
Published as a conference paper at ICLR 2025

LEARNING ON ONE MODE: ADDRESSING MULTI-
MODALITY IN OFFLINE REINFORCEMENT LEARNING

Mianchu Wang∗ Yue Jin∗ Giovanni Montana∗†
∗University of Warwick †The Alan Turing Institute
{mianchu.wang, yue.jin.3, g.montana}@warwick.ac.uk

ABSTRACT

Offline reinforcement learning (RL) seeks to learn optimal policies from static
datasets without interacting with the environment. A common challenge is handling
multi-modal action distributions, where multiple behaviours are represented in
the data. Existing methods often assume unimodal behaviour policies, leading to
suboptimal performance when this assumption is violated. We propose weighted
imitation Learning on One Mode (LOM), a novel approach that focuses on learning
from a single, promising mode of the behaviour policy. By using a Gaussian
mixture model to identify modes and selecting the best mode based on expected
returns, LOM avoids the pitfalls of averaging over conflicting actions. Theoretically,
we show that LOM improves performance while maintaining simplicity in policy
learning. Empirically, LOM outperforms existing methods on standard D4RL
benchmarks and demonstrates its effectiveness in complex, multi-modal scenarios.

1 INTRODUCTION

Offline reinforcement learning (RL) enables policy learning from static datasets, without active
environment interaction, making it ideal for high-stakes applications like autonomous driving and
robot manipulation (Levine et al., 2020; Ma et al., 2022; Wang et al., 2024a). A key challenge in offline
RL is managing the discrepancy between the learned policy and the behaviour policy that generated
the dataset. Small discrepancies can hinder policy improvement, while large discrepancies push the
learned policy into uncharted areas, causing significant extrapolation errors and poor generalisation
(Fujimoto et al., 2019; Yang et al., 2023). Addressing these challenges, existing research has proposed
various solutions. Conservative approaches penalise actions that stray into out-of-distribution (OOD)
regions (Yu et al., 2020; Kumar et al., 2020), while others regularise the policy by minimising its
divergence from the behaviour policy, ensuring better fidelity to the dataset (Fujimoto & Gu, 2021;
Wu et al., 2019). Another solution is weighted imitation learning, which aims to replicate actions
from the dataset through supervised learning techniques (Mao et al., 2023; Peng et al., 2019).

Many real-world datasets introduce an additional challenge: multi-modal action distributions (Wang
et al., 2024b; Chen et al., 2022; Zhou et al., 2020). These datasets are common in practice because
they often integrate data from diverse sources, such as multiple policies, human demonstrations, or
distinct exploration strategies. This diversity arises naturally in domains where the same task can be
approached in various ways, leading to states with multiple valid but potentially conflicting actions.
For instance, in autonomous driving, different driving styles — conservative versus aggressive —
may lead to different but equally valid ways of navigating a road. Similarly, in robotic manipulation,
an object can be grasped in various ways depending on the robot’s approach, the object’s position, and
environmental constraints. This multi-modality is not an exception but rather a frequent occurrence
in complex, real-world decision-making tasks, as systems often integrate experience from various
sources to handle different scenarios. Thus, it becomes crucial to model and manage these multi-
modal action distributions effectively.

Most offline RL approaches implicitly assume a unimodal action distribution, which can force
policies to converge toward an average action that may not exist in the dataset, leading to degraded
performance. This limitation is particularly evident in scenarios where policies fail to capture complex
multi-modal distributions, instead collapsing into suboptimal or invalid averages, as studied byCai
et al. (2023); Wang et al. (2024b); Yang et al. (2022b) and illustrated in Appendix A. Recent work
has attempted to address this by modelling the full multi-modal action distribution using expressive

1

Published as a conference paper at ICLR 2025

generative models such as GANs, VAEs, and diffusion models (Zhou et al., 2020; Chen et al., 2022;
Wang et al., 2023). However, these models often overcomplicate the learning process by capturing
the entire action distribution, which is unnecessary when only a subset of the modes is relevant for
optimal decision-making.

We propose a simpler yet effective approach: Weighted Imitation Learning on One Mode (LOM). Our
insight is that learning from a single mode — the one with the highest expected return — is sufficient
to generate optimal actions. Instead of modelling the full multi-modal distribution, LOM identifies
and focuses on the most promising mode for each state.

Figure 1: The three steps of LOM. (1) Learn a
network producing the parameters of a GMM
to model the behaviour policy. (2) Evaluate
each mode via the expected return of its ac-
tions and then select the optimal mode ϕ1. (3)
Sample actions from ϕ1 for weighted imita-
tion learning.

