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ABSTRACT

The emergence of in-context learning (ICL) in large language models (LLMs) re-
mains poorly understood despite its consistent effectiveness, enabling models to
adapt to new tasks from only a handful of examples. To clarify and improve these
capabilities, we characterize how the statistical properties of the pretraining dis-
tribution (e.g., tail behavior, coverage) shape ICL on numerical tasks. We develop
a theoretical framework that unifies task selection and generalization, extending
and sharpening earlier results, and show how distributional properties govern sam-
ple efficiency, task retrieval, and robustness. To this end, we generalize Bayesian
posterior consistency and concentration results to heavy-tailed priors and depen-
dent sequences, better reflecting the structure of LLM pretraining data. We then
empirically study how ICL performance varies with the pretraining distribution
on challenging tasks such as stochastic differential equations and stochastic pro-
cesses with memory. Together, these findings suggest that controlling key statisti-
cal properties of the pretraining distribution is essential for building ICL-capable
and reliable LLMs.

1 INTRODUCTION

In-context learning (ICL) is the phenomenon whereby a model generalizes to a new task from a
handful of examples provided in the input context without any model weight updates. This emergent
behavior has been observed across models in multiple domains, including in language (Brown et al.,
2020), vision (Radford et al., 2021), and reinforcement learning (Moeini et al., 2025). ICL is a par-
ticularly appealing feature in domains where data for a specific task is scarce such as robotics (Ahn
et al., 2023b), healthcare (Singhal et al., 2023), or chemistry (Stokes et al., 2020).

Despite growing interest, the conditions under which ICL emerges are still poorly understood. Sev-
eral lines of works have emerged to address this question. The algorithmic view focuses on studying
which learning algorithms over the context can be implemented by transformer and thereby perform
ICL (Garg et al., 2022; Akyiirek et al., 2023). Others have suggested modeling ICL as Bayesian in-
ference (Xie et al., 2021; Lin & Lee, 2024; Zhang et al., 2025b; Jeon et al., 2024). Empirical works
have sought to design controlled settings in which ICL can be carefully studied, and these works
highlight how sensitive to pretraining choices ICL is (Chan et al., 2022; Ravent6s et al., 2023), indi-
cating that distributional aspects of pretraining play a central role. A crucial line of work also seeks
to assess ICL performance on numerical tasks through out-of-distribution robustness of ICL (Wang
et al., 2025b; Kwon et al., 2025; Goddard et al., 2025) but its behavior remains poorly understood.

Yet existing modeling frameworks often focus on restricted settings and lack general tools that links
properties of the pretraining distribution to ICL behavior at test time. Three aspects remain partic-
ularly underexplored: (i) heavy-tailed distributions that better reflect real-world pretraining corpora
and have been identified as key drivers of ICL (Chan et al., 2022; Singh et al., 2023), (ii) non-i.i.d.
and dependent structures (e.g., long-range dependencies in language sequences) that fall outside
standard i.i.d. or Markovian ICL modeling (Alabdulmohsin et al., 2024), and (iii) how these distri-
butional properties govern the robustness of ICL under shifts at test time, which is a key feature of
ICL (Wang et al., 2025b; Kwon et al., 2025; Goddard et al., 2025).
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We thus develop a study of ICL with a focus on the influence of the pretraining distribution. We
decompose ICL performance into two components: fask selection (identifying the right task from
the context) and generalization (performing well on tasks and sequences unseen during training) and
focus on the following questions:

How does the pre-training distribution shape ICL performance on new tasks?
How does it affect task selection and generalization errors?

Our contributions are as follows:

* Framework. We develop a general theoretical framework for ICL that focuses on the role of
pretraining distributional properties, handling both the task selection error and the ICL general-
ization error.

* Theory under heavy tails and dependence. We extend Bayesian consistency and concentra-
tion guarantees to heavy-tailed priors and dependent sequences, providing conditions that better
reflect pretraining data used for LLMs and highlighting the role of these key distributional prop-
erties.

¢ Empirical validation on numerical tasks. We validate the framework on challenging numerical
tasks—including stochastic differential equations and processes with memory, assessing ICL via
robustness to new tasks and distribution shift, and finding outcomes consistent with our theory.

Together, our results suggest that controlling key statistical properties of the pretraining distribution
is essential for building ICL-capable and reliable transformer models.

2 RELATED WORK

A number of works study ICL through varying perspectives and definitions of ICL. We will focus
on the perspectives most relevant to what we study.

Conditions for ICL. Other works devoted to studying the conditions under which ICL occurs.
From a pre-training perspective, Chan et al. (2022) studied the distribution qualities of a pretraining
distribution that leads to ICL while Raventds et al. (2023) studied the influence of regularization
and training distribution on linear regression tasks. However, these do not consider a unified theory
for predicting how ICL behaves under a particular pre-training distribution and only consider a
limited class of experiments. Singh et al. (2023) showed that ICL is transient and conditions must
be carefully chosen such that the model performs ICL rather than in-weight learning.

Bayesian Perspectives. From a statistical perspective, a series of questions were raised as to how
ICL can be studied through a Bayesian framework where the pre-training distribution acts as a prior.
Xie et al. (2021) proposed viewing ICL as Bayesian model averaging. Lin & Lee (2024) studied how
ICL involves two modes of operation where one case the model generalizes and the other case the
model retrieves similar tasks. Zhang et al. (2025b) considered a theory for a Bayesian perspective
of ICL and provided error bounds on the task loss as a function of the number of tasks and the
number of points within each task. However, they do not study specific properties of the pre-training
distribution that lead to good ICL performance. Jeon et al. (2024) provide an information theoretic
perspective on task retrieval for ICL but do not model the distribution of tasks. Park et al. (2025);
Waurgaft et al. (2025) study the competition and transition between in-weight learning, a memorizing
and retrieving mode, and ICL, and obtain scaling laws for the emergence of ICL in transformers.
Nguyen & Reddy (2025) study the question of this transition with a differential kinetics model. In
contrast to these works, we focus on underlining the role of the pre-training distribution on the ICL
performance.

Generalization. Several works have studied the generalization properties of ICL. Li et al. (2023)
obtain such results by studying the stability of the transformer architecture but they consider the
same fixed and finite task distribution during both pre-training and testing. Zhang et al. (2025b);
Zekri et al. (2024) both provide generalization bounds for ICL on Markov chains but without mod-
elling the distribution of tasks during pre-training, which is our focus here. Lotfi et al. (2024)



Under review as a conference paper at ICLR 2026

provide generalization bounds for transformers on arbitrary sequences but with a restrictive notion
of generalization that does not capture the ICL setting.

Numerical Tasks. Related to the experiments we consider is a line of work studies ICL on small
transformer models and simple tasks. Zhang et al. (2024); Wu et al. (2024) study ICL on linear
regression tasks with a single-linear attention model, characterizing the ICL error of the trained
model and the sample complexity of learning ICL. Most recently, Lu et al. (2025) consider a linear
attention layer and obtain a precise characterization of the emergence of ICL on a linear regression
task, including out-of-distribution tasks. Chan et al. (2025) study a simple model of a Bayesian
predictor to understand the different modes of in-weight learning and ICL. Finally, Liu et al. (2024)
study the performance of pretrained large language models at performing ICL on Markov processes,
exhibiting a power-law scaling law.

Algorithms and Out of Distribution. Several works focus on the training dynamics of transform-
ers for ICL, as well as how the transformer architecture is expressive enough to implement a wide
variety of algorithms for ICL. This is an important and desirable quality since it would allow for
generalization across out of distribution tasks. Wang et al. (2025b); Kwon et al. (2025); Goddard
et al. (2025) all study this question from different perspectives and ultimately conclude that certain
conditions on the pretraining distribution allow for some level of out of distribution performance.
We defer a more detailed review of these works to Appendix A.

General Concentration Results. Finally, we briefly review relevant concentration results. The pi-
oneering work of Yu (1994) provides concentration inequalities for dependent processes with a total
variation condition, opening up a fruitful line of research, see e.g., Kontorovich & Ramanan (2008);
Mohri & Rostamizadeh (2008; 2010); Maurer (2023); Abéles et al. (2025) and, for related coupling
techniques, see (Chazottes et al., 2007; Paulin, 2015), as well as references therein. Though these
frameworks can handle non-linear functions of dependent sequences, they require boundedness as-
sumptions that are not suitable for our setting. Another line of work has studied so-called functional
dependence conditions (Wu, 2005; 2011) and provided concentration inequalities for sums of sta-
tionary dependent sequences (Liu et al., 2013). However, our ICL setting requires concentration
inequalities for more general function classes and non-stationary sequences, which to the best of
our knowledge are not available in the literature. Concerning heavy-tailed concentration bounds, we
refer to the recent frameworks of Bakhshizadeh et al. (2023); Li & Liu (2024b); Li et al. (2024);
Li & Liu (2024b) which provide concentration inequalities for non-linear functions of independent
heavy-tailed random variables and which we extend to the dependent setting.

3 THEORETICAL FRAMEWORK

3.1 IN-CONTEXT LEARNING SETTING

In line with existing ICL works, we model the training data as a mixture of tasks, with each task
defining its own distribution. Formally, denote by ® c R? the space of tasks # and by 7(6) the
density of the pretraining task distribution. Given a task 6, the data is generated according to a task-
specific distribution with density p(: | 6) The training data is then generated by first sampling a task
6 from the task distribution 7, and then sampling data points (x;);>; according to

Xel ~ Pry1 (1 X14,0) . where x1 = (x1,...,x¢).

We first present some running examples to illustrate the setting.

Example 3.1 (Classification). Several ICL benchmarks for LLMs such as Bertsch et al. (2025); Zou
et al. (2025); Li et al. (2025b) are built on classification tasks. Each task 6 represents a small subset
of classes from a larger classification problem and the data sequence xi,...,x; is a sequence of
inputs and labels from these classes. The challenge is therefore to both identify the classes and learn
to classify them from the in-context examples.

Example 3.2 (Linear Regression). Introduced by Garg et al. (2022), the regression setting is a
popular testbed for ICL. Each task § € R defines a linear model y = #7¢ + € where € is some
noise. The data sequence xy, . .., xy; is a sequence of input-output pairs g1, 1, - - . , ¢, Y generated
according to the linear model defined by 6.
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Example 3.3 (Next-sample prediction for stochastic processes). More generally, we can consider
the setting where each task 6 defines a stochastic process x;4+1 ~ P, (- | x1:,6). We will consider
later the specific case of the Ornstein-Uhlenbeck process: each task 8 = (r, ) defines a mean-
reverting stochastic process with mean u and reversion speed 7:

dX[ ZT(IU—XI)dt'i'O—th, (1)
where W; is a standard Brownian motion and o is the volatility parameter. The data sequence
X1,...,X; is then a discretization of the stochastic process defined by 6. In this setting, the learning

objective is to both identify the parameters of the stochastic process and predict the next sample
given the previous ones. We will also consider more intricate processes that are not Markovian.

Let us also present examples of prior distributions 7 over tasks that will illustrate our theoretical
results.

Example 3.4 (Priors in 1D). For simplicity, consider the case where tasks are one-dimensional, i.e.,
® c R. Student’s z-distributions with v > 1 degrees of freedom are an example of heavy-tailed
priors with polynomially decaying tails: for large 6, (6) o 1/|0]"*!. m(6) thus decays more slowly
as v decreases, leading to heavier tails. By convention, Student’s ¢-distribution with v = co degrees
of freedom corresponds to the Gaussian distribution, whose tails decay exponentially.

Generalized Normal distributions, by contrast, still retain exponentially decaying tails but allow to
control the rate of decay: for a scale parameter @ > 0 and a shape parameter S > 1, it has density
n(0) o« exp(—|6/a|P). n(6) thus decays more slowly as 3 decreases, leading to heavier tails.

(1) (N)

Given a dataset of tasks 61, ..., 0y and associated samples Xy ees X @ model f is trained by
minimizing the next-sample prediction loss
- 1 N T
L(f’ (envx’ll;T)nSN) = ﬁ Z Z gt (f(-x’il;t_])’ -xtn) > (2)
n=1 t=1

where ¢; is a per-sample loss which depend on ¢ to encompass regression and classification tasks.
Note that the model is trained to predict the next sample x; given the previous samples x1.;_1, without
any explicit supervision on the task 6. This is why ICL is referred to as an emergent ability of large
models (Wei et al., 2022).

We consider two kinds of error for ICL: (i) the ability of the model to identify the correct task
given some in-context examples, which we refer to as task selection, and (ii) the generalization
error of the trained model  obtained by minimizing (2) on a training dataset, which we refer to as
generalization error. We first study task selection, before turning to the generalization error, which
is more involved.

3.2 TASK SELECTION

Our first main result concerns the ability of a trained model to perform ICL and in particular to
retrieve the correct task given some input sequence. For this, we adopt the Bayesian point of view,
similarly to Lin & Lee (2024); Zekri et al. (2024); Jeon et al. (2024); Zhang et al. (2025b); Wang
et al. (2025b). Indeed, if f is arbitrarily powerful and trained to optimality, f learns the Bayesian
optimal predictor. If we denote the posterior p; (6 | x1:;—1) the posterior distribution over tasks given
the input sequence x1.,—1, the Bayesian optimal predictor is given by

fGxr) =argminBg_p, (1x,,) [Ex,~p, Clx1a1,0) [€: (e, x0)]] - (3)

Xt

For a model to perform ICL given in-context examples x1.,—; generated from a task 6%, it is there-
fore necessary that the posterior p; (6 |x1;-1) concentrates around the true task 6* as the number
of in-context examples ¢ increases. Our first main result provides a quantitative guarantee of this
concentration and highlights the role of the properties of the pretraining distribution .

For this, we require some mild assumptions on the data generation process only; they do not restrict
the prior z. Since our focus is on the influence of the prior 7 on task identification, in the main text
we mainly focus on assumptions and quantities that involve z, and defer the detailed assumptions
to Appendix B. We will therefore use the notation poly(x) to denote a quantity that is polynomial in
x with coefficients independent of the prior 7 and the number of samples 7.
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Assumption 1 (Data generation, informal). Let 6* € ® be the true task. We assume:

(i) Tail control. Sequences x1.; generated under the true task 8* have controlled tails, at most
poly(T') on typical tail events and 7 admits a second moment.

(i) Moment bound. Forany 7" > 1, Exp,.(.|¢%) [log2 (sup(,E@ %)] is at most poly (7).

(iii) Local regularity. The prior density 7 is continuous and, forany R > 0,¢ < T,

elx1e-1,0
log % < poly(R)||6 — @’|| forall xy,,0,8 such that ||x||, ||0]],]|6’]| < R

These assumptions are quite mild and are satisfied by our examples, see Appendix D.2.

As a metric to assess the quality of a given retrieved task 8 w.r.t. the true task 8*, we consider the
Rényi divergence (Rényi, 1961) of order p € (0, 1) between the distributions p(- | 8) and py(- | 6%):

£\ _ 1 T P, (X¢1X1:-1,6) P
Dy(0116%) = =775y l0g Bx~p,(-107) [szl (m) ] :
We divide by T to obtain a per-sample divergence that does not trivially diverge as T increases.
Our main theorem below shows that, under Assumption 1, the posterior distribution over tasks con-
centrates around the true task 6* as the number of in-context examples T increases, at a rate that
depends on the properties of the pretraining distribution 7.

Theorem 1 (Task selection). Let p € (0, 1), under Assumption 1, with n(6*) > 0 and x.7 ~
pr (- | 0%), the posterior distribution over tasks satisfies

* 1 * logT
Ex,, []E9~ﬁ’1‘('|x1:7) [DP(O 6 )” s (1_+p’D)T10g 1/m(67) + O( Oi ) ’ @)

where the terms in O(M%T) do not depend on the prior nt or are negligible compared to the first
term.

To place this result into context, Theorem 1 provides a guarantee on how close the posterior dis-
tribution over tasks is to the true task 6* as the number of in-context examples T increases. The
right-hand side (RHS) decays as O(1/T), which shows that the posterior concentrates around the
true task as the number of examples in-context increases. The speed of convergence is governed by
the coefficient log 1/7(6*), which quantifies how well the prior & covers the true task 6*: the smaller
7(0%), the slower the convergence. Since in ICL we wish to study the capabilities of learning a new
task from in-context examples, this result quantifies the speed at which ICL learns this new task
0*: the further * is from the bulk of the prior x, the slower ICL learns this new task. Thus, when
learning with ICL, the ability to learn a new task and its robustness to new tasks therefore crucially
depends on the tail of the prior x: the slower the tail of & decays, the larger 7 (8*) is for tasks 6*
far from the modes of &, and the faster ICL learns these new tasks. This can be observed on the
examples of priors presented in Example 3.4. For a fixed task 6* far from the modes of x, the error
for Student’s ¢-distributions with v degrees of freedom behaves as (v + 1) log |6*|/T for large |6*| so
that lower values of v, i.e. heavier tails, lead to smaller errors. For Generalized Normal distributions
with shape parameter 3, it behaves as |§*|F /T so lower values 3 also lead to smaller errors. This
simple statement thus captures a key aspect of ICL that was observed empirically in several works
(Chan et al., 2022; Singh et al., 2023).

