︁
𝑡=0

log
𝑔𝑖 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 )

p𝑡+1 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 , 𝜃0)
+ 𝑇
𝜇

log
1 + 𝜀
1 − 𝜀

)
(B.46)

+ 𝜋(𝜃 ∉ Θ′) · sup
𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)1/𝜇 )]
. (B.47)

Since 𝜇 ∈ (0, 1), for any non-negative numbers 𝑎1, . . . , 𝑎𝐾 we have
(∑𝐾

𝑘=1 𝑎𝑘
)𝜇 ≤ ∑𝐾

𝑘=1 𝑎
𝜇

𝑘
. Using

this inequality and that log(𝑎 + 𝑏) ≤ log(1 + 𝑎) + log(1 + 𝑏) for 𝑎, 𝑏 ≥ 0, we obtain

𝜇𝔼𝑋

[
1{𝑋 ∈ X ′𝑇 } log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)] ]
(B.48)

≤ 𝔼𝑋

[
1{𝑋 ∈ X ′𝑇 } log

( B (Θ′ , 𝜀,X ′ ,𝑇 )∑︁
𝑖=1

exp

(
𝑇−1∑︁
𝑡=0

log
𝑔𝑖 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 )

p𝑡+1 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 , 𝜃0)
+ 𝑇 log

1 + 𝜀
1 − 𝜀

)
(B.49)

+ 𝜋(𝜃 ∉ Θ′)𝜇 · sup
𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

) )]
(B.50)

≤ 𝔼𝑋

[
1{𝑋 ∈ X ′𝑇 } log

(
1 +

B (Θ′ , 𝜀,X ′ ,𝑇 )∑︁
𝑖=1

exp

(
𝑇−1∑︁
𝑡=0

log
𝑔𝑖 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 )

p𝑡+1 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 , 𝜃0)
+ 𝑇 log

1 + 𝜀
1 − 𝜀

))
(B.51)

+ log
(
1 + 𝜋(𝜃 ∉ Θ′)𝜇 · sup

𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

))]
. (B.52)

Using Jensen’s inequality on the first term, we have

𝜇𝔼𝑋

[
1{𝑋 ∈ X ′𝑇 } log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)] ]
(B.53)

≤ log

(
1 + 𝔼𝑋

[
B (Θ′ , 𝜀,X ′ ,𝑇 )∑︁

𝑖=1
exp

(
𝑇−1∑︁
𝑡=0

log
𝑔𝑖 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 )

p𝑡+1 (𝑥𝑡+1 | 𝑥𝑡−𝑠:𝑡 , 𝜃0)
+ 𝑇 log

1 + 𝜀
1 − 𝜀

)])
(B.54)

+ 𝔼𝑋
[
log

(
1 + 𝜋(𝜃 ∉ Θ′)𝜇 · sup

𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

))]
(B.55)

≤ log

(
1 + B(Θ′, 𝜀,X ′, 𝑇) (1 + 𝜀)𝑇

(
1 + 𝜀
1 − 𝜀

)𝑇 )
+ 𝔼𝑋

[
log

(
1 + 𝜋(𝜃 ∉ Θ′)𝜇 · 𝔼𝑋

[
sup
𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)] )]
,

(B.56)

where we used the definition of the bracketing number Definition 2 in the last line. To obtain the final
result, we perform additional manipulations on each term. For the first term, we use that 1

1−𝑥 ≤ 1+2𝑥
for 𝑥 ∈ (0, 1/2) so that

log

(
(1 + 𝜀)𝑇

(
1 + 𝜀
1 − 𝜀

)𝑇 )
≤ log

(
(1 + 2𝜀)3𝑇

)
≤ 6𝑇𝜀 , (B.57)

so that

log

(
1 + B(Θ′, 𝜀,X ′, 𝑇) (1 + 𝜀)𝑇

(
1 + 𝜀
1 − 𝜀

)𝑇 )
≤ log(1 + B(Θ′, 𝜀,X ′, 𝑇)) + 6𝑇𝜀 (B.58)

≤ 2 log(B(Θ′, 𝜀,X ′, 𝑇)) + 6𝑇𝜀 . (B.59)

For the second term, we use that log(1 + 𝑥) ≤ 𝑥 and distinguish two cases to obtain

𝔼𝑋

[
log

(
1 + 𝜋(𝜃 ∉ Θ′)𝜇 · 𝔼𝑋

[
sup
𝜃∉Θ′

(
p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)] )]
(B.60)
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≤ 𝜋(𝜃 ∉ Θ′)𝜇 + 𝔼𝑋
[
1

{
sup
𝜃∉Θ′

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

≥ 1
}
· log

(
1 + sup

𝜃∉Θ′

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)]
. (B.61)

All that is left to do is to deal with the case 𝑋 ∉ X ′𝑇 . We have, as above,

𝜇𝔼𝑋

[
1{𝑋 ∉ X ′𝑇 } log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
p𝑇 (𝑋 | 𝜃0)
p𝑇 (𝑋 | 𝜃)

)] ]
≤ 𝔼𝑋

[
1{𝑋 ∉ X ′𝑇 } log

(
sup
𝜃∈Θ

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

)]
.

(B.62)
■

We now leverage Assumption 3 to control the different terms of Lemma B.3.

Lemma B.4. For 𝜇 ∈ (0, 1), under Assumption 3, for any 𝑇 ≥ 1, it holds that

𝜇𝔼𝑥1:𝑇

[
log𝔼𝜃∼𝜋

[
exp

(
− 1
𝜇

log
p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

)] ]
≤ 𝜋(𝜃 ∉ Θ′)𝜇 +O(log(𝑇)) , (B.63)

where the O(·) hides constants that do not depend on 𝜋 or 𝑇 .

Proof. Fix 𝑅 > 0 that will be chosen later and take X ′ = 𝔹(0, 𝑅) and Θ′ = 𝔹(0, 𝑅). Let us consider
a 𝛿-cover of Θ′ with 𝛿 > 0 that will be chosen later: there are 𝐾 sets 𝑈 𝑗 , 𝑗 = 1, . . . , 𝐾 that cover Θ′
such that for any 𝜃, 𝜃′ ∈ 𝑈 𝑗 , we have ∥𝜃 − 𝜃′∥ ≤ 𝛿. By e.g., Wainwright (2019, Ex. 5.2), we can
take 𝐾 such that log𝐾 ≤ 𝑑 log(1 + 2𝑅/𝛿).
Assumption 3 ensures that the sets 𝑈 𝑗 satisfy the bracketing condition of Definition 2 with 𝜀 =

exp(poly(𝑅)𝛿) − 1. Therefore, we have, with this choice of 𝜀,

logB(Θ′, 𝜀,X ′, 𝑇) ≤ 𝑑 log(1 + 2𝑅/𝛿) . (B.64)

Using Cauchy-Schwarz inequality and Assumption 3, we have that, both

𝔼𝑥1:𝑇

[
1

{
sup
𝜃∉Θ′

p𝑇 (𝑥1:𝑇 | 𝜃)
p𝑇 (𝑥1:𝑇 | 𝜃0)

≥ 1
}
· log

(
1 + sup

𝜃∉Θ′

p𝑇 (𝑥1:𝑇 | 𝜃)
p𝑇 (𝑥1:𝑇 | 𝜃0)

)]
≤ poly(𝑇)

1 + 𝑅1/𝑘 (B.65)

𝔼𝑥1:𝑇

[
1
{
𝑥1:𝑇 ∉ X ′𝑇

}
· log

(
sup
𝜃∈Θ

p𝑇 (𝑥1:𝑇 | 𝜃)
p𝑇 (𝑥1:𝑇 | 𝜃0)

)]
≤ poly(𝑇)

1 + 𝑅1/𝑘 . (B.66)

Choose 𝑅 = poly(𝑇) so that both (B.65) and (B.66) are O(1). Finally, we choose 𝛿 = (poly(𝑇))−1

so that 𝜀 = exp(poly(𝑅)𝛿)−1 = O(1/𝑇). Combining this (B.64)–(B.66) with Lemma B.3 concludes
the proof. ■

We can now state our main result for ICL. As a metric to asses the quality of a given retrieved task 𝜃
w.r.t. the true task 𝜃∗, we consider the Rényi divergence (Rényi, 1961) of order 𝜌 ∈ (0, 1) between
the distributions p𝑇 (· | 𝜃) and p𝑇 (· | 𝜃∗):

D𝜌(𝜃 ∥ 𝜃∗) = −
1

𝑇 (1 − 𝜌) log𝔼𝑋∼p𝑇 ( · | 𝜃∗ )

[
𝑇∏
𝑡=1

(
p𝑡 (𝑥𝑡 |𝑥1:𝑡−1 , 𝜃 )
p𝑡 (𝑥𝑡 |𝑥1:𝑡−1 , 𝜃∗ )

)𝜌]
. (B.67)

Theorem B.1. Under Assumption 3, for any 𝜌 ∈ (0, 1), 𝑇 ≥ 1, it holds that, for 𝑥1:𝑇 ∼ p𝑇 (· | 𝜃∗),

𝔼𝑥1:𝑇

[
𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 )

[
D𝜌(𝜃 ∥ 𝜃∗)

] ]
(B.68)

≤ − 1 + 𝜌
(1 − 𝜌)𝑇 log

(
𝔼𝜃∼𝜋

[
exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
(B.69)

+ 1 + 𝜌
1 − 𝜌

KL(p𝑇 (· | 𝜃∗) ∥ p𝑇 (· | 𝜃0))
𝑇

(B.70)

+O
(
log(𝑇)
𝑇

)
, (B.71)

where the O(·) hides constants that do not depend on 𝜋 or 𝑇 .
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Proof. This is a direct consequence of Proposition B.1 combined with Lemma B.4 with 𝛼 = 1 + 𝜌
and bounding 𝜋(𝜃 ∉ Θ′)𝜇 ≤ 1. ■

A few comments are in order. The first term of (B.69) captures how much the prior 𝜋 covers the
reference task 𝜃0. When 𝜃0 = 𝜃∗, this term thus quantifies how well the prior covers the true task
𝜃∗. When 𝜃0 is inside the support of 𝜋, this term is vanishing as 𝑇 grows large, see the next results
below.

The second term of (B.70) captures how well the reference task 𝜃0 approximates the true task 𝜃∗.
When 𝜃0 = 𝜃∗, the term of (B.70) is 0. Otherwise, consider the case the KL will typically be of order
𝑇 so that this term is O(1): it represents the best ICL error one can hope for when the true task 𝜃∗ is
not in the support of the prior 𝜋.

B.5 LAPLACE APPROXIMATION

We will make use of the following version of the Laplace approximation, see Wong (2001, Chap. 9,
Thm. 3) for a proof.

Lemma B.5 (Laplace approximation). Let 𝜇 be a probability measure on ℝ𝑑 with density 𝑔 : ℝ𝑑 →
[0,∞). Fix 𝑥∗ ∈ ℝ𝑑 such that 𝑔 is continuous at 𝑥∗ and 𝑔(𝑥∗) > 0. Then, as 𝜀 → 0,∫

ℝ𝑑

exp
(
− 1

2𝜀 ∥𝑥 − 𝑥
∗∥

)
𝑔(𝑥) 𝑑𝑥, = 𝑔(𝑥∗) 𝐶 𝜀𝑑 + 𝑜(𝜀𝑑).

where 𝐶 B
∫
ℝ𝑑 exp

(
− 1

2 ∥𝑦∥
)
𝑑𝑦 ∈ (0,∞).

Assumption 4. Consider the following additional assumptions to Assumption 3:

• Tail behaviour: for any 𝑇 ≥ 1, 𝑅 > 0,

ℙ𝑋∼p𝑇 ( · | 𝜃∗ )

(
sup

𝜃 :∥ 𝜃 ∥≥𝑅
p𝑇 (𝑋 | 𝜃) ≥ p𝑇 (𝑋 | 𝜃0)

)
≤ poly(𝑇)𝑒−𝑅 (B.72)

ℙ𝑋∼p𝑇 ( · | 𝜃∗ )
(
∃𝑡 ≤ 𝑇, ∥𝑥𝑡 ∥ ≥ 𝑅

)
≤ poly(𝑇)𝑒−𝑅 . (B.73)

• Regularity of 𝜋: 𝜋 is continuous and positive at 𝜃0.

• Second moment of 𝜋:

𝔼𝜃∼𝜋
[
∥𝜃∥2

]
< ∞ . (B.74)

Proposition B.2. Under Assumptions 3 and 4, then, for 𝑇 large enough,

− log
(
𝔼𝜃∼𝜋

[
exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
≤ log 1/𝜋(𝜃0) +O(poly(log𝑇)) . (B.75)

Proof. For some 𝑅𝑇 ≥ 𝑟𝑇 > 0, we split the term as

− log
(
𝔼𝜃∼𝜋

[
exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
(B.76)

= − log
(
𝔼𝜃∼𝜋

[
1{∥𝜃∥ ≤ 𝑅𝑇 } exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )
+ 1{∥𝜃∥ > 𝑅𝑇 } exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
(B.77)

≤ − log
(
𝔼𝜃∼𝜋

[
1{∥𝜃∥ ≤ 𝑟𝑇 } exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )
+ 1{∥𝜃∥ > 𝑅𝑇 } exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
(B.78)

Using Cauchy-Schwarz inequality and Assumption 3 and its refinement in the statement, we bound
the second term as, for 𝜃 such that ∥𝜃∥ > 𝑅𝑇 , so that
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����𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] ���� ≤ 𝑒−𝑅𝑇/2 poly(𝑇) . (B.79)

so that

𝔼𝜃∼𝜋

[
1{∥𝜃∥ > 𝑅𝑇 } exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )]
(B.80)

≤ exp
(
𝑒−𝑅𝑇/2 poly(𝑇)

)
𝜋(∥𝜃∥ > 𝑅𝑇 ) (B.81)

≤ exp
(
𝑒−𝑅𝑇/2 poly(𝑇)

)𝔼𝜃∼𝜋 [∥𝜃∥2]
𝑅𝑇

2 , (B.82)

where we used Markov’s inequality in the last line. Take 𝑅𝑇 = 𝑇 (𝑑+1)/2 so that (B.82) is O(1/𝑇𝑑+1).
We now focus on the first term of (B.78) and bound it as:

𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

]
= 𝔼𝑥1:𝑇

[
1
{
max
𝑡
∥𝑥𝑡 ∥ ≤ 𝑟𝑇

}
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

]
+ 𝔼𝑥1:𝑇

[
1
{
max
𝑡
∥𝑥𝑡 ∥ > 𝑟𝑇

}
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

]
(B.83)

≤ poly(𝑟𝑇 )𝑇 ∥𝜃 − 𝜃0∥ + poly(𝑇)𝑒−𝑟𝑇/2 (B.84)
where we used the regularity assumption of Assumption 3 for the first term and Cauchy-Schwarz
inequality combined with Assumption 4 for the second term.

Take 𝑟𝑇 = poly(log𝑇) so that poly(𝑇)𝑒−𝑟𝑇/2 = O(1) and assume that 𝑇 is large enough so that
𝑟𝑇 ≥ ∥𝜃0∥ + 1.

Putting everything together, we have

− log
(
𝔼𝜃∼𝜋

[
exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
(B.85)

≤ − log
(
𝔼𝜃∼𝜋

[
1{∥𝜃∥ ≤ 𝑟𝑇 } exp(− poly(𝑟𝑇 )𝑇 ∥𝜃 − 𝜃0∥ +O(1)) +O

(
1

𝑇𝑑+1

)] )
(B.86)

≤ − log
(
𝔼𝜃∼𝜋

[
1{∥𝜃∥ ≤ ∥𝜃0∥ + 1} exp(− poly(log𝑇)𝑇 ∥𝜃 − 𝜃0∥ +O(1)) +O

(
1

𝑇𝑑+1

)] )
, (B.87)

where we used that we assumed that 𝑟𝑇 = poly(log𝑇) ≥ ∥𝜃0∥ + 1.

Applying Lemma B.5 with 𝜀 = 1/(poly(log𝑇)𝑇) yields:

𝔼𝜃∼𝜋 [1{∥𝜃∥ ≤ ∥𝜃0∥ + 1} exp(− poly(log𝑇)𝑇 ∥𝜃 − 𝜃0∥)] = poly(log𝑇)𝑇−𝑑 (𝜋(𝜃0)𝐶 + 𝑜(1)) ,
(B.88)

where 𝐶 is the constant of Lemma B.5 and this concludes the proof.

■

We can now combine Theorem B.1 and Proposition B.2 to obtain the final result in the main text.
Theorem B.2. Under Assumptions 3 and 4, for any 𝜌 ∈ (0, 1), 𝑇 ≥ 1, it holds that, for 𝑥1:𝑇 ∼
p𝑇 (· | 𝜃∗),

𝔼𝑥1:𝑇

[
𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 )

[
D𝜌(𝜃 ∥ 𝜃∗)

] ]
(B.89)

≤ − 1 + 𝜌
(1 − 𝜌)𝑇 log 1/𝜋(𝜃0) (B.90)

+ 1 + 𝜌
1 − 𝜌

KL(p𝑇 (· | 𝜃∗) ∥ p𝑇 (· | 𝜃0))
𝑇

(B.91)

+O
(
log(𝑇)
𝑇

)
, (B.92)

where the O(·) hides constants that do not depend on 𝜋 or 𝑇 .

Proof. This is a direct consequence of Theorem B.1 and Proposition B.2. ■
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B.6 EXTENSION: ARBITRARY LOSS

In this subsection, we explain how to extend the previous results Theorems B.1 and B.2 to arbitrary
loss functions beyond the KL divergence, at the cost of a slower rate.