LOM operates through three key steps (illustrated
in Figure 1). First, it models the behaviour policy
as a Gaussian mixture model (GMM), capturing the
inherent multi-modality in the action space. Each
mode in the GMM represents a distinct cluster of
actions associated with a state. Second, a novel hyper
Q-function is introduced to evaluate the expected re-
turn of each mode, enabling the dynamic selection of
the most advantageous one. Finally, LOM performs
weighted imitation learning on the actions from the
selected mode, ensuring that the learned policy fo-
cuses on the most beneficial actions while retaining
the simplicity of unimodal policies. This targeted,
mode-specific learning strategy simplifies the policy
learning process while maintaining or even enhancing
performance in multi-modal scenarios. By dynami-
cally selecting the optimal mode for each state, LOM
achieves robust results with reduced complexity.

This paper has four key contributions: (1) we propose
LOM, a novel weighted imitation learning method
designed to address the multi-modality problem in of-
fline RL; (2) we introduce hyper Q-functions and
hyper-policies for evaluating and selecting action
modes; (3) we provide theoretical guarantees of con-
sistent performance improvements over both the be-
haviour policy and the optimal action mode; and
(4) we empirically demonstrate that LOM outper-
forms state-of-the-art (SOTA) offline RL methods
across various benchmarks, particularly in multi-
modal datasets.

2 RELATED WORK

Offline RL The primary challenge in offline RL lies in managing the distribution shift between the
behaviour policy, which generated the offline dataset, and the learned policy. This shift can cause
the learned policy to produce actions that are not well-represented in the offline dataset, leading to
inaccurate value function estimations and degraded performance (Levine et al., 2020; Fujimoto et al.,
2019). To mitigate the risks associated with OOD actions, one approach involves using conservative
value functions, which penalise actions that deviate from the behaviour policy (Fujimoto et al., 2019;
Kumar et al., 2020; Bai et al., 2022; Sun et al., 2022; An et al., 2021). Another strategy focuses on
regularising the learned policy to ensure its proximity to the behaviour policy. This regularisation can
be measured using metrics such as mean squared error (MSE) (Beeson & Montana, 2024; Fujimoto
& Gu, 2021) or more sophisticated metrics like the Wasserstein distance, Jensen-Shannon divergence
(Yang et al., 2022b; Wu et al., 2019), and weighted MSE (Ma et al., 2024). These methods aim to
keep the learned policy within a safer, well-understood operational space, reducing the likelihood
of selecting OOD actions. For a comprehensive review of value penalties and policy regularisation
techniques, we refer readers to (Wu et al., 2019). In contrast to these approaches, LOM tackles the
distribution shift problem by focusing on a single, optimal mode of the behaviour policy, thereby
reducing the risk of OOD actions while still allowing for significant policy improvement.

2

Published as a conference paper at ICLR 2025

Weighted Imitation Learning Our proposed method contributes to the growing field of weighted
imitation learning, which revolves around two fundamental questions: which actions should be
imitated and how should these actions be weighted (Brandfonbrener et al., 2021). Most existing
methods imitate actions directly from the dataset (Peng et al., 2019; Wang et al., 2018; Nair et al.,
2021; Wang et al., 2020), while some approaches (Siegel et al., 2020; Mao et al., 2023) suggest
imitating actions from the most recent policies. These methods typically weigh actions based on their
advantage, conditioned either on the behaviour policy (Peng et al., 2019; Wang et al., 2018) or on
the most recently updated policy (Nair et al., 2021; Wang et al., 2020; Siegel et al., 2020; Mao et al.,
2023). However, a key limitation of these approaches is their underlying assumption that the imitated
actions are drawn from a unimodal Gaussian distribution, an oversimplification that often fails in
complex, real-world datasets where multi-modal distributions are common (Lynch et al., 2020; Yang
et al., 2022b). LOM addresses this limitation by forgoing the unimodal assumption, instead extracting
a highly-rewarded Gaussian mode from the behaviour policy.