From a technical viewpoint, Theorem 1 is proven in Appendix B using ideas from Bayesian statistics
(Zhang, 2003; 2006) is extremely general, covers discrete and continuous task spaces, and does not
require any probabilistic structure on the data sequence x1.; nor specific data distributions. Moreover,
unlike most existing results, Theorem 1 provides a guarantee on the posterior distribution given all
T in-context examples, and not only on the regret, which bounds the average error of the posterior
distributions given 1,...,T examples. This better reflects the practical use of ICL, where the user
typically only considers the output of the model after all in-context examples have been provided.

Finally, we provide in the appendix, in Appendix B.4 a more refined version of Theorem 1 that
involves not just the prior density at the true task (6*) but also the local geometry of the prior 7
around 6*, which can provide much sharper bounds in some cases. This refined result also encom-
passes the case where 7(6*) = 0, in which the ICL error is not vanishing anymore. In this scenario, it
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shows that ICL can struggle on out-of-distribution tasks, as empirically studied previously (Goddard
et al., 2025; Kwon et al., 2025; Yadlowsky et al., 2023).

Takeaway #1: Heavier-tailed priors are beneficial for task identification and its robustness,
as they improve the learning speed on new tasks.

We will now examine the generalization error of ICL and see that there is a trade-off.

3.3 GENERALIZATION ERROR

The second key statistical question for ICL is its generalization error. For the trained transformer
to accurately behave as the Bayesian optimal predictor w.r.t. the prior x, it is necessary that the
next-token prediction be minimized on the true data distribution, and not just on the training data.

We therefore study the generalization error of the trained model f obtained by minimizing (2) on
a training dataset. We consider a dataset consisting of N tasks 6y, ..., 0y sampled independently
from the prior 7, and for each task 6,, a sequence of T samples x}.,. generated according to the

task-specific distribution py(- | 6,): forn < N, fort < T, xt(:’f ~ P (¢ IxY't), 0,).

To the best of our knowledge, existing concentration for dependent sequences do not cover this case.
We thus develop our own framework: we encompass non-independent and identically distributed
(i.i.d.) and non-Markovian data sequences through a weak dependence assumption in Wasserstein
distance, and we handle heavy-tailed task distributions by taking inspiration from the recent frame-
work of Li & Liu (2024a); Li et al. (2024). The resulting framework is therefore quite general and
can be of independent interest beyond ICL, see Appendix C.

Here we again present a simplified version of our assumptions, where we focus on the few key
quantities that are relevant in our study: how dependent the data sequence is and how heavy-tailed
the prior 7 is, quantified through the maximal moment of  that exists'. We refer to Appendix C.3
for the complete version of the assumptions. We consider F a class of models f : U, (R¥)" — RF
and £, : R¥ x R* — R, a per-sample loss function that can depend on time ¢.

Assumption 2 (Generalization, informal).
(i) Moment condition. There is ¢ > 2 an integer such that Eg. . []|0]|7] < oo.
(ii) Influence of the task. There is A7 > 0 such that, any t < T, any 6,0’ € 0,
Wi(p,(dx; | 0),p,(dx,” |8)) < Ar]l6 - €']|. &)

(iii) Weak dependence. There is By > 0 such that, forany s <7 < T, any 6 € ©, any x.s, X5,

Wi(p, (dx; | x1:5,0),p, (dx;" | x1:(s-1), X5, 0)) < Br(1+]16]]) . 6)

(iv) Average Lipschitzness. There is an Ly > 0 such that, for any f € F, any x;.1, x;,
% Zstl Ilf(x1:5-1) — f(xllt—l7x;’xt+l:s—l)“ < L7|lx, _X;” > (N

(v) Usual conditions. The losses ¢; are 1-Lipschitz; the class of models F is bounded and uni-
formly Lipschitz with respect to some metric and x, conditioned on x1:;_1, @ is uniformly
sub-Gaussian.

q, A, Br, and Lt are the key quantities that govern the generalization error of ICL. When 7 has
polynomial tails, g quantifies how heavy-tailed the prior r is: the smaller g, the heavier the tail of .
For Student’s ¢-distribution with v degrees of freedom, ¢ = |v — 1]. Bp quantifies how dependent
the data sequence is while A also quantifies how much the task influences the data distribution: in
the case of an i.i.d. sequence, both A7 and By are bounded w.r.t. T, which might not be the case in
general. L7 quantifies how much the model f uses the older examples in context: for transformer
with context length at least T, L is typically bounded. If, on the contrary, the context length is

I'We focus here on prior distributions with polynomially decaying tails, such as the Student-r family, since
it is the most representative. A similar result could be established for priors with subexponential tails.
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kept constant and smaller than T, as in Zekri et al. (2024), Ly can decay as 1/7T. In particular,
Assumption 2 skips the assumptions on the size of the hypothesis class JF since this is not our main
focus, and we refer to the appendix for details.

Our main result provides a bound on the generalization error of the trained model f:

T
]T Z G (F(x1:-1),X1)
=1

Y —" [-Z0.@tnm. @

for being the model obtained using the empirical distribution (6,,, X.;:)n<n-

Theorem 2. Under Assumption 2, for any § € (0, e~2), with probability at least 1 — 6, it holds:
(a) If 6 = Ne™ 4, then

_ log 1/6)3LyNT
&n < O((Og /\;ﬁ VT (1+AT«/T+BTT)), )
(b) If 6 < Ne™ 4, then . LoNT
gen < O(&l/qx/ﬁ (1+AT\/T+BTT) , (10)

where the terms in O(-) depend polynomially on q, log N, the scale of © and the size of F.

Like standard concentration inequalities for sums of independent heavy-tailed random variables,
Theorem 2 provides two regimes. For small deviations, i.e., ¢ not arbitrarily small, the generalization
error behaves like in a sub-exponential setting. However, for large deviations, i.e., ¢ very small, the
behaviour of the generalization error worsens and depends on the moment ¢ of the prior 7.

The generalization thus depends critically on the moment g of the prior &: the smaller the moment
g, the heavier the tail of the prior 7 and the worse the generalization error. Indeed, the smaller
g, the higher the threshold Ne™7 separating the two regimes, leading to worse generalization for
small 6. Moreover, the dependence on § in the second regime also worsens as g decreases. This
can be observed on the examples of priors presented in Example 3.4 and in particular Student’s -
distributions: with v degrees of freedom, the maximal moment is ¢ = [v — 1] so that smaller values
of v, i.e., heavier tails, lead to smaller values of g and worse generalization.

This provides a counterpoint to the task selection result of Theorem 1 that showed that heavier-tailed
priors are beneficial for task identification. This highlights a fundamental trade-off in the choice of
the pretraining distribution &r: heavier-tailed priors are beneficial for task identification, but harm the
generalization error.

This bound also highlights how much larger the number of tasks must be compared to the number of
in-context examples to ensure good generalization: in general, one needs N to be at least much larger
than 7 to ensure a small generalization error. This is in line with our experiments and previous em-
pirical studies. Ravent6s et al. (2023) shows that to obtain optimal ICL performance with a context
length of 16 or 64 in linear regression, one needs thousands of tasks. However, Park et al. (2025);
Waurgaft et al. (2025) highlight that these numbers significantly vary across settings. Moreover, if
the data sequence is highly dependent, i.e., A7 and By are large, the requirement on the number of
tasks N for ICL to generalize well also increases. This will be demonstrated in Section 4.3.

In Appendix C.6, we provide an extension of this result the case where tasks can be repeated in the
training dataset, which is often the case in practice and improves the dependence on N.

Takeaway #2: Heavier-tailed priors and stronger temporal dependences increase the
number of tasks required for reliable ICL generalization.

4 EXPERIMENTS

We conduct a series of experiments to empirically study the behavior of the pretraining distribution
on the performance of ICL?. We aim to answer two main questions: do the qualitative characteristics

2 Additional results and figures are in Appendix E.
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Figure 1: Influence of the degree of freedom parameter of a Student-¢ pretraining distribution on the ICL error
for different task shifts with and without importance weighting. Weighted samples given by —* marker.
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(a) n =500 (b) n = 1000 (¢) n = 5000

Figure 2: Generalization for linear regression with a Student-# prior of varying v as a function of n.

of the proposed bounds hold in practice? and; how do modifications of the pretraining distribution
affect performance as the test distribution changes in distance from the pretraining distribution? To
do this, we train a transformer under different pretraining distributions to solve different ICL tasks.

ICL evaluation through robustness to distribution shift. The transformer is trained on tasks 6
sampled from a pretraining distribution 7. To assess the ICL performance, we evaluate the trained
model on tasks 8’ = 8+ A where 8 ~ N (0, I;) and A is a deterministic shift and report the ICL error
on these shifted tasks as a function of the shift magnitude ||A||. Note that these evaluations tasks
are independent of the choice of pretraining distribution. Studying this error as a function of the
shape of the pretraining distribution allows us to validate the theory in Theorem 1. We also study the
performance of ICL as a function of the number of pretraining tasks to test how well the methods
generalize, with an emphasis on relating the theory in Theorem 2.

Distributions and Metrics. The pretraining distributions and their parameter values are given
in Table 1. The parameters are chosen such that changing them produces a change in the shape
of the pretraining distribution. In both cases, lower parameter values indicate heavier tails of the
distribution. The scale parameter is chosen such that all pretraining distributions have the same
variance. For all experiments, we consider mean squared error (MSE) as the metric we compare. We
also consider the best MSE over the context length, which is given by min, ( f (x;) — x;41)?; the mean
MSE given by % ZzT=1 (f (x:) = x;+1)%; and finally the full context length MSE given by (f(x7_1) —
x7)2. These allow us to see how the different priors perform while taking into consideration the full
context length.

4.1 LINEAR REGRESSION

We first consider the linear regression setting intro-  Table 1: Pre-training distribution parameters.
duced in Example 3.2 where each 6 € R defines a lin-

ear .regression task y; = GTqi-ire,- fori = .1,. ..., 64 where Dist. Param.

64 is the context length. During pretraining, we sam-

ple 6 according to four different distributions, where Gen. Normal g € {1,1.5,2,2.5}
the distributions have the same location and scale but Student- v € {3,5, 10}

different tail decay. We consider Student-¢ distribu-
tions with different shape parameters. In Fig. 1, we
see that the performance for small task shifts, the nor-
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Best MSE Mean MSE Full Context Length MSE
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Figure 3: Influence of the degree of freedom parameter of a Student-¢ pretraining distribution on the ICL error

for different task shifts with and without importance weighting for predicting the next step in an OU process
with context length of 32. Weighted samples indicated by the —x marker.

Best MSE Mean MSE Full Context Length MSE

3 4 0 4

0

1 2 3 1 2 1 2 3
Task Center (Task Shift) Task Center (Task Shift) Task Center (Task Shift)

Figure 4: Influence of the shape of a generalized normal pretraining distribution on the ICL error for different
task shifts with and without importance weighting for predicting the next step in an OU process.

mal distribution prior is the highest performing, but for larger shifts the heavier tailed distributions
perform better.

Reweighting. To further investigate the predictions of Theorem 1, we consider reweighting the
pretraining distribution: if we are given samples from a distribution P but know that a pretraining
distribution Q exhibits strong performance, can we improve the performance of distribution P by

matching Q via importance sampling i.e. Eg[£(X)] = Ep [{’(Y) 3—%] 7 We study this in Fig. 1 where
we reweigh samples such that they are approximately uniform over the support of the empirical

distribution. The results indicate small improvement in the performance under large shifts using the
reweighting as compared to without reweighting.

Generalization. We next consider how the error behaves as the number of pretraining tasks
changes for different tail parameters of the pretraining distribution in Fig. 2. The results show
that, though heavier-tailed priors outperform lighter ones for large shifts for large number of tasks,
for small number of tasks, lighter-tailed priors perform just as well on these large shifts. This is
predicted by our theory: Theorem 1 predicts that heavier-tailed prior are beneficial for task selection
on out-of-distribution tasks, but Theorem 2 predicts that lighter-tailed priors lead to better general-
ization when the number of pretraining tasks is small. Thus, for small number of pretraining tasks,
the advantage of heavier-tailed priors for task selection is offset by their worse generalization.

4.2 LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

In the next set of experiments, we follow the setup in Example 3.3 with a stochastic process satis-
fying (1). For our metric of success, we compare (X;4; — E[X;4+1 | X;])? where X,,; is conditioned
on the context of X;.,. We consider 6, u sampled from different pretraining distributions and again
compare the performance of ICL on different test tasks. We study both the Student-¢ distribution
in Fig. 3 and the generalized normal in Fig. 4. In both instances, we see that the heavier tailed
pretraining distribution performs better for larger distribution shifts. In the generalized normal case,
the effect of reweighting is practically negligible, but in the Student-7 case, we see some benefit,
particularly in the large shift regime.
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Figure 5: Generalization of a transformer trained to predict the next step of the Volterra as a function of n the
number of tasks with context length of 32.

4.3 STOCHASTIC VOLTERRA EQUATIONS

We finally consider stochastic Volterra equations as a model of nonlinear stochastic processes that
have long range dependencies. These processes are, under certain conditions, known to model
fractional Brownian motion, which exhibit self-similarity which has been thought to represent the
distribution of tokens in LLMs (Alabdulmobhsin et al., 2024). Each task 6 parametrizes a multi-layer
perceptron bg and induces the process: X; = Xp + /Ot(t —8)"%bg(X,)ds + /Ot(t —s5)”*dW,, where
W, is a standard Brownian motion and @ > 0 controls the temporal dependence of the process:
the smaller « is, the more past values influence the current value. The dependency coefficients in
Theorem 2 thus depend explicitly on a, they are larger for smaller a, see Appendix D.1. We consider
the generalization capabilities as a function of the number of pretraining tasks in Fig. 5 and as a
function of @. Theorem 2 predicts that generalization should suffer for smaller @ due to the increased
dependencies, which is validated in the experiments: the performance gap between the different «
is larger for smaller number of tasks. More precisely, sequences with lower kernel exponents such
as 1.0 (higher dependence) have worse performance and degrades faster as the number of tasks
decreases compared to sequences with higher kernel exponents such as 2.0 (lower dependence).

5 CONCLUSION

In this work we study ICL through the perspective of task selection and generalization. Our main
theoretical contributions describe error bounds of ICL in terms of both task selection and general-
ization. We show that a pre-training distribution must be carefully chosen such that the effects of
both of these error terms are appropriately balanced. Consequently, the theory allows one to explic-
itly design a prior distribution based on robustness considerations. We design experiments which
consider to what extent ICL can generalize on new tasks that may be out of distribution. The key
takeaways are that a heavier tailed prior is appropriate when considering distribution shifts or when
many task examples are available. These experiments shed light on how to appropriately pre-train
transformers for their use with ICL, with specific emphasis on numerical tasks.

Limitations and Future Directions While our theoretical results are general, the experiments are
limited to numerical data: it remains to be seen how this applies to training LLMs when large
numbers of documents need to be considered. The reweighting experiments most closely correspond
to the possible interventions one may make during pre-training or fine-tuning to improve ICL. A
natural follow-up study would consider how to leverage these insights to improve ICL on LLMs
with tokens rather than continuous numerical data.

REPRODUCIBILITY STATEMENT

For the theoretical statements, all proofs for task selection are located in Appendix B and all proofs
for generalization statements are located in Appendix C. Details regarding experimental setups are
available in Appendix F. Finally, code is available with the submitted manuscript in the supplemental
files.
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A ADDITIONAL RELATED WORK

Training dynamics of ICL  Varre et al. (2025) shows that n-grams are approximate stationary
points in the training of two-layers transformers. Zhang et al. (2025a) studies the training dynam-
ics of a one-layer linear transformer with linear attention on linear regression tasks. Sander et al.
(2024) characterize the training dynamics of a one-linear layer transformer on auto-regressive tasks,
showing how ICL emerges. Ahn et al. (2023a) show that for linear regression problems and a linear
transformer, the global minimizer of the training loss corresponds to performing one step of pre-
conditioned gradient descent. In contrast, our approach focuses on the influence of the pre-training
distribution on ICL. We therefore assume that the model is sufficiently expressive and trained opti-
mally enough to approximate the Bayes optimal predictor. We refer to recent works on optimization
dynamics of transformers Gao et al. (2024); Barboni et al. (2025); Azizian et al. (2025) and on the
approximation capabilities of transformers.

Approximation capabilities of transformers The foundational works of Von Oswald et al.
(2023); Akyiirek et al. (2023) demonstrate that transformers can implement gradient descent. This
has led to a fruitful line of work studying the algorithmic capabilities of transformers. Bai et al.
(2023) show that transformers can implement a wide variety of statistical methods. Wang et al.
(2025a) shows how transformers can implement functional gradient descent on categorical data,
generalizing previous works. Wu et al. (2025) shows how attention transformers can implement gra-
dient descent on a ReLU network. Sander & Peyré (2025) explicitly constructs a transformer that
implements kernel causal regression. On a more abstract perspective, Furuya et al. (2025); Kratsios
& Furuya (2025) show that (causal) transformers can approximate any (causal) map between mea-
sures. Wang & Weinan (2024) studies quantitatively the approximation properties of transformers
on "sparse memory" target functions. Li et al. (2025a) obtains explicit approximation bounds for
numerical ICL tasks.
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B TASK SELECTION

In this section, we study how tasks are selected at test time in ICL. This section is structured as
follows. First we consider an abstract setting for Appendices B.1 and B.2 where in Appendix B.1
we state a few preliminary lemmas that will be useful in the analysis, and in Appendix B.2 we prove
a template task selection bound under minimal assumptions. Then, in Appendix B.3, we reintroduce
the ICL setting along with the detailed assumptions before proving the main task selection bound in
Appendix B.4, which is where the main contribution of this section lies.