The key change is this analogue of Proposition B.1.
Proposition B.3 (Template task selection bound). Consider 𝑋 a random variable on X distributed
according to ℙ𝑋 and 𝜃 a random variable on Θ with prior distribution 𝜋(𝑑𝜃) such that, conditionally
on 𝑋 , 𝜃 is distributed according to

ℙ̂(𝑑𝜃 | 𝑋) = 𝑑 ℙ(𝑋 | 𝜃)
𝑑 ℙ(𝑋) 𝜋(𝑑𝜃) . (B.93)

Fix a loss function 𝐿 : X × Θ→ ℝ. Then, we have, for any 𝜃0 ∈ Θ, 𝛼 > 1, 𝜆 ≥ 0,

𝔼
𝑋,𝜃∼ℙ̂( · |𝑋) [𝜆𝐿 (𝑋, 𝜃)] (B.94)

≤ 𝔼𝜃∼𝜋 [log𝔼𝑋 [exp(𝜆𝐿 (𝑋, 𝜃))]] (B.95)

+ (𝛼 − 1) 𝔼𝑋
[
log𝔼𝜃∼𝜋

[
exp

(
−𝛼 − 𝜌
𝛼 − 1

log
𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

)] ]
(B.96)

Proof. As in the proof of Proposition B.1, to simplify notations in this proof, 𝜃 indicates a random
variable distributed according to ℙ̂(· | 𝑋). We start from Lemma B.2 to obtain

𝔼𝜃 [𝐿 (𝑋, 𝜃)] ≤𝔼𝜃 [log𝔼𝑋 [exp(𝐿 (𝑋, 𝜃))]] + 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] . (B.97)

The LHS is the quantity we want to bound. We now only need to bound second term of the RHS.
Introducing 𝛼 > 1, 𝜃0 ∈ Θ and defining 𝜇 = 𝛼−1

𝛼
< 1, we now rewrite this term as

𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)] (B.98)

= 𝛼

(
𝔼𝑋,𝜃

[
log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)]

)
(B.99)

− 𝛼
(
𝔼𝑋,𝜃

[
log

𝑑 ℙ𝑋 (· | 𝜃0)
𝑑 ℙ𝑋 (· | 𝜃)

]
+ 𝜇𝔼𝑋 [KL(ℙ𝜃 (· | 𝑋) ∥ 𝜋)]

)
. (B.100)

The proof now proceeds exactly as in Proposition B.1, bounding separately the two terms in the last
equation. ■

Now, consider a loss function 𝐿 (𝑥1:𝑇 , 𝜃) which can additionally depend on 𝜃∗ as well.

We will work with the following assumption, which is subGaussian-type assumption on the loss
function with respect to the data generation process.
Assumption 5. There is 𝐶𝐿 > 0 such that, for any 𝑇 ≥ 1, any 𝜆 ≥ 0,

log𝔼𝑥1:𝑇∼p𝑇 ( · | 𝜃∗ ) [exp(𝜆 |𝐿 (𝑥1:𝑇 , 𝜃) |)] ≤
𝑇𝐶𝐿𝜆

2∥𝜃 − 𝜃∗∥2
2

. (B.101)

We can now state a variant of Theorem B.1.
Theorem B.3. Under Assumptions 3 and 5, for any𝑇 ≥ 1, 𝜃0 ∈ Θ, it holds that, for 𝑥1:𝑇 ∼ p𝑇 (· | 𝜃∗),

1
𝑇
𝔼𝑥1:𝑇

[
𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 ) [𝐿 (𝑥1:𝑇 , 𝜃)]

]
(B.102)

≤
𝐶𝐿 𝔼𝜃∼𝜋

[
∥𝜃 − 𝜃∗∥2

]
2
√
𝑇

− 2
√
𝑇

log
(
𝔼𝜃∼𝜋

[
exp

(
−𝔼𝑥1:𝑇

[
log

p𝑇 (𝑥1:𝑇 | 𝜃0)
p𝑇 (𝑥1:𝑇 | 𝜃)

] )] )
(B.103)

+O
(
log(𝑇)
√
𝑇

)
, (B.104)

where the O(·) hides constants that do not depend on 𝜋 or 𝑇 .

Proof. As for Theorem B.1, this is a direct consequence of Proposition B.3 combined with
Lemma B.4 and Assumption 5 with 𝛼 = 2, 𝜆 =

√
𝑇 and bounding 𝜋(𝜃 ∉ Θ′)𝜇 ≤ 1. ■
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Finally, combining Theorem B.3 and Proposition B.2, we obtain the following analogue of Theo-
rem B.2.
Theorem B.4. Under Assumptions 3–5, for any 𝑇 ≥ 1, it holds that, for 𝑥1:𝑇 ∼ p𝑇 (· | 𝜃∗),

1
𝑇
𝔼𝑥1:𝑇

[
𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 ) [𝐿 (𝑥1:𝑇 , 𝜃)]

]
(B.105)

≤
𝐶𝐿 𝔼𝜃∼𝜋

[
∥𝜃 − 𝜃∗∥2

]
2
√
𝑇

− 2
√
𝑇

log 1/𝜋(𝜃0) +O
(
log(𝑇)
√
𝑇

)
, (B.106)

where the O(·) hides constants that do not depend on 𝜋 or 𝑇 .

Note that here the choice of 𝜃0 only impacts the bound through the term log 1/𝜋(𝜃0) and so one can
choose 𝜃0 as a mode of the prior 𝜋 to minimize this term.
Remark B.1 (Link to Bayes optimal predictor). As explained in the main text, our task selection
analysis applies to the Bayes optimal predictor defined as

𝑓 (𝑥1:𝑡−1) = arg min
𝑥̂𝑡

𝔼𝜃∼𝑝𝑡 ( · |𝑥1:𝑡−1 )
[
𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃 ) [ℓ𝑡 (𝑥̂𝑡 , 𝑥𝑡 )]

]
. (B.107)

Though the theorems above provide guarantees on the posterior distribution, we show how they can
be used to provide guarantees on the performance of the Bayes optimal predictor. Let us start with
the ℓ2 regression setting, i.e., ℓ𝑡 (𝑥̂𝑡 , 𝑥𝑡 ) = ∥𝑥̂𝑡 − 𝑥𝑡 ∥2. In that case, the optimal prediction is given by
the posterior mean

𝑓 (𝑥1:𝑡−1) = 𝔼𝜃∼𝑝𝑡 ( · |𝑥1:𝑡−1 )
[
𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃 ) [𝑥𝑡 ]

]
. (B.108)

Theorem B.4 can then be used to control the expected error of the Bayes optimal predictor, though
at the cost of considering the unsquared error loss.

Using Jensen’s inequality, we can bound the expected error as

𝔼𝑥1:𝑡∼p𝑡 ( · | 𝜃∗ ) [∥ 𝑓 (𝑥1:𝑡−1) − 𝑥𝑡 ∥] (B.109)

≤ 𝔼𝑥1:𝑡∼p𝑡 ( · | 𝜃∗ )
[
𝔼𝜃∼𝑝𝑡 ( · |𝑥1:𝑡−1 )

[

𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃 ) [𝑥𝑡 ] − 𝑥𝑡


] ] (B.110)

≤ 𝔼𝑥1:𝑡∼p𝑡 ( · | 𝜃∗ )
[
𝔼𝜃∼𝑝𝑡 ( · |𝑥1:𝑡−1 )

[

𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃 ) [𝑥𝑡 ] − 𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃∗ ) [𝑥𝑡 ]


] ] (B.111)

+ 𝔼𝑥1:𝑡∼p𝑡 ( · | 𝜃∗ )
[

𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:𝑡−1 , 𝜃∗ ) [𝑥𝑡 ] − 𝑥𝑡



] , (B.112)

where in the last line the first term can be controlled through Theorem B.4 while the second term is
the irreducible error of the true task 𝜃∗.

All of our examples fall into this setting and one can check that the resulting losses satisfy Assump-
tion 5, using the independence or Markovian assumptions on the data generation process.

Note that Theorem B.4 can also be used to control the performance of the Bayes optimal predictor
for other losses, e.g., classification losses, by considering one loss for every class and a convex
function combining them.
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C GENERALIZATION BOUNDS

C.1 MOMENT BOUNDS FOR GENERAL FUNCTIONS

In this subsection, we generalize the heavy-tail concentration results of Li & Liu (2024a) to allow
for non-i.i.d. data. This section can also be seen as extending concentration results for dependent
sequences to the case where the function of interest does not necessarily admit bounded differences
but only bounded moments. In particular, Lemma C.1 extends the coupling argument of Chazottes
et al. (2007) to our setting, in particular not requiring bounded differences but only bounded mo-
ments. Indeed, for this, we replace the total variation distance by the Wasserstein-1 distance. It can
also be seen as an extension of the bounded differences result of Kontorovich & Ramanan (2008)
to our setting (see Mohri & Rostamizadeh (2010) for a presentation of the results of Kontorovich
& Ramanan (2008) in a setting closer to ours). Moreover, note that even the handling of the sub-
Gaussian increments is much more trickier than in Kontorovich (2014), since we have to carefully
apply a convex domination argument to handle the conditional dependence. The main result of this
section is Theorem C.1, which is of independent interest.

As in the previous section, ∥·∥ denotes the Euclidean norm on ℝ𝑑 for any 𝑑 ∈ ℕ.

At multiple places, we will use the Wasserstein-1 distance3 with respect to a cost function 𝜌 : Z ×
Z → [0,∞), defined as

𝑊𝜌 (𝜇, 𝜈) := inf
𝜋∈Π (𝜇,𝜈)

∫
𝜌(𝑧, 𝑧′)𝑑𝜋(𝑧, 𝑧′), (C.1)

where Π(𝜇, 𝜈) is the set of couplings of 𝜇 and 𝜈. We refer to the textbook Villani (2008) for more
details.

Lemma C.1. Consider Z measurable space. Let 𝑍1, . . . , 𝑍𝑚 be Z-valued random variables with
natural filtration F𝑖 := 𝜎(𝑍1, . . . , 𝑍𝑖). For each 𝑖, assume there is 𝑍 ′

𝑖
such that

𝑍 ′𝑖 ∼ Law(𝑍𝑖 | F𝑖−1), 𝑍 ′𝑖 ⊥⊥ 𝑍𝑖 | F𝑖−1. (C.2)

Let 𝑔 : Z𝑚 → ℝ be measurable and coordinate-wise Lipschitz with respect to cost functions 𝜌𝑖 : Z×
Z → [0,∞) such that 𝜌𝑖 (𝑧𝑖 , 𝑧𝑖) = 0, with constants 𝐿𝑖 ≥ 0: for any 𝑧, 𝑧′ ∈ Z𝑚 differing only in the
𝑖-th coordinate,

|𝑔(𝑧) − 𝑔(𝑧′) | ≤ 𝐿𝑖𝜌𝑖 (𝑧𝑖 , 𝑧′𝑖). (C.3)

With𝑊𝜌 𝑗
(·, ·) the Wasserstein-1 distance with respect to 𝜌 𝑗 , define, for 𝑖 < 𝑗 ,

𝛿𝑖, 𝑗 (𝑧1:𝑖 , 𝑧
′
𝑖) = 𝑊𝜌 𝑗

(Law(𝑍 𝑗 | 𝑍1:𝑖 = 𝑧1:𝑖), Law(𝑍 𝑗 | 𝑍1:𝑖−1 = 𝑧1:𝑖−1, 𝑍𝑖 = 𝑧
′
𝑖)). (C.4)

for 𝑖 ∈ {1, . . . , 𝑚},

|𝔼[𝑔(𝑍1:𝑚) |F𝑖] −𝔼[𝑔(𝑍1:𝑖−1, 𝑍
′
𝑖 , 𝑍𝑖+1:𝑚) |F𝑖−1, 𝑍

′
𝑖 ] | ≤ 𝐿𝑖𝜌𝑖 (𝑍𝑖 , 𝑍 ′𝑖 ) +

𝑚∑︁
𝑗=𝑖+1

𝐿 𝑗𝛿𝑖, 𝑗 (𝑍1:𝑖 , 𝑍
′
𝑖 ) (C.5)

Proof. Fix 𝑖 ∈ {1, . . . , 𝑚}. We condition on F𝑖−1. Let 𝑢 := 𝑍𝑖 and 𝑢′ := 𝑍 ′
𝑖
. Not to overburden

notations, all expectations and probabilities in the following are conditional on F𝑖−1, 𝑍𝑖 = 𝑢, 𝑍
′
𝑖
= 𝑢′.

Define the tail functions

𝜓(𝑧𝑖+1:𝑚) := 𝑔(𝑍1:(𝑖−1) , 𝑢, 𝑧𝑖+1:𝑚), (C.6)
𝜓′ (𝑧𝑖+1:𝑚) := 𝑔(𝑍1:(𝑖−1) , 𝑢

′, 𝑧𝑖+1:𝑚). (C.7)

Denote 𝑍 (𝑖+1):𝑚 ∼ Law(𝑍 (𝑖+1):𝑚 | F𝑖−1, 𝑍𝑖 = 𝑢) and 𝑍 ′(𝑖+1):𝑚 ∼ Law(𝑍 (𝑖+1):𝑚 | F𝑖−1, 𝑍𝑖 = 𝑢
′). We

decompose

|𝔼[𝑔(𝑍1:𝑚)] − 𝔼[𝑔(𝑍1:(𝑖−1) , 𝑍
′
𝑖:𝑚)] | (C.8)

3This is a slight abuse of terminology, since the Wasserstein-1 distance is usually defined for metric spaces,
while we only assume 𝜌 to be a cost function. However, this slight abuse of terminology will not cause any
confusion in the following.
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=
��𝔼[𝜓(𝑍 (𝑖+1):𝑚)] − 𝔼[𝜓′ (𝑍 ′(𝑖+1):𝑚)]�� (C.9)

≤ 𝔼
[��𝜓(𝑍 (𝑖+1):𝑚) − 𝜓′ (𝑍 (𝑖+1):𝑚)��] + ���𝔼[

𝜓′ (𝑍 (𝑖+1):𝑚)
]
− 𝔼

[
𝜓′ (𝑍 ′(𝑖+1):𝑚)

] ���. (C.10)

We bound the two terms separately.

By the coordinate-wise Lipschitz condition at 𝑖,

𝔼𝑃
[
|𝜓(𝑍 (𝑖+1):𝑚) − 𝜓′ (𝑍 (𝑖+1):𝑚) |

]
≤ 𝐿𝑖𝜌𝑖 (𝑢, 𝑢′) = 𝐿𝑖𝜌𝑖 (𝑍𝑖 , 𝑍 ′𝑖 ). (C.11)

We write the following telescoping decomposition:���𝔼[
𝜓′ (𝑍 (𝑖+1):𝑚)

]
− 𝔼

[
𝜓′ (𝑍 ′(𝑖+1):𝑚)

] ��� ≤ 𝑚−1∑︁
𝑗=𝑖

���𝔼[
𝜓′ (𝑍 ′(𝑖+1): 𝑗 , 𝑍 ( 𝑗+1):𝑚)

]
− 𝔼

[
𝜓′ (𝑍 ′(𝑖+1):( 𝑗+1) , 𝑍 ( 𝑗+1):𝑚)

] ��� .
(C.12)

By the definition of the Wasserstein-1 distance, there exists a coupling of (𝑍 𝑗+1, 𝑍 ′𝑗+1) such that

𝔼

[
𝜌 𝑗+1 (𝑍 𝑗+1, 𝑍 ′𝑗+1)

���F𝑖 , 𝑍 ′𝑖 ] = 𝑊𝜌 𝑗+1 (Law(𝑍 𝑗+1 | F𝑖),Law(𝑍 𝑗+1 | F𝑖−1, 𝑍
′
𝑖 )) ≤ 𝛿𝑖, 𝑗+1 (𝑍1:𝑖−1, 𝑍

′
𝑖 ) .

(C.13)

We obtain a bound on the increment at coordinate 𝑗 by combining the coupling with the coordinate-
wise Lipschitz condition at 𝑗 :���𝔼[

𝜓′ (𝑍 ′(𝑖+1): 𝑗 , 𝑍 ( 𝑗+1):𝑚)
]
− 𝔼

[
𝜓′ (𝑍 ′(𝑖+1):( 𝑗+1) , 𝑍 ( 𝑗+1):𝑚)

] ��� (C.14)

≤ 𝔼

[��𝜓′ (𝑍 ′(𝑖+1): 𝑗 , 𝑍 ( 𝑗+1):𝑚) − 𝜓′ (𝑍 ′(𝑖+1):( 𝑗+1) , 𝑍 ( 𝑗+1):𝑚)��] (C.15)

≤ 𝐿 𝑗+1 𝔼
[
𝜌 𝑗+1 (𝑍 𝑗+1, 𝑍 ′𝑗+1)

]
(C.16)

= 𝐿 𝑗+1𝑊𝜌 𝑗+1 (Law(𝑍 𝑗+1 | F𝑖),Law(𝑍 𝑗+1 | F𝑖−1, 𝑍
′
𝑖 )) = 𝐿 𝑗+1𝛿𝑖, 𝑗+1 (𝑍1:𝑖 , 𝑍

′
𝑖 ) . (C.17)

Combining the above estimates gives���𝔼[
𝜓′ (𝑍 (𝑖+1):𝑚)

]
− 𝔼

[
𝜓′ (𝑍 ′(𝑖+1):𝑚)

] ��� ≤ 𝑚−1∑︁
𝑗=𝑖

𝐿 𝑗+1𝛿𝑖, 𝑗+1 (𝑍1:𝑖 , 𝑍
′
𝑖 ) . (C.18)

which yields the desired result. ■

We now state a classic convex domination lemma which is a slight variant of Ledoux & Talagrand
(2013, Lem. 4.6).

Lemma C.2 (Convex domination). Consider 𝑋, 𝑍 a zero-mean symmetric random variables such
that

ℙ( |𝑋 | > 𝑡) ≤ 𝐶 ℙ( |𝑍 | > 𝑡) , (C.19)

for some 𝐶 > 0 and all 𝑡 > 0.