Multi-modality in Offline RL Offline RL datasets are often collected from multiple, unknown
policies, leading to states with several valid action labels, which may conflict with one another. Most
existing methods employ a unimodal Gaussian policy, which inadequately captures the inherent multi-
modality in such datasets. To address this limitation, PLAS (Zhou et al., 2020) decodes variables
sampled from a VAE latent space, while LAPO (Chen et al., 2022) leverages advantage-weighted
latent spaces for further policy optimisation. Additionally, Yang et al. (2022b) demonstrate that
GANs can model multiple action modes, and GOPlan (Wang et al., 2024b) extends this by applying
exponentiated advantage weighting to highlight highly-rewarded modes. DAWOG (Wang et al.,
2024a) and DMPO (Osa et al., 2023) separate the state-action space and learn a conditioned Gaussian
policy or a mixture of deterministic policies to solve the regions individually. Techniques such as
normalising flows and diffusion models can also model multi-modal distributions by progressively
transforming an initial distribution into the target distribution (Wang et al., 2023; Akimov et al.,
2022). However, these techniques are computationally intensive, making their inference processes
inefficient. Beyond direct policy improvements, approaches like TD3+RKL (Cai et al., 2023) exploit
the mode-seeking property of reverse KL-divergence to narrow action coverage, while BAW (Yang
et al., 2022a) filters actions with values in the leftmost quantile. Despite these advances, most methods
attempt to capture or model the entire multi-modal distribution, leading to increased complexity. In
contrast, LOM simplifies the learning process by extracting and focusing on a single, optimal mode
from the behaviour policy, effectively addressing the multi-modality challenge without the need to
model the entire distribution.

3 PRELIMINARIES

To lay the foundation for our method, we first introduce the Markov Decision Process (MDP) and the
concept of weighted imitation learning. An MDP is defined by the tuple M = ⟨S,A,P, r, γ⟩, where
S is the state space, A the action space, and P the transition dynamics. The function r represents the
reward, and γ is the discount factor. The objective in RL is to learn a policy π that maximises the
expected discounted return:

J(π) = Eτ∼pπ

[
T∑
t=0

γtr(st, at)

]
,

where τ = {s0, a0, . . . , sT , aT } is a trajectory sampled under policy π. The state-action value
function Qπ(st, at) represents the expected return starting from state st, taking action at, and
following π thereafter:

Qπ(st, at) = Est+1,at+1,···∼π

[
T∑
l=t

γlr(sl, al)

]
. (1)

The value function is defined as V π(st) = Eat∼π(·|st)[Qπ(st, at)], and the advantage function is
Aπ(st, at) = Qπ(st, at)− V π(st).

In offline RL, the agent learns exclusively from a fixed dataset D collected by one or more behaviour
policies, denoted as πb, without further interaction with the environment (Levine et al., 2020). Our
approach is based on weighted imitation learning, where the objective is to optimize

J(π) = Es∼dπb
,a∼πb(·|s)

[
exp

(
1

β
Aπb(s, a)

)
log π(a | s)

]
,

3

Published as a conference paper at ICLR 2025

where β is a hyper-parameter. This formulation encourages learning a policy π that imitates actions
from D, weighted by the exponentiated advantage of the behaviour policy πb, thereby implicitly
constraining the KL-divergence between π and πb (Wang et al., 2018). Recent works have extended
this approach by imitating actions from the current learned policy (Siegel et al., 2020; Mao et al.,
2023), or weighting actions based on the advantage conditioned on the current policy (Nair et al.,
2021; Wang et al., 2020).

4 METHOD

In this section, we present the LOM method, specifically designed for offline RL with heterogeneous
datasets. We begin by modelling the behaviour policy using a Gaussian Mixture Model (GMM)
to capture the inherent multi-modality. Following this, we formalise the problem using a hyper-
Markov decision process (H-MDP), where a hyper-policy dynamically selects the most promising
mode for each state based on expected returns. Next, we propose a hyper Q-function to evaluate
the hyper-policy and introduce a greedy hyper-policy for mode selection at each step for weighted
imitation learning. Finally, we prove that the resulting policy of our LOM method outperforms both
the behaviour policy and a greedy policy.

4.1 MULTI-MODAL BEHAVIOURAL POLICY

To address the challenge of multi-modal action distributions in offline RL, we model the behaviour
policy as a Gaussian Mixture Model (GMM). GMMs are flexible in representing complex distributions
and can approximate any density function with sufficient components (McLachlan & Basford, 1988),
making them well-suited for capturing the heterogeneous nature of offline datasets that often arise
from multiple policies or exploration strategies. The behaviour policy πb(a | s) is expressed as:

πb(a | s) =
M∑
i=1

αi(s)ϕi(a | s), (2)

where αi(s) represents the mixing coefficients for each mode i, and ϕi(a | s) denotes the Gaussian
component for mode i at state s. Each mode captures a distinct cluster of actions associated with
the state. By using a GMM, our model captures the diverse modes present in real-world offline RL
datasets, where multiple valid strategies may coexist for the same task. This approach preserves the
richness of the original data while avoiding the limitations of unimodal policy approximations.