B.1 PRELIMINARY LEMMAS

Definition 1 (Kullback-Leibler divergence). For IP and Q two probability measures on a measurable
space X, the Kullback-Leibler (KL) divergence from P to Q is defined as

(%(x))mp(x) ifP<Q
otherwise.

KL(P || Q) = {{X log (B.1)

We now state the Donsker-Varadhan lemma, also known as the Gibbs variational principle.

Lemma B.1 (Donsker-Varadhan lemma, Gibbs variational principle). Consider P probability mea-
sure on a measurable X and g: X — R a measurable function such that Ep[exp(g)] < co. Then,
we have

log Ep[e?™] = sgp{lEQ [9(x)] -KL(Q || P)}, (B.2)

with equality attained in particular for %(x) oc e9(),

See for instance Hellstrom et al. (2025); Rodriguez-Galvez et al. (2024) for original references and
proofs.

Let us state a technical consequence of this lemma that essentially corresponds to Zhang (2003,
Lem. 3.1).

Lemma B.2. Consider X a random variable on X distributed according to Px and 6 a random
variable on ® with prior distribution 7(d) and with posterior distribution such that, conditionally
on X,

~ _ dP(X | 0)
P(df| X) = dP(X) n(d0) . (B.3)
Consider L: X X ® — R a measurable function. Then,
Ey o-p(.x) [L(X,0) —log Ex[exp(L(X,6))]] < Ex[KL(Py(- | X) [| 7)] . (B.4)

Proof. We apply Lemma B.1 with ¢g(0) = L(X,6) — log Ex[exp(L(X,#))] conditionally on X to
obtain

E, 5 x) [L(X.0) — log Ex[exp(L(X. 6))] - KL(Py (- | X) || m)] (B.5)
<logEg-~[exp(L(X,0) —log Ex[exp(L(X,0))])]. (B.6)

We then have
Ex[expE, 5 [L(X. 6) - log Ex[exp(L(X. 6))] — KL(Py(- | X) | )] (B.7)
< Ex,g~x[exp(L(X, 0) — log Ex[exp(L(X,6))])] =1, (B.3)
and the result follows by Jensen’s inequality with the convex function exp. ]

B.2 TEMPLATE TASK SELECTION BOUND
Let us start with a template task selection bound under minimal assumptions. This proof is adapted

from Zhang (2003, Thm. 4.1) to the case of non-i.i.d. data and when the true task is not necessarily
in the support of the prior.
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Proposition B.1 (Template task selection bound). Consider X a random variable on X distributed
according to Px and 0 a random variable on ® with prior distribution n(d0) such that, conditionally
on X, 0 is distributed according to

P(do | X) = %n(d@). (B.9)
Then, we have, for any 6 € ©, forany p € (0,1), a > 1,
Ey o-5(1x) [—log]Ex (%X'J)H))p ] (B.10)
< —alogEg-x exp(— Ex log %) +aKL(Px (") || Px(- | 60)) (B.11)
+(a —1)Ex [log Eg-x [exp(—z :’1’ log ‘;%((('.Hggo)) )H (B.12)

Proof. To simplify notations in this proof, unless otherwise specified, 6 indicates a random variable
distributed according to P(- | X). We start from Lemma B.2 with L(X,0) = plog djﬁi'(“)’) and
rearrange to obtain:

) P .
d Py ( |9)) AP0 | KLP (- [ X) | )], (B.I3)

EQ[_I"gE"[( APy () dPx(-16)

The left-hand side (LHS) is the quantity we want to bound. We now only need to bound the RHS.
Making 6y € © appear in the bound, we have

dPx(-)

<Ex, [P log

]Ex,e[Plogm + Ex[KL(Py (- X) | )] B.14)
dPy(- dPx(- |6
= pEy logwm +Ex.q|plog ﬁ} +Ex[KL(Py(- | X) || 7)] (B.15)
= pKL(Px () || Px(- | 6o)) (B.16)
d Py (-
#Ex.o[plog 75 0 | + Ex[KLPa(-] ) [ )] ®.17)
Introducing @ > 1 and defining u = g—:; < 1, we now bound the last two terms in (B.17) as follows:
dPx(-16

Ex.a|plog X 0+ Ex KL |30 )] (B.15)

) dPy(-| 6y) .
—Q(Ex,e[log b1 |+ BRI X) ||n)]) (B.19)

dPx(-16

(- p>(n~:x,g 10gﬁ + HEX[KL(P (- | X) ||n>]). (B.20)

Let us first focus on the first term. By the equality case in Lemma B.1 and the definition of P(6 | X),
we have, almost surely,

dP(X |6 . dP(X |6
Eq-p(1)|log ﬁ] +KL(Py (- | X) || 1) = lgf{IEa~o [log ﬁ]m& || n)} .
(B.21)
Passing to the expectation over X we obtain that,
dP(X)
E[logm +Ex[KUPy (- | X) || 7)] (B.22)
. dP(X |6
=Ex 1%f{IEg~Q [log ﬁ] + KI(Q || n)} (B.23)
. dP(X |6
< 1%f{IE9~Q [IEX [log ﬁ ] + KL(Q || ﬂ)} (B.24)
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d Px(-|6o)
= —logEg~ —Ex|log——=|]], B.25
ogEg n[exp( x |log APy (-] 0) (B.25)
where the last line follows from Lemma B.1 again with g(0) = —Ex [log %]. Let us now

bound the second term in (B.20). We have, by Lemma B.1 again,

dPx(- | 6o)
E log ———= Ex[KL(Py(-| X B.26
x.0|108 B Ta) +u Ex[KLU(Py (- | X) || )] (B.26)
1 dPx(-|60)
> —uEx|logEg. ——log ——=|||. B.27
= —pulEx(log GRCXP(Mogd]Px('|9) ( )
Putting together (B.20), (B.25), and (B.27) concludes the proof.

]

B.3 ICL SETTING

Let us now re-introduce the ICL setting from Section 3.1 along with the detailed assumptions.

[I-| denotes the Euclidean norm on R¥ for any d € N. Assume that task vectors live in ® ¢ R? the
space of tasks 6 and by 7(6) the density of the pretraining task distribution. The context sequence is
then generated by first sampling a task 6 from the task distribution n, and then sampling data points
(x¢)¢>1 according to

Xt+l ™~ pt+1(' |x1:t, 9) . (B.28)
where x1:; = (X1,...,X7).
We denote the posterior p; (6| x1:;—1) the posterior distribution over tasks given the input sequence
X1:i-1

Assumption 3 combined with Assumption 4 are the detailed version of Assumption 1 from Sec-
tion 3.1. Recall that we write poly(x) to denote a quantity that is polynomial in x with coefficients

independent of the prior 77 and the number of samples 7. We also denote by B(0, R) the closed ball
of radius R centered at 0 in R for the Euclidean norm ||-||.

Assumption 3 (Data generation). Fix 6* € © the true task and 6y € © a reference task such that
m(6p) > 0.

* Tail behaviour of (x;);>;: there is k > 1 such that forany7 > 1, R > T,

]PX~PT(-|9*)(9:“S;1”pZR pr(X |10) =2pr(X|60)| < fil);e(ﬂ (B.29)
]PX~pT<-|e*>(3t < Tl = R) < f‘fﬁa (B.30)
* Moment bound on (x;);>1: forany T > 1

Ex-p,(|6) [logz(zgg %)] < poly(T). (B.31)

* Regularity of the likelihood: forany t > 1, 6,6’ € ® N B(0,R),
sup  log P (x| xis-1.9) < poly(R)||16 —€¢'||.. (B.32)

veBOR)y P [X1-1,07)

For a sequence (x;);>1, we denote by x,.; the subsequence (x4, X441, ..,Xp) for 1 < a < b with

the convention that x,.;, = x1; if a < 1.
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B.4 TASK SELECTION BOUND FOR ICL

We begin with a discretization argument and first we generalize the bracketing numbers to the non-
ii.d. case. This definition generalizes the bracketing numbers used in Barron et al. (1999); Zhang
(2003; 2006) to the non-i.i.d case and the following result generalises the results of Zhang (2006) to
the non-i.i.d. case.

Definition 2. Given a sequence of random variables (x;);<7 on a measurable space X', with para-
metric densities p,(:|6) parameterized by 6 € ©, compact sets ® C ® and X’ c X, the e-upper
bracketing number of ®’, denoted by B(®’, &, X’,T) is the minimum number of sets U; that cover

©®’ such that, forany r <7 — 1, any x1..4] € Xl any j,

/ Sup pryq (Xr41 | X154, O)dxryr < 1+ 6. (B.33)
4 QEUJ'
Lemma B.3. For u € (0, 1), for any € > 0 and any compact set ® C ©, any set X' C X, it holds
1 (x1.7 1 60)
HEx , [log Eg-x [exp(—— log ———MM— Pr (B.34)
H pr(x1.r | 6)
<2log(B(®,e, X', T)) +6Te+nr(0 ¢ ®) (B.35)
pr(xir | 6) } ( pr(xir | 6)
+E, . [1{sup —————= > 1; -log[1+ sup —— (B.36)
xm[ {eee/ pr(xir | 60) oger Pr(x1.1 | 00)
’ pT(xl T | 9)
+E,  |1{x.r g X'T 10( S (B.37)
XIT[ teuz H gaegpr()ﬁﬂ@o)
Proof. First, let us consider § € ® and X = xy.7 € X’T. We have
1 X|e 1= 4,0
exp(——log pr(X| 0)) = exp| - Zlog Pra1 (Xea1 | X124, 6) (B.38)
M pr(X10) M=o Pre1(Xes1 | X124, 60)

Invoking the bracketing definition (Definition 2), we obtain sets U, for j = 1,...,B(0",&, X', T)
such that, for any < T — 1, any x1.,4; € X’"*!, any j, with g;(-1°) = SUPgey, D1 (-1-,6),

/); 9j(Xee1 | X1:0)dxe) < 1+ €. (B.39)

Therefore, for any 6 € @', any ¢ > 1, any xj.;4] € X't*1 there exists i € {1,...,B(®,&, X', T)}
such that

pt+l(xt+l | Xt—s:6.0) < gi (Xea1 | Xe—sir)- (B.40)
Hence, we can bound
1 X6 1 ; 1
exp|—— log pr(X | 0)) < exp —Zlog i (Xpa1 | Xi—5:t) —l og +e ‘ (B.41)
H pr(X 16) H =0 Pre1(Xrs1 | Xi—s5:2, 00) I-¢

‘We now control the contribution from 6 ¢ ®” by simply taking the supremum over this set. We have

’ 1 pT(X | 60))]
Egr|1{0 ¢ ©'} - ex (——10 it 0] (B.42)
’ [ P\ % (X T6)
X0 1/u
—7(0¢ ) su (M) (B.43)
9¢®f pr(X | 60)
Combining (B.41) and (B.43), we bound the LHS of the statement as
1 X|6
LEx|1{X € X'} log Eg-x [exp(—— log M)” (B.44)
wo T pr(X10)

21



Under review as a conference paper at ICLR 2026

pr(X | 6o)

:/,[]E -
X pr(X16)

X|0
1{X € X'T}log]EHN,r[]l{G € @'}exp(—llog pr(X| 0))}
u

, 1
(B.45)

B(@®',&,X',T) T

15 Gi(Xext | Xe—sit) I+¢
<uEx|1{XeXxT}lo ( exp|— >, lo d ek +—1lo
HEX [ £ ; P M g g pt+1(xt+1 | X5, 60) W g 1-¢

(B.46)
X0 1/u
+7(6¢@) - sup (M) )] . (B.47)
oger \Pr(X | 6o)
Since u € (0, 1), for any non-negative numbers aj, . .., ax we have (ZkK:l ak)” < Z,’;l af:. Using
this inequality and that log(a + b) < log(1 + a) + log(1 + b) for a, b > 0, we obtain
’ 1 pT(X | 90)
uEx|1{X e X'T}1o ]E9~,,[ex (——10 LE SR (B.48)
® A\ % o (XT0)
B(©@,e,X',T) T-1 '(X |x ) ) l+e
<Ex|1{XeXxT}lo ( ex log It [Ximsit) 1y, (B.49)
X [ t ylog ; p(;—o g Pr+1 (X401 | Xr—g:t, 60) g l-¢
X6
+7(0 2 )" - sup (M) )] (B.50)
oger \Pr(X | o)
B(®,2,X'.T) T-1
i (Xes1 | Xr-5:1) I+e
<Ex|1{Xe X T}log|1+ ex lo +Tlo
X [ ¢ ) g( ,le p(,Z:(; s Pro1 (K41 | X2 -5, 00) ¢ l-¢
(B.51)
X|0
+10g(1 +7(6 ¢ @) - sup (M))] . (B.52)
oger \Pr(X | 6o)
Using Jensen’s inequality on the first term, we have
’ 1 pT(X | 00)
u]EX[]l{X € X'T}1og Egr |ex (——10 LS k2 (B.53)
¢ P\ % (X0
B(®,&,X".T) T-1
i (Xre1 | Xi—5:t) l+e
<log|l1+E ex lo +Tlo (B.54)
¢ X ; p(g s Pre1 (Xea1 | X2 -5, 00) g l-¢
X|0
+ Ex log(l +m(8 ¢ @) . sup (M))} (B.55)
oger \Pr(X | 6o)
. r(1+e\" ) pr(X | 6)
<log|1+B(@,e, X", T)(1+&)'| ——| |+Ex|log(1+n(0 ¢ @) Ex|sup | ———= ,
l-¢ ogor \Pr(X | o)
(B.56)

where we used the definition of the bracketing number Definition 2 in the last line. To obtain the final

result, we perform additional manipulations on each term. For the first term, we use that ﬁ < 142x
for x € (0,1/2) so that

1 T
log((l +s)T(1i) )s log((l +2g)3T) < 6Te, (B.57)
- &
so that
’ ’ T l+e ’ ’ ’
log[1+B(@",e, X', T)(1+¢) 1-% <log(1+B(®,e, X", T))+6T¢e (B.58)
<2log(B(®',&, X', T))+6T¢. (B.59)
For the second term, we use that log(1 + x) < x and distinguish two cases to obtain
X6
Ex [log(l +m(0 ¢ @) . Ex| sup (M) )] (B.60)
o¢e \Pr(X | 60)
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X|6 X6
< (6 ¢ @)" +Ex ]l{sup Pr(X10) 1}.1og(1+sup M)] (B.61)
oger Pr(X | 6o) oger Pr(X | 6o)
All that is left to do is to deal with the case X ¢ X’T. We have, as above,
’ 1 pT(X | 90) T pT(X I 9)
p]Ex[]l{X ¢ X'T} log Eg- [exp(——log— < Ex|1{X ¢ &' }log|sup ————|| -
" u = pr(X[6) oco Pr(X | 6o)
(B.62)
[
We now leverage Assumption 3 to control the different terms of Lemma B.3.
Lemma B.4. For u € (0, 1), under Assumption 3, for any T > 1, it holds that
1 76
HEx, .+ [log Eg-r exp(—— log M) <n(0 ¢ 0) +0O(log(T)), (B.63)
' M pr(xi716)

where the O(+) hides constants that do not depend on 7w or T.

Proof. Fix R > 0 that will be chosen later and take X’ = B(0, R) and ®" = B(0, R). Let us consider
a d-cover of ® with 6 > 0 that will be chosen later: there are K sets U;, j = 1, ..., K that cover @’
such that for any 6,6’ € U;, we have ||6 — 6’| < 6. By e.g., Wainwright (2019, Ex. 5.2), we can
take K such that log K < dlog(1+2R/96).