Then, for any convex function ℎ : ℝ→ ℝ,

𝔼[ℎ(𝑋)] ≤ 𝔼[ℎ(𝐶𝑍)] . (C.20)

Proof. Let 𝛿 ∼ Bernoulli(1/𝐶) be independent of (𝑋, 𝑍). Then, for all 𝑡 > 0, ℙ( |𝑍 | > 𝑡) ≥
1
𝐶

ℙ( |𝑋 | > 𝑡) = ℙ( |𝛿𝑋 | > 𝑡). Hence |𝛿𝑋 | is stochastically dominated by |𝑍 | and we may construct
a coupling such that

|𝛿𝑋 | ≤ |𝑍 | a.s. (C.21)

Since 𝑋 is symmetric, we may write in distribution 𝑋 𝑑
= 𝜀 |𝑋 | where 𝜀 is a Rademacher variable

independent of |𝑋 |. Likewise, 𝑍 𝑑
= 𝜀′ |𝑍 | with an independent Rademacher 𝜀′.
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Condition on (𝛿, 𝑋, 𝑍) and define
Φ(𝑎) := 𝔼

[
ℎ
(
𝑎 𝜀 |𝑍 |

) �� 𝛿, 𝑋, 𝑍 ]
, 𝑎 ∈ [−1, 1] . (C.22)

The map 𝑎 ↦→ Φ(𝑎) is convex (as an average of convex functions). By convexity, its maximum on
[−1, 1] is attained at an extreme point {−1, 1}. On the coupling where (C.21) holds, define

𝑎 :=

𝛿 |𝑋 |
|𝑍 | , if 𝑍 ≠ 0,

0, if 𝑍 = 0,
(C.23)

so that 𝑎 ∈ [−1, 1] almost surely thanks to |𝑋 | ≤ |𝛿𝑍 |. Therefore,
𝔼

[
ℎ
(
𝜀 |𝑋 | 𝛿

) �� 𝛿, 𝑋, 𝑍 ]
= Φ(𝑎) ≤ max{Φ(−1),Φ(1)} = 𝔼

[
ℎ
(
𝜀 |𝑍 |

) �� 𝛿, |𝑋 |, 𝑍 ]
. (C.24)

Taking expectations and using 𝑋 𝑑
= 𝜀 |𝑋 | and 𝑍 𝑑

= 𝜀 |𝑍 |,
𝔼[ℎ

(
𝛿𝑋

)
] ≤ 𝔼[ℎ(𝑍)] . (C.25)

Since ℎ is convex and 𝔼[𝛿 | 𝑋, 𝑍] = 1/𝐶, we have, by Jensen’s inequality,
𝔼[ℎ

(
𝑋/𝐶

)
] = 𝔼

[
ℎ
(
𝔼[𝛿𝑋 | 𝑋, 𝑍]

) ]
≤ 𝔼

[
𝔼[ℎ(𝛿𝑋) | 𝑋, 𝑍]

]
= 𝔼[ℎ(𝛿𝑋)] ≤ 𝔼[ℎ(𝑍)] ,

(C.26)
Finally, apply the previous inequality with the convex function 𝑢 ↦→ ℎ(𝐶𝑢) to obtain

𝔼[ℎ(𝑋)] = 𝔼[ℎ
(
𝐶 · (𝑋/𝐶)

)
] ≤ 𝔼[ℎ

(
𝐶𝑍

)
] .

This is exactly the desired bound.

■

We now state a fact of subGaussian random variables, which can be found in Wainwright (2019,
Thm. 2.6) for instance.
Lemma C.3 (Convex domination). Consider 𝑋 a zero-mean real-valued 𝜎2-sub-Gaussian random
variable, which is, in addition, symmetric, i.e., 𝑋 𝑑

= −𝑋 . Then, for 𝑍 ∼ N (0, 𝜎2),
ℙ( |𝑋 | > 𝑡) ≤ 8ℙ( |𝑍 | > 𝑡) . (C.27)

Lemma C.4 (Causal symmetrization). Let 𝑚 ∈ ℕ and (Z ,A) be a standard Borel measurable
space. Let 𝑍1, . . . , 𝑍𝑚 be Z-valued random with natural filtration (F𝑖)𝑖=0,...,𝑚 Let ℎ : ℝ → ℝ be
convex.

Consider 𝑔 : Z𝑚 → ℝ be measurable. Set 𝑆 := 𝑔(𝑍1, . . . , 𝑍𝑚). For each 𝑖 ∈ {1, . . . , 𝑚}, assume
there exists a conditionally independent resample

𝑍 ′𝑖 ∼ Law(𝑍𝑖 | F𝑖−1), 𝑍 ′𝑖 ⊥⊥ 𝑍𝑖 | F𝑖−1. (C.28)
Let 𝜀1:𝑚, 𝜀

′
1:𝑚 be independent Rademacher variables, independent of all 𝑍, 𝑍 ′ and F𝑚.

Assume there exist measurable functions 𝑐𝑖 : Z ×Z → [0,∞), 𝑑𝑖 : Z → [0,∞) and 𝐽 ⊂ {1, . . . , 𝑚}
such that, the following conditions hold:

(i) For any 𝑖, there exists 𝑗 (𝑖) ∈ 𝐽, such that, for any 𝑧1:𝑖−1 ∈ Z 𝑖−1 and 𝑧𝑖 , 𝑧′𝑖 ∈ Z ,��𝔼[𝑆 | 𝑍1:𝑖 = 𝑧1:𝑖] − 𝔼[𝑆 | 𝑍1:𝑖−1 = 𝑧1:𝑖−1, 𝑍𝑖 = 𝑧
′
𝑖]
�� ≤ 𝑐𝑖 (𝑧𝑖 , 𝑧′𝑖) + 𝑑𝑖 (𝑧 𝑗 (𝑖) ) 1{𝑖 ∉ 𝐽} .

(C.29)

(ii) For any 𝑖 ∉ 𝐽, 𝜀𝑖𝑐𝑖 (𝑍𝑖 , 𝑍 ′𝑖 ) is 𝜎2
𝑖

-sub-Gaussian conditionally on F𝑖−1.

(iii) For any 𝑗 ∈ 𝐽, 𝑍 𝑗 is independent of F 𝑗−1.

Then, there are Gausssian random variables 𝐺 𝑗 , 𝐺
′
𝑗
∼ N (0, 8𝜎2

𝑗
) independent and independent of

all 𝑍, 𝑍 ′, 𝜀,F𝑚 such that

𝔼[ℎ(𝑆 − 𝔼[𝑆])] ≤ 𝔼

[
ℎ

(∑︁
𝑖∉𝐽

Sym 𝑗 (𝑖)
(
𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

) )
+

∑︁
𝑗∈𝐽

𝜀 𝑗𝑐 𝑗 (𝑍 𝑗 , 𝑍 ′𝑗 )
)]
, (C.30)

where we use the notation:

Sym 𝑗 (𝑖)
(
𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

) )
B 𝜀 𝑗 (𝑖)

(
𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

)
− 𝜀′𝑖 ( |𝐺′𝑖 | + 𝑑𝑖 (𝑍 ′𝑗 (𝑖) ))

)
. (C.31)
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Proof. Define G = 𝜎(𝜀1:𝑚, 𝐺1:𝑚).
We show the result by induction on 𝑘: our goal is to show that, for any 𝑘 ∈ {0, . . . , 𝑚},

𝔼[ℎ(𝑆 − 𝔼[𝑆])] ≤ 𝔼

[
ℎ

( ∑︁
𝑖∉𝐽
𝑖≥𝑘+1

(
1{ 𝑗 (𝑖) ≤ 𝑘}𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

)
+ 1{ 𝑗 (𝑖) ≥ 𝑘 + 1} Sym 𝑗 (𝑖)

(
𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

) ) )
(C.32)

+
∑︁
𝑖∈𝐽
𝑖≥𝑘+1

𝜀𝑖𝑐𝑖 (𝑍𝑖 , 𝑍 ′𝑖 ) + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]
)]
, (C.33)

where 𝐺𝑖 , 𝐺′𝑖 ∼ N (0, 8𝜎2
𝑖
) are independent and independent of all 𝑍, 𝑍 ′, 𝜀, 𝜀′,F𝑚. (C.33) holds

trivially for 𝑘 = 𝑚. We now show that if it holds for some 𝑘 ∈ {1, . . . , 𝑚}, then it also holds for
𝑘 − 1.

Note that we can rewrite∑︁
𝑖∉𝐽
𝑖≥𝑘+1

(
1{ 𝑗 (𝑖) ≤ 𝑘}𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

)
+ 1{ 𝑗 (𝑖) ≥ 𝑘 + 1} Sym 𝑗 (𝑖)

(
𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

) ) )
(C.34)

+
∑︁
𝑖∈𝐽
𝑖≥𝑘+1

𝜀𝑖𝑐𝑖 (𝑍𝑖 , 𝑍 ′𝑖 ) (C.35)

=
∑︁
𝑖∉𝐽
𝑖≥𝑘+1

1{ 𝑗 (𝑖) ≥ 𝑘 + 1} Sym 𝑗 (𝑖)
(
𝜀𝑖

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

) )
+

∑︁
𝑖∈𝐽
𝑖≥𝑘+1

𝜀𝑖𝑐𝑖 (𝑍𝑖 , 𝑍 ′𝑖 )︸                                                                                           ︷︷                                                                                           ︸
=:𝑌⊥⊥

(C.36)

+
∑︁
𝑖∉𝐽
𝑖≥𝑘+1

1{ 𝑗 (𝑖) ≤ 𝑘}𝜀𝑖
(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

)
︸                                            ︷︷                                            ︸

=:𝑌𝑘

(C.37)

= 𝑌⊥⊥ + 𝑌𝑘 , (C.38)

where 𝑌⊥⊥ is independent of F𝑘 and 𝑌𝑘 is F𝑘-measurable. More precisely, we show that

𝔼[ℎ(𝑌⊥⊥ + 𝑌𝑘 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.39)

≤ 𝔼
[
ℎ

(
𝑌⊥⊥ + 𝑌𝑘−1 + 1{𝑘 ∉ 𝐽}𝜀𝑘 ( |𝐺𝑘 | + 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )) (C.40)

+ 1{𝑘 ∈ 𝐽}(𝜀𝑘𝑐𝑘 (𝑍𝑘 , 𝑍 ′𝑘) (C.41)

+
∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

Sym𝑘 (𝜀𝑖 ( |𝐺𝑖 | + 𝑑𝑖 (𝑍𝑘)))) 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]) |𝑌⊥⊥], , (C.42)

with 𝑌𝑘−1 := ∑
𝑖∉𝐽,𝑖≥𝑘+1 𝜀𝑖 1{ 𝑗 (𝑖) ≤ 𝑘 − 1}

(
|𝐺𝑖 | + 𝑑𝑖 (𝑍 𝑗 (𝑖) )

)
, which will imply the induction step

(C.33) with 𝑘 ← 𝑘−1 by taking expectations over𝑌⊥⊥. Since𝑌⊥⊥ is considered constant in (C.42), we
may assume without loss of generality that 𝑌⊥⊥ = 0, at the potential cost of replacing ℎ by ℎ(· +𝑌⊥⊥),
which is still convex. Therefore, it suffices to show

𝔼[ℎ(𝑌𝑘 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.43)

≤ 𝔼
[
ℎ

(
𝑌𝑘−1 + 1{𝑘 ∉ 𝐽}𝜀𝑘 ( |𝐺𝑘 | + 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )) (C.44)

+ 1{𝑘 ∈ 𝐽}(𝜀𝑘𝑐𝑘 (𝑍𝑘 , 𝑍 ′𝑘) (C.45)

+
∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

Sym𝑘 (𝜀𝑖 ( |𝐺𝑖 | + 𝑑𝑖 (𝑍𝑘)))) 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]) |𝑌⊥⊥], , (C.46)

We first consider the case of 𝑘 ∉ 𝐽. Define Φ(𝑧1:𝑘) := 𝔼[𝑆 | 𝑍1:𝑘 = 𝑧1:𝑘]. We rewrite the RHS of
(C.46) as

𝔼[ℎ(𝑌𝑘 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.47)
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= 𝔼
[
ℎ
(
𝑌𝑘 +Φ(𝑍1:𝑘) − 𝔼

[
Φ(𝑍1:𝑘−1, 𝑍

′
𝑘)

�� 𝑍1:𝑘−1
]
+ 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

)
|𝑌⊥⊥

]
(C.48)

= 𝔼
[
ℎ
(
𝑌𝑘 + 𝔼

[
Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍

′
𝑘)

�� 𝑍1:𝑘
]
+ 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

)
|𝑌⊥⊥

]
(C.49)

= 𝔼
[
ℎ
(
𝑌𝑘 + 𝔼

[
Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍

′
𝑘)

�� 𝑍1:𝑘 ,G
]
+ 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

)
|𝑌⊥⊥

]
(C.50)

(C.51)

where we used the fact that 𝔼[𝑆 | 𝑍1:𝑘−1] = 𝔼[Φ(𝑍1:𝑘−1, 𝑍
′
𝑘
) | 𝑍1:𝑘−1] = 𝔼[Φ(𝑍1:𝑘1 , 𝑍

′
𝑘
) | 𝑍1:𝑘] =

𝔼[Φ(𝑍1:𝑘−1, 𝑍
′
𝑘
) | 𝑍1:𝑘 ,G], since 𝑍 ′

𝑘
∼ Law(𝑍𝑘 | 𝑍1:𝑘−1) and 𝑍 ′

𝑘
⊥⊥ 𝑍𝑘 | 𝑍1:𝑘−1 and G is indepen-

dent of all 𝑍, 𝑍 ′. Since both 𝑌𝑘 and 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆] are 𝜎(F𝑘 ,G)-measurable, by Jensen’s
inequality (convexity of ℎ) applied to the conditional expectation w.r.t. 𝑍1:𝑘 ,G, we have

𝔼[ℎ(𝑌𝑘 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.52)

≤ 𝔼
[
ℎ
(
𝑌𝑘 +Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍

′
𝑘) + 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

) ��𝑌⊥⊥] . (C.53)

Since 𝑘 ∉ 𝐽, then 𝑌𝑘 is 𝜎(F𝑘−1,G)-measurable. The following argument will now be made condi-
tionally on F𝑘−1,G, 𝑌⊥⊥.

We have that Φ(𝑍1:𝑘) − Φ(𝑍1:𝑘−1, 𝑍
′
𝑘
) is symmetric. Moreover, since |Φ(𝑍1:𝑘) − Φ(𝑍1:𝑘−1, 𝑍

′
𝑘
) | ≤

𝑐𝑘 (𝑍𝑘 , 𝑍 ′𝑘) + 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )) by assumption (i), we have that, for any 𝑡 > 0,

ℙ
(
|Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍

′
𝑘) | > 𝑡

�� F𝑘−1,G, 𝑌⊥⊥
)

(C.54)

≤ ℙ
(
𝑐𝑘 (𝑍𝑘 , 𝑍 ′𝑘) + 𝑑𝑘 (𝑍 𝑗 (𝑘 ) ) > 𝑡

�� F𝑘−1,G, 𝑌⊥⊥
)

(C.55)

≤ ℙ
(
𝑐𝑘 (𝑍𝑘 , 𝑍 ′𝑘) > 𝑡 − 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )

�� F𝑘−1,G, 𝑌⊥⊥
)

(C.56)

≤ 8ℙ
(
|𝐺𝑘 | > 𝑡 − 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )

�� F𝑘−1,G, 𝑌⊥⊥
)
, (C.57)

where we used that 𝜀𝑘𝑐𝑘 (𝑍𝑘 , 𝑍 ′𝑘) is 𝜎2
𝑘
-sub-Gaussian conditionally on F𝑘−1 by assumption (ii)

and Lemma C.3. Therefore, we can apply Lemma C.2 with 𝑋 ← Φ(𝑍1:𝑘) − Φ(𝑍1:𝑘−1, 𝑍
′
𝑘
) and

𝑍 ← 𝜀𝑘 ( |𝐺𝑘 | + 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )) with 𝐶 = 8 conditionally on F𝑘−1, 𝑌⊥⊥ to obtain

𝔼[ℎ(𝑌𝑘 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.58)

≤ 𝔼
[
ℎ
(
𝑌𝑘 + 𝜀𝑘 ( |𝐺𝑘 | + 𝑑𝑘 (𝑍 𝑗 (𝑘 ) )) + 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

) ��𝑌⊥⊥] , (C.59)

which is (C.46) in the case 𝑘 ∉ 𝐽.

For the case 𝑘 ∈ 𝐽, we use a similar argument. We now have, as before,

𝔼[𝑆 | 𝑍1:𝑘−1] = 𝔼[Φ(𝑍1:𝑘−1, 𝑍
′
𝑘) | 𝑍1:𝑘−1] (C.60)

= 𝔼[Φ(𝑍1:𝑘−1, 𝑍
′
𝑘) +

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

𝜀′𝑖
(
|𝐺′𝑖 | + 𝑑𝑖 (𝑍𝑘)

)
| 𝑍1:𝑘−1] (C.61)

= 𝔼[Φ(𝑍1:𝑘−1, 𝑍
′
𝑘) +

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

𝜀′𝑖
(
|𝐺′𝑖 | + 𝑑𝑖 (𝑍𝑘)

)
| 𝑍1:𝑘 ,G] , (C.62)

by construction.

Since both 𝑌𝑘 and 𝔼[𝑆 | 𝑍1:𝑘−1] −𝔼[𝑆] are 𝜎(F𝑘 ,G)-measurable, by Jensen’s inequality (convexity
of ℎ) applied to the conditional expectation w.r.t. 𝑍1:𝑘 ,G, we have

𝔼[ℎ(𝑌𝑘 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.63)

≤ 𝔼


ℎ

©­­­­«
𝑌𝑘 +Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍

′
𝑘) −

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

𝜀′𝑖
(
|𝐺′𝑖 | + 𝑑𝑖 (𝑍𝑘)

)
+ 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

ª®®®®¬
���������𝑌⊥⊥


.

(C.64)

We write 𝑌𝑘 as
𝑌𝑘 = 𝑌𝑘−1 +

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

𝜀𝑖 ( |𝐺𝑖 | + 𝑑𝑖 (𝑍𝑘)) , (C.65)
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where 𝑌𝑘−1 is 𝜎(F𝑘−1,G)-measurable and obtain,

𝔼[ℎ(𝑌𝑘−1 + 𝔼[𝑆 | 𝑍1:𝑘] − 𝔼[𝑆]) |𝑌⊥⊥] (C.66)

≤ 𝔼


ℎ

©­­­­«
𝑌𝑘−1 +Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍

′
𝑘) +

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

𝜀𝑖 (|𝐺𝑖 | + 𝑑𝑖 (𝑍𝑘)) − 𝜀′𝑖
(
|𝐺′𝑖 | + 𝑑𝑖 (𝑍𝑘)

)
+ 𝔼[𝑆 | 𝑍1:𝑘−1] − 𝔼[𝑆]

ª®®®®¬
���������𝑌⊥⊥


.

(C.67)

We now make the following domination argument conditionally on F𝑘−1, 𝑌𝑘−1, 𝑌⊥⊥. The random
variable

Φ(𝑍1:𝑘) −Φ(𝑍1:𝑘−1, 𝑍
′
𝑘) +

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

𝜀𝑖 ( |𝐺𝑖 | + 𝑑𝑖 (𝑍𝑘)) − 𝜀′𝑖
(
|𝐺′𝑖 | + 𝑑𝑖 (𝑍𝑘)

)
(C.68)

is symmetric and, by assumption (i) and the triangle inequality, bounded in absolute value by���������𝜀𝑘𝑐𝑘 (𝑍𝑘 , 𝑍
′
𝑘) +

∑︁
𝑖∉𝐽
𝑖≥𝑘+1
𝑗 (𝑖)=𝑘

Sym𝑘 (𝜀𝑖 (|𝐺𝑖 | + 𝑑𝑖 (𝑍𝑘)))

��������� . (C.69)

Applying Lemma C.2 conditionally on F𝑘−1, 𝑌𝑘−1, 𝑌⊥⊥ with 𝐶 = 1 (hence no constant appears)
yields the desired result.