4.2 HYPER-MARKOV DECISION PROCESS

To extend the traditional MDP framework introduced in Section 3 and formulate the offline RL
problem with a multi-modal behaviour policy, we introduce the Hyper-Markov Decision Process
(H-MDP). The H-MDP accounts for multiple policy modes, extending the standard MDP to a higher
level of abstraction. Formally, the H-MDP is defined as MH = ⟨S,A,P, r, γ,Ω,AH ,PH , rH⟩,
where S, A, P , r, and γ retain their standard meanings from the MDP. The novel components
introduced are: Ω = {ϕ1, . . . , ϕM}, representing the Gaussian modes, and the hyper-action space
AH = {1, . . . ,M}, which indexes these modes.

The transition dynamics PH conditioned on the hyper-action ut ∈ AH and the reward function rH
for ut are defined as:

PH(st+1 | st, ut) = Eat∼ϕut (a|st) [P(st+1 | st, at)] ,

rH(st, ut) = Eat∼ϕut (a|st) [r(st, at)] .

At each time step, the agent selects a Gaussian mode u based on a hyper-policy ζ, which maps states
to a probability distribution over modes, ζ(u | s) : S ×AH → [0, 1]. The hyper-policy determines
the likelihood of selecting each mode in a given state. The agent then selects an action a according to
the Gaussian distribution ϕu(a | s). Consequently, the action follows a composite policy πζ , which
corresponds to the hyper-policy ζ and can be expressed as:

πζ(a | s) =
∑
u∈AH

ζ(u | s)ϕu(a | s), (3)

4

Published as a conference paper at ICLR 2025

In the H-MDP, the agent’s objective is to learn a hyper-policy ζ that maximises the expected discounted
return:

J(ζ) = Eτ∼pζ

[
T∑
t=0

γtrH(st, ut)

]
, (4)

where pζ is the distribution of state-mode trajectories τ = (st, ut, st+1, ut+1, . . .) induced by
following the hyper-policy ζ.

4.3 HYPER Q-FUNCTION

To evaluate the quality of selecting a mode u in a given state s, we define the hyper Q-function
QζH(s, u). This function quantifies the expected return when choosing mode u at state s and
subsequently following the hyper-policy ζ. Formally, the hyper Q-function is defined as:

QζH(s, u) = Est+1,ut+1,···∼ζ

[
T∑
t=0

γtrH(st, ut) | s0 = s, u0 = u

]
. (5)

This expectation is taken over future states and modes encountered while following the hyper-policy
ζ after selecting mode u in state s. The term rH(st, ut) denotes the expected reward for selecting
mode ut in state st, with γ being the discount factor.

Proposition 1. The hyper Q-function can be linked to the standard value function Qπ(s, a) via:

QζH(s, u) = Ea∼ϕu(·|s) [Q
πζ (s, a)] . (6)

The proof can be found in Appendix B.1.

This proposition establishes a critical relationship between the hyper Q-function and the standard
Q-function. It shows that the expected return for selecting mode u (i.e., the hyper-action) is equivalent
to the expected value of actions sampled from the Gaussian component ϕu(a | s), evaluated under the
composite policy πζ . This result is particularly important when dealing with multi-modal behaviour
policies, as it allows the agent to effectively compare and evaluate different modes u based on their
associated action distributions ϕu(a | s).

4.4 MODE SELECTION

Since the hyper Q-function evaluates the expected return after selecting mode u at a state, we
now propose a greedy hyper-policy that improves upon the behaviour policy by selecting the most
advantageous mode at each state based on the hyper Q-function.

In correspondence with the multi-modal behaviour policy πb defined in Eq. 2, we introduce the
behavioural hyper-policy, denoted as ζb, which reflects the mode-selection strategy implicit in the
behaviour policy that generated the offline dataset. Specifically, ζb(u | s) = αu(s), where αu(s) is
the mixing coefficient for the u-th Gaussian component in the GMM at state s. This formulation
establishes the connection between the original behaviour policy πb and the H-MDP framework,
allowing us to represent the behaviour policy in terms of mode selection.

To improve upon the behavioural hyper-policy ζb, we define a greedy hyper-policy ζg , which selects
the mode that maximises the hyper Q-function QζbH (s, u) for each state:

ζg(s) = arg max
u∈AH

QζbH (s, u). (7)

This greedy hyper-policy ensures that the agent selects the mode with the highest expected return at
each state, thereby improving the overall policy performance relative to the behaviour policy.