Assumption 3 ensures that the sets U; satisfy the bracketing condition of Definition 2 with & =
exp(poly(R)d) — 1. Therefore, we have, with this choice of ¢,

log B(®',,X’,T) < dlog(1 +2R/5). (B.64)

Using Cauchy-Schwarz inequality and Assumption 3, we have that, both

. 2] . 0 ly(T
E.. []l{sup Prlxr|6) | 1} -log(l + sup Prtxir 16) )] < Poly( 1 (B.65)
' oger Pr(x1:7 | 60) oger Pr(x1.T | 60) 1+RY

pr(xi.r | 0) ] poly(T)
1 X' logl's < .
Ea T[ brur ¢ b g(eele)) pr(x1:7 | 60) 1+ Rk

(B.66)

Choose R = poly(7) so that both (B.65) and (B.66) are O(1). Finally, we choose § = (poly(7))~!
so that & = exp(poly(R)d)—1 = O(1/T). Combining this (B.64)—(B.66) with Lemma B.3 concludes
the proof. ]

We can now state our main result for ICL. As a metric to asses the quality of a given retrieved task 6
w.r.t. the true task 8%, we consider the Rényi divergence (Rényi, 1961) of order p € (0, 1) between
the distributions py(- | 6) and p(- | 6%):

* 1 T t( t‘ 1 9)
D61 6%) = —mlog]EXNPT(,m*)[I—[(;(;l;lt Dyl it ) )) : (B.67)

t=1

Theorem B.1. Under Assumption 3, for any p € (0,1), T > 1, it holds that, for x,.7 ~ pr(-|6%),

Ex,.; []E9~5T('|X1'T) [DP(H | 0*)]] ®.68)
1+p pr(x1.7 | 6o)
—(1 — )T ]Og(]E9~ [CXP(_ ]Ex1;'r [log pT(xl:T | 9) ])]) (B'69)
Y KL(p7(-16) || pr(-160)) (B.70)
1-p T
log(T)
. O( d ) ’ (B.71)

where the O(+) hides constants that do not depend on 7 or T.
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Proof. This is a direct consequence of Proposition B.1 combined with Lemma B.4 witha =1+ p
and bounding (6 ¢ ®)* < 1. [

A few comments are in order. The first term of (B.69) captures how much the prior 7 covers the
reference task 8y. When 8y = 6%, this term thus quantifies how well the prior covers the true task
0*. When 6 is inside the support of m, this term is vanishing as T grows large, see the next results
below.

The second term of (B.70) captures how well the reference task 6y approximates the true task 6*.
When 6y = 6%, the term of (B.70) is 0. Otherwise, consider the case the KL will typically be of order
T so that this term is O(1): it represents the best ICL error one can hope for when the true task 6* is
not in the support of the prior 7.

B.5 LAPLACE APPROXIMATION

We will make use of the following version of the Laplace approximation, see Wong (2001, Chap. 9,
Thm. 3) for a proof.

Lemma B.5 (Laplace approximation). Let u be a probability measure on R¢ with density g : R¢ —
[0, 00). Fix x* € R? such that g is continuous at x* and g(x*) > 0. Then, as € — 0,

/ exp~ % = x'll) g(x) dv, = g(x") Ce + oe).
Rd

where C = [, exp(—%||y||)dy€(0,oo).

Assumption 4. Consider the following additional assumptions to Assumption 3:

* Tail behaviour: forany 7 > 1, R > 0,

]PX~pT<-|e*>( sup  pr(X | 6) = pr(X | 60)| < poly(T)e ® (B.72)
o:(|0[12R
]Px~pT(,|g*)(3t <T, |l = R) < poly(T)e K. (B.73)
* Regularity of m: & is continuous and positive at 6.
* Second moment of x:
Eg-x[ll6]°] < co. (B.74)

Proposition B.2. Under Assumptions 3 and 4, then, for T large enough,

—log|Eg-,|exp|—E,, . |lo
g( ¢ ﬂ[ p( XI'T[ gPT(X1:T|9)

D]) <log1/m(8y) + O(poly(logT)) . (B.75)

Proof. For some Ry > rr > 0, we split the term as

B B pr(xrr| 90)])])
log(Ing,r[exp( E ., [log —pT(X1:T|9) (B.76)
- —1og(159~,r[]1{||9|| < RT}exp(— E,,, [log % ) +1{)j0]| > RT}exp(— E,,, [10 % )])
(B.77)
pr(x1.7 | 60) pr(x1:7 | 60)
< _10g(]E6’~7r []l{”g” < ”T}CXP(— ]EXI:T [log PT(xl:T 16) ) + 1{]|6|| > RT}eXp(_ ]EXI:T [l(zg Pg)(xl:T 16) })})
B.7

Using Cauchy-Schwarz inequality and Assumption 3 and its refinement in the statement, we bound
the second term as, for 6 such that ||8|| > Ry, so that

24



Under review as a conference paper at ICLR 2026

pT(xlzT|90)] —R7/2
Ey ., [log ———————|| < e "T/“poly(T) . (B.79)
st S poly (™)
so that
pr(x1:7 | 60)
Eg-.|1{]|0 R - Ey . |log —————— B.80
0 ﬂ[ {” || > T}exp( xl_T[Og pT()Cl:Tla) ( )
< exp(eRr72 poly (1) ) e(l6]] > Rr) (B.81)
Eo- |16/
< exp(e_RT/2 poly(T))% , (B.82)

where we used Markov’s inequality in the last line. Take Ry = 7(4*1) /2 so that (B.82) is O(1/T4*).

We now focus on the first term of (B.78) and bound it as:

pr(xi.r | 6o) { } pr(xi.r | 6o) { }
E,.  |log=—-——""2| =E, |1 < logZ—— "2 |+ E, . |1 > 1
XI:T|: 0og pT(ka | 9) X1.T mtax”xt” s rrlog pT(xl:T | 9) X1.T mtaX”xt” rrlog
(B.83)
< poly(r7)T||0 — 6o]| + poly(T)e "7/ (B.84)

where we used the regularity assumption of Assumption 3 for the first term and Cauchy-Schwarz
inequality combined with Assumption 4 for the second term.

Take rr = poly(logT) so that poly(T)e™"7/> = (O(1) and assume that T is large enough so that
rr = 6ol + 1.

Putting everything together, we have

e o0
~log|Eg-r |exp| - Ex,, |log PZAET170) B.85
Og( ’ [exp ( [Og pr(xir [6) (B.85)
1
< —log(mw[]l{uen < rr} exp(= poly(r)TI0 - Boll + O(1)) + 0(—Td+1 )]) (B.56)
1
< —log(E9~n[1{||e|| < 16911+ 1} exp(— poly (log T)T1|8 - Goll + O(1) + O(—Td+1 )]) (B.87)

where we used that we assumed that r7 = poly(log T) > ||6¢]| + 1.
Applying Lemma B.5 with £ = 1/(poly(log T)T) yields:

Eg~[1{]161l < [160ll + 1} exp(=poly(log T)T1|6 = 6ol1)] = poly(log T)T~“ (x(60)C + 0(1()]; )

where C is the constant of Lemma B.5 and this concludes the proof.

We can now combine Theorem B.1 and Proposition B.2 to obtain the final result in the main text.
Theorem B.2. Under Assumptions 3 and 4, for any p € (0,1), T > 1, it holds that, for x;.7 ~
pr(-16%),

Ey.r []EHNﬁT('\XI:T) [DP(H l 9*)” (B.89)
1+p
< -7 log 1/7(60) (B.90)
L L+ p KUpr (197 | pr(:160) B.91)
1-p T
. o(lOgT(T)), (B.92)

where the O(+) hides constants that do not depend on w or T.

Proof. This is a direct consequence of Theorem B.1 and Proposition B.2. ]
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B.6 EXTENSION: ARBITRARY LOSS

In this subsection, we explain how to extend the previous results Theorems B.1 and B.2 to arbitrary
loss functions beyond the KL divergence, at the cost of a slower rate.

The key change is this analogue of Proposition B.1.

Proposition B.3 (Template task selection bound). Consider X a random variable on X distributed
according to Px and 8 a random variable on ® with prior distribution n(d@) such that, conditionally
on X, 8 is distributed according to

—~ dP(X | 0)
P(do|X)= ————=n(df). B.93
(@01%) = = 5 7(@40) (B.93)

Fix a loss function L : X X ® — R. Then, we have, for any 8g € ®, @ > 1, 1 > 0,
Ey o5 x) [AL(X.0)] (B.94)
< Eg-x[log Ex[exp(AL (X, 6))]] (B.95)
a—-p. . dPx(-]60)
—1)Ex|logEg. - 1 B.

+(a—1) x[og 0 n[eXP( a—1 2 IPe( 10) (B.96)

Proof. As in the proof of Proposition B.1, to simplify notations in this proof, 6 indicates a random
variable distributed according to IP(- | X). We start from Lemma B.2 to obtain

Eo[L(X.0)] <Eg[logEx[exp(L(X,6))]] + Ex[KLPy(- | X) || 7)]. (B.97)

The LHS is the quantity we want to bound. We now only need to bound second term of the RHS.
Introducing @ > 1, 6g € ® and defining u = "T‘l < 1, we now rewrite this term as

Ex [KL(Py (- [ X) [ )] (B.98)
dPx (- | 6o)
=a|Ex g|log ————=| + Ex[KL(Py(- | X B.99
a[Ex.o| o 0 4 Bxlkucmac 1) 1) (B.99)
dPx (- | 6o)
—a|Ex g |log ————= E Py(- | X . B.100
o Ex.o| oz o L0+ iR 1) 1) (B.100
The proof now proceeds exactly as in Proposition B.1, bounding separately the two terms in the last
equation. [ ]

Now, consider a loss function L(x;.7, ) which can additionally depend on 8* as well.
We will work with the following assumption, which is subGaussian-type assumption on the loss
function with respect to the data generation process.

Assumption 5. There is Cy, > 0 such that, forany 7 > 1, any 1 > 0,
TCLA%|6 - 67|

> (B.101)

log Eyx,.~p,.(-10%) [exp(A| L(x1.7, 0)])] <

We can now state a variant of Theorem B.1.
Theorem B.3. Under Assumptions 3 and 5, forany T > 1, 6y € O, it holds that, for x\.7 ~ py(- | 6%),
1

T]EXI:T []E'9~ﬁr('|x1:T)[L(xliT’g)]] (B.102)
CLEoA[10-6°12] 2 ( [ ( [ pyCrir | 60) )D
< — ~ 1log|Eg-r|exp|~ Ex, |log PLEET 170 B.103
T v ] o8 G1r 10) (5109
log(T))
% , B.104
’ ( VT (B109

where the O(+) hides constants that do not depend on nt or T.

Proof. As for Theorem B.1, this is a direct consequence of Proposition B.3 combined with
Lemma B.4 and Assumption 5 with @ = 2, 1 = VT and bounding 7(6 ¢ ®)* < 1. [
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Finally, combining Theorem B.3 and Proposition B.2, we obtain the following analogue of Theo-
rem B.2.

Theorem B.4. Under Assumptions 3-5, for any T > 1, it holds that, for xi.7 ~ py(-|6%),
1

?]EXI:T []E9~13T('\X|:T)[L(x13T’0)]] (B.105)
CLEg-«[6 -6°[I°] 2 (log(T))

< ——log1 0 o|l—=], B.106

T N og 1/m(6o) + N2 ( )

where the O(-) hides constants that do not depend on nw or T.

Note that here the choice of 8y only impacts the bound through the term log 1/7(8y) and so one can
choose 6y as a mode of the prior 7 to minimize this term.
Remark B.1 (Link to Bayes optimal predictor). As explained in the main text, our task selection
analysis applies to the Bayes optimal predictor defined as

fxi-1) =argminEg g, (1, ) [Exoop, (1xip,0) [ (Reox0)]] (B.107)
Xt
Though the theorems above provide guarantees on the posterior distribution, we show how they can
be used to provide guarantees on the performance of the Bayes optimal predictor. Let us start with
the ¢? regression setting, i.e., £; (%;,x;) = ||%; — x;||>. In that case, the optimal prediction is given by
the posterior mean
F@1) = Bop, (xye ) [Bxep, o) [x]] (B.108)
Theorem B.4 can then be used to control the expected error of the Bayes optimal predictor, though
at the cost of considering the unsquared error loss.

Using Jensen’s inequality, we can bound the expected error as

Ex\,~p, 165 LI (x1:e-1) = x¢[[] (B.109)
< Exyop, (10 [Bo~p, (1xra0) [[Boxp, Cxrar.on [] =[] (B.110)
< Exyyp, (10 [Eo~p, 1o ) [Erxiop, Clxra 1.0 [¥e] = Bxpop, o0 [[[]] - BL11D)

+Exyp, (16 [|[Boip, (100 [e] = x| ] (B.112)

where in the last line the first term can be controlled through Theorem B.4 while the second term is
the irreducible error of the true task 6*.

All of our examples fall into this setting and one can check that the resulting losses satisfy Assump-
tion 5, using the independence or Markovian assumptions on the data generation process.

Note that Theorem B.4 can also be used to control the performance of the Bayes optimal predictor
for other losses, e.g., classification losses, by considering one loss for every class and a convex
function combining them.
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C GENERALIZATION BOUNDS

C.1 MOMENT BOUNDS FOR GENERAL FUNCTIONS

In this subsection, we generalize the heavy-tail concentration results of Li & Liu (2024a) to allow
for non-i.i.d. data. This section can also be seen as extending concentration results for dependent
sequences to the case where the function of interest does not necessarily admit bounded differences
but only bounded moments. In particular, Lemma C.1 extends the coupling argument of Chazottes
et al. (2007) to our setting, in particular not requiring bounded differences but only bounded mo-
ments. Indeed, for this, we replace the total variation distance by the Wasserstein-1 distance. It can
also be seen as an extension of the bounded differences result of Kontorovich & Ramanan (2008)
to our setting (see Mohri & Rostamizadeh (2010) for a presentation of the results of Kontorovich
& Ramanan (2008) in a setting closer to ours). Moreover, note that even the handling of the sub-
Gaussian increments is much more trickier than in Kontorovich (2014), since we have to carefully
apply a convex domination argument to handle the conditional dependence. The main result of this
section is Theorem C.1, which is of independent interest.

As in the previous section, ||-|| denotes the Euclidean norm on R for any d € N.

At multiple places, we will use the Wasserstein-1 distance® with respect to a cost function p: Z x
Z — [0, o), defined as

W) = inf / p(z.)dn(2.2). C.1)
mell(u,v)

where IT(y, v) is the set of couplings of u and v. We refer to the textbook Villani (2008) for more
details.

Lemma C.1. Consider Z measurable space. Let Z,,...,Z, be Z-valued random variables with
natural filtration F; := 0 (Zy, ..., Z;). For each i, assume there is Z_ such that
Zj ~Law(Zi | i), Z) L Zi| Fioal €2

Let g: Z"™ — R be measurable and coordinate-wise Lipschitz with respect to cost functions p;: Z X
Z — [0, co) such that p;(z;, z;) = 0, with constants L; > 0: for any z,7' € Z™ differing only in the
i-th coordinate,

l9(z) = 9(z)| < Lipi(zi, 27). (C3)

With W, (-, -) the Wasserstein-1 distance with respect to pj, define, fori < j,
i (z1:,2)) = Wy, (Law(Z; | Z1:i = z1:4), Law(Z; | Zy:i-1 = 21i-1, Zi = 27))- (C4)
forie{l,...,m},

m
|E[9(Z1:m) | Fil ~E[9(Z1:i-1. Z} Zisiom) | Fic1. Z]| < Lipi(Zi, Z))+ D, L;6ij(Z1:4. Z]) (C.5)
J=i+l

Proof. Fixi € {1,...,m}. We condition on F;_;. Let u := Z; and u’ := Z!. Not to overburden
notations, all expectations and probabilities in the following are conditional on F;_1, Z; = u, Z] = u’.
Define the tail functions

U (Zit1im) = g(zl:(i—l), U, Zislim), (C.6)

W (Zivtim) = g(Z]:(i—l),u/sZi+1:m)~ (C7

Denote Z(iv1y:m ~ Law(Z(iv1ym | Fi-1.Zi =u) and Z, \~ Law(Zipryom | Fio1, Zi = u’). We
decompose

[E[9(Z1:m)] = E[9(Z1:i-1)s Zi.p) ]| (C.8)

3This is a slight abuse of terminology, since the Wasserstein-1 distance is usually defined for metric spaces,
while we only assume p to be a cost function. However, this slight abuse of terminology will not cause any
confusion in the following.
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= | B (Zs1)y:m)] = B (Z{;,1).0]] (€9
< B[ (Zesm) = Esryn)|] + B[ Zoo)| - B0 Ziy) || €10)

We bound the two terms separately.

By the coordinate-wise Lipschitz condition at 7,
Ep[W/(Ziis1ym) =¥ (Zierym)l] < Lipi(u.u') = Lipi(Zi. Z)). (C.11)

We write the following telescoping decomposition:

‘]E[W'(Z(Hl):m)] - ]E[W'(Zfiu):m)” < erj (]E[W(ZEHl);p Z(j+1>:m)] - ]E[W(Zfim:(ju)’ Z<j+1>:m)” ~

(C.12)
By the definition of the Wasserstein-1 distance, there exists a coupling of (Z;,, Z;. +1) such that

E|pj1(Zjs1, Z) | Fis 21| = Wyt (Law(Za1 | F), Law(Zgar | Fiot, Z0) < 61501(Z1i1, 7))
(C.13)

‘We obtain a bound on the increment at coordinate j by combining the coupling with the coordinate-
wise Lipschitz condition at j:

[0 Ziss1) 50 Zen) | = B0 Ziiiay oy Ziwn) | (C.14)
= ]E“W(Zziﬂ):j’Z(.i+1)im) U (Zi)(a) Z(j+l):m)|] (C.15)
< Ljy ]E[Pj+1(zj+1,z}+1)] (C.16)
= LjnW,,, (Law(Zj41 | Fi),Law(Zjy1 | Fiz1,Z))) = Lj16ij+1(Z14, Z7) - (C17)

Combining the above estimates gives

m—1

|]E[¢’/(Z(i+l):m)] —IE[(//(ZEM):m)” < > Linbijn(Z1i, Z)) . (C.18)
=i
which yields the desired result. ]

We now state a classic convex domination lemma which is a slight variant of Ledoux & Talagrand
(2013, Lem. 4.6).