■

We can now combine Lemma C.1 and Lemma C.4 to obtain the main moment bound of this section.
Theorem C.1 (Causal symmetrization). Let 𝑚 ∈ ℕ and (Z ,A) be a standard Borel measurable
space. Let 𝑍1, . . . , 𝑍𝑚 be Z-valued random with natural filtration (F𝑖)𝑖=0,...,𝑚. Let ℎ : ℝ → ℝ be
convex.

Let 𝑔 : Z𝑚 → ℝ be measurable and coordinate-wise Lipschitz with respect to cost functions 𝜌𝑖 : Z×
Z → [0,∞) such that 𝜌𝑖 (𝑧𝑖 , 𝑧𝑖) = 0 with constants 𝐿𝑖 ≥ 0: for any 𝑧, 𝑧′ ∈ Z𝑚 differing only in the
𝑖-th coordinate,

|𝑔(𝑧) − 𝑔(𝑧′) | ≤ 𝐿𝑖𝜌𝑖 (𝑧𝑖 , 𝑧′𝑖). (C.70)
Set 𝑆 := 𝑔(𝑍1, . . . , 𝑍𝑚) and

For each 𝑖 ∈ {1, . . . , 𝑚}, assume there exists a conditionally independent resample

𝑍 ′𝑖 ∼ Law(𝑍𝑖 | F𝑖−1), 𝑍 ′𝑖 ⊥⊥ 𝑍𝑖 | F𝑖−1. (C.71)

Let 𝜀1:𝑚, 𝜀
′
1:𝑚 be independent Rademacher variables, independent of all 𝑍, 𝑍 ′ and F𝑚.

Assume there exist constants 𝑐𝑖𝑘 ≥ 0, measurable functions 𝑑𝑖𝑘 : Z → [0,∞) and 𝐽 ⊂ {1, . . . , 𝑚}
such that, the following conditions hold:

(i) For any 𝑖 < 𝑘 , there exists 𝑗 (𝑖) ∈ 𝐽, such that, for any 𝑧1:𝑖−1 ∈ Z 𝑖−1 and 𝑧𝑖 , 𝑧′𝑖 ∈ Z ,

𝑊𝜌𝑘
(
Law(𝑍𝑘 | 𝑍1:𝑖 = 𝑧1:𝑖),Law(𝑍𝑘 | 𝑍1:𝑖−1 = 𝑧1:𝑖−1, 𝑍𝑖 = 𝑧

′
𝑖)
)
≤ 𝑐𝑖𝑘𝜌𝑖 (𝑧𝑖 , 𝑧′𝑖)+𝑑𝑖𝑘 (𝑧 𝑗 (𝑖) ) 1{𝑖 ∉ 𝐽} .

(C.72)

(ii) For any 𝑖 ∉ 𝐽, 𝜀𝑖𝜌𝑖 (𝑍𝑖 , 𝑍 ′𝑖 ) is 𝜎2
𝑖

-sub-Gaussian conditionally on F𝑖−1.

(iii) For any 𝑗 ∈ 𝐽, 𝑍 𝑗 is independent of F 𝑗−1.

Then, there are Gausssian random variables 𝐺 𝑗 , 𝐺
′
𝑗
∼ N (0, 8𝜎2

𝑗
) independent and independent of

all 𝑍, 𝑍 ′, 𝜀,F𝑚 such that

𝔼[ℎ(𝑆 − 𝔼[𝑆])] (C.73)
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≤ 𝔼

[
ℎ

(∑︁
𝑖∉𝐽

Sym 𝑗 (𝑖)

(
𝜀𝑖

(
𝐿𝑖 |𝐺𝑖 | +

∑︁
𝑘>𝑖

𝐿𝑘𝑐𝑖𝑘 |𝐺𝑖 | + 𝐿𝑘𝑑𝑖𝑘 (𝑍 𝑗 (𝑖) )
))
+

∑︁
𝑗∈𝐽

𝜀 𝑗

(
𝐿 𝑗 𝜌 𝑗 (𝑍 𝑗 , 𝑍 ′𝑗 ) +

∑︁
𝑘> 𝑗

𝐿𝑘𝑐 𝑗𝑘𝜌 𝑗 (𝑍 𝑗 , 𝑍 ′𝑗 )
))]

,

(C.74)

where we use the notation:

Sym 𝑗 (𝑖)

(
𝜀𝑖

(
𝐿𝑖 |𝐺𝑖 | +

∑︁
𝑘>𝑖

𝐿𝑘𝑐𝑖𝑘 |𝐺𝑖 | + 𝐿𝑘𝑑𝑖𝑘 (𝑍 𝑗 (𝑖) )
))
B (C.75)

𝜀 𝑗 (𝑖)

(
𝜀𝑖

(
𝐿𝑖 |𝐺𝑖 | +

∑︁
𝑘>𝑖

𝐿𝑘𝑐𝑖𝑘 |𝐺𝑖 | + 𝐿𝑘𝑑𝑖𝑘 (𝑍 𝑗 (𝑖) )
)
− 𝜀′𝑖

(
𝐿𝑖 |𝐺′𝑖 | +

∑︁
𝑘>𝑖

𝐿𝑘𝑐𝑖𝑘 |𝐺′𝑖 | + 𝐿𝑘𝑑𝑖𝑘 (𝑍 𝑗 (𝑖) )
))
.

(C.76)

C.2 TECHNICAL LEMMAS

We will make use of the following elementary lemma.

Lemma C.5. Let 𝑍 be a real-valued random variable. Assume there exist 𝑐 ≥ 1, 𝑓 , 𝑔 : ℝ → ℝ+
non-decreasing and 𝑝 ≥ 2 integer such that, for any integer 𝑞 ∈ [2, 𝑝],

𝔼[|𝑍 |𝑞]1/𝑞 ≤ 𝑓 (𝑞) + 𝑐1/𝑞𝑔(𝑞) (C.77)

Then, for any 𝛿 ∈ (0, 𝑒−2], with probability at least 1 − 𝛿,

|𝑍 | ≤
{
𝑒 𝑓 (log(1/𝛿) + 1) + 𝑔(log(1/𝛿) + 1)𝑒 if 𝛿 ≥ 𝑐𝑒−𝑝
𝑓 (𝑝)+𝑐1/𝑝𝑔(𝑝)

𝛿1/𝑝 if 𝛿 < 𝑐𝑒−𝑝 .
(C.78)

Proof. By Markov’s inequality, for any integer 𝑞 ∈ [2, 𝑝],

ℙ( |𝑍 | ≥ 𝑡) ≤ 𝔼[|𝑍 |𝑞]
𝑡𝑞

≤
(
𝑓 (𝑞) + 𝑐1/𝑞𝑔(𝑞)

𝑡

)𝑞
. (C.79)

Setting the right-hand side to 𝛿 and solving for 𝑡 gives

𝑡 =
𝑓 (𝑞) + 𝑐1/𝑞𝑔(𝑞)

𝛿1/𝑞 , (C.80)

If 𝛿 < 𝑐𝑒−𝑝 , we can take 𝑞 = 𝑝 to obtain the second case of the result. If 𝛿 ≥ 𝑐𝑒−𝑝 , we take 𝑞 the
smallest integer such that 𝑞 ≥ log(𝑐/𝛿). Note that 𝑞 is in [2, 𝑝] and 𝑞 ≤ log(𝑐/𝛿) + 2.

Since 𝑐 ≥ 1 and 𝛿 ≤ 1, we have log(𝑐/𝛿) ≥ 0 and thus
(
𝑐
𝛿

)1/𝑞 ≤
(
𝑐
𝛿

)1/log(𝑐/𝛿 )
= 𝑒. Plugging this

into (C.80) gives the bound in the first case. ■

We state the following lemma about sub-Gaussian random variables that will be useful later.

Lemma C.6. Let 𝑋 ∈ ℝ𝑚 be a 𝜎2-sub-Gaussian random variable, i.e., for any 𝜆 > 0,

log𝔼[𝑒𝜆∥𝑋−𝔼[𝑋] ∥2 ] ≤ 𝜎
2𝜆2

2
. (C.81)

Then, for 𝑋 ′ an i.i.d. copy of 𝑋 and 𝜀 a Rademacher random variable independent of 𝑋, 𝑋 ′, the
random variable 𝜀∥𝑋 − 𝑋 ′∥ is sub-Gaussian with parameter at most 4𝜎2.

Proof. Since 𝑍 B 𝜀∥𝑋 − 𝑋 ′∥ is symmetric, it suffices to bound 𝑍2 as

𝑍2 = ∥𝑋 − 𝑋 ′∥2 ≤ 2∥𝑋 − 𝔼[𝑋] ∥2 + 2∥𝑋 ′ − 𝔼[𝑋] ∥2 , (C.82)

by Young’s inequality. Using the independence of 𝑋 and 𝑋 ′ yields the result. ■
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We will require the following chaining lemma for processes with 𝐿 𝑝-Lipschitz increments. This
result is a variant of the famous Dudley’s entropy integral bound for sub-Gaussian processes, adapted
to the 𝐿 𝑝-Lipschitz setting.

This lemma is a direct consequence of the general chaining theory of Talagrand (2022) (see Tala-
grand (2022, Thm. B.2.3) with 𝜙(𝑥) = 𝑥𝑝). Let us also mention Dirksen (2015) refined these ideas
in the context of subpexponential processes while Latała & Tkocz (2015) further developed these
tools for processes with heavier tails but still admitting a control over all moments. In our setting,
the increments are assumed to be controlled only in 𝐿 𝑝 , which requires a different treatment of the
maximal inequalities at each scale.
Lemma C.7 (Dudley–type entropy integral under 𝐿 𝑝 increments). Let (𝑋𝑡 )𝑡∈𝑇 be a real-valued
process indexed by a pseudometric space (𝑇, 𝑑). Assume 𝑇 is totally bounded with diameter Δ :=
diam𝑑 (𝑇) ∈ (0,∞) and that for some 𝑝 > 1 and 𝐿 > 0,

∥𝑋𝑡 − 𝑋𝑠 ∥ 𝑝 ≤ 𝐿 𝑑 (𝑡, 𝑠) ∀ 𝑠, 𝑡 ∈ 𝑇. (C.83)

Then

𝔼

[
sup
𝑠,𝑡∈𝑇

(
𝑋𝑡 − 𝑋𝑠

) ]
≤ 𝐶 𝐿

∫ Δ

0

(
N (𝑇, 𝑑, 𝜀)

)1/𝑝
𝑑𝜀, (C.84)

where N (𝑇, 𝑑, 𝜀) is the 𝜀-covering number and 𝐶 < ∞ is an absolute constant.

C.3 CONCENTRATION BOUNDS FOR ICL

We now apply the moment symmetrization results to derive concentration bounds for ICL in the de-
pendent data setting. These concentration bounds will then be translated into generalization bounds
in the next subsection.

Let us recall ICL notations.

We denote by Θ ⊂ ℝ𝑑 the space of tasks 𝜃 and by 𝜋(𝜃) the density of the pretraining task distribution.
Given a task 𝜃, the data is generated according to a task-specific distribution with density p(· | 𝜃).
The training data is then generated by first sampling a task 𝜃 from the task distribution 𝜋, and then
sampling data points (𝑥𝑡 )𝑡≥1 according to

𝑥𝑡+1 ∼ p𝑡+1 (· | 𝑥1:𝑡 , 𝜃) . (C.85)

where 𝑥1:𝑡 = (𝑥1, . . . , 𝑥𝑡 ).

Given a dataset of tasks 𝜃1, . . . , 𝜃𝑁 and associated samples 𝑥 (1)1:𝑇 , . . . , 𝑥
(𝑁 )
1:𝑇 , a model 𝑓 is trained by

minimizing the next-sample prediction loss

𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) =
1
𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑓 (𝑥𝑛1:𝑡−1), 𝑥𝑡
𝑛) , (C.86)

where ℓ𝑡 : X × X → [0, +∞) is a loss function at step 𝑡.

We now provide a detailed version of Assumption 2.
Assumption 6 (Weak dependence). We assume that there are deterministic coefficients (𝐴𝑡 )𝑡≥1 and
(𝐵𝑠,𝑡 )𝑡≥𝑠≥1 such that, for any 𝑡 ≥ 𝑠 ≥ 1, 𝜃, 𝜃′ ∈ Θ, any 𝑥1:(𝑠−1) ∈ X 𝑠−1, and any 𝑥𝑡 , 𝑥𝑡 ′ ∈ X ,

𝑊1 (p𝑡 (𝑑𝑥𝑡 | 𝜃), p𝑡 (𝑑𝑥𝑡 ′ | 𝜃′)) ≤ 𝐴𝑡 ∥𝜃 − 𝜃′∥ (C.87)
𝑊1 (p𝑡 (𝑑𝑥𝑡 | 𝑥1:𝑠 , 𝜃), p𝑡 (𝑑𝑥𝑡 ′ | 𝑥1:(𝑠−1) , 𝑥

′
𝑠 , 𝜃)) ≤ 𝐵𝑠,𝑡 ∥𝜃∥ . (C.88)

In the second assumption, the Wasserstein distance between the conditional distributions of 𝑥𝑡 given
𝑥𝑠 and 𝑥′𝑠 is assumed to be controlled by the norm of the task 𝜃. This is a slight difference with
Assumption 2 where we assumed a dependence on 1+∥𝜃∥. This is however without loss of generality
as we can always consider 𝜃̃ = (1, 𝜃) ∈ ℝ𝑑+1 and redefine the task distribution accordingly and this
cosmetic change simplifies the presentation. We could also consider a dependence on ∥𝑥𝑠 − 𝑥′𝑠 ∥, see
Theorem C.1, but we omit this for simplicity.
Assumption 7 (Finite moments of the task distribution). There exists 𝑞 ≥ 2 integer such that
𝔼[∥𝜃∥𝑞] < +∞.
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Our theory could be extended to more general assumptions on the distributions of sample, but, for
simplicity, we will make the following sub-Gaussian assumption on the data, conditionally on the
past data and the task. Hence, this assumption does not restrict the task distribution in any way.
Assumption 8 (Sub-Gaussian data). There exists 𝜎 > 0 such that, for any 𝑡 ≥ 1, 𝜃 ∈ Θ, and any
𝑥1:(𝑡−1) ∈ X 𝑡−1, 𝑥𝑡 ∼ p𝑡 (· | 𝑥1:(𝑡−1) , 𝜃) is 𝜎2-sub-Gaussian, i.e.,, for any 𝜆 > 0,

log𝔼𝑥𝑡∼p𝑡 ( · |𝑥1:(𝑡−1) , 𝜃 )
[
𝑒𝜆∥𝑥𝑡−𝔼[𝑥𝑡 ] ∥

2
]
≤ 𝜎

2𝜆2

2
. (C.89)

Assumption 9 (Lipschitz model and loss). The models 𝑓 ∈ F are uniformly Lipschitz in the fol-
lowing sense: there exists 𝐿𝑇 > 0 such that, for any 𝑓 ∈ F , any 𝑥1:𝑇 , 𝑥′𝑡 ,

1
𝑇

𝑇∑︁
𝑠=1
∥ 𝑓 (𝑥1:𝑠−1) − 𝑓 (𝑥1:𝑡−1, 𝑥

′
𝑡 , 𝑥𝑡+1:𝑠−1)∥ ≤ 𝐿𝑇 ∥𝑥𝑡 − 𝑥′𝑡 ∥ , (C.90)

The losses ℓ𝑡 are uniformly 1-Lipschitz: for any 𝑡 ≥ 1, any 𝑥, 𝑥′ ∈ X ,

|ℓ𝑡 (𝑥, 𝑥′) − ℓ𝑡 (𝑥, 𝑥′) | ≤ ∥𝑥 − 𝑥′∥ . (C.91)

We will consider the following assumption on the function class F .
Assumption 10. Assume that the hypothesis class F is bounded for w.r.t. some distance dist on F
and that, the following extended Lipschitz condition holds: for any 𝑓 , 𝑓 ′ ∈ F , any 𝑥1:𝑇 , any 𝑡 ≥ 1,
any 𝑥′𝑡 , for any 𝑓 ∈ F , any 𝑥1:𝑇 , 𝑥′𝑡 ,

1
𝑇

𝑇∑︁
𝑠=1
∥ 𝑓 (𝑥1:𝑠−1) − 𝑓 (𝑥1:𝑡−1, 𝑥

′
𝑡 , 𝑥𝑡+1:𝑠−1) −

(
𝑓 ′ (𝑥1:𝑠−1) − 𝑓 ′ (𝑥1:𝑡−1, 𝑥

′
𝑡 , 𝑥𝑡+1:𝑠−1)

)
∥ (C.92)

≤ 𝑀𝑇 ∥𝑥𝑡 − 𝑥′𝑡 ∥ dist( 𝑓 , 𝑓 ′) . (C.93)

Note that Assumption 9 is implied of Assumption 10 when the constant function equal to zero is in
F with 𝐿𝑇 = 𝑀𝑇 sup 𝑓 ∈F dist( 𝑓 , 0).

We denote by ∥𝑋 ∥ℎ the 𝐿ℎ norm of a random variable 𝑋 , i.e., ∥𝑋 ∥ℎ = (𝔼[∥𝑋 ∥ℎ])1/ℎ.
Lemma C.8. For any 𝑟 ∈ [2, 𝑞] integer, under Assumptions 6–9, we have




 sup

𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}
(C.94)

− 𝔼
[
sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}]





𝑟

(C.95)

≤ 𝑐𝜎𝐿𝑇
√︂
𝑇𝑟

𝑁
(C.96)

+ 𝑐
√
𝑟
𝐿𝑇√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑟3/2 𝐿𝑇

𝑁1−1/𝑟

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.97)

+ 𝑐
√
𝑟
𝐿𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑟

𝐿𝑇

𝑁1−1/𝑟

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞 , (C.98)

where 𝑐 > 0 is a universal constant.