Theorem 1. The composite policy induced by the greedy hyper-policy improves upon the behaviour
policy:

V πζg (s) ≥ V πb(s), ∀s ∈ S. (8)

The proof can be found in Appendix B.2.

This improvement property guaranteed by Theorem 1 forms the foundation of our LOM algorithm.
It ensures that by systematically selecting modes with the highest expected return at each state, the
agent’s composite policy will, over time, perform at least as well as the original behaviour policy.

5

Published as a conference paper at ICLR 2025

4.5 WEIGHTED IMITATION LEARNING ON ONE MODE

Based on the greedy hyper-policy ζg , we obtain the corresponding greedy policy πζg , which, according
to Theorem 1, is not worse than πb. However, rather than simply imitating πζg , we apply weighted
imitation learning to further improve the policy. Specifically, we aim to find a policy π that maximises
the expected improvement η(π) = J(π)−J(πζg). The expected improvement η(π) can be expressed
in terms of the advantage Aπζg (s, a) (Kakade & Langford, 2002; Schulman et al., 2015): η(π) =
Es∼dπ(·),a∼π(·|s)[A

πζg (s, a)]. However, in offline RL, state samples from the distribution dπ(s) are
unavailable. Instead, we approximate the expected improvement by using an estimate η̂ (Kakade
& Langford, 2002): η̂(π) = Es∼dπζg

(·),a∼π(·|s)[A
πζg (s, a)]. This approximation provides a good

estimate of η(π) if π and πζg are close in terms of KL-divergence (Schulman et al., 2015). As a
result, we can formulate the following constrained policy optimisation problem:

argmax
π

∑
s

dπζg
(s)

∑
a

π(a | s)Aπζg (s, a),

s.t.
∑
s

dπζg
(s)DKL(π(· | s)||πζg (· | s)) ≤ ϵ.

(9)

Solving the corresponding Lagrangian leads to the optimal policy π∗: π∗(a | s) = 1
Z(s)πζg (a |

s) exp
(

1
βA

πζg (s, a)
)

. We then learn a policy by minimising the KL-divergence to this optimal
policy, resulting in the weighted imitation learning objective:

argmin
π

Es∼dπb
(·)[DKL(π

∗(· | s)||π(· | s))] (10)

=argmax
π

Es∼dπb
(·),a∼πζg (·|s)

[
exp

(
1

β
Aπζg (s, a)

)
log π(a | s)

]
. (11)

In this framework, the actions to be imitated are sampled from πζg , a unimodal Gaussian policy,
thereby addressing the multi-modality issue. Furthermore, actions within this mode are weighted
according to their advantage, encouraging the policy to concentrate on the highly-rewarded actions.
As shown in Theorem 2, the policy learned by LOM has a theoretical advantage over both πζg and
the original behaviour policy πb.

Theorem 2. The LOM algorithm learns a policy πL that is at least as good as both the composite
policy induced by the greedy hyper-policy πζg and the behaviour policy πb. Specifically, for all states
s ∈ S:

V πL(s) ≥ V πζg (s) ≥ V πb(s). (12)
The proof is provided in Appendix B.3.

This theorem implies that our method introduces a novel two-step improvement process. LOM
achieves further policy improvement compared to one-step algorithms while requiring less off-policy
evaluation than multi-step algorithms (Brandfonbrener et al., 2021).

Theorem 3. The LOM algorithm learns a policy πL, whose improvement upon the composite policy
induced by the greedy hyper-policy πζg is bounded. For all s ∈ S, we have

V πL(s)− V πζg (s) ≥ 1

1− γ
η̂(πL)−

Amax

1− γ

√
1

2
DKL(dπL

||dπζg
), (13)

where Amax = maxs,a |Aπζg (s, a)|. The proof is provided in Appendix B.4.

The bound shows that the learned policy πL is guaranteed to perform at least as well as the baseline
policy πζg , with the performance improvement quantified by the maximal advantage and reduced by
a penalty term proportional to the divergence in their state visitation distributions — emphasizing
that maximising advantage while minimising divergence leads to better performance.

5 PRACTICAL ALGORITHM

In this section, we present the practical implementation of the LOM algorithm. First, we model
the multi-modal behaviour policy using a mixture density network, as described in Section 5.1. In
Section 5.2, we outline the mode selection process, which involves learning the hyper Q-function for
the behavioural hyper-policy. This hyper Q-function is then used to derive the greedy hyper-policy ζg
and the corresponding greedy policy πζg , which selects a single mode. Finally, in Section 5.3, we
describe how to learn a policy through weighted imitation learning on the selected mode.