Lemma C.2 (Convex domination). Consider X, Z a zero-mean symmetric random variables such
that
P(|X| >1t) < CP(Z| > 1), (C.19)

for some C > 0andallt > 0.

Then, for any convex function h: R - R,

E[h(X)] < E[h(CZ)]. (C.20)

Proof. Let 6 ~ Bernoulli(1/C) be independent of (X,Z). Then, for all t > 0, P(|Z|] > 1) >
% P(|X| > t) =P(|6X]| > t). Hence |6X] is stochastically dominated by |Z| and we may construct
a coupling such that

l[6X| < |Z| a.s. (C.21)

. . . e d . .
Since X is symmetric, we may write in distribution X = ¢|X| where ¢ is a Rademacher variable

independent of | X|. Likewise, Z 4 g |Z| with an independent Rademacher &’.
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Condition on (8, X, Z) and define

®(a) = E[hace|z]) | 6,.X,Z], ae[-1,1]. (C.22)
The map a +— ®(a) is convex (as an average of convex functions). By convexity, its maximum on
[—1, 1] is attained at an extreme point {—1, 1}. On the coupling where (C.21) holds, define

s
X ez 40,
a =11z (C.23)

0, if Z=0,
so that a € [—1, 1] almost surely thanks to |X| < |6Z]|. Therefore,
E[ h(e|X|6) | 6,X,Z] = ®(a) < max{®(-1),®(1)} = E[he|Z]) | 6,1X],Z]. (C.29)
Taking expectations and using X d ¢|X|and Z 4 e|Z|,

E[h(6X)] < E[h(2)]. (C.25)

Since A is convex and E[6 | X, Z] = 1/C, we have, by Jensen’s inequality,
E[A(X/C)] = E[WE[6X | X,Z])| < E[E[h(6X)|X,Z]]| = E[h(6X)] <E[h(Z)],

(C.26)
Finally, apply the previous inequality with the convex function u +— h(Cu) to obtain
E[h(X)] = E[KC - (X/O))] < E[hCZ)].
This is exactly the desired bound.
]

We now state a fact of subGaussian random variables, which can be found in Wainwright (2019,
Thm. 2.6) for instance.

Lemma C.3 (Convex domination). Consider X a zero-mean real-valued o-*-sub-Gaussian random
variable, which is, in addition, symmetric, i.e., X = —X. Then, for Z ~ N (0, 0'2),

P(|X|>1) <8P(Z| >1). (C.27)
Lemma C.4 (Causal symmetrization). Let m € N and (Z,A) be a standard Borel measurable
space. Let Z\, . .., Zy be Z-valued random with natural filtration (F;)i=o,...m Let h: R — R be

convex.

Consider g: Z™ — R be measurable. Set S := g(Zy,...,Zy). For eachi € {1,...,m}, assume
there exists a conditionally independent resample

Z; ~Law(Z; | Fi-1), Z; L Z; | Fi-1. (C.28)
Let &1, e’l m be independent Rademacher variables, independent of all Z,Z’ and F,.
Assume there exist measurable functions c¢;: ZXZ — [0,00),d; : Z — [0,00) and J Cc {1,...,m}
such that, the following conditions hold:
(i) For any i, there exists j(i) € J, such that, for any z71.;—1 € 2= and z;, 7, € Z,
[E[S|Z1: = z1:4) = B[S | Zisi1 = 21521, Zi = 2| < ¢i(zin20) +di(zi)) L{i € T}
(C.29)
(ii) Foranyi ¢ J, g;c;(Z;, Z]) is a'l.z-sub-Gaussian conditionally on Fi_.
(iii) Forany j € J, Z; is independent of F_1.

Then, there are Gausssian random variables G, G;. ~ N0, SO'JZ.) independent and independent of
all Z,7’, &, Fo, such that

E[h(S - E[S])] < E|A (C.30)

i¢J jeJ

Z Sym; ;) (i (IGil + di(Z;i)))) + Z gjci(Zj, Z})) ,
where we use the notation.:

Sym ) (e0(1Gi] + di(Z;0))) = &0 (80(1Gil + di(Z;0)) - €G]l + di(Z)))) - (C3D)

30



Under review as a conference paper at ICLR 2026

Proof. Define G = o (&1:m, G1:m)-

We show the result by induction on k: our goal is to show that, for any k € {0, ..., m},

E[A(S-E[SD] < E h( DU ({G) < kYei(IGil +di(Zjiy)) + 14 () > k + 1} Sym; ;) (i (IGil + di(Z;(1)))))

igJ
i>k+1
(C.32)
+ > €ici(Zi, Z)) + B[S | Zix] - ]E[S])} , (C.33)
icl
ik+1

where G;, G} ~ N(0, 80'l.2) are independent and independent of all Z,Z’, ¢, &’, F;,;,. (C.33) holds
trivially for k = m. We now show that if it holds for some k € {1,...,m}, then it also holds for
k—-1.

Note that we can rewrite

D0 G) < kYei(IGil +di(Zjiy)) + 1{j (i) > k + 1} Sym; (i (IGil + di(Z;y)))) (C.34)
iel

i>k+1
+ Z gici(Z;,Z)) (C.35)
Lk
= > 1) = k+1}Sym; ;) (ei(IGil + di(Zj i) + D €ici(Zi, Z)) (C.36)
ol ST
=Yy
+ > 1{j(0) < k}ei(IGil + di(Zj (1)) (C.37)
ol
-V
=Y, +Y, (C.38)
where Y, is independent of F} and Yy is Fi-measurable. More precisely, we show that
E[h(Yy + Y +E[S|Z1x] —E[S]) | Y] (C.39)
<E|h(Yy +Yeor + L{k ¢ T}er(IGi| + di(Zj(x))) (C.40)
+1{k € J}(erck(Zy, Z;) (C41)
+ > Symy(&i(IGi| + di(Zi) E[S | Zi-1] = E[SDIYu],, (C.42)
igijn
J(i)=k

with Yi_1 := Sigs sk € 1{j (i) < k = 1}(IG;| + di(Z;(;))), which will imply the induction step
(C.33) with k < k—1 by taking expectations over Y . Since Y, is considered constant in (C.42), we
may assume without loss of generality that Y, = 0, at the potential cost of replacing & by h(-+Y, ),
which is still convex. Therefore, it suffices to show

E[h(Yr +E[S|Zi.k] - E[S]) | Y4 ] (C.43)
< E|h (Ye-1 + L{k ¢ T}er(IGl + di(Z;j(x))) (C.44)
+1{k € J}(exc(Zx, Z}) (C.45)
+ > Sym(&:(IG;| + di(Zi))) E[S | Zik—1] = E[SDIYL]., (C.46)
g
bigpa?

We first consider the case of k ¢ J. Define ®(z;.¢) := E[S|Z.x = z1:x]. We rewrite the RHS of
(C.46) as

E[h(Yr +E[S| Z1:k] - E[S]) | Y] (C47)

31



Under review as a conference paper at ICLR 2026

= E[h(Yk + ®(Z1k) —E[®(Z1:x-1,Z}) | Zik-1] + E[S | Z1k-1] — E[S]) Y | (C.48)
=E[h(Yx + E[®(Zi:k) - ®(Z1:x-1,Z}) | Zi:k | + BIS | Zi:k-1] — E[S]) Y] (C.49)
= E[h(Yi + E[®(Zik) — ®(Z1:k-1,Z}) | Zik, G| + ELS | Zik—1] — E[S]) Y| (C.50)

(C.51)

where we used the fact that E[S | Z1:x-1] = E[®(Z1:k-1,Z;) | Z1:k-1] = E[®(Z1xy, Z1) | Z1ik] =
E[®(Zy:k-1,Z}) | Z1:k, G], since Z; ~ Law(Zy | Zy:x-1) and Z; 1L Zy | Zy:x-1 and G 1s indepen-
dent of all Z,Z’. Since both Yy and E[S|Z.x-1] — E[S] are o (F, G)-measurable, by Jensen’s
inequality (convexity of /) applied to the conditional expectation w.r.t. Z;.x, G, we have

E[h(Ye +E[S|Zi:k] = E[S]) | Y] (C.52)

< E[h(Yi + ©(Zix) = ®(Ziik-1,Z3) + E[S | Zix-1] — E[S]) [ Yu ] (C.53)
Since k ¢ J, then Yy is o (Fy—_1, G)-measurable. The following argument will now be made condi-
tionally on Fy_1,G,Yy .

We have that @(Z;:x) — ®(Zy:x-1, Z;) is symmetric. Moreover, since |®(Z1:x) — @(Z1:k-1, Z; )| <
ck(Zk,Z;) + di(Zj(x))) by assumption (i), we have that, for any 7 > 0,

P(|D(Z1:k) = D(Z1k-1. Zy)| > t| Fie1.G. Vi) (C.54)
< P(cr(Zk. Zp) + di(Zjxy) > t| Fi-1,G. Yu) (C.55)
< P(cr(Zi. Zp) > t = di(Zjx)) | Fi-1.G. Vi) (C.56)
<8P(IGk| >t —di(Zj)) | Fi-1,G.Yu) (C.57)

where we used that skck(Zk,Zl’() is o-,f-sub—Gaussian conditionally on Fj_; by assumption (ii)
and Lemma C.3. Therefore, we can apply Lemma C.2 with X « ®(Zy:x) — ®(Z1:x-1,Z;) and
Z — &;(|IGk| + di(Zj(x))) with C = 8 conditionally on F;_1, Yy to obtain

E[A(Yx +E[S| Z1k] — E[S]) | Y4 ] (C.58)
< E[n(Y + ex(IGk| + dk(Zj(1))) + E[S | Zyx-1] — E[S]) |Yu] (C.59)
which is (C.46) in the case k ¢ J.
For the case k € J, we use a similar argument. We now have, as before,
E[S|Zix-1] = E[®(Z1:k-1, Z}) | Z1:k-1] (C.60)

=E[®(Zix-1.2) + 35 &i(IG]] +di(Zi)) | Zik-1] (C.61)
i?k‘il
J(i)=k
=E[®(Z1x-1,.Z) + D, ei(IGi+di(Z1)) | Z1x. G (C.62)
i;k{rl
Ji)=k
by construction.

Since both Yy and E[S | Z.x-1] — E[S] are o (F, G)-measurable, by Jensen’s inequality (convexity
of h) applied to the conditional expectation w.r.t. Z;.x, G, we have

E[h(Ye+E[S|Z:k] —E[S]) | Y] (C.63)

S E[R Yi+D(Zix) - ©(Zix-1.Z;) — D, &(IGil +di(Zi)) + E[S| Zix-1] — E[S] || Y|

e

J(i)=k
(C.64)

We write Yj as

Y=Y+ >, &Gl +di(Zy)) (C.65)

iS5

J(i)=k
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where Yj._; is o (Fy_1, G)-measurable and obtain,

E[A(Yi-1 +E[S | Zik] - E[S]) [ Y] (C.66)

SE|h|Yio1 + ®(Z1p) - ©(Zix-1. Z) + D, &i(IGil +di(Zi)) - €/(1G}| + di(Zx)) + B[S | Zi:x-1] — E[S]

i¢J
i>k+1
J(i)=k
(C.67)

We now make the following domination argument conditionally on Fj_1,Yx—1,Yy. The random
variable
D(Z1x) - D(Zik-1.Zp) + >, &i(|Gil +di(Zx)) — €}(IG| + di(Zy)) (C.68)
il
Jji)=k
is symmetric and, by assumption (i) and the triangle inequality, bounded in absolute value by

exek(Zi, )+ 2 Symy(&i(|Gil + di(Zx)))| - (C.69)
el
j()=k

Applying Lemma C.2 conditionally on Fy_1,Yx_1,Yy with C = 1 (hence no constant appears)
yields the desired result.

We can now combine Lemma C.1 and Lemma C.4 to obtain the main moment bound of this section.

Theorem C.1 (Causal symmetrization). Let m € N and (Z,A) be a standard Borel measurable
space. Let Zi, . ..,Z, be Z-valued random with natural filtration (F;)i=o,...m- Let h: R — R be
convex.

.....

Let g: Z™ — R be measurable and coordinate-wise Lipschitz with respect to cost functions p; : Z X
Z — [0, ) such that p;(z;,z;) = 0 with constants L; > 0: for any z,7' € Z™ differing only in the
i-th coordinate,

9(2) = 9(2")| < Lipi(zi, ). (C.70)
Set S :=g(Zy,...,Zy) and
Foreachi € {1,...,m}, assume there exists a conditionally independent resample
Z; ~Law(Z; | Fic1), Z{ WL Z; | Fi1. (C.71)
Let €., s’lzm be independent Rademacher variables, independent of all Z,Z’ and J,.
Assume there exist constants c; > 0, measurable functions djx : Z — [0,00) and J C {1,...,m}

such that, the following conditions hold:

(i) Foranyi < k, there exists j(i) € J, such that, for any z1..—1 € 2" and 7i,2; € Z,

Wp, (Law(Zg | Zi:i = z1:0), Law(Zy | Zysio1 = 21:im1, Zi = 20)) < cakpi (20, 20)+din(20)) L{i ¢ I} .

(C.72)
(ii) Foranyi ¢ J, ;pi(Z;, Z]) is af—sub—Gaussian conditionally on F;_;.

(iii) For any j € J, Z; is independent of F_1.

Then, there are Gausssian random variables G j, G} ~ N0, 80’12.) independent and independent of
all Z, 7', g, F,, such that

E[A(S - E[S])] (C.73)
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igJ k>i JjeJ k>j
(C.74)
where we use the notation:
Sym; (81' Li|Gi| + D], Lrcik| Gi| + Lkdik(Zj(i)))) = (C.75)
k>i

Li|Gi| + D Licik|Gil + Lidi(Z;(i))

k>i

’
- &
k>i

£j(i) (si

C.2 TECHNICAL LEMMAS

Li|G}| + > Lrcik| G}l + Lkdik(Zj(i)))) :

(C.76)

We will make use of the following elementary lemma.

Lemma C.5. Let Z be a real-valued random variable. Assume there exist ¢ > 1, f,g: R = Ry
non-decreasing and p > 2 integer such that, for any integer q € [2, p],

E[|Z]9]" < f(q) +cg(q) (C.77)

Then, for any & € (0, e~2], with probability at least 1 — 6,

7] < ef(loglgl/é) +1) +g(log(1/8) + 1)e if§ > ce P )
< w 76 < cep '

Proof. By Markov’s inequality, for any integer g € [2, p],

E[|Z|¢ 1/q g
P(|Z] > 1) < thl I (f(q)+j g(q)) _ (.79)
Setting the right-hand side to ¢ and solving for ¢ gives
1/q
= L@ +c9(q) (C.80)

ol/a

If 6 < ce™P, we can take g = p to obtain the second case of the result. If § > ce™P, we take g the
smallest integer such that ¢ > log(c/d). Note that ¢ is in [2, p] and g < log(c/d) + 2.

into (C.80) gives the bound in the first case. [ |

Since ¢ > 1 and § < 1, we have log(c/8) > 0 and thus (%)l/q < (%)l/log(c/é) = e. Plugging this

We state the following lemma about sub-Gaussian random variables that will be useful later.

Lemma C.6. Let X € R™ be a o*-sub-Gaussian random variable, i.e., for any A > 0,

2732
log E[e!IX-EIXIIF] < ‘72/1

(C.81)

Then, for X' an i.i.d. copy of X and € a Rademacher random variable independent of X, X', the
random variable || X — X'|| is sub-Gaussian with parameter at most 4.

Proof. Since Z := g||X — X’|| is symmetric, it suffices to bound Z> as
22 = |X - X'|I> < 21X - E[X]|I> + 21X’ ~ E[X]|>, (C.82)

by Young’s inequality. Using the independence of X and X’ yields the result. ]
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We will require the following chaining lemma for processes with L”-Lipschitz increments. This
result is a variant of the famous Dudley’s entropy integral bound for sub-Gaussian processes, adapted
to the L”-Lipschitz setting.

This lemma is a direct consequence of the general chaining theory of Talagrand (2022) (see Tala-
grand (2022, Thm. B.2.3) with ¢(x) = xP). Let us also mention Dirksen (2015) refined these ideas
in the context of subpexponential processes while Latata & Tkocz (2015) further developed these
tools for processes with heavier tails but still admitting a control over all moments. In our setting,
the increments are assumed to be controlled only in L?”, which requires a different treatment of the
maximal inequalities at each scale.

Lemma C.7 (Dudley-type entropy integral under L? increments). Let (X;);er be a real-valued
process indexed by a pseudometric space (T, d). Assume T is totally bounded with diameter A :=
diamy(T) € (0, o) and that for some p > 1 and L > 0,

IX, - X,|l, < Ld(t,s) Vs,ieT. (C.83)

Then A
IE[sup (xt—xs)} < CL/ (N(T.d, &))" de, (C.84)
s,teT 0

where N'(T, d, €) is the e-covering number and C < oo is an absolute constant.