Proof. We apply Theorem C.1 with

(𝑍1, . . . , 𝑍𝑚) = (𝜃1, 𝑥
(1)
1 , . . . , 𝑥𝑇

(1) , . . . , 𝜃𝑁 , 𝑥
(𝑁 )
1 , . . . , 𝑥𝑇

(𝑁 ) ) , (C.99)

and

𝑔(𝜃1, 𝑥
(1)
1:𝑇 , . . . , 𝜃𝑁 , 𝑥

(𝑁 )
1:𝑇 ) (C.100)

= sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}
(C.101)
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= sup
𝑓 ∈F

1
𝑁𝑇

{
𝔼

[
𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑓 (𝑥𝑛1:𝑡−1), 𝑥𝑡
𝑛)

]
−

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑓 (𝑥𝑛1:𝑡−1), 𝑥𝑡
𝑛)

}
. (C.102)

By Assumption 9, 𝑔 is coordinate-wise Lipschitz with respect to 𝑥𝑡 𝑛 with constant 𝐿𝑁,𝑇 B 𝐿𝑇/𝑁
and formally constant with respect to 𝜃𝑛.

By Lemma C.6 and Assumption 8, 𝜀𝑡 𝑛∥𝑥𝑡 𝑛−𝑥𝑡 ′𝑛∥ is 4𝜎2-sub-Gaussian conditionally on 𝑥1:(𝑡−1) , 𝜃𝑛,
for 𝜀𝑡 𝑛 a Rademacher variable independent of all data.

We now apply Theorem C.1 with ℎ(𝑥) = |𝑥 |𝑟 for 𝑟 integer such that 2 ≤ 𝑟 ≤ 𝑞 and 𝐽 corresponding
to the indices of the tasks 𝜃1, . . . , 𝜃𝑁 . We obtain that

∥ 𝑓 − 𝔼[ 𝑓 ] ∥𝑟 (C.103)

≤





 𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

Sym𝑛

(
𝜀𝑡
𝑛

(
𝐿𝑁,𝑇 |𝐺𝑡 𝑛 | +

∑︁
𝑠>𝑡

𝐿𝑁,𝑇𝐵𝑡 ,𝑠 ∥𝜃𝑛∥
))
+

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝐿𝑁,𝑇𝜀𝑛𝐴𝑡 ∥𝜃𝑛 − 𝜃𝑛′∥






𝑟

,

(C.104)

where

Sym𝑛

(
𝜀𝑡
𝑛

(
𝐿𝑁,𝑇 |𝐺𝑡 𝑛 | +

∑︁
𝑠>𝑡

𝐿𝑁,𝑇𝐵𝑡 ,𝑠 ∥𝜃𝑛∥
))
B (C.105)

𝜀𝑛

(
𝜀𝑡
𝑛

(
𝐿𝑁,𝑇 |𝐺𝑡 𝑛 | +

∑︁
𝑠>𝑡

𝐿𝑁,𝑇𝐵𝑡 ,𝑠 ∥𝜃𝑛∥
)
− 𝜀𝑡 𝑛′

(
𝐿𝑁,𝑇 |𝐺𝑡 𝑛′ | +

∑︁
𝑠>𝑡

𝐿𝑁,𝑇𝐵𝑡 ,𝑠 ∥𝜃𝑛∥
))
, (C.106)

and 𝐺𝑡 𝑛, 𝐺𝑡 ′𝑛 ∼ N (0, 32𝜎2) independent of all data and Rademacher variables.

Using Minkowski’s inequality, we have

∥ 𝑓 − 𝔼[ 𝑓 ] ∥𝑟 (C.107)

≤





 𝑁∑︁
𝑛=1

𝜀𝑛

𝑇∑︁
𝑡=1

𝐿𝑁,𝑇 (𝜀𝑡 𝑛 |𝐺𝑡 𝑛 | − 𝜀𝑡 𝑛′ |𝐺𝑡 𝑛′ |)






𝑟

(C.108)

+





 𝑁∑︁
𝑛=1

𝜀𝑛

(
∥𝜃𝑛∥

𝑇∑︁
𝑡=1

𝐿𝑁,𝑇
∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠𝜀𝑡
𝑛 − ∥𝜃𝑛′∥

𝑇∑︁
𝑡=1

𝐿𝑁,𝑇
∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠𝜀𝑡
𝑛′

)





𝑟

(C.109)

+





 𝑁∑︁
𝑛=1

𝜀𝑛∥𝜃𝑛 − 𝜃𝑛′∥
𝑇∑︁
𝑡=1

𝐿𝑁,𝑇 𝐴𝑡







𝑟

. (C.110)

We now bound each term (C.108)–(C.110) separately.

We begin with (C.108). By independence of the Rademacher variables and the Gaussian variables,
we have that (C.108) can be rewritten as

(𝐶.108) =
√

2𝐿𝑁,𝑇






 𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

𝐺𝑡
𝑛







𝑟

(C.111)

= 8𝜎𝐿𝑁,𝑇
√
𝑁𝑇 ∥𝐺∥𝑟 , (C.112)

where𝐺 ∼ N (0, 1). Using standard bounds on subGaussian random variables, we have that ∥𝐺∥𝑟 ≤
𝑐
√
𝑟 for some universal constant 𝑐 > 0 (see e.g. Vershynin (2018, Chap. 2)). Hence, we have

(𝐶.108) ≤ 𝑐𝜎𝐿𝑁,𝑇
√
𝑁𝑇𝑟 , (C.113)

for some universal constant 𝑐 > 0.

We now turn to (C.109). By Boucheron et al. (2005, Thm. 15.11), applied to each independent and
zero-mean term

𝜀𝑛

(
∥𝜃𝑛∥

𝑇∑︁
𝑡=1

𝜀𝑡
𝑛
∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠 − ∥𝜃𝑛′∥
𝑇∑︁
𝑡=1

𝜀𝑡
𝑛′∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)
, (C.114)
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we have

(𝐶.109) ≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁






∥𝜃1∥
𝑇∑︁
𝑡=1

𝜀𝑡
1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠 − ∥𝜃′1∥
𝑇∑︁
𝑡=1

𝜀𝑡
1′∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







2

(C.115)

+ 𝑐𝑟𝐿𝑁,𝑇𝑁
1/𝑟






∥𝜃1∥
𝑇∑︁
𝑡=1

𝜀𝑡
1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠 − ∥𝜃′1∥
𝑇∑︁
𝑡=1

𝜀𝑡
1′∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







𝑟

, (C.116)

where 𝑐 > 0 is a universal constant.

Using Minkowski’s inequality again, we have

(𝐶.109) ≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁






∥𝜃1∥
𝑇∑︁
𝑡=1

𝜀𝑡
1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







2

(C.117)

+ 𝑐𝑟𝐿𝑁,𝑇𝑁
1/𝑟






∥𝜃1∥
𝑇∑︁
𝑡=1

𝜀𝑡
1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







𝑟

(C.118)

≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁 ∥𝜃1∥2






 𝑇∑︁
𝑡=1

𝜀𝑡
1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







2

(C.119)

+ 𝑐𝑟𝐿𝑁,𝑇𝑁
1/𝑟 ∥𝜃1∥𝑟






 𝑇∑︁
𝑡=1

𝜀𝑡
1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







𝑟

, (C.120)

where we used that 𝜃1 and (𝜀𝑡 1)𝑡≥1 are independent. Now,
∑𝑇
𝑡=1 𝜀𝑡

1 ∑
𝑠>𝑡 𝐵𝑡 ,𝑠 is a zero-mean sub-

Gaussian random variable with parameter
∑𝑇
𝑡=1

(∑
𝑠>𝑡 𝐵𝑡 ,𝑠

)2 by Hoeffding’s lemma (see e.g. Wain-
wright (2019, Exercise 2.4)) and we have, for some universal constant 𝑐 > 0, for any integer ℎ




 𝑇∑︁

𝑡=1
𝜀𝑡

1 ∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠







ℎ

≤ 𝑐
√
ℎ

(
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
)1/2

. (C.121)

Plugging this into (C.120) with ℎ = 2 and ℎ = 𝑟 gives

(𝐶.109) ≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑟3/2𝐿𝑁,𝑇𝑁

1/𝑟

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑟 (C.122)

≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑟3/2𝐿𝑁,𝑇𝑁

1/𝑟

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.123)

(C.124)

where we used that 𝑟 ≤ 𝑞 to obtain the last inequality.

Finally, we proceed similarly for (C.110). By Boucheron et al. (2005, Thm. 15.11) applied to each
independent and zero-mean term

𝜀𝑛∥𝜃𝑛 − 𝜃𝑛′∥
𝑇∑︁
𝑡=1

𝐿𝑁,𝑇 𝐴𝑡 , (C.125)

we have

(𝐶.110) ≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)

𝜃1 − 𝜃′1




2 + 𝑐𝑟𝐿𝑁,𝑇𝑁
1/𝑟

(
𝑇∑︁
𝑡=1

𝐴𝑡

)

𝜃1 − 𝜃′1



𝑟

(C.126)

≤ 𝑐
√
𝑟𝐿𝑁,𝑇

√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑟𝐿𝑁,𝑇𝑁1/𝑟

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞 , (C.127)

where we use Minkowski’s inequality and the fact that 𝑟 ≤ 𝑞 to obtain the last inequality.

Combining (C.113), (C.124), and (C.127) and replacing 𝐿𝑁,𝑇 by 𝐿𝑇/𝑁 gives the result. ■
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Proposition C.1 (Concentration bound for ICL). Under Assumptions 6–9, for any 𝛿 ∈ (0, 𝑒−2],
with probability at least 1 − 𝛿,����� sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}
− 𝔼

[
sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}]�����
(C.128)

is bounded by

(a) If 𝛿 ≥ 𝑁𝑒−𝑞 ,

𝑐𝜎
𝐿𝑇√
𝑁

√︁
𝑇 (log(𝑁/𝛿) + 1) (C.129)

+ 𝑐
√︁
(log(𝑁/𝛿) + 1) 𝐿𝑇√

𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐(log(𝑁/𝛿) + 1)3/2 𝐿𝑇

𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞

(C.130)

+ 𝑐
√︁
(log(𝑁/𝛿) + 1) 𝐿𝑇√

𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐(log(𝑁/𝛿) + 1) 𝐿𝑇

𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

(C.131)

(b) If 𝛿 < 𝑁𝑒−𝑞 ,

1
𝛿1/𝑞

(
𝑐𝜎𝐿𝑁,𝑇

√︂
𝑇𝑞

𝑁
(C.132)

+ 𝑐√𝑞 𝐿𝑇√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑞3/2 𝐿𝑇

𝑁1−1/𝑞

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.133)

+ 𝑐√𝑞 𝐿𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝐿𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
(C.134)

Proof. We apply Lemma C.5 to the moment bound from Lemma C.8.

For Lemma C.5, we use:

𝑓 (𝑟) = 𝑐𝜎𝐿𝑇
√︂
𝑇𝑟

𝑇
+ 𝑐
√
𝑟
𝐿𝑇√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐

√
𝑟
𝐿𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 (C.135)

𝑔(𝑟) = 𝑐𝑟3/2 𝐿𝑇

𝑁1−1/𝑟

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 + 𝑐𝑟

𝐿𝑇

𝑁1−1/𝑟

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞 . (C.136)

Applying Lemma C.5 then gives the desired concentration bound. ■

C.4 COMPLEXITY BOUNDS FOR ICL

We now derive bounds for the analogue of the Rademacher complexity term in our setting. We will
again rely on Theorem C.1.

Lemma C.9. Under Assumptions 6–10, we have

𝔼

[
sup
𝑓 ∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
(C.137)

≤ 𝑐I (F , dist, 𝑞)
(
𝜎𝑀𝑇

√︂
𝑇𝑞

𝑁
(C.138)
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+ 𝑐√𝑞 𝑀𝑇√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑞3/2 𝑀𝑇

𝑁1−1/𝑞

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.139)

+ √𝑞 𝑀𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝑀𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
, (C.140)

where 𝑐 > 0 is a universal constant and where the Dudley-type integral Idist (F) is defined as

I (F , dist, 𝑞) =
∫ Δ

0
(N (F , dist, 𝑢))1/𝑞𝑑𝑢 , with Δ = diamdist (F) = sup

𝑓 , 𝑓 ′∈F
dist( 𝑓 , 𝑓 ′) . (C.141)

Proof. The main idea of the proof is to use Lemma C.7 and to rely on Theorem C.1 to control the
moments of the increments of the process sup 𝑓 ∈F 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) − 𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
.

Fix 𝑓 , 𝑓 ′ ∈ F . We apply Theorem C.1 with

(𝑍1, . . . , 𝑍𝑚) = (𝜃1, 𝑥
(1)
1 , . . . , 𝑥𝑇

(1) , . . . , 𝜃𝑁 , 𝑥
(𝑁 )
1 , . . . , 𝑥𝑇

(𝑁 ) ) , (C.142)
and

𝑔(𝜃1, 𝑥
(1)
1:𝑇 , . . . , 𝜃𝑁 , 𝑥

(𝑁 )
1:𝑇 ) (C.143)

= 𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) (C.144)

−
(
𝔼

[
𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

)
(C.145)

and proceed as in the proof of Lemma C.8 except that 𝑔 is now 𝑀𝑇 dist( 𝑓 , 𝑓 ′) coordinate-wise
Lipschitz by Assumption 10 to obtain that:


𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) − 𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
−

(
𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) − 𝔼

[
𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

] )



𝑞

(C.146)

≤ dist( 𝑓 , 𝑓 ′)
(
𝑐𝜎𝑀𝑇

√︂
𝑇𝑞

𝑁
(C.147)

+ 𝑐√𝑞 𝑀𝑇√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑞3/2 𝑀𝑇

𝑁1−1/𝑞

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.148)

+ 𝑐√𝑞 𝑀𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝑀𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
. (C.149)

Applying Lemma C.7 then gives that

𝔼

[
sup
𝑓 , 𝑓 ′∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) −

(
𝔼

[
𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

)]
(C.150)

is bounded by the RHS of the statement of the lemma. To conclude, it suffices to notice that, for any
𝑓 0 ∈ F fixed,

𝔼

[
sup
𝑓 ∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
(C.151)

= 𝔼

[
sup
𝑓 ∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) −

(
𝔼

[
𝐿̂ ( 𝑓 0, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 0, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

)]
(C.152)

≤ 𝔼

[
sup
𝑓 , 𝑓 ′∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) −

(
𝔼

[
𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 ′, (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

)]
,

(C.153)
which concludes the proof. ■
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C.5 GENERALIZATION BOUNDS FOR ICL

Putting together the concentration bound from Proposition C.1 and the complexity bound from
Lemma C.9, we obtain the following generalization bound for ICL:
Theorem C.2 (Generalization bound for ICL). Under Assumptions 6–10, for any 𝛿 ∈ (0, 𝑒−2], for
any 𝛿 ∈ (0, 𝑁𝑒−𝑞], with probability at least 1 − 𝛿, the generalization gap

sup
𝑓 ∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 ) (C.154)

is bounded by

(a) If 𝛿 ≥ 𝑁𝑒−𝑞 ,

𝑐𝜎

√︂
𝑇

𝑁

(
𝐿𝑇

√︁
(log(𝑁/𝛿) + 1) + 𝑀𝑇I (F , dist, 𝑞)√𝑞

)
(C.155)

+ 𝑐
(
𝐿𝑇

√︁
(log(𝑁/𝛿) + 1) + 𝑀𝑇I (F , dist, 𝑞)√𝑞

) 1
√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 (C.156)

+ 𝑐
(
(log(𝑁/𝛿) + 1)3/2𝐿𝑇 + 𝑞3/2𝑁1/𝑞𝑀𝑇I (F , dist, 𝑞)

) 1
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞

(C.157)

+ 𝑐
(
𝐿𝑇

√︁
(log(𝑁/𝛿) + 1) + 𝑀𝑇I (F , dist, 𝑞)√𝑞

) 1
√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 (C.158)

+ 𝑐
(
(log(𝑁/𝛿) + 1)𝐿𝑇 + 𝑞𝑁1/𝑞𝑀𝑇I (F , dist, 𝑞)

) 1
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞 (C.159)

(b) If 𝛿 < 𝑁𝑒−𝑞 ,(
𝐿𝑇

𝛿1/𝑞 + 𝑀𝑇I (F , dist, 𝑞)
) (
𝑐𝜎

√︂
𝑇𝑞

𝑁
(C.160)

+ 𝑐√𝑞 𝐿𝑇√
𝑁

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑞3/2 𝐿𝑇

𝑁1−1/𝑞

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.161)

+ 𝑐√𝑞 𝐿𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝐿𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
, , (C.162)

where 𝑐 > 0 is a universal constant and where the Dudley-type integral Idist (F) is defined as

I (F , dist, 𝑞) =
∫ Δ

0
(N (F , dist, 𝑢))1/𝑞𝑑𝑢 , with Δ = diamdist (F) = sup

𝑓 , 𝑓 ′∈F
dist( 𝑓 , 𝑓 ′) . (C.163)

Proof. The result is obtained by combining Proposition C.1 and Lemma C.9: we write the decom-
position

sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}
(C.164)

= 𝔼

[
sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}]
(C.165)

+ sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}
− 𝔼

[
sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, 𝑥𝑛1:𝑇 )𝑛≤𝑁 )

}]
,

(C.166)
and we bound (C.165) using Lemma C.9 and (C.166) with high probability using Proposition C.1.

■
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C.6 EXTENSION: REPEATED TASKS

In some ICL settings, tasks may be repeated multiple times in the training set. In this section, we
extend our generalization bound Theorem C.2 to this setting.

We introduce 𝑀 > 0, the number of times each task is repeated in the training set. The training data
is now generated by first sampling a set of tasks 𝜃1, . . . , 𝜃𝑁 independently and identically according
to the task distribution 𝜋, and then, for each task 𝜃𝑛, independently sampling 𝑀 sequences of data
points (𝑥𝑡 𝑛,𝑚)𝑡≥1 for 𝑚 = 1, . . . , 𝑀 according to

𝑥
𝑛,𝑚

𝑡+1 ∼ p𝑡+1 (· | 𝑥
𝑛,𝑚

1:𝑡 , 𝜃𝑛) , (C.167)

where 𝑥𝑛,𝑚1:𝑡 = (𝑥𝑛,𝑚1 , . . . , 𝑥𝑡
𝑛,𝑚).

Given such a dataset, a model 𝑓 is trained by minimizing the next-sample prediction loss

𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 ) =
1

𝑁𝑇𝑀

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑓 (𝑥𝑛,𝑚1:𝑡−1), 𝑥𝑡
𝑛) . (C.168)

Applying the same proof as Lemma C.8, we obtain the following moment bound.