6

Published as a conference paper at ICLR 2025

Algorithm 1 Weighted imitation learning on one mode (LOM).
Initialise: A MDN behaviour policy πρ with parameter ρ, a target policy πθ with parameter θ, a value function

Qψ with parameter ψ and its slowly-updated copy Qψ− , a behaviour hyper Q-function Qϕ with parameter
ϕ; an offline dataset D.

1: # Learn the MDN behaviour policy.
2: for i = 1, ..., IM do
3: Update ρ by minimising L(ρ) = E(st,at)∼D[log πρ(at | st)]. ▷ Eq. 15.
4: end for
5: for i = 1, . . . , IG do
6: Sample transitions τ = {st, at, rt, st+1, at+1} ∼ D.
7: # Learn the value function.
8: Update ψ by minimising L(ψ) = Eτ [(Qψ(st, at)− (rt + γQψ−(st+1, at+1))

2]. ▷ Eq. 16
9: # Learn behavioural hyper Q-function.

10: Update ϕ by minimising L(ϕ) = Est∼D,u∼Uniform(AH)[(Qϕ(st, u)− Ea′t∼ϕu(·|s) [Qψ(st, a
′
t)])

2]
11: # Learn the target policy.
12: Select the optimal mode u = argmaxu∈{1,...,M}Qϕ(st, u)
13: Sample action from the optimal mode ât ∼ ϕu(st)
14: Get the mean of the mode āt = ϕuµ(st) ▷ The mean of the mode
15: Estimate the advantage A(st, ât) = Qψ(st, ât)−Qψ(st, āt)
16: Update θ by minimising L(θ) = −Est,ât [exp(A(st, ât)) log πθ(ât | st)]. ▷ Eq. 18
17: # Update the target network.
18: if i mode update_delay = 0 then
19: ψ− ← ρψ− + (1− ρ)ψ
20: end if
21: end for

5.1 BEHAVIOUR POLICY MODELLING

At the start of the LOM algorithm, we model the behaviour policy using a mixture density network
(MDN) (Bishop, 1994). The MDN receives a state s and represents the resulting action distribution
with a GMM, including its mixing coefficients, locations, and scales. We index the Gaussian
components as the hyper-actions, ranging from 1 to M .

In the algorithm, we learn a neural network πρ(a | s) parameterised by ρ to estimate the behaviour
policy. The network produces the parameters {zµi , zσi , zα

i}Mi=1, which are used to estimate the
probability density function for each policy mode:

ϕi(a | s) = 1√
2πσi(s)

exp

(
−||a− µi(s)||2

2σi(s)2

)
, (14)

where µi(s) = zµi , and σi(s) = exp(zσi). The mixing coefficient αi(s) is processed through a
softmax function: αi(s) = exp(zα

i

)/
∑M
j=1 exp(z

αj

). The parameters of the network are updated
by minimising the negative log-likelihood:

L(ρ) = −E(s,a)∼D [log πρ(a | s)] . (15)
LOM trains the MDN until convergence, after which the parameter ρ is fixed for the remainder of the
algorithm.

5.2 HYPER Q-FUNCTION LEARNING

We learn the hyper Q-function of the behavioural hyper-policy based on Proposition 1. Specifically,
we first learn a Q-function, Qπb , of the behaviour policy, and then estimate its expectation over
actions sampled from mode u. We instantiate Qπb with a neural network Qψ parameterised by ψ and
updated to minimising the TD error:

L(ψ) = E(st,at,rt,st+1,at+1)∼D
[
(Qψ(st, at)− (rt + γQψ−(st+1, at+1)))

2
]
. (16)

where Qψ− is a slowly updated copy of Qψ. Following Proposition 1, we learn QζbH , a hyper
Q-function of the behavioural hyper-policy, which is denoted as Qϕ parameterised by ϕ. The
optimisation objective of learning Qϕ is:

L(ϕ) = Est∼D,u∼Uniform(AH)

[
(Qϕ(st, u)− Eat∼ϕu(·|s) [Qψ(st, at)])

2
]
. (17)

With this hyper Q-function, we get a greedy hyper-policy ζg(s) = argmaxu∈AH
Qϕ(s, u). Corre-

sponding to ζg(s), we get the greedy policy with one mode, πζg (a | s) = ϕζg(s)(a | s).

7

Published as a conference paper at ICLR 2025

Table 1: Averaged normalised scores on D4RL benchmarks over 4 random seeds. 0 represents the
performance of a random policy and 100 represents the performance of an expert policy. Standard
deviations are provided as subscripts for multi-modal handling algorithms. The highest mean is
highlighted in bold.