C.3 CONCENTRATION BOUNDS FOR ICL

We now apply the moment symmetrization results to derive concentration bounds for ICL in the de-
pendent data setting. These concentration bounds will then be translated into generalization bounds
in the next subsection.

Let us recall ICL notations.

We denote by ® ¢ R the space of tasks 6 and by 77(6) the density of the pretraining task distribution.
Given a task 0, the data is generated according to a task-specific distribution with density p(- | 8).
The training data is then generated by first sampling a task 6 from the task distribution 7, and then
sampling data points (x;);>] according to

Xr+1 ~ Pr+1 (-1x1:4,0) . (C.85)
where x1.; = (x1,...,%7).
Given a dataset of tasks 61, ..., 0y and associated samples xi}}, .. ,x%), a model f is trained by
minimizing the next-sample prediction loss
. | NT
L(f, (On, X\.p)nsn) = NT DIPNACICNEIDN (C.80)

n=1 t=1
where £;: X X X — [0, +00) is a loss function at step z.

We now provide a detailed version of Assumption 2.

Assumption 6 (Weak dependence). We assume that there are deterministic coefficients (A;),»; and
(Bs,1)i>s>1 such that, forany t > s > 1, 0,0" € ©, any x.(5—1) € Xs~1 and any x,,x,” € X,

Wi(p,(dx; |6),p,(dx;"|6")) < A]l6 - &' (C.87)
Wi(p, (dx [x1:5,0), P, (dxy” | X1:(5-1)5 %5, 0)) < Byt [lO]] - (C.88)

In the second assumption, the Wasserstein distance between the conditional distributions of x; given
xs and x} is assumed to be controlled by the norm of the task 6. This is a slight difference with
Assumption 2 where we assumed a dependence on 1+||6||. This is however without loss of generality
as we can always consider 6= (1,6) € R¥! and redefine the task distribution accordingly and this
cosmetic change simplifies the presentation. We could also consider a dependence on ||xs — x%||, see
Theorem C.1, but we omit this for simplicity.

Assumption 7 (Finite moments of the task distribution). There exists ¢ > 2 integer such that
E[|6]|9] < +oo.
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Our theory could be extended to more general assumptions on the distributions of sample, but, for
simplicity, we will make the following sub-Gaussian assumption on the data, conditionally on the
past data and the task. Hence, this assumption does not restrict the task distribution in any way.

Assumption 8 (Sub-Gaussian data). There exists o > 0 such that, for any t > 1, 8 € ©, and any
X111y € X7 xp ~ p, (- | X1:1-1), 0) is o->-sub-Gaussian, i.e.,, for any 1 > 0,
o222

5

Assumption 9 (Lipschitz model and loss). The models f € F are uniformly Lipschitz in the fol-
lowing sense: there exists Ly > 0 such that, for any f € F, any x1.7, x7,

108 Ex < (xy-1y0) [¢ 1 7E < (C.89)

T
F O Cers=1) = f(xr—1, %], Xpstzs-0)Il < Lrllxe = x71], (C.90)

The losses ¢; are uniformly 1-Lipschitz: for any ¢ > 1, any x,x" € X,

1€ (e, x") = £ (x, )] < [l = X7 (C91)

We will consider the following assumption on the function class F.

Assumption 10. Assume that the hypothesis class F is bounded for w.r.t. some distance dist on F
and that, the following extended Lipschitz condition holds: for any f, f* € F, any x;.7, any ¢t > 1,
any x;, for any f € F, any xy.1, X,

1 T

T DU Gerzs—1) = FXram1:%7 Xeatis=1) = (F/ (rzs=1) = 7/ reem1, X Xperzs—1) ) (C.92)
s=1

< Mrllx, — xpll dist(f, f7) . (C.93)

Note that Assumption 9 is implied of Assumption 10 when the constant function equal to zero is in
F with Ly = M7 sup e » dist(f,0).

We denote by || X||;, the L" norm of a random variable X, i.e., ||X||, = (E[|I X||"])"/".
Lemma C.8. Foranyr € [2, q] integer, under Assumptions 69, we have

sup {E|Z(/. (0, ¥ )nem) | = L(f, Onspdnen)| (C.94)
feF

(C.95)

~ K| sup {E|Z(/, (0n. ¥}pnen)]| - L(1, (en,x'::T)M)}]

feF r

T
Ly /Wr (C.96)

IN

Ly | ?
+c«/7—T Z(Z B) 1611l + cr? == > ZB,S ||91||q (C.97)
N t=1 \s>t N s>t
Lt
+C\/_\/_ ;A )||91 E6]ll, +er i (ZA )||91 E[61]l (C.98)
where ¢ > 0 is a universal constant.
Proof. We apply Theorem C.1 with
(Ziso s Zn) = OV e DoY), (C.99)
and
g0, oy, x ) (C.100)
= sup {E[Z(f, (0 x{p)nsw) | = L(F. (B xipdnsn)} (C.101)

feF
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n=1 t= n=1 t=1

N T T
225 (f o) ™) szt(f(xiﬂ,_l),xt")}. (C.102)

= sup —
feF NT {
By Assumption 9, g is coordinate-wise Lipschitz with respect to x,” with constant Ly 7 := L1/N

and formally constant with respect to 6,,.

By Lemma C.6 and Assumption 8, &,"||x," —x,""|| is 40-%-sub-Gaussian conditionally on X1:(t=1)> Ons
for ;" a Rademacher variable independent of all data.

We now apply Theorem C.1 with A(x) = |x|" for r integer such that 2 < r < ¢ and J corresponding
to the indices of the tasks 01, ..., 8. We obtain that

I —ELI, (C.103)

N T N T
<1232y ( ,"(LN,T|G,"| +2) LN,TB,,SHGHH)) + D D VLN En A0, — 6,

n=1r=1 s>t n=1 =1 -
(C.104)

where

Sym,, (8z"(LN,T|Gt"| + > Ln1Bi ||9n||)) = (C.105)

s>t

&n (Szn(LN,T|Gzn| +> LN,TBt,s”en”) - Stn/(LN,T|th/| +> LN,TBz,s||9n||)) ,  (C.106)

s>t s>t

and G,", G, ~ N(0, 320%) independent of all data and Rademacher variables.

Using Minkowski’s inequality, we have

ILf =ELA, (C.107)
N T
< ZSnZLN,T(Etn|th| -&"'|G™) (C.108)
n=1 t=1 r
Zen( 16 ZLN 72 Brsed = 16,1l ZLN T Bisés ) (C.109)
s>t s>t r
N T
+12 ] enllfn = 041l 2 Ln 1A (C.110)
n=1 t=1 ,

We now bound each term (C.108)—(C.110) separately.

We begin with (C.108). By independence of the Rademacher variables and the Gaussian variables,
we have that (C.108) can be rewritten as

N T
(C.108) = V2L 7||>] > G," (C.111)
n=1 t=1 r
= 8Ly VNT||G],, (C.112)

where G ~ N (0, 1). Using standard bounds on subGaussian random variables, we have that ||G||, <
c+fr for some universal constant ¢ > 0 (see e.g. Vershynin (2018, Chap. 2)). Hence, we have

(C.108) < coLn TVNTr, (C.113)
for some universal constant ¢ > 0.

We now turn to (C.109). By Boucheron et al. (2005, Thm. 15.11), applied to each independent and
Zero-mean term

&nl110n ||Ze, D Bis— 1164 ||Zs,"’ZB,s , (C.114)

s>t s>t
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we have
(C.109) < cVrLy VN ||91||Zet > Bis— 16 IIZst > Bus (C.115)
s>t s>t 2
+ erLygN'" ||e]||2.st 2 B - 116 ||Zst ZBU , (C.116)
s>t s>t
where ¢ > 0 is a universal constant.
Using Minkowski’s inequality again, we have
(C.109) < eVrLy,rVN ||91||Zs, > Bus (C.117)
t=1 s>t 2
T
+ erLy N |1610 > &t D B (C.118)
=1 s>t r
< eVrLy 7VNI|61]l2 Zet > Bis (C.119)
=1 s>t 2
T
+ erLy N 01D &' > Bes| (C.120)
t=1 s>t r

where we used that 6 and (g,'),> are independent. Now, X7, &' 355, B s is a zero-mean sub-

Gaussian random variable with parameter Z;T:1 (ZD, B,,S)2 by Hoeffding’s lemma (see e.g. Wain-
wright (2019, Exercise 2.4)) and we have, for some universal constant ¢ > 0, for any integer &

Zst ZBts

s>t

1/2

<c\/_(Z(ZB”)2 : (C.121)

t=1 \s>t

Plugging this into (C.120) with 4 = 2 and h = r gives

T 2 T 2
(C.109) sCWLN,TVN\Z(ZB,,S) ||el||2+cr3/2LN,TN1/r\Z(ZB, ) 1o, (€.122)
=1

t=1 \s>t t 5>

T 2 T
chFLN,Tw/N\Z(ZB,,S) ||01||2+cr3/2LN,TN”’\Z(ZBI ) 1611, (C.123)

t=1 \s>t t=1 \s>t

(C.124)
where we used that 7 < g to obtain the last inequality.

Finally, we proceed similarly for (C.110). By Boucheron et al. (2005, Thm. 15.11) applied to each
independent and zero-mean term

T
&nllbn = 00"l D Ln.TA;, (C.125)
t=1
we have
T T
(C.110) < eVrLy VN[ D A, |61 - 63, + crLn 7N'" (Z A,)Hel AR (C.126)
t=1 t=1

T
>4

t=1

< C\/;LN,T\/N

T
161 — E[601]]]> +C"LN,TN1/r(Z At)||91 - E[0:]ll, (C.127)

=1
where we use Minkowski’s inequality and the fact that » < g to obtain the last inequality.

Combining (C.113), (C.124), and (C.127) and replacing Ly 7 by Ly /N gives the result. |
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Proposition C.1 (Concentration bound for ICL). Under Assumptions 6-9, for any § € (0,e™2],

with probability at least 1 — 6,

sup {E[Z(/. (Ons ¥ nem) | = L(f, O )
feF

is bounded by
(a) If6 > Ne™1,

CO’\I/J—% T(log(N/6) +1)

—E| sup
feF

[E[L(. Onapnen)| - 101, (9n,x1iT>ngN>}H
(C.128)

(C.129)

+ey/(logVjo) + DL Z(ZB,S) 61l + cog(V/e) + 1) 5T Z(ZB, ) 1ol

VN \ =

s>t

T
+cy/(log(N/6) +1) —T( z)l|91 —E[01]ll; + c(log(N/0) + 1)%

\/_

(b) If6 < Ne™9,

1 Tq
61/ CO’LNT

ZBtv

s>t

Ly
N (ZA)uel E[0l + ca 7

|91||2 +cq’?

Lt
N1-1/q

ZAt

s>t

(C.130)
T
> A6 - Efo4]ll,,
=1
(C.131)
(C.132)
ZBH |91||q (C.133)

s>t

61 - ]E[91]||q) (C.134)

Proof. We apply Lemma C.5 to the moment bound from Lemma C.8.

For Lemma C.5, we use:

f(r)—CO—LT\/7+C\/_\/— ZT](ZBIS) ||91||2+C\/_ (ZAz

s>t

Lt
g(r) = cr3/2N1_1/r D

t=1 \s>t

2
(2 B,. ) oyl +er—n (ZA )nel El0,]]], -

161 —E[61]ll, (C.135)

(C.136)

Applying Lemma C.5 then gives the desired concentration bound. ]

C.4 COMPLEXITY BOUNDS FOR ICL

We now derive bounds for the analogue of the Rademacher complexity term in our setting. We will

again rely on Theorem C.1.

Lemma C.9. Under Assumptions 610, we have

feF

T
< ¢I(F, dist, q)(aMT,/Wq

39

E| sup E[Z(f, 0n. ¥ipnen) | = L. O, ¥iphnen)

(C.137)

(C.138)
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T 2
Mt
ZZB,J ol + 4™ =\ 22 ZB” ||91||q (C.139)

s>t s>t
4l

where ¢ > 0 is a universal constant and where the Dudley-type integral Lgi«(F) is defined as

M
6y = E{61]1l> + cq =77 l/q(ZA)llel [01]||q), (C.140)

A
IZ(F,dist,q) = / (N (F, dist, u))/9du,  with A = diamgi(F) = sup dist(f, f). (C.141)
0 fofrer

Proof. The main idea of the proof is to use Lemma C.7 and to rely on Theorem C.1 to control the
moments of the increments of the process sup e 7 L(f, (6, XT.0)n<n) = E[L(f, (0n, X p)n<n) |-
Fix f, f’ € F. We apply Theorem C.1 with

(Zis s Zw) = OV e DoY), (C.142)
and
961,57, On- 317 (C.143)
= E[L(f. On ¥pnew) | = L(F (03 dnen) (C.144)
_ (IE[Z(f" (en,x'f:T)nSN)] —-L(f, (Hn,x?:T)nsN)) (C.145)

and proceed as in the proof of Lemma C.8 except that g is now My dist(f, f’) coordinate-wise
Lipschitz by Assumption 10 to obtain that:

|27 @ xtgnen) = E|LCF. Groxtntnan) | = (L0 @noxtipdnan) = E[LC @iz )|

(C.146)
. , [Tq
< dist(f, f )(CO'MT N (C.147)
T 2 My
Z(ZBM) ||91||2+cq3/ZT, ZBH ||01||q (C.148)
t=1 \s>t N 4 s>t
+C\/_ ZA 161 = E[011ll2 + ca =7y ZA, 161 ~E[61]ll |- (C.149)
t=1

Applying Lemma C.7 then gives that

E

sup_E|L(/, (Ons ¥l )nen) | = L(f, Ons¥ipnen) = (E[L(s (O xlpdnem) | = L1, (en,xmngm)]
f.f'eF

(C.150)

is bounded by the RHS of the statement of the lemma. To conclude, it suffices to notice that, for any
fo € F fixed,

E (C.151)

sup B[ Z(f, (On, ¥iphnen) | = L(f. O, ¥ phnen)
feF

= E| sup E|L(/. (0ns ¥l )nen) | = L(f, Ons¥ipnen) = (E[L(fo, (0 xtpnen)| = L(fo, <9n,x7¢)n<m)l

feF
(C.152)
<E| sup B[L(f @n¥phnen) | = LU On ¥iphnen) = (B[ZC On ¥pnen) | - Z(F <en,x';;T>ngN>)] :
f.fleF
(C.153)
which concludes the proof. u
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C.5 GENERALIZATION BOUNDS FOR ICL

Putting together the concentration bound from Proposition C.1 and the complexity bound from
Lemma C.9, we obtain the following generalization bound for ICL:

Theorem C.2 (Generalization bound for ICL). Under Assumptions 6-10, for any & € (0, e~2], for
any 6 € (0, Ne~1], with probability at least 1 — &, the generalization gap

sup ]E[Z(f, (Qnax?;r)nsN)] - Z(f7 (Hn’xT;T)nSN) (C.154)
feF
is bounded by
(a) If6 > Ne™?
ca\/;(Lm/(log(N/é) +1) + M7Z(F,dist, q)\/a) (C.155)

T 2
+ c(LT\/(log(N/(S) +1) + My Z(F, dist, q)\/_) Z(Z B,,S) 161, (C.156)

t=1 \s>t

, 1| &
e (0240 4 172 Ly + 2N M T s, 0)) 3| 2 2B ) 6l

t=1

(C.157)
T

2,4

t=1

(LTx/(log(N/(S) +1) + MyZ(F, dist, q)\/_)

161 —E[61]ll,  (C.158)

((log(N/cS)+1)LT+qN1/‘1MTI(]-" dist, q) N(ZA)lel E[61]ll, (C.159)

t=1

(b) If6 < Ne™9,

Ly T
(51/ + MyZ(F, dist, q))( ,/Wq (C.160)

T 2
ZZB,,S ||91||2+cq3/2 ZB“ ||91|| (C.161)

T
-1
s>t N /q s>t

+c\/_\/_

161 — [01]||q),, (C.162)

t=1

ZA )||01 E[61]]l, +ch1L g (Z Ar

where ¢ > 0 is a universal constant and where the Dudley-type integral Lqisi(F) is defined as

A
I(F,dist, q) = / (N (F, dist,u)Y4du,  with A = diamgig(F) = sup dist(f, f'). (C.163)
0 f.f'eF

Proof. The result is obtained by combining Proposition C.1 and Lemma C.9: we write the decom-
position

50p {E[Z(f. Ol | = L0 @) (C.164)
= E| sup {E[Z(/. (0n. 21 )nem) | - L1, (en,xmnw)}l (C.165)
feF

+sup{ [L(f (9n,x1T)n<N)] L(f, (0, x7. )n<N)}

feF

sup {E|Z(£, (6, ¥jp)n<n) Z(f,wn,x'f:T)nsN)}l,

feF
(C.166)
and we bound (C.165) using Lemma C.9 and (C.166) with high probability using Proposition C.1.
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C.6 EXTENSION: REPEATED TASKS
In some ICL settings, tasks may be repeated multiple times in the training set. In this section, we
extend our generalization bound Theorem C.2 to this setting.