Lemma C.10. For any 𝑟 ∈ [2, 𝑞] integer, under Assumptions 6–9, we have




 sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

}
(C.169)

− 𝔼
[
sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

}]





𝑟

(C.170)

≤ 𝑐𝜎𝐿𝑇
√︂

𝑇𝑟

𝑁𝑀
(C.171)

+ 𝑐
√
𝑟
𝐿𝑇√
𝑁𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑟3/2 𝐿𝑇

𝑁1−1/𝑟
√
𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.172)

+ 𝑐
√
𝑟
𝐿𝑇√
𝑁𝑀

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑟

𝐿𝑇

𝑁1−1/𝑟𝑀

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞 , (C.173)

where 𝑐 > 0 is a universal constant.

Proof sketch. The analogue of 𝑔 in the proof of Lemma C.8 is now coordinate-wise Lipschitz with
respect to 𝑥𝑡 𝑛,𝑚 with constant 𝐿𝑇

𝑁𝑀
. The proof proceeds as in Lemma C.8 with minor modifications

to account for the 𝑀 independent repetitions. When going from (C.108) to (C.112), an additional
factor

√
𝑀 appears due to the sum of the independent repetitions. In the Hoeffding bound (C.121),

a factor
√
𝑀 also appears. Finally, when bounding (C.110), an additional 𝑀 factor also appears in

(C.126). ■

We now proceed with an analogue of Proposition C.1.

Proposition C.2 (Concentration bound for ICL). Under Assumptions 6–9, for any 𝛿 ∈ (0, 𝑒−2],
with probability at least 1 − 𝛿,����� sup

𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

}
(C.174)

− 𝔼
[
sup
𝑓 ∈F

{
𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

}]����� (C.175)

is bounded by

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

(a) If 𝛿 ≥ 𝑁𝑒−𝑞 ,

𝑐𝜎
𝐿𝑇√
𝑁𝑀

√︁
𝑇 (log(𝑁/𝛿) + 1) (C.176)

+ 𝑐
√︁
(log(𝑁/𝛿) + 1) 𝐿𝑇√

𝑁𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐(log(𝑁/𝛿) + 1)3/2 𝐿𝑇

𝑁
√
𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞

(C.177)

+ 𝑐
√︁
(log(𝑁/𝛿) + 1) 𝐿𝑇√

𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐(log(𝑁/𝛿) + 1) 𝐿𝑇

𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

(C.178)

(b) If 𝛿 < 𝑁𝑒−𝑞 ,

1
𝛿1/𝑞

(
𝑐𝜎𝐿𝑁,𝑇

√︂
𝑇𝑞

𝑁𝑀
(C.179)

+ 𝑐√𝑞 𝐿𝑇√
𝑁𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑞3/2 𝐿𝑇

𝑁1−1/𝑞
√
𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.180)

+ 𝑐√𝑞 𝐿𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝐿𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
(C.181)

Proof sketch. As for Proposition C.1, we apply Lemma C.5 to the moment bound from Lemma C.10.
■

We now proceed with the analogue of Lemma C.9 whose proof is similar.
Lemma C.11. Under Assumptions 6–10, we have

𝔼

[
sup
𝑓 ∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
(C.182)

≤ 𝑐I (F , dist, 𝑞)
(
𝜎𝑀𝑇

√︂
𝑇𝑞

𝑁𝑀
(C.183)

+ 𝑐√𝑞 𝑀𝑇√
𝑁𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑞3/2 𝑀𝑇

𝑁1−1/𝑞
√
𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.184)

+ √𝑞 𝑀𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝑀𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
, (C.185)

where 𝑐 > 0 is a universal constant.

Putting together Proposition C.2 and Lemma C.11, we obtain the following generalization bound
for ICL with repeated tasks.
Theorem C.3 (Generalization bound for ICL). Under Assumptions 6–10, for any 𝛿 ∈ (0, 𝑒−2], for
any 𝛿 ∈ (0, 𝑁𝑒−𝑞], with probability at least 1 − 𝛿, the generalization gap

sup
𝑓 ∈F

𝔼

[
𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 )

]
− 𝐿̂ ( 𝑓 , (𝜃𝑛, (𝑥𝑛,𝑚1:𝑇 )𝑚≤𝑀 )𝑛≤𝑁 ) (C.186)

is bounded by

(a) If 𝛿 ≥ 𝑁𝑒−𝑞 ,

𝑐𝜎

√︂
𝑇

𝑁𝑀

(
𝐿𝑇

√︁
(log(𝑁/𝛿) + 1) + 𝑀𝑇I (F , dist, 𝑞)√𝑞

)
(C.187)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

+ 𝑐
(
𝐿𝑇

√︁
(log(𝑁/𝛿) + 1) + 𝑀𝑇I (F , dist, 𝑞)√𝑞

) 1
√
𝑁𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 (C.188)

+ 𝑐
(
(log(𝑁/𝛿) + 1)3/2𝐿𝑇 + 𝑞3/2𝑁1/𝑞𝑀𝑇I (F , dist, 𝑞)

) 1
𝑁
√
𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞

(C.189)

+ 𝑐
(
𝐿𝑇

√︁
(log(𝑁/𝛿) + 1) + 𝑀𝑇I (F , dist, 𝑞)√𝑞

) 1
√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 (C.190)

+ 𝑐
(
(log(𝑁/𝛿) + 1)𝐿𝑇 + 𝑞𝑁1/𝑞𝑀𝑇I (F , dist, 𝑞)

) 1
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞 (C.191)

(b) If 𝛿 < 𝑁𝑒−𝑞 ,(
𝐿𝑇

𝛿1/𝑞 + 𝑀𝑇I (F , dist, 𝑞)
) (
𝑐𝜎

√︂
𝑇𝑞

𝑁𝑀
(C.192)

+ 𝑐√𝑞 𝐿𝑇√
𝑁𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥2 + 𝑐𝑞3/2 𝐿𝑇

𝑁1−1/𝑞
√
𝑀

√√
𝑇∑︁
𝑡=1

(∑︁
𝑠>𝑡

𝐵𝑡 ,𝑠

)2
∥𝜃1∥𝑞 (C.193)

+ 𝑐√𝑞 𝐿𝑇√
𝑁

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥2 + 𝑐𝑞

𝐿𝑇

𝑁1−1/𝑞

(
𝑇∑︁
𝑡=1

𝐴𝑡

)
∥𝜃1 − 𝔼[𝜃1] ∥𝑞

)
, , (C.194)

where 𝑐 > 0 is a universal constant and where the Dudley-type integral Idist (F) is defined as

I (F , dist, 𝑞) =
∫ Δ

0
(N (F , dist, 𝑢))1/𝑞𝑑𝑢 , with Δ = diamdist (F) = sup

𝑓 , 𝑓 ′∈F
dist( 𝑓 , 𝑓 ′) . (C.195)

The proof of Theorem C.3 is the same as that of Theorem C.2, using Proposition C.2 instead of
Proposition C.1 and Lemma C.11 instead of Lemma C.9.

We also provide a simplified version of Theorem C.3 in the spirit of Theorem 2.
Theorem C.4. Under Assumption 2, for any 𝛿 ∈ (0, 𝑒−2), with probability at least 1 − 𝛿, it holds:

(a) If 𝛿 ≥ 𝑁𝑒−𝑞 , then

ĝen ≤ O
(
(log 1/𝛿)3/2𝐿𝑇

√
𝑇

√
𝑁𝑀

(
1 + 𝐴𝑇

√
𝑇𝑀 + 𝐵𝑇𝑇

))
, (C.196)

(b) If 𝛿 < 𝑁𝑒−𝑞 , then

ĝen ≤ O
(

𝐿𝑇
√
𝑇

𝛿1/𝑞
√
𝑁𝑀

(
1 + 𝐴𝑇

√
𝑇𝑀 + 𝐵𝑇𝑇

))
, (C.197)

where the terms in O(·) depend polynomially on 𝑞, log 𝑁 , the scale of 𝜋 and the size of F .
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D ADDITIONAL DETAILS ON EXAMPLES

D.1 EXAMPLE: VOLTERRA EQUATION MODEL

We discuss the Volterra equation model to explicit the dependence of the generalization bounds on
the memory decay parameter 𝛼 > 0.

Setup. Let (𝑊𝑡 )𝑡≥1 be noise sequence taking values in ℝ𝑑 . Given a Lipschitz drift 𝑏 : ℝ𝑑 → ℝ𝑑

with Lipschitz constant 𝐿 ≥ 0, we consider the discretized Volterra equation: for 𝑡 ≥ 0,

𝑋𝑡+1 =
𝑡∑︁
𝑢=1

𝐾 (𝑡, 𝑢)
(
𝑏(𝑋𝑢) +𝑊𝑢

)
, 𝐾 (𝑡, 𝑢) =

1
(𝑡 − 𝑢 + 1)𝛼 , 𝛼 > 0. (D.1)

When applying the generalization framework, we would consider the augmented sequence
(𝑋1,𝑊1, 𝑋2,𝑊2, . . .). To satisfy the weak dependence assumption Assumption 6, we need to bound
the effect of perturbations in either the state or the noise or the drift. We begin with perturbations in
the state or noise, and we discuss drift perturbations at the end of this section. For perturbations in
the state or noise, we will obtain bounds on the Wasserstein distance between the conditional laws
of 𝑋𝑡 and 𝑋 ′𝑡 given the past, where 𝑋𝑡 and 𝑋 ′𝑡 are two versions of the process (D.1) that differ by a
perturbation at some time 𝑠 < 𝑡.

The coefficient 𝛼 will play a key role in the dependence structure through the sums:

𝐻𝛼 (𝑛) =
𝑛∑︁
𝑟=1

1
𝑟𝛼
. (D.2)

We also use 𝜁 (𝛼) = ∑∞
𝑟=1 𝑟

−𝛼 for 𝛼 > 1 and we have the following bounds on 𝐻𝛼 (𝑛)

𝐻𝛼 (𝑛) ≤
{

1 + log 𝑛, 𝛼 = 1,

𝜁 (𝛼), 𝛼 > 1.
(D.3)

We will make use of the following technical lemma.
Lemma D.1. Let (𝑎𝑛)𝑛≥0 be nonnegative numbers and suppose that for 𝑛 ≥ 1,

𝑎𝑛 ≤ 𝐿
𝑛∑︁
𝑟=1

𝑟−𝛼 𝑎𝑛−𝑟 + 𝑔𝑛, (D.4)

with non-decreasing (𝑔𝑛)𝑛≥1 and given 𝑎0 ≥ 0. Define, for 𝑁 ≥ 1,

𝜆𝑁 B

{
𝐿 (1 + log 𝑁) if 𝛼 = 1,

𝐿𝜁 (𝛼) if 𝛼 > 1.
(D.5)

Then, for all 1 ≤ 𝑛 ≤ 𝑁 ,

𝑎𝑛 ≤ 𝜆𝑛𝑁𝑎0 +
𝑛∑︁
𝑗=1
𝑔 𝑗𝜆

𝑛− 𝑗
𝑁

. (D.6)

Proof. Let 𝐴𝑛 := max0≤𝑚≤𝑛 𝑎𝑚. From (D.4), 𝑎𝑛 ≤ 𝐿
∑𝑛
𝑟=1 𝑟

−𝛼𝐴𝑛−𝑟 + 𝑔𝑛 ≤ 𝐿𝐻𝛼 (𝑛)𝐴𝑛−1 + 𝑔𝑛,
so 𝐴𝑛 ≤ 𝐿𝐻𝛼 (𝑛)𝐴𝑛−1 + 𝑔𝑛 since (𝑔𝑛)𝑛 is non-decreasing. Bounding 𝐻𝛼 (𝑛) using (D.3) gives
𝐴𝑛 ≤ 𝜆𝑁 𝐴𝑛−1 + 𝑔𝑛 for all 1 ≤ 𝑛 ≤ 𝑁 . Iterating this inequality yields the result. ■

State perturbation. Fix 𝑠 ≥ 1 and let F𝑠 := 𝜎
(
𝑋1, . . . , 𝑋𝑠 , 𝑊1, . . . ,𝑊𝑠

)
on which we condition.

Assume the two systems agree up to 𝑠 − 1, and at time 𝑠 we have

𝑋 ′𝑠 = 𝑋𝑠 − ℎ
with ℎ ≠ 0. For 𝑡 ≥ 𝑠, define Δ𝑡 := 𝑋𝑡 − 𝑋 ′𝑡 . Subtracting (D.1) for the two evolutions (they share
(𝑊𝑢)) gives for 𝑡 ≥ 𝑠:

Δ𝑡+1 =
𝑡∑︁
𝑢=𝑠

𝑏(𝑋𝑢) − 𝑏(𝑋 ′𝑢)
(𝑡 − 𝑢 + 1)𝛼 , ∥Δ𝑡+1∥ ≤ 𝐿

𝑡∑︁
𝑢=𝑠

∥Δ𝑢∥
(𝑡 − 𝑢 + 1)𝛼 . (D.7)
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Set 𝑛 := 𝑡 − 𝑠 + 1, 𝑎𝑛 := 𝔼
(
∥Δ𝑠+𝑛∥

��F𝑠 ) and 𝑎0 = ∥Δ𝑠 ∥ = ∥ℎ∥. Applying Lemma D.1 with 𝑔𝑛 = 0
yields, for 𝑛 ≤ 𝑁 ,

𝑎𝑛 ≤ 𝜆𝑛𝑁 ∥ℎ∥, (D.8)
We now bound the Wasserstein distance between the conditional laws of 𝑋𝑠+𝑛 and 𝑋 ′𝑠+𝑛 given F𝑠
by using the synchronous coupling between 𝑋𝑠+𝑛 and 𝑋 ′𝑠+𝑛 (which share the same noise sequence
(𝑊𝑢)𝑢>𝑠):

𝑊1
(
L(𝑋𝑠+𝑛 | F𝑠), L(𝑋 ′𝑠+𝑛 | F𝑠)

)
≤ 𝔼

(
∥𝑋𝑠+𝑛 − 𝑋 ′𝑠+𝑛∥ | F𝑠

)
≤ 𝜆𝑛𝑁 ∥ℎ∥.

Therefore, for any horizon 𝑇 ≥ 𝑠 + 1,

sup
𝑠+1≤𝑡≤𝑇

𝑊1
(
L(𝑋𝑡 | F𝑠), L(𝑋 ′𝑡 | F𝑠)

)
≤ ∥ℎ∥ 𝜆𝑇−𝑠𝑇−𝑠 =

{
∥ℎ∥ (𝐿 (1 + log(𝑇 − 𝑠))𝑇−𝑠 if 𝛼 = 1,

∥ℎ∥ (𝐿𝜁 (𝛼))𝑇−𝑠 if 𝛼 > 1.
(D.9)

The behaviour of the bound crucially depends on 𝛼 and 𝐿: if 𝛼 > 1 and 𝐿𝜁 (𝛼) < 1, the effect of
the perturbation decays exponentially fast with 𝑇 − 𝑠; if 𝛼 > 1 and 𝐿𝜁 (𝛼) > 1, the effect of the
perturbation grows exponentially fast with 𝑇 − 𝑠. In both case, higher values of 𝛼 (faster memory
decay) lead to better dependence properties.

Noise perturbation. Fix 𝑠 ≥ 1 and let F𝑠−1 := 𝜎
(
𝑋1, . . . , 𝑋𝑠−1, 𝑊1, . . . ,𝑊𝑠−1

)
. Assume the two

systems agree up to time 𝑠 except that at time 𝑠 we have

𝑊 ′𝑠 = 𝑊𝑠 + 𝜂
with 𝜂 ≠ 0, and 𝑊 ′𝑢 = 𝑊𝑢 for 𝑢 ≠ 𝑠. Again define Δ𝑡 := 𝑋𝑡 − 𝑋 ′𝑡 for 𝑡 ≥ 𝑠. Subtracting the two
recursions gives for 𝑡 ≥ 𝑠:

Δ𝑡+1 =
𝑡∑︁
𝑢=𝑠

𝑏(𝑋𝑢) − 𝑏(𝑋 ′𝑢)
(𝑡 − 𝑢 + 1)𝛼 +

𝑊𝑠 −𝑊 ′𝑠
(𝑡 − 𝑠 + 1)𝛼 . (D.10)

Taking norms and using Lipschitzness,

∥Δ𝑡+1∥ ≤ 𝐿
𝑡∑︁
𝑢=𝑠

∥Δ𝑢∥
(𝑡 − 𝑢 + 1)𝛼 +

∥𝜂∥
(𝑡 − 𝑠 + 1)𝛼 .

Set 𝑛 := 𝑡 − 𝑠 + 1 and 𝑎𝑛 := 𝔼
(
∥Δ𝑠+𝑛∥

��F𝑠−1
)
. Note 𝑎0 = 0 (since 𝑋𝑠 = 𝑋 ′𝑠). Apply Lemma D.1

with 𝑔𝑛 := ∥𝜂∥ 𝑛−𝛼 to obtain,for 𝑛 ≤ 𝑁 ,

𝑎𝑛 ≤
𝑛∑︁
𝑗=1
∥𝜂∥ 𝑗−𝛼 𝜆𝑛− 𝑗

𝑁
≤ ∥𝜂∥ ×

𝜆𝑛
𝑁
− 1

𝜆𝑁 − 1
, (D.11)

where we consider 𝜆𝑁 ≠ 1 for simplicity.