DatasetDatasetDataset EnvEnvEnv OneStepOneStepOneStep AWACAWACAWAC CQLCQLCQL TD3BCTD3BCTD3BC LAPOLAPOLAPO DMPODMPODMPO WCGANWCGANWCGAN WCVAEWCVAEWCVAE LOMLOMLOM

halfcheetah 50.4 47.9 47.0 48.3 45.9±0.3 47.5±0.4 48.2±1.3 50.5±1.1 51.051.051.0±0.7

medium hopper 87.5 59.8 53.0 59.3 51.6±3.2 71.2±6.5 78.6±2.4 89.0±2.0 100.8100.8100.8±1.4

walker2d 84.8 83.1 73.3 83.7 80.7±0.8 79.4±4.7 82.4±1.7 85.0±1.5 85.185.185.1±0.7

halfcheetah 42.7 44.8 45.5 44.6 44.7±0.3 45.2±0.8 42.3±4.2 45.0±0.9 48.848.848.8±0.7

medium-replay hopper 98.5 69.8 88.7 60.9 58.6±3.8 89.2±8.1 90.3±3.1 99.0±2.1 99.299.299.2±1.1

walker2d 61.7 78.1 81.8 81.8 71.7±5.2 82.1±3.8 72.6±4.0 74.0±3.1 84.884.884.8±1.0

halfcheetah 75.1 64.9 75.6 90.7 93.093.093.0±1.0 91.1±3.4 76.5±3.1 80.0±1.7 92.7±1.3

medium-expert hopper 108.6 100.1 105.6 98.0 105.2±4.7 78.4±19.0 110.0±2.4 109.0±1.6 110.1110.1110.1±1.4

walker2d 111.3 110.0 107.9 110.1 111.1±0.2 109.9±0.4 99.7±1.0 111.0±0.7 111.3111.3111.3±0.8

halfcheetah 88.2 81.7 96.3 96.7 95.9±0.2 97.097.097.0±1.0 90.7±1.7 89.0±0.8 95.2±0.4

expert hopper 106.9 109.5 96.5 107.8 106.7±3.6 93.6±15.1 107.3±1.8 108.0±1.3 111.0111.0111.0±0.8

walker2d 110.7 110.1 108.5 110.2 112.2112.2112.2±0.1 111.4±0.3 109.3±1.4 111.0±1.4 109.3±1.1

halfcheetah 64.7 66.6 73.6 71.7 74.2±1.3 71.4±1.2 64.2±3.1 66.0±3.4 76.676.676.6±1.2

full-replay hopper 69.8 100.1 98.2 76.8 100.0±3.3 101.5±5.9 80.2±5.3 86.5±4.4 102.0102.0102.0±2.7

walker2d 67.1 78.3 92.7 90.2 96.2±2.8 95.4±1.8 53.0±5.4 72.0±3.7 97.997.997.9±0.9

5.3 POLICY LEARNING

Finally, we learn the policy πθ by maximising the objective:

J(θ) = Es∼D,a∼πζg (·|s)

[
expclip(

1

β
Aπζg (s, a)) log πθ(a | s)

]
, (18)

where β is a hyper-parameter, expclip(·) is the exponential function with a clipped range (0, C],
where C is a positive number for numerical stability. We estimate the advantage using: Aπζg (s, a) ≈
Qψ(s, a)− Ea∼πζg (·|s)[Qψ(s, a)], where we use the Q-function conditioned on the behaviour policy
πb rather than πζg in order to reduce extrapolation error and computational complexity. Further, we
employ the approach used in (Mao et al., 2023) to replace the expectation over a ∼ πζg (· | s) with
the Q-value of the mean action of the Gaussian policy πζg to reduce computation.

Implementation details and the pseudocode can be found in Algorithm 1. The algorithm starts with
training a MDN to model the behaviour policy, and then iteratively update the hyper Q-function Qϕ,
the value function Qψ and the target policy πθ. The code has been open sourced 1.

6 EXPERIMENTAL RESULTS

We aim to answer the following questions: (1) How does LOM compare to SOTA offline RL
algorithms, particularly those handling multi-modality? (2) Can performance improvements be
attributed to learning on one mode? (3) How does the number of Gaussian components affect LOM’s
performance?