We introduce M > 0, the number of times each task is repeated in the training set. The training data
is now generated by first sampling a set of tasks 61, . . ., 8 independently and identically according
to the task distribution mr, and then, for each task 6,,, independently sampling M sequences of data
points (x;"™),;>) form =1, ..., M according to

X~ X, 00) (C.167)

where x'l’:’t’" = (xq”m, S AL

Given such a dataset, a model f is trained by minimizing the next-sample prediction loss
1 N M T

L(f, (Bns (XM meptInen) =~ GO ) ox™). (C.168)
> \ X Jm n NTM /= o= = et

Applying the same proof as Lemma C.8, we obtain the following moment bound.

Lemma C.10. For any r € [2, q] integer, under Assumptions 6-9, we have

sup {E[Z(/, (0, (5 mertInem) | = LU (B (i merhnan)} (C.169)
feF
_IE ]E Z B Gn, n.’m m< n< _z ) en, n.,m m< n< C17O
50p {E[Z(/. O 6T Imeas o) | = L0F o 7 ) N)}] e
T
<coLy NM’_ (C.171)

Lr
NI- 1/r

T 2
\/— Z(ZBt,s) 1611l + cr/?

s>t

N Z(ZBt s) 161114 (C.172)

s>t

Lt
(ZA)HGI EL01 ]l +er s M(ZA)HGI El0ll,.  (C173)

where ¢ > 0 is a universal constant.

Proof sketch. The analogue of g in the proof of Lemma C.8 is now coordinate-wise Lipschitz with

respect to x,"™"™ with constant W The proof proceeds as in Lemma C.8 with minor modifications

to account for the M independent repetitions. When going from (C.108) to (C.112), an additional
factor VM appears due to the sum of the independent repetitions. In the Hoeffding bound (C.121),

a factor VM also appears. Finally, when bounding (C.110), an additional M factor also appears in
(C.126). [

We now proceed with an analogue of Proposition C.1.

Proposition C.2 (Concentration bound for ICL). Under Assumptions 6-9, for any § € (0,e~2],
with probability at least 1 — 6,

sup {E[Z(/. (0, (5 mertlnw) | = L(F (O (7 merhnan)} (C.174)
feF

-E

sup (B Z(f. (0 (3 mepthnem) | = L(F, On, 5T mannen) | ‘ (€.175)
feF
is bounded by
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(a) If6 = Ne™4

co \/%\/T(log(N/é)+l) (C.176)
T T
+cv<log(1v/6)+1 (ZBH) ||91||2+c(1og(N/6)+1)3/2 Z(Z Bm) 611,
=1 \s>1 N\/M =1 \s>t
(C.177)
T T
+ e(log(N/6) + 1)5—%(2 A:)nel ~E[01]ll, + c(log(N/6) + 1) 5L 37 4, oy ~ Elor i,
t=1 t=1
(C.178)

(b) If6 < Ne™9,

1 | Tq
2 Ly 2
By, ||el|| +eq'? ( B ) 1611l (C.180)
ESZ;IS 2 Nll/q\/_ ZSZ;IS q
Lt
+C\/_ ZAt 61 - (771]||2+Cf1Nl Ta (ZA ) 161 — [91]||q) (C.181)
Proof sketch. As for Proposition C.1, we apply Lemma C.5 to the moment bound from Lemma C.10.
]
We now proceed with the analogue of Lemma C.9 whose proof is similar.
Lemma C.11. Under Assumptions 6-10, we have
E| sup E[Z(f, (6, (x?;;")mgM)ngN)] ~ L(f. (6. (x’f;;”)mgM)nSN)l (C.182)
feF
< I(F.dist. )| oMy | L4 (C.183)
<c ,dist,g)| o — .
q ™ NM

T 2
\,— Z(ZBH) 16111+ 42— I/N_ Z(ZBt,s) lerll, — (C.184)

s>t t=1 \s>t
Mt
ZAI 161 ~E(01]ll2 + ca =y ZA 161 —E[6:1]ll, |- (C.185)

where ¢ > 0 is a universal constant.

Putting together Proposition C.2 and Lemma C.11, we obtain the following generalization bound
for ICL with repeated tasks.

Theorem C.3 (Generalization bound for ICL). Under Assumptions 6-10, for any 6 € (0,e~?], for
any 6§ € (0, Ne™1], with probability at least 1 — &, the generalization gap

sup E[Z<f, (O, (Y mertIn<n) | = LOFL e (P mer)n<n) (C.186)
€
is bounded by

(a) If6 = Ne™4,
coy/ % (LT\/(log(N/cS) 1) + MyI(F, dist, q)\/ﬁ) (C.187)
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T 2
(LN(Iog(N/é) + 1) + M7Z(F, dist, q)vq ) Z(Z B) 1611, (C.188)
=1

s>t

v ((10g(N/6) + 1)Ly + PNV M (. dist.q)) —— Vi Z(ZB”) loyl,
s>t
(C.189)

+e(Lry(log(N/8) + 1) + M7Z(F, dist q)«/‘) ZA, o, ~E[61]ll,  (C.190)

~

((log(N/(S)+1)LT+qN1/CIMTI(]-'dlst q)) (Z )||ev1 E[6:]]l, (C.191)

(b) If§ < Ne™4,

Lt Tq
(6'/ + M7Z(F,dist, q))( HN_M (C.192)

T 2 3 L T 2
Buy| 101 +cq” ( B,)||01|| (C.193)
g@ ”) ? N1-Vava Z ; rs a

+c\/_ ZA,

Lt
16~ L6111l + cq i (ZA)nm [eduq),, (C.194)

where ¢ > 0 is a universal constant and where the Dudley-type integral Lgist(F) is defined as

A
I(F, dist, q) = / (N(F.dist,u))/9du,  with A = diamgiy(F) = sup dist(f, f/). (C.195)
0 f.f'eF

The proof of Theorem C.3 is the same as that of Theorem C.2, using Proposition C.2 instead of
Proposition C.1 and Lemma C.11 instead of Lemma C.9.

We also provide a simplified version of Theorem C.3 in the spirit of Theorem 2.
Theorem C.4. Under Assumption 2, for any § € (0, e™2), with probability at least 1 — 6, it holds:

(a) If 6 = Ne™4, then

_ (log 1/8)32LyNT
gen < 0( ooy (1 + ANTM + BTT) , (C.196)
(b) If 6 < Ne™ 4, then
en < o _ETVT ‘T(1+A VTM + B T) (C.197)
R IR A ) |

where the terms in O(-) depend polynomially on g, log N, the scale of m and the size of F.
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D ADDITIONAL DETAILS ON EXAMPLES

D.1 EXAMPLE: VOLTERRA EQUATION MODEL

We discuss the Volterra equation model to explicit the dependence of the generalization bounds on
the memory decay parameter @ > 0.

Setup. Let (W;),>| be noise sequence taking values in R?. Given a Lipschitz drift b : R — R?
with Lipschitz constant L > 0, we consider the discretized Volterra equation: for ¢ > 0,

d 1
X+l = ZK(I,M) (b(Xu)+Wu), K(t,u) = m, a > 0. (Dl)

u=1
When applying the generalization framework, we would consider the augmented sequence
(X1, W1, X, Wy, . ..). To satisfy the weak dependence assumption Assumption 6, we need to bound
the effect of perturbations in either the state or the noise or the drift. We begin with perturbations in
the state or noise, and we discuss drift perturbations at the end of this section. For perturbations in
the state or noise, we will obtain bounds on the Wasserstein distance between the conditional laws
of X; and X; given the past, where X, and X] are two versions of the process (D.1) that differ by a
perturbation at some time s < ¢.

The coefficient @ will play a key role in the dependence structure through the sums:

LN |
Hy(n) = —. (D.2)
=17
We also use {(a) = X7, v~ for @ > 1 and we have the following bounds on H (1)
1+logn, a=1,
Hqo(n) < (D.3)
l(a), a>1.

We will make use of the following technical lemma.

Lemma D.1. Let (a,),>0 be nonnegative numbers and suppose that forn > 1,
n
a, < L Z r %a,_, + gn, (D.4)
r=1

with non-decreasing (g,)n>1 and given ag > 0. Define, for N > 1,

L(1+1logN) ifa=1,
ANy = (D.5)
L(a) ifa>1.
Then, forall 1 <n < N,
n .
an < Ayao + D g;4%". (D.6)

Jj=1

Proof. Let A, = maxXo<m<p dm. From (D4), a, < LE" v~ %A,y + gy < LHo(n)Ap-1 + gn,
s0 A, < LH,(n)A,—-1 + g since (g,), is non-decreasing. Bounding H,(n) using (D.3) gives

Ay < ANA,-1 + gy forall 1 <n < N. Iterating this inequality yields the result. [
State perturbation. Fix s > 1 and let 7 := o’ (Xi, ..., X5, Wi,..., Ws) on which we condition.
Assume the two systems agree up to s — 1, and at time s we have

X = X,—h

with 2 # 0. For ¢t > s, define A; := X; — X;. Subtracting (D.1) for the two evolutions (they share
(W,)) gives for t > s:

£ b(Xu) — b(Xy) L 1Al
= _— < - . .
A= 2 = Il S LY s (D.7)

u=s
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Setn :=t—s+1,a, = E(|Asnll| Fs) and ag = ||Asl| = ||2]|. Applying Lemma D.1 with g, = 0
yields, forn < N,
ap < Ay Al (D.8)

We now bound the Wasserstein distance between the conditional laws of X4, and X;,,, given Fj

by using the synchronous coupling between X, and X, , (which share the same noise sequence
(WM)M>S):

WAL Xgon | Fs)s L1 | Fo)) < B(1Xgn = Xinll | Fs) < A3 121

Therefore, for any horizon T > s + 1,

sup Wi(L(X, | Fs), LX) | Fy)) < |kl 4725 =

s+1<t<T

|All (L(1+10g(T - 5))T~* ifa=1,
21l (L ()" ~* ifa>1.
(D.9)

The behaviour of the bound crucially depends on @ and L: if @ > 1 and L{ (@) < 1, the effect of
the perturbation decays exponentially fast with 7' — s; if @ > 1 and L{(a) > 1, the effect of the
perturbation grows exponentially fast with 7 — s. In both case, higher values of o (faster memory
decay) lead to better dependence properties.

Noise perturbation. Fix s > 1 and let Fy_y := o(Xy,..., Xs—1, Wi,...,W,_1). Assume the two
systems agree up to time s except that at time s we have
Wg = Ws+n

with n # 0, and W), = W, for u # s. Again define A, := X, — X/ for ¢t > 5. Subtracting the two
recursions gives for ¢ > s:

5 b(X) - b(X;) Wy - Wy

Bt = : D.10
. u=s (t_u+1)a ([—S+l)af ( )
Taking norms and using Lipschitzness,
3
A
Al < LD 1Al lImll

(t—u+1)@ (t—-s+1)’

u=s

Setn :=1—s+1anda, = E(||Agunll |]-'s_1). Note ap = 0 (since Xy = X!). Apply Lemma D.1
with g,, := ||5|| n~ % to obtain,for n < N,

n

n s A
an < Dl A7 < il x =2 (D.11)
j=1

Ay =1’
where we consider Ax # 1 for simplicity.

Bounding the Wasserstein distance as before yields, for any horizon T > s + 1,

(L(1+log(T—s)))T~5 -1

7]l L(1+log(T—-s)-1 ° ifa=1,

sup  Wi(L(X, | Fs-1), L(X] | Fs-1)) < (D.12)

T-s _
s+l<t<T Il =L, ifa> 1.

Drift perturbation. To consider drift perturbations, we write the drift as by where 6 is a param-
eter. In addition to assuming that by is uniformly L-Lipschitz for all 8, we also assume that it is
M-Lipschitz in 6 uniformly in x, that is, for all x,x” € R? and 6,6’

Ibo(x) = bo (Xl < Lilx=x"|[+M |0 -6l (D.13)

Consider 6, 8" and the two systems with drifts by and b respectively:

t

Xo1 = D K(t,u) (bo(X) + W), (D.14)
u=1
t

X, = D K(tu) (bo (X)) +W,). (D.15)
u=1
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As before, we will bound the Wasserstein distance between X; and X; by using the synchronous
coupling. Assuming that the two sequences share the same noise sequence (W,,), we define A, =
X, — X; and obtain, using (D.13), fort < T

S Al

lAeatll < L2 o=y + MU0 = 01 Ha (7). (D.16)
u=1

Setting a, = ||Ay|| and g, = M||0 — 6’||H(T) with ag = 0, we can apply Lemma D.1 as before to
obtain, fort < T,

(L(1+logT))" -1 .
(1 +logT) LUHET) -1 = g
Wi(L(X,). L(X)) < M[6—¢'| s e (D.17)
() (L[[((‘:Y))) = ifa>1

where we used (D.3) to bound H, (T).

D.2 EXAMPLES FOR TASK SELECTION ASSUMPTIONS

In this section, we check that the examples of Section 3.1 in the main text satisfy Assumptions 3
and 4. These are lengthy but mostly straightforward calculations, which we sketch to illustrate how
to verify the assumptions in practice. We also explicit the link between the Renyi divergence that
appears in Theorem 1 and the usual loss functions in these examples.

Example D.1 (Linear regression). We consider the linear regression example of Section 3.1 in the
main text and check that it satisfies Assumptions 3 and 4. Fix a true task 6* € RY. Forr=1,...,T,
consider ¢, ~ N(0,0,%1;) and noise ¢ ~ N(0,02) iid., and y, = ¢; 0" + &, 2t = (g1, ys),
X = {z,}thl. Define Q € R7*4 has rows g/ andY = (y,)tT:I, and, for any parameter 6 € R?,

tr(6) = logpr(X | 6) = — 55 |IY — Q6|13 + const,
where the constant term depends on Q but not on

Let us begin with the tail behavior. Both g, and y, = ¢/ 6* + ¢ are sub-Gaussian; hence for some
c>0andallR > 1,

P31t <n,llz ]l 2 R) < poly(n)e " < poly(n) e~
For the tail condition on the likelihood, let A = § — 6y and rg := Y — Q8y. Then
tr(6) = tr(00) = — 5. (I1QAI3 - 2ATQ T ro)

Now, by e.g., Wainwright (2019, Thm. 6.1), for T large enough, there is ¢ > 0 constant such that,
with probability at least 1 — e =<7 ||QA|| > ¢ VT ||A|| and [|QTro|| < ¢~'VT ||ro||. Hence, uniformly
over [|8]] > R (so [|All > R - [|6o]]),

2 C—]
er(6) = tr(80) < —£X AR+ <L |A] ol
For all R larger than a constant multiple of ||ro||/VT + |60, the right-hand side is negative; thus

supyg=r Pr(X | 0) < pr(X | 6). Since |[ro|| is sub-Gaussian and the norm bounds above hold
with probability at least 1 — e~" > 1 — ¢~“R for R > T, we obtain, forall R > T,

< poly(T) e R

P( sup pr(X[6) = pr(X|6o)
loI=R

We now consider the moment condition. Then, for any reference 6,

pr(X |0)
sup ———=
o pr(X|6o)

Therefore, we have

= exp(sup(tr(6) ~ £r(60)}) < exp(53z 1Y — 0603,

0
logzsup pr(X | 6)

oD oy < € (10" — 603+ lelly)”
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and using Gaussian moment bounds
pr(X | 6)
pr(X | 60)
We finally check the local regularity condition. For any ¢ and 6, 6,
P (Yr | qresY1:-1,60) 1 T v T2
=——5 -6 —(y,— 6 .
p,(yt | C]l:t’yl:t—lye’) 20-2[(% q:) (s q:) ]

Assuming that ||g1./||co, [y1:/] < Rand ||0],]|6’|| < R (with R > 1) and using that (a—b)*—(a—c)? =
(¢ =b)(2a —b - c), we have

P (e | qii,Y1:0-1,6) , , ,
pt(y’m tyl . NI 166" g/l |29, = (0+6)Tq:| < R0 -¢1,
t\Yt s Ylir—1» € €

so the condition holds.