Bounding the Wasserstein distance as before yields, for any horizon 𝑇 ≥ 𝑠 + 1,

sup
𝑠+1≤𝑡≤𝑇

𝑊1
(
L(𝑋𝑡 | F𝑠−1), L(𝑋 ′𝑡 | F𝑠−1)

)
≤


∥𝜂∥ (𝐿 (1+log(𝑇−𝑠) ) )𝑇−𝑠−1

𝐿 (1+log(𝑇−𝑠) )−1 , if 𝛼 = 1,

∥𝜂∥ (𝐿𝜁 (𝛼) )
𝑇−𝑠−1

𝐿𝜁 (𝛼)−1 , if 𝛼 > 1.
(D.12)

Drift perturbation. To consider drift perturbations, we write the drift as 𝑏𝜃 where 𝜃 is a param-
eter. In addition to assuming that 𝑏𝜃 is uniformly 𝐿-Lipschitz for all 𝜃, we also assume that it is
𝑀-Lipschitz in 𝜃 uniformly in 𝑥, that is, for all 𝑥, 𝑥′ ∈ ℝ𝑑 and 𝜃, 𝜃′,

∥𝑏𝜃 (𝑥) − 𝑏𝜃 ′ (𝑥′)∥ ≤ 𝐿 ∥𝑥 − 𝑥′∥ + 𝑀 ∥𝜃 − 𝜃′∥. (D.13)

Consider 𝜃, 𝜃′ and the two systems with drifts 𝑏𝜃 and 𝑏𝜃 ′ respectively:

𝑋𝑡+1 =
𝑡∑︁
𝑢=1

𝐾 (𝑡, 𝑢)
(
𝑏𝜃 (𝑋𝑢) +𝑊𝑢

)
, (D.14)

𝑋 ′𝑡+1 =
𝑡∑︁
𝑢=1

𝐾 (𝑡, 𝑢)
(
𝑏𝜃 ′ (𝑋 ′𝑢) +𝑊𝑢

)
. (D.15)
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As before, we will bound the Wasserstein distance between 𝑋𝑡 and 𝑋 ′𝑡 by using the synchronous
coupling. Assuming that the two sequences share the same noise sequence (𝑊𝑢), we define Δ𝑡 =

𝑋𝑡 − 𝑋 ′𝑡 and obtain, using (D.13), for 𝑡 ≤ 𝑇

∥Δ𝑡+1∥ ≤ 𝐿
𝑡∑︁
𝑢=1

∥Δ𝑢∥
(𝑡 − 𝑢 + 1)𝛼 + 𝑀 ∥𝜃 − 𝜃

′∥𝐻𝛼 (𝑇) . (D.16)

Setting 𝑎𝑛 = ∥Δ𝑛∥ and 𝑔𝑛 = 𝑀 ∥𝜃 − 𝜃′∥𝐻𝛼 (𝑇) with 𝑎0 = 0, we can apply Lemma D.1 as before to
obtain, for 𝑡 ≤ 𝑇 ,

𝑊1
(
L(𝑋𝑡 ), L(𝑋 ′𝑡 )

)
≤ 𝑀 ∥𝜃 − 𝜃′∥


(1 + log𝑇) (𝐿 (1+log𝑇 ) ) 𝑡−1

𝐿 (1+log𝑇 )−1 , if 𝛼 = 1,

𝜁 (𝛼) (𝐿𝜁 (𝛼) )
𝑡−1

𝐿𝜁 (𝛼)−1 , if 𝛼 > 1
(D.17)

where we used (D.3) to bound 𝐻𝛼 (𝑇).

D.2 EXAMPLES FOR TASK SELECTION ASSUMPTIONS

In this section, we check that the examples of Section 3.1 in the main text satisfy Assumptions 3
and 4. These are lengthy but mostly straightforward calculations, which we sketch to illustrate how
to verify the assumptions in practice. We also explicit the link between the Renyi divergence that
appears in Theorem 1 and the usual loss functions in these examples.
Example D.1 (Linear regression). We consider the linear regression example of Section 3.1 in the
main text and check that it satisfies Assumptions 3 and 4. Fix a true task 𝜃∗ ∈ ℝ𝑑 . For 𝑡 = 1, . . . , 𝑇 ,
consider 𝑞𝑡 ∼ N (0, 𝜎𝑞2𝐼𝑑) and noise 𝜖𝑡 ∼ N (0, 𝜎2

𝜖 ) i.i.d., and 𝑦𝑡 = 𝑞⊤𝑡 𝜃
∗ + 𝜖𝑡 , 𝑧𝑡 = (𝑞𝑡 , 𝑦𝑡 ),

𝑋 = {𝑧𝑡 }𝑇𝑡=1. Define 𝑄 ∈ ℝ𝑇×𝑑 has rows 𝑞⊤𝑡 and 𝑌 = (𝑦𝑡 )𝑇𝑡=1, and, for any parameter 𝜃 ∈ ℝ𝑑 ,

ℓ𝑇 (𝜃) := log p𝑇 (𝑋 | 𝜃) = − 1
2𝜎2

𝜖
∥𝑌 −𝑄𝜃∥22 + const,

where the constant term depends on 𝑄 but not on 𝜃

Let us begin with the tail behavior. Both 𝑞𝑡 and 𝑦𝑡 = 𝑞𝑇𝑡 𝜃
∗ + 𝜖𝑡 are sub-Gaussian; hence for some

𝑐 > 0 and all 𝑅 ≥ 1,

ℙ(∃ 𝑡 ≤ 𝑛 , ∥𝑧𝑡 ∥ ≥ 𝑅) ≤ poly(𝑛) 𝑒−𝑐𝑅2 ≤ poly(𝑛) 𝑒−𝑅 .

For the tail condition on the likelihood, let Δ = 𝜃 − 𝜃0 and 𝑟0 := 𝑌 −𝑄𝜃0. Then

ℓ𝑇 (𝜃) − ℓ𝑇 (𝜃0) = − 1
2𝜎2

𝜖

(
∥𝑄Δ∥22 − 2Δ⊤𝑄⊤𝑟0

)
Now, by e.g., Wainwright (2019, Thm. 6.1), for 𝑇 large enough, there is 𝑐 > 0 constant such that,
with probability at least 1 − 𝑒−𝑐𝑇 , ∥𝑄Δ∥ ≥ 𝑐

√
𝑇 ∥Δ∥ and ∥𝑄⊤𝑟0∥ ≤ 𝑐−1√𝑇 ∥𝑟0∥. Hence, uniformly

over ∥𝜃∥ ≥ 𝑅 (so ∥Δ∥ ≥ 𝑅 − ∥𝜃0∥),

ℓ𝑇 (𝜃) − ℓ𝑇 (𝜃0) ≤ − 𝑐
2𝑇

2𝜎2
𝜖
∥Δ∥2 + 𝑐−1√𝑇

𝜎2
𝜖
∥Δ∥ ∥𝑟0∥.

For all 𝑅 larger than a constant multiple of ∥𝑟0∥/
√
𝑇 + ∥𝜃0∥, the right-hand side is negative; thus

sup∥ 𝜃 ∥≥𝑅 p𝑇 (𝑋 | 𝜃) < p𝑇 (𝑋 | 𝜃0). Since ∥𝑟0∥ is sub-Gaussian and the norm bounds above hold
with probability at least 1 − 𝑒−𝑐𝑛 ≥ 1 − 𝑒−𝑐𝑅 for 𝑅 ≥ 𝑇 , we obtain, for all 𝑅 ≥ 𝑇 ,

ℙ

(
sup
∥ 𝜃 ∥≥𝑅

p𝑇 (𝑋 | 𝜃) ≥ p𝑇 (𝑋 | 𝜃0)
)
≤ poly(𝑇) 𝑒−𝑅 .

We now consider the moment condition. Then, for any reference 𝜃0,

sup
𝜃

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

= exp
(
sup
𝜃

{ℓ𝑇 (𝜃) − ℓ𝑇 (𝜃0)}
)
≤ exp

(
1

2𝜎2
𝜖
∥𝑌 −𝑄𝜃0∥22

)
,

Therefore, we have

log2sup
𝜃

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

≤ 𝐶
(
∥𝑄(𝜃∗ − 𝜃0)∥22 + ∥𝜖 ∥

2
2
)2
,
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and using Gaussian moment bounds

𝔼

[
log2sup

𝜃

p𝑇 (𝑋 | 𝜃)
p𝑇 (𝑋 | 𝜃0)

]
≤ poly(𝑛)

(
1 + ∥𝜃∗ − 𝜃0∥42

)
= poly(𝑛).

We finally check the local regularity condition. For any 𝑡 and 𝜃, 𝜃′,

log
p𝑡 (𝑦𝑡 | 𝑞1:𝑡 , 𝑦1:𝑡−1, 𝜃)
p𝑡 (𝑦𝑡 | 𝑞1:𝑡 , 𝑦1:𝑡−1, 𝜃′)

= − 1
2𝜎2

𝜖

[
(𝑦𝑡 − 𝜃⊤𝑞𝑡 )2 − (𝑦𝑡 − 𝜃′⊤𝑞𝑡 )2

]
.

Assuming that ∥𝑞1:𝑡 ∥∞, |𝑦1:𝑡 | ≤ 𝑅 and ∥𝜃∥, ∥𝜃′∥ ≤ 𝑅 (with 𝑅 ≥ 1) and using that (𝑎−𝑏)2−(𝑎−𝑐)2 =

(𝑐 − 𝑏) (2𝑎 − 𝑏 − 𝑐), we have��� log
p𝑡 (𝑦𝑡 | 𝑞1:𝑡 , 𝑦1:𝑡−1, 𝜃)
p𝑡 (𝑦𝑡 | 𝑞1:𝑡 , 𝑦1:𝑡−1, 𝜃′)

��� = 1
2𝜎2

𝜖
| (𝜃 − 𝜃′)⊤𝑞𝑡 |

��2𝑦𝑡 − (𝜃 + 𝜃′)⊤𝑞𝑡 �� ≤ 1
𝜎2

𝜖
𝑅3 ∥𝜃 − 𝜃′∥,

so the condition holds.

Let us now explicit the Renyi divergence in this case. Since 𝑞𝑡 do not depend on 𝜃 and (𝑞𝑡 , 𝑦𝑡 )𝑡 are
i.i.d., we have

D𝜌(𝜃 ∥ 𝜃∗) = −
⌊𝑇/2⌋
𝑇 (1 − 𝜌) log𝔼𝑞,𝑦

[(
𝑝(𝑦 | 𝑞, 𝜃)
𝑝(𝑦 | 𝑞, 𝜃∗)

)𝜌]
. (D.18)

We now focus on the expectation and write, using standard Gaussian integrals,

𝔼𝑞,𝑦

[(
𝑝(𝑦 | 𝑞, 𝜃)
𝑝(𝑦 | 𝑞, 𝜃∗)

)𝜌]
= 𝔼𝑞𝔼𝑦 |𝑞

[
exp

(
𝜌

2𝜎2
𝜖

(
(𝑦 − 𝑞⊤𝜃∗)2 − (𝑦 − 𝑞⊤𝜃)2

))]
(D.19)

= 𝔼𝑞𝔼𝑦 |𝑞

[
exp

(
𝜌

2𝜎2
𝜖

(
2𝜖𝑞⊤ (𝜃∗ − 𝜃) − (𝑞⊤ (𝜃∗ − 𝜃))2

))]
(D.20)

= 𝔼𝑞

[
exp

(
− 𝜌(1 − 𝜌)

2𝜎2
𝜖

(𝑞⊤ (𝜃∗ − 𝜃))2
)]

(D.21)

=
1√︂

1 + 𝜌
2 (1−𝜌)2𝜎𝑞

2

𝜎4
𝜖

∥𝜃 − 𝜃∗∥2
. (D.22)

The Renyi divergence is therefore

D𝜌(𝜃 ∥ 𝜃∗) =
⌊𝑇/2⌋

2𝑇 (1 − 𝜌) log

(
1 +

𝜌2 (1 − 𝜌)2𝜎𝑞2

𝜎4
𝜖

∥𝜃 − 𝜃∗∥2
)
. (D.23)

Moreover, for 𝜌 either close to 0 or 1, we have the approximation

D𝜌(𝜃 ∥ 𝜃∗) =
𝜌⌊𝑇/2⌋𝜎𝑞2𝜌2 (1 − 𝜌)

2𝑇𝜎4
𝜖

∥𝜃 − 𝜃∗∥2 +O
(
𝜌4 (1 − 𝜌)3

)
. (D.24)

Hence, the quantity bounded in Theorem 1 can be related to the squared loss as follows:

𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 )
[
D𝜌(𝜃 ∥ 𝜃∗)

]
(D.25)

=
𝜌⌊𝑇/2⌋𝜎𝑞2𝜌2 (1 − 𝜌)

2𝑇𝜎4
𝜖

𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 )
[
∥𝜃 − 𝜃∗∥2

]
+O

(
𝜌4 (1 − 𝜌)3

)
(D.26)

≥
𝜌⌊𝑇/2⌋𝜎𝑞2𝜌2 (1 − 𝜌)

2𝑇𝜎4
𝜖

∥ 𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 ) [𝜃] − 𝜃
∗∥2 +O

(
𝜌4 (1 − 𝜌)3

)
(D.27)

=
𝜌⌊𝑇/2⌋𝜌2 (1 − 𝜌)

2𝑇𝜎4
𝜖

𝔼𝑞


𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 ) [𝔼 [𝑦 | 𝑞, 𝜃]] − 𝔼 [𝑦 | 𝑞, 𝜃

∗]


2 (D.28)

+O
(
𝜌4 (1 − 𝜌)3

)
, (D.29)

where we used Jensen’s inequality in the second line. Note that 𝔼𝜃∼𝑝𝑇 ( · |𝑥1:𝑇 ) [𝔼 [𝑦 | 𝑞, 𝜃]] is the
optimal Bayesian predictor under the squared loss given the posterior distribution over 𝜃, see (3).
As a conclusion, the Renyi divergence term in Theorem 1 controls the squared prediction error of
the Bayesian predictor, which models the in-context learning performance.
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Example D.2 (Ornstein–Uhlenbeck process). We consider the Ornstein–Uhlenbeck (OU) process
example of Section 3.1 in the main text and check that it satisfies Assumptions 3 and 4. For sim-
plicity, we consider the one-dimensional case 𝑑 = 1; the extension to 𝑑 > 1 with diagonal diffusion
is straightforward. We consider tasks 𝜃 = (𝜇, 𝜏) where 𝜇 ∈ ℝ and 𝜏 ∈ [𝜏, 𝜏] with 0 < 𝜏 ≤ 𝜏 < ∞.
Given 𝜃, the Ornstein–Uhlenbeck (OU) SDE

d𝑋𝑡 = 𝜏(𝜇 − 𝑋𝑡 ) d𝑡 + 𝜎 d𝑊𝑡

is observed at regular times 𝑡𝑟 = 𝑟 Δ𝑡 (𝑟 = 1, . . . , 𝑛). We write 𝑥𝑟 := 𝑋𝑡𝑟 and 𝑋 = {𝑥𝑟 }𝑛𝑟=1. The
Markov transition is Gaussian with mean

𝑚𝜃 (𝑥) := 𝜇 + 𝑒−𝜏Δ𝑡 (𝑥 − 𝜇) = 𝑒−𝜏Δ𝑡 𝑥 +
(
1 − 𝑒−𝜏Δ𝑡

)
𝜇

and variance 𝑣𝜃 := Var(𝑥𝑟 | 𝑥𝑟−1, 𝜃) = 𝜎2 1−𝑒−2𝜏Δ𝑡
2𝜏 . For any path 𝑥1:𝑛, define ℓ𝑛 (𝜃) := log p𝑛 (𝑋 | 𝜃).

Recall 𝜃 = (𝜇, 𝜏) with 𝜏 ∈ [𝜏, 𝜏], discretization step Δ𝑡 , and

𝑚𝜃 (𝑥) = 𝜇 + 𝜌𝜏 (𝑥 − 𝜇) = 𝜌𝜏𝑥 + (1 − 𝜌𝜏)𝜇, 𝑣𝜃 = 𝜎
2 1 − 𝜌2

𝜏

2𝜏
, 𝜌𝜏 := 𝑒−𝜏Δ𝑡 .

Fix a reference 𝜃0 = (𝜇0, 𝜏0), write 𝑚0 := 𝑚𝜃0 , 𝑣0 := 𝑣𝜃0 , and let 𝑋 = (𝑥1, . . . , 𝑥𝑛) with 𝑥𝑟 the OU
samples at times 𝑟Δ𝑡 . The one–step densities are Gaussian, hence

log
p𝑛 (𝑋 | 𝜃)
p𝑛 (𝑋 | 𝜃0)

=
𝑛∑︁
𝑟=1

{
− 1

2
log

𝑣𝜃

𝑣0
−

(
𝑥𝑟 − 𝑚𝜃 (𝑥𝑟−1)

)2

2𝑣𝜃
+

(
𝑥𝑟 − 𝑚0 (𝑥𝑟−1)

)2

2𝑣0

}
. (D.30)

Let us begin with the tail behavior. Each one-step innovation 𝑥𝑟 − 𝑚𝜃 (𝑥𝑟−1) is Gaussian with
variance 𝑣𝜃 and

0 < 𝑣min ≤ 𝑣𝜃 ≤ 𝑣max < ∞, 𝑣min := 𝜎2 1 − 𝑒−2𝜏Δ𝑡

2𝜏
, 𝑣max := 𝜎2 1 − 𝑒−2𝜏Δ𝑡

2𝜏
.

Moreover, if 𝑥𝑟−1 satisfies |𝑥𝑟−1 | ≤ 𝑅, then 𝑚𝜃 (𝑥𝑟−1) also satisfies |𝑚𝜃 (𝑥𝑟−1) | ≤ 𝜌𝜏𝑅+ (1− 𝜌𝜏) |𝜇 |.
Hence, there exists 𝑐 > 0 depending only on (Δ𝑡 , 𝜏, 𝜏, 𝜎) and the law of 𝑥0 such that, for all 𝑅 ≥ 1,

ℙ

(
∃𝑟 ≤ 𝑛 , |𝑥𝑟 | ≥ 𝑅

)
(D.31)

≤ ℙ

(
∃𝑟 ≤ 𝑛 , |𝑥𝑟 − 𝑚𝜃 (𝑥𝑟−1) | ≥ (1 − 𝜌𝜏)𝑅 − |𝜇 |

)
(D.32)

≤ poly(𝑛) 𝑒−𝑐𝑅2 ≤ poly(𝑛) 𝑒−𝑅, (D.33)

for 𝑅 large enough compared to |𝜇 |.
Let us continue with the tail condition on the likelihood. We have the bound��� 𝑛∑︁

𝑟=1
− 1

2 log 𝑣𝜃
𝑣0

��� ≤ 𝑛
2 log

𝑣max
𝑣min

=: 𝐶var 𝑛. (D.34)

For each 𝑟 , abbreviate 𝑚 := 𝑚𝜃 (𝑥𝑟−1) and 𝑚0 := 𝑚0 (𝑥𝑟−1). Using 𝑣𝜃 ≥ 𝑣min and 𝑣0 ≥ 𝑣min,

− (𝑥𝑟 − 𝑚)
2

2𝑣𝜃
+ (𝑥𝑟 − 𝑚0)2

2𝑣0
≤ 1

2𝑣min

(
(𝑥𝑟 − 𝑚0)2 − (𝑥𝑟 − 𝑚)2

)
.

Expanding the square,

(𝑥𝑟 − 𝑚0)2 − (𝑥𝑟 − 𝑚)2 = −
(
𝑚 − 𝑚0

)2 + 2 (𝑥𝑟 − 𝑚0)
(
𝑚 − 𝑚0

)
.

Summing over 𝑟 and applying Cauchy–Schwarz,

𝑛∑︁
𝑟=1

(
− (𝑥𝑟 − 𝑚)

2

2𝑣𝜃
+ (𝑥𝑟 − 𝑚0)2

2𝑣0

)
≤ − 1

2𝑣min

𝑛∑︁
𝑟=1

Δ2
𝑟 +

1
𝑣min

( 𝑛∑︁
𝑟=1
(𝑥𝑟 − 𝑚0)2

)1/2 ( 𝑛∑︁
𝑟=1

Δ2
𝑟

)1/2
, (D.35)

where 𝛿𝑟 := 𝑚𝜃 (𝑥𝑟−1) − 𝑚0 (𝑥𝑟−1).
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On events where |𝑥1:𝑛 | ≤ 𝑅, we have the conditions

𝑐∥𝜇 − 𝜇0∥ − 𝐶 (1 + 𝑅) |𝛿𝑟 | ≤ 𝐿 (1 + 𝑅) ∥𝜃 − 𝜃0∥,

for constants 𝑐, 𝐶, 𝐿 depending only on (𝜏, 𝜏,Δ𝑡 ). Therefore, for ∥𝜇 − 𝜇0∥ larger than a constant
multiple of (1 + 𝑅), we have

𝑛∑︁
𝑟=1

𝛿2
𝑟 ≥ 𝑛 𝑐 ∥𝜇 − 𝜇0∥2 and

( 𝑛∑︁
𝑟=1

𝛿2
𝑟

)1/2
≤
√
𝑛𝐶 (1 + 𝑅) ∥𝜃 − 𝜃0∥, (D.36)

for constants 𝑐, 𝐶 depending only on (𝜏, 𝜏,Δ𝑡 ).
Combining (D.34), (D.35), and (D.36),

log
p𝑛 (𝑋 | 𝜃)
p𝑛 (𝑋 | 𝜃0)

≤ 𝐶𝑛 − 𝑐𝑛∥𝜇 − 𝜇0∥2 +
( 𝑛∑︁
𝑟=1
(𝑥𝑟 − 𝑚0 (𝑥𝑟−1))2

)1/2√
𝑛𝐶 (1 + 𝑅) ∥𝜃 − 𝜃0∥, , (D.37)

for constants 𝑐, 𝐶 depending only on (𝜏, 𝜏,Δ𝑡 ).

Fix 𝑅 ≥ 1 and assume that |𝑥1:𝑛 | ≤ 𝑅: we have shown that it holds with probability at least
1 − poly(𝑛)𝑒−𝑐𝑅2

.

In that case,
( ∑𝑛

𝑟=1 (𝑥𝑟 − 𝑚0 (𝑥𝑟−1))2
)1/2

in (D.37) is bounded O
(√
𝑛𝑅

)
so the RHS can be made

negative for all sufficiently large ∥𝜃∥: more precisely, it is negative for ∥𝜃∥ ≥ 𝑅′ with 𝑅′ ≥ 𝐶 (1 +
𝑅)2 for a constant 𝐶 depending only on (𝜏, 𝜏,Δ𝑡 ). Since the event we are considering holds with
probability at least 1−poly(𝑛)𝑒−𝑐𝑅2

, it means that it holds with probability at least 1−poly(𝑛)𝑒−𝑅′ .
This proves the required tail bound with 𝑅 ← 𝑅′.

Moving to the moment condition, by Gaussian moment bounds, (D.30) readily implies

𝔼

[
log2sup

𝜃

p𝑛 (𝑋 | 𝜃)
p𝑛 (𝑋 | 𝜃0)

]
≤ 𝐶 𝑛2 = poly(𝑛),

which verifies the likelihood-ratio moment condition in Assumption 3.

Finally, we show the local regularity condition. For fixed 𝑥1:𝑟−1, the conditional density is

log p𝑟 (𝑥𝑟 | 𝑥1:𝑟−1, 𝜃) = − 1
2 log(2𝜋𝑣𝜃 ) −

(
𝑥𝑟 − 𝑚𝜃 (𝑥𝑟−1)

)2

2𝑣𝜃
.

On sets where |𝑥1:𝑟 | ≤ 𝑅, ∥𝜃∥ ≤ 𝑅 (so 𝜇, 𝜏 bounded) and with 𝜏 ∈ [𝜏, 𝜏], the maps

𝜃 ↦→ 𝑚𝜃 (𝑥𝑟−1) = 𝑒−𝜏Δ𝑡 𝑥𝑟−1 +
(
1 − 𝑒−𝜏Δ𝑡

)
𝜇, 𝜃 ↦→ 𝑣𝜃 = 𝜎

2 1 − 𝑒−2𝜏Δ𝑡

2𝜏
are smooth with bounded first derivatives: |𝜕𝜇𝑚𝜃 | ≤ 1, |𝜕𝜏𝑚𝜃 | ≤ 𝐶𝑅, |𝜕𝜏𝑣𝜃 | ≤ 𝐶, 𝜕𝜇𝑣𝜃 = 0. Since
𝑥𝑟 −𝑚𝜃 (𝑥𝑟−1) is also bounded by a constant multiple of 𝑅 on these sets, we obtain, for all 𝜃, 𝜃′ with
∥𝜃∥, ∥𝜃′∥ ≤ 𝑅,

sup
|𝑥1:𝑟 | ≤𝑅
∥ 𝜃 ∥ ,∥ 𝜃 ′ ∥≤𝑅

����log
p𝑟 (𝑥𝑟 | 𝑥1:𝑟−1, 𝜃)
p𝑟 (𝑥𝑟 | 𝑥1:𝑟−1, 𝜃′)

���� ≤ poly(𝑅)∥𝜃 − 𝜃′∥ .
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 LINEAR REGRESSION

We provide comprehensive experimental results for linear regression tasks (detailed in Section 4.1)
using Student-𝑡 and generalized normal pretraining distributions. This section presents the ICL
error as a function of context length (ICL step) for Student-𝑡 priors with degrees of freedom
𝜈 ∈ {3, 5, 10,∞} and generalized normal priors with shape parameters 𝛽 ∈ {1, 1.5, 2, 2.5}, cor-
responding to the experimental settings in Fig. 1.

The results in Fig. 6 clearly demonstrate the fundamental trade-off in selecting pretraining distri-
butions for ICL: heavy-tailed priors (small 𝜈) achieve superior performance under distribution shift,
while light-tailed priors (large 𝜈) excel on in-distribution tasks. In contrast, Fig. 7 shows that varying
the shape parameter of generalized normal priors produces more subtle effects on ICL performance
in the linear regression setting.

We also notice on Figs. 6 and 7 that longer context lengths are mostly beneficial for in-distribution
tasks: as the perturbation magnitude increases, the performance gains from longer contexts diminish.
This is in line with Section 3.2: the performance gain per new example is determined by the prior
probability of the task, which decreases with larger perturbations.
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(a) Student-t, 𝜈 = 3.0
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(b) Student-t, 𝜈 = 5.0
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(c) Student-t, 𝜈 = 10.0
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(d) Gaussian limit, 𝜈 = ∞

Figure 6: Linear regression with Student-𝑡 pretraining distributions: MSE as a function of ICL step for different
task shift magnitudes. Heavy-tailed priors (𝜈 = 3) show superior robustness to distribution shift, while light-
tailed priors (𝜈 = ∞, Gaussian) perform better on unperturbed tasks. The Ridge regression baseline provides a
reference that remains constant across perturbation magnitudes.

We present an extended analysis of the generalization results from Fig. 2 in Fig. 8, examining how
the number of pretraining tasks 𝑛 affects performance across different Student-𝑡 tail parameters 𝜈.
These results validate Theorem 2, showing that heavy-tailed priors require more training tasks to
achieve comparable performance to light-tailed priors.

Finally, we provide an ablation study on the effect of the variance. All other experiments are de-
signed so that the pretraining distribution has unit variance in each dimension. In Fig. 9, we vary
the variance of a standard Gaussian pretraining distribution and observe it only changes the ICL
performance for in-distribution tasks.
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(a) GenNormal, 𝛽 = 1.0
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(b) GenNormal, 𝛽 = 1.5
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(c) GenNormal, 𝛽 = 2.0
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(d) GenNormal, 𝛽 = 2.5

Figure 7: Linear regression with generalized normal pretraining distributions: MSE as a function of ICL step
for different task shift magnitudes. The shape parameter 𝛽 has a more modest impact on performance compared
to Student-𝑡 distributions, with all variants showing similar convergence patterns across perturbation levels.

E.2 ORNSTEIN–UHLENBECK PROCESSES

We present detailed experimental results for Ornstein–Uhlenbeck (OU) stochastic processes (de-
scribed in Section 4.2) using both Student-𝑡 and generalized normal pretraining distributions. The
figures show ICL error as a function of context length for Student-𝑡 priors with degrees of free-
dom 𝜈 ∈ {3, 5, 10,∞} (matching Fig. 3) and generalized normal priors with shape parameters
𝛽 ∈ {1, 1.5, 2, 2.5} (matching Fig. 4) in Figs. 10 and 11, respectively.

Notably, OU processes exhibit different behavior compared to linear regression: the trade-off be-
tween in-distribution and out-of-distribution performance is less pronounced. As shown in both
Figs. 10 and 11, heavy-tailed priors maintain competitive in-distribution performance while still
providing improved robustness to distribution shift.

E.3 VOLTERRA PROCESSES

We present comprehensive results for stochastic Volterra equations (detailed in Section 4.3), which
model nonlinear processes with long-range dependencies and connections to fractional Brownian
motion. Figure 12 shows ICL error as a function of context length for different kernel exponents
𝛼 ∈ {1, 1.5, 2}, where smaller 𝛼 values correspond to stronger temporal dependencies.

The results confirm our theoretical predictions from Section 3: as the kernel exponent 𝛼 increases
(weaker dependencies), both convergence speed and final performance improve significantly. This
validates the dependency structure analysis in Theorem 2.

Figure 13 extends the generalization analysis from Fig. 5, demonstrating how the number of pre-
training tasks 𝑛 interacts with the temporal dependency parameter 𝛼. The results show that processes
with stronger dependencies (smaller 𝛼) require substantially more training data to achieve compara-
ble performance.
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(b) 𝑛 = 500
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(c) 𝑛 = 1000
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(d) 𝑛 = 5000

Figure 8: Generalization analysis for linear regression across different numbers of pretraining tasks 𝑛 for a
context length of 64. As predicted by Theorem 2, heavy-tailed priors (small 𝜈) require more tasks to achieve
performance comparable to light-tailed priors, but eventually outperform them under distribution shift. The
crossover point shifts to larger 𝑛 for heavier-tailed distributions.
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Figure 9: Ablation on the effect of variance for Gaussian pretraining distributions in linear regression. Only
in-distribution performance is affected by the variance, with larger variances leading to worse performance.
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(a) Student-t, 𝜈 = 3.0
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(b) Student-t, 𝜈 = 5.0
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(c) Student-t, 𝜈 = 10.0
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(d) Gaussian limit, 𝜈 = ∞

Figure 10: Ornstein–Uhlenbeck processes with Student-𝑡 pretraining distributions: MSE as a function of
ICL step for different task shift magnitudes. Unlike linear regression, heavy-tailed priors maintain strong
in-distribution performance while providing superior robustness to perturbations. Baselines include predicting
the last observed value and fitting an ARMA(5) model to the context.
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(a) GenNormal, 𝛽 = 1.0
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(b) GenNormal, 𝛽 = 1.5
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(c) GenNormal, 𝛽 = 2.0
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(d) GenNormal, 𝛽 = 2.5

Figure 11: Ornstein–Uhlenbeck processes with generalized normal pretraining distributions (importance
weighted): MSE as a function of ICL step for different task shift magnitudes. The shape parameter 𝛽 shows
consistent effects across perturbation levels, with all variants significantly outperforming simple baselines. Im-
portance weighting provides modest improvements in robustness.
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(a) Kernel exponent 𝛼 = 1.0
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(b) Kernel exponent 𝛼 = 1.5
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Figure 12: Stochastic Volterra equations: MSE as a function of ICL step across different kernel exponents 𝛼.
Smaller 𝛼 values correspond to stronger long-range dependencies, leading to slower convergence and higher
final error. The performance gap between different 𝛼 values demonstrates the impact of temporal dependency
structure on ICL learning. Simple baselines provide reference points for comparison.
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(a) 𝑛 = 100
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(b) 𝑛 = 500
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(c) 𝑛 = 1000

0.0 0.1 0.2 0.3
Task Center (Task Shift)

3.5

3.0

2.5

2.0

lo
g 

M
SE

Best MSE

kernel_exponent=1.0
kernel_exponent=1.5
kernel_exponent=2.0

0.0 0.1 0.2 0.3
Task Center (Task Shift)

3.0

2.5

2.0

Mean MSE

0.0 0.1 0.2 0.3
Task Center (Task Shift)

3.5

3.0

2.5

2.0

Full Context Length MSE

(d) 𝑛 = 5000

Figure 13: Generalization analysis for Volterra processes across different numbers of pretraining tasks 𝑛.
Processes with stronger temporal dependencies (smaller 𝛼) exhibit larger performance gaps at low 𝑛, consistent
with Theorem 2. The dependency coefficients in our theory scale with 𝛼, explaining why more training tasks
are needed to achieve good performance for smaller 𝛼 values.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

We roughly follow the experimental setup used by Raventós et al. (2023). Our code is largely based
on their implementation given in4.

F.1 DATA GENERATION

In all experiments, task parameters 𝜃 ∈ ℝ𝑑 are sampled from the distribution mentioned in the main
text, data sequences are sampled according to the task. All task distributions during training are
zero mean and unit variance in each dimension, except for the Volterra experiments where they are
normalized to have standard deviation 0.2. For testing, we sample 𝜃 from N (𝜇 1, 𝐼) where 𝜇 ∈ ℝ

is the shift value and 1 is the all ones vector, and the data is sampled according to this task. Unless
otherwise specified, a new set of tasks 𝜃 is sampled for each training iteration. Otherwise, when the
number of tasks is specified, we sample that many tasks at the start of training and use those same
tasks throughout training.

Linear Regression Given a task parameter 𝜃 ∈ ℝ8, we sample 𝑥𝑖 ∼ N (0, 𝐼8) and 𝑦𝑖 = ⟨𝑥𝑖 , 𝜃⟩ + 𝜖𝑖
where 𝜖𝑖 ∼ N (0, 0.52). Given a context of (𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘), the model is trained to predict 𝑦𝑘+1
given 𝑥𝑘+1 with the MSE loss. At evaluation, we evaluate the model output against 𝑥⊤

𝑖
𝜃. We refer to

the linear regression experiments in Raventós et al. (2023) for details.

Ornstein-Uhlenbeck (OU) Process The OU process is given by d𝑋𝑡 = 𝜏(𝜇 − 𝑋𝑡 )d𝑡 + 𝜎d𝑊𝑡
and has two parameters: 𝜃 and 𝜇. We study a 8-dimensional process where 𝑋𝑡 ∈ ℝ8 and 𝜎 =

0.5𝐼8. We consider the initial distribution of 𝑥0 ∼ N (0, 𝐼8). Full paths of 𝑋𝑡 are sampled using
the Euler-Maruyama method with a step size of Δ𝑡 = 0.8. For the sampling of tasks, 𝜃 ∈ ℝ9 is
sampled from the described distribution, 𝜇 is then set to be the first 8 components of 𝜃 and 𝜏 is set
to 0.3 + 0.2 × 𝜎(−0.4𝜃9) where 𝜎 is the sigmoid function. The model is trained to predict 𝑋(𝑘+1)Δ𝑡
given 𝑋0, 𝑋Δ𝑡 , . . . , 𝑋𝑘Δ𝑡 with the MSE loss with a maximum context length of 32. For evaluation,
we evaluate the model output against 𝔼[𝑋(𝑘+1)Δ𝑡 |𝑋0, 𝑋Δ𝑡 , . . . , 𝑋𝑘Δ𝑡 ] which is computable in closed
form.

Volterra Process We study a Volterra process in dimension 8 given by

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
(𝑡 − 𝑠)−𝛼𝑏𝜃 (𝑋𝑠)d𝑠 +

∫ 𝑡

0
(𝑡 − 𝑠)−𝛼𝜎d𝑊𝑠 , (F.1)

where the parameter 𝛼 is chosen according to discrete values in {1, 1.5, 2} and 𝜎 = 0.6𝐼8. 𝑋0 is
sampled from N (0, 𝐼8) again. 𝑏𝜃 a clipped two-layer neural network and hidden dimension 16:
formally, with 𝜃 = (𝑊1, 𝑏1,𝑊2, 𝑏2) then 𝑏𝜃 (𝑥) = clip(10(𝑊2 tanh(𝑊1𝑥 + 𝑏1) + 𝑏2),−2, 2) − 0.1𝑥.

We subsample the paths (𝑋𝑡 )𝑡 with step size Δ𝑡 = 2 to obtain discrete samples (𝑋0, 𝑋Δ𝑡 , 𝑋2Δ𝑡 , . . . , )
and each 𝑋𝑘Δ𝑡 is computed from past samples using 10 steps of the Euler-Maruyama method with
step size Δ𝑡/10. The model is trained to predict 𝑋(𝑘+1)Δ𝑡 given 𝑋0, 𝑋Δ𝑡 , . . . , 𝑋𝑘Δ𝑡 with the MSE
loss with a maximum context length of 32. For evaluation, we evaluate the model output against
𝔼[𝑋(𝑘+1)Δ𝑡 |𝑋0, 𝑋Δ𝑡 , . . . , 𝑋𝑘Δ𝑡 ] which is computable in closed form.

F.2 ARCHITECTURE AND OPTIMIZATION DETAILS

For all experiments, we consider the architecture inspired by GPT-2 as used in Raventós et al. (2023).
For linear regression experiments, we use a context length of 64 points, 6 layers, embedding dimen-
sion of 32, 8 attention heads and an output dimension of 1. For the other experiments, we use a
context length of 32 points, 8 layers, embedding dimension of 128, 2 attention heads and an output
dimension of 8.

All models were trained for 5 × 105 iterations. Experiments are run with AdamW optimizer with a
weight decay of 0.1 with a cosine learning rate schedule and 50,000 warmup steps. All experiments
were run on NVIDIA H100 GPUs. We performed a hyperparameter sweep over learning rate where
we considered two learning rates and chose the best model. Experiments are repeated 3 different
times with different seeds. LLMs were used to assist in code writing.

4https://github.com/mansheej/icl-task-diversity
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