E|log? sup < poly(n) (1 + /6" — 6oll3) = poly(n).

log

Let us now explicit the Renyi divergence in this case. Since g, do not depend on 6 and (¢, y,); are
i.i.d., we have

o T2l [( r(ylq.0) )p]

D067 = log E —_— . D.18
AN =7y B |y g0 D49

We now focus on the expectation and write, using standard Gaussian integrals,

r(ylq.9) \" oy Tg)2
y[(m) ] EqglEy1q [GXP( ((y q'0) —(y—q'0) ))] (D.19)
=E,E,, [exp( s 5 (2eq7 0 9)—(q7(9*—9))2))] (D.20)
~E, w2520 - 07| ®21)

202

= ! . (D.22)

2(1—pn)2 2
\/1+P—“ 2200 g — g

The Renyi divergence is therefore

T 201~ p) 202
Dy@167) = #/_Jmlog (1 + ’)(U#ne - 9*||2) . (D.23)

€

Moreover, for p either close to 0 or 1, we have the approximation

o _ PLT/2log?p* (1 - p) .
DO 167) = 1 l0-61P+0 (p*(1-p)?) . (D24)
2To¢
Hence, the quantity bounded in Theorem 1 can be related to the squared loss as follows:
Eg-pr(-fxir) [Dp(01169)] (D.25)
plT/2]oyp* (1= p) L . 5
= 7ol Eo-pr (1) [16 - 6717] + O (p (1-p) ) (D.26)
PLT/ZJO'qZPQ(l -p) 112 4 3
= T I Eo~pr(-lxip) [0] =071+ O (p (1-p) ) (D.27)
LT/2]p>(1 - p) 12
= PRI LR g By py i [Ely] 0.0] ~Ely .0 (D28)
2T o
+0(p*(1-p)%) . (D.29)

where we used Jensen’s inequality in the second line. Note that ]EONPT( lxi) [E [y | g,01] is the
optimal Bayesian predictor under the squared loss given the posterior distribution over 6, see (3).
As a conclusion, the Renyi divergence term in Theorem 1 controls the squared prediction error of
the Bayesian predictor, which models the in-context learning performance.
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Example D.2 (Ornstein—Uhlenbeck process). We consider the Ornstein—Uhlenbeck (OU) process
example of Section 3.1 in the main text and check that it satisfies Assumptions 3 and 4. For sim-
plicity, we consider the one-dimensional case d = 1; the extension to d > 1 with diagonal diffusion
is straightforward. We consider tasks 6 = (u, 7) where y € Rand 7 € [7,7] with0 < T < 7 < oo.
Given 6, the Ornstein—Uhlenbeck (OU) SDE

dX[ = T(,U - X[) dr + O—th

is observed at regular times t, = rA; (r = 1,...,n). We write x, := X; and X = {x,}""_ . The
Markov transition is Gaussian with mean

mo(x) i=p+e ™ (x—p)=e Prx+(1—e™)u

and variance vg := Var(x, | x,_1,0) = 02 % . For any path x1.,,, define £, () :=logp, (X | 0).

Recall 6 = (u, 7) with 7 € [T, 7], discretization step A;, and

1-p3 _
mo(x) = p+pr(x—p) = pex+ (1= pp,  vg =0’ s pri=e
Fix a reference 6y = (uo, 79), write mg := mg,, Vg = vg,, and let X = (x1,...,x,) with x, the OU

samples at times rA,. The one—step densities are Gaussian, hence

pn(X | 9) _ L {_ %logv—g _ (xr _’/n()(xr—]))2 + (xr _mO(xr—l))2}'

og ———— = (D.30)
g pn(X | 90) Z Vo 2Ug 200

r=1

Let us begin with the tail behavior. Each one-step innovation x, — mg(x,_1) is Gaussian with
variance vg and

21 _ e—21At 21 _ e—Z?A,
0 < Vmin < Vg < Vmax <00, Upin i= 0 ————, Umax '= O ——=——
2t 2T

Moreover, if x,_; satisfies |x,_1| < R, then mg(x,_1) also satisfies [mg(x,-1)| < pzR+(1-p<)|ul.
Hence, there exists ¢ > 0 depending only on (A,, 7, 7, 07) and the law of x¢ such that, forall R > 1,

]P(Elr <n,ly|= R) (D.31)
< P(3r < n, L — ()| 2 (1= p)R = |l (D32)
< poly(n) e~k < poly(n) e K, (D.33)

for R large enough compared to |u]|.

Let us continue with the tail condition on the likelihood. We have the bound

n

1
> ylog e

r=1

< 1 1og =™ = Cyyen. (D.34)

Umin

For each r, abbreviate m := mg(x,_1) and mq := mo(x,-1). Using vg > Umin and vy > vmin,

(x, — m)2 (x, — m0)2 ( 2 2)
- + = r - - r .
21)9 200 2Umin (x mO) (x m)
Expanding the square,
(x, —mo)? = (x, —m)* = —(m - mo)2 +2 (x, —mg) (m —mg).
Summing over r and applying Cauchy—Schwarz,
n n 1

Z _(xr _m)Z " (xr _mO)2 1 ZA% +

< -
2vg 209 20min 5 Umin

(i(x, - mo)z)l/z( i Af)l/z, (D.35)
=1 =1

r=1

where 6, :=mg(x,-1) — mo(x,_1).
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On events where |x;.,| < R, we have the conditions
cllu = poll = C(1 + R)[6,| < L(1+R) |60 — 6ol

for constants ¢, C, L depending only on (7,7, A;). Therefore, for || — wo|| larger than a constant
multiple of (1 + R), we have

n

noo\12
82 > nellu—pol® and (253) < VnC(1+R) 0= 6ol (D.36)
r=1

r=1
for constants ¢, C depending only on (7, 7, A;).
Combining (D.34), (D.35), and (D.36),
(X160 < 172
PC L < Cn—enllp = poll + (D00 = mo(1)?) T VRC(L+ R) 10 - 6ol (D37)
pn(X | 60) =

for constants ¢, C depending only on (7, 7, A;).

log

Fix R > 1 and assume that |x;.,|] < R: we have shown that it holds with probability at least
1- poly(n)e‘CRz.

1/2
In that case, (Z:’:l(xr - mo(xr_l))z) in (D.37) is bounded O(y/nR) so the RHS can be made

negative for all sufficiently large ||6]|: more precisely, it is negative for ||#|| > R’ with R” > C(1 +
R)? for a constant C depending only on (T, 7,A,). Since the event we are considering holds with
probability at least 1 — poly(n)e‘CRz, it means that it holds with probability at least 1 — poly(n)e X',
This proves the required tail bound with R « R’.

Moving to the moment condition, by Gaussian moment bounds, (D.30) readily implies

logzsup —pn(X 16)
0 Pn(X|60)

which verifies the likelihood-ratio moment condition in Assumption 3.

E

] < Cn? = poly(n),

Finally, we show the local regularity condition. For fixed x1.,_1, the conditional density is

(xr - 7719(xr—1))2

logp,.(x, | x1:r-1,0) = —% log(27vg) — >
vo

On sets where |x1.-| < R, ||0]] < R (so u, T bounded) and with 7 € [T, 7], the maps
1= e—2‘rA,
2
7 2T
are smooth with bounded first derivatives: |0,mg| < 1, |0-mg| < Cg, |0-v9] < C, 9,09 = 0. Since
Xy —mg(x,_1) is also bounded by a constant multiple of R on these sets, we obtain, for all 8, 8" with
lell. 11e’ll < R,

0 mg(x,—1) =e Mx,_+ (1—e ™)y, 0 vg =

pr(-xr | xlir—la 9)
sup log ————=

[x1-|<R Pr (xr | X1ir-1, 9,)
lel.le’lisr

< poly(R)[|6 — &' .
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 LINEAR REGRESSION

We provide comprehensive experimental results for linear regression tasks (detailed in Section 4.1)
using Student-¢# and generalized normal pretraining distributions. This section presents the ICL
error as a function of context length (ICL step) for Student-¢ priors with degrees of freedom
v € {3,5,10,00} and generalized normal priors with shape parameters g € {1,1.5,2,2.5}, cor-
responding to the experimental settings in Fig. 1.

The results in Fig. 6 clearly demonstrate the fundamental trade-off in selecting pretraining distri-
butions for ICL: heavy-tailed priors (small v) achieve superior performance under distribution shift,
while light-tailed priors (large v) excel on in-distribution tasks. In contrast, Fig. 7 shows that varying
the shape parameter of generalized normal priors produces more subtle effects on ICL performance
in the linear regression setting.

We also notice on Figs. 6 and 7 that longer context lengths are mostly beneficial for in-distribution
tasks: as the perturbation magnitude increases, the performance gains from longer contexts diminish.
This is in line with Section 3.2: the performance gain per new example is determined by the prior
probability of the task, which decreases with larger perturbations.

ICL MSE vs Context Length ICL MSE vs Context Length

---- Transformer 103- ---- Transformer
— Ridge 35 | — Ridge 35

=
20
2]
15
1.0
05
1074, ‘ ; ; ‘ T 0 1074, ‘ ; ; ‘ T 00
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Context Length Context Length
(a) Student-t, v = 3.0 (b) Student-t, v = 5.0
ICL MSE vs Context Length w0 ICL MSE vs Context Length w0
---- Transformer ---- Transformer
0% — Ridge 35 10° 35
10% > 30 30
10*- 25 25
% 10° 20% zu%
107! ’ 7
15 15
1072 10 10
103 05 05
1074 ‘ ‘ ‘ ; — 00 1074 ‘ ; ; ‘ | } 00
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Context Length Context Length
(¢) Student-t, v = 10.0 (d) Gaussian limit, v = oo

Figure 6: Linear regression with Student-7 pretraining distributions: MSE as a function of ICL step for different
task shift magnitudes. Heavy-tailed priors (v = 3) show superior robustness to distribution shift, while light-
tailed priors (v = oo, Gaussian) perform better on unperturbed tasks. The Ridge regression baseline provides a
reference that remains constant across perturbation magnitudes.

We present an extended analysis of the generalization results from Fig. 2 in Fig. 8, examining how
the number of pretraining tasks n affects performance across different Student-7 tail parameters v.
These results validate Theorem 2, showing that heavy-tailed priors require more training tasks to
achieve comparable performance to light-tailed priors.

Finally, we provide an ablation study on the effect of the variance. All other experiments are de-
signed so that the pretraining distribution has unit variance in each dimension. In Fig. 9, we vary
the variance of a standard Gaussian pretraining distribution and observe it only changes the ICL
performance for in-distribution tasks.
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ICL MSE vs Context Length ICL MSE vs Context Length
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10 — Ridge 35 10 35
10%- 30 10%- 30
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Figure 7: Linear regression with generalized normal pretraining distributions: MSE as a function of ICL step
for different task shift magnitudes. The shape parameter 8 has a more modest impact on performance compared
to Student-¢ distributions, with all variants showing similar convergence patterns across perturbation levels.

E.2 ORNSTEIN-UHLENBECK PROCESSES

We present detailed experimental results for Ornstein—Uhlenbeck (OU) stochastic processes (de-
scribed in Section 4.2) using both Student-# and generalized normal pretraining distributions. The
figures show ICL error as a function of context length for Student-¢ priors with degrees of free-
dom v € {3,5,10, 0} (matching Fig. 3) and generalized normal priors with shape parameters
B e {1,1.5,2,2.5} (matching Fig. 4) in Figs. 10 and 11, respectively.

Notably, OU processes exhibit different behavior compared to linear regression: the trade-off be-
tween in-distribution and out-of-distribution performance is less pronounced. As shown in both
Figs. 10 and 11, heavy-tailed priors maintain competitive in-distribution performance while still
providing improved robustness to distribution shift.

E.3 VOLTERRA PROCESSES

We present comprehensive results for stochastic Volterra equations (detailed in Section 4.3), which
model nonlinear processes with long-range dependencies and connections to fractional Brownian
motion. Figure 12 shows ICL error as a function of context length for different kernel exponents
a € {1, 1.5,2}, where smaller « values correspond to stronger temporal dependencies.

The results confirm our theoretical predictions from Section 3: as the kernel exponent « increases
(weaker dependencies), both convergence speed and final performance improve significantly. This
validates the dependency structure analysis in Theorem 2.

Figure 13 extends the generalization analysis from Fig. 5, demonstrating how the number of pre-
training tasks n interacts with the temporal dependency parameter «. The results show that processes
with stronger dependencies (smaller @) require substantially more training data to achieve compara-
ble performance.
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Figure 8: Generalization analysis for linear regression across different numbers of pretraining tasks n for a
context length of 64. As predicted by Theorem 2, heavy-tailed priors (small v) require more tasks to achieve
performance comparable to light-tailed priors, but eventually outperform them under distribution shift. The
crossover point shifts to larger n for heavier-tailed distributions.
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Figure 9: Ablation on the effect of variance for Gaussian pretraining distributions in linear regression. Only
in-distribution performance is affected by the variance, with larger variances leading to worse performance.
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Figure 10: Ornstein—Uhlenbeck processes with Student-¢ pretraining distributions: MSE as a function of
ICL step for different task shift magnitudes. Unlike linear regression, heavy-tailed priors maintain strong
in-distribution performance while providing superior robustness to perturbations. Baselines include predicting
the last observed value and fitting an ARMA(S) model to the context.
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Figure 11: Ornstein—Uhlenbeck processes with generalized normal pretraining distributions (importance
weighted): MSE as a function of ICL step for different task shift magnitudes. The shape parameter S shows
consistent effects across perturbation levels, with all variants significantly outperforming simple baselines. Im-
portance weighting provides modest improvements in robustness.
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Figure 12: Stochastic Volterra equations: MSE as a function of ICL step across different kernel exponents a.
Smaller @ values correspond to stronger long-range dependencies, leading to slower convergence and higher
final error. The performance gap between different @ values demonstrates the impact of temporal dependency
structure on ICL learning. Simple baselines provide reference points for comparison.
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Figure 13: Generalization analysis for Volterra processes across different numbers of pretraining tasks 7.
Processes with stronger temporal dependencies (smaller @) exhibit larger performance gaps at low 7, consistent

with Theorem 2. The dependency coefficients in our theory scale with a, explaining why more training tasks
are needed to achieve good performance for smaller @ values.
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F EXPERIMENTAL DETAILS

We roughly follow the experimental setup used by Raventds et al. (2023). Our code is largely based
on their implementation given in®.

F.1 DATA GENERATION

In all experiments, task parameters 6 € R? are sampled from the distribution mentioned in the main
text, data sequences are sampled according to the task. All task distributions during training are
zero mean and unit variance in each dimension, except for the Volterra experiments where they are
normalized to have standard deviation 0.2. For testing, we sample 6 from N (u 1, 1) where u € R
is the shift value and 1 is the all ones vector, and the data is sampled according to this task. Unless
otherwise specified, a new set of tasks 6 is sampled for each training iteration. Otherwise, when the
number of tasks is specified, we sample that many tasks at the start of training and use those same
tasks throughout training.

Linear Regression Given a task parameter 6 € R®, we sample x; ~ NV(0, ) and y; = (x;,0) + €
where € ~ N'(0,0.5%). Given a context of (x1,41), ..., (xx, yx), the model is trained to predict yy
given x4 with the MSE loss. At evaluation, we evaluate the model output against xl.TG. We refer to
the linear regression experiments in Raventds et al. (2023) for details.

Ornstein-Uhlenbeck (OU) Process The OU process is given by dX; = 7(u — X;)dt + odW;
and has two parameters: 6 and p. We study a 8-dimensional process where X, € R® and o =
0.513. We consider the initial distribution of xg ~ N(0, I3). Full paths of X, are sampled using
the Euler-Maruyama method with a step size of Az = 0.8. For the sampling of tasks, 6 € R’ is
sampled from the described distribution, u is then set to be the first § components of 8 and 7 is set
t0 0.3 + 0.2 X 07(—0.469) where o is the sigmoid function. The model is trained to predict X (x1)as

given Xo, Xas, - . ., Xgar with the MSE loss with a maximum context length of 32. For evaluation,
we evaluate the model output against E[Xx.1)a:| X0, Xar, - . ., Xkar] which is computable in closed
form.

Volterra Process We study a Volterra process in dimension 8§ given by

t t
X; =X0+/ (t—s)_"bg(XS)ds+/ (t—s)"YodwWy, F.1)
0 0

where the parameter « is chosen according to discrete values in {1,1.5,2} and o = 0.6/g. Xj is
sampled from A (0, Ig) again. by a clipped two-layer neural network and hidden dimension 16:
formally, with 6 = (W, by, W», by) then bg(x) = clip(10(W; tanh(Wx + by) + by),-2,2) — 0.1x.

We subsample the paths (X;), with step size At = 2 to obtain discrete samples (Xo, Xas, X2Azs - - -»)
and each Xy, is computed from past samples using 10 steps of the Euler-Maruyama method with
step size Ar/10. The model is trained to predict X(x41)a; given Xo, Xas, ..., Xga, with the MSE
loss with a maximum context length of 32. For evaluation, we evaluate the model output against
E[X (k+1)at X0, Xars - - . » Xkar] which is computable in closed form.

F.2 ARCHITECTURE AND OPTIMIZATION DETAILS

For all experiments, we consider the architecture inspired by GPT-2 as used in Ravent6s et al. (2023).
For linear regression experiments, we use a context length of 64 points, 6 layers, embedding dimen-
sion of 32, 8 attention heads and an output dimension of 1. For the other experiments, we use a
context length of 32 points, 8 layers, embedding dimension of 128, 2 attention heads and an output
dimension of 8.

All models were trained for 5 x 103 iterations. Experiments are run with AdamW optimizer with a
weight decay of 0.1 with a cosine learning rate schedule and 50,000 warmup steps. All experiments
were run on NVIDIA H100 GPUs. We performed a hyperparameter sweep over learning rate where
we considered two learning rates and chose the best model. Experiments are repeated 3 different
times with different seeds. LLMs were used to assist in code writing.

4https ://github.com/mansheej/icl-task-diversity
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