6.1 LOM ACHIEVES SOTA PERFORMANCE IN D4RL BENCHMARK

We evaluate LOM on three MuJoCo locomotion tasks from the D4RL benchmark (Fu et al., 2020):
halfcheetah, hopper, and walker2d. Each environment contains five dataset types: (i) medium — 1M
samples from a policy trained to approximately one-third of expert performance; (ii) medium-replay
— the replay buffer of a policy trained to match the performance of the medium agent (0.2M for
halfcheetah, 0.4M for hopper, 0.3M for walker2d); (iii) medium-expert — a 50-50 split of medium
and expert data (just under 2M samples); (iv) expert — 1M samples from a fully trained SAC policy
(Haarnoja et al., 2018); and (v) full-replay — 1M samples from the final replay buffer of an expert
policy. Notably, the medium-replay and full-replay datasets are highly multi-modal, as states may
have multiple action labels from different policies.

Table 1 shows the benchmark results of our method against SOTA offline algorithms: OneStep
(Brandfonbrener et al., 2021), AWAC (Nair et al., 2021), CQL (Kumar et al., 2020), and TD3BC
(Fujimoto & Gu, 2021). We also include four algorithms designed for handling multi-modality:
LAPO (Chen et al., 2022), deterministic mixture policy optimisation (DMPO) (Osa et al., 2023),

1GitHub repository: https://github.com/MianchuWang/LOM

8

https://github.com/MianchuWang/LOM

Published as a conference paper at ICLR 2025

(a) Environment (b) BC (c) MDN (M=4) (d) AWAC (e) LOM (M=4)

Figure 2: Comparative study in the FetchReach task with highly multi-modal datasets. (a) The
FetchReach robot is tasked with reaching one of four specified goals using an expert dataset. The
robot arm receives a reward of 2 for reaching the goal in the first quadrant and 1 for reaching any of
the other three goals. The dataset contains actions directed toward all four goals, with conflicting
directions. (b) Action distribution learned by behaviour cloning using a unimodal Gaussian policy
model. (c) Action distribution learned by MDN using a GMM policy model. (d) Action distribution
learned by AWAC, which applies weighted imitation learning over the entire action distribution using
a unimodal Gaussian policy. (e) Action distribution learned by LOM.

weighted conditioned GAN (WCGAN), and weighted conditioned VAE (WCVAE) (Wang et al.,
2024b). The experimental results are shown in Table 1, where the baselines’ results are mainly
sourced from Mao et al. (2023) or reproduced using their official implementations. The results
demonstrate that LOM outperforms the baseline algorithms in 12 out of 15 tasks. In tasks with
multi-modal datasets, LOM surpasses all the baselines, and achieves a performance improvement
ranging from 0.2% to 7.9% over the SOTA results.

6.2 LEARNING ON ONE MODE DRIVES IMPROVEMENTS

To explore the source of LOM’s improvements, we design three tasks with highly multi-modal
datasets: FetchReach, FetchPush, and FetchPickAndPlace. In FetchReach, as shown in Figure 2a, the
objective is to control a robotic arm to reach one of four specified positions, symmetrically distributed
on the xy-plane. The robot receives a reward of 2 for reaching the position in the first quadrant, 1
for reaching any of the other positions, and 0 otherwise. In FetchPush and FetchPickAndPlace, the
robot is tasked with moving a cube to one of four positions on a desk, with the same reward structure.
Each dataset contains 4× 106 transitions collected by an expert policy. Given a state and four goals
in different quadrants, the dataset contains four trajectories corresponding to each goal, making the
datasets highly multi-modal.

We compare LOM with behaviour cloning (BC), AWAC, and MDN, introduced in Section 5.1.
Specifically, BC and MDN imitate the behaviour policy using a unimodal Gaussian policy and a
multi-modal Gaussian policy, respectively. AWAC applies weighted imitation learning to imitate
the behaviour policy across all modes (Nair et al., 2021). LOM, however, distinguishes multiple
behaviour modes using MDN and focuses on learning from the best mode. Table 2 shows that LOM
outperforms the baseline algorithms by an average of 53%.

In Figure 2, we further investigate the behaviour of different policies. Given a state, the multi-modal
dataset contains four actions, each targeting distinct goals in separate quadrants. Figure 2b shows that
BC learns an averaged action distribution. Figure 2c demonstrates that MDN effectively reconstructs
the action distribution, allowing LOM to select the highest-rewarding mode. Figure 2d shows that
while AWAC can learn the best mode (in the first quadrant), it tends to generate OOD actions.
In contrast, Figure 2e illustrates that LOM imitates actions from the best single mode, filtering
out suboptimal actions and focusing on highly-rewarding ones. These experiments demonstrate
that learning on one mode effectively improves policy performance by concentrating on the most
rewarding actions.

Table 2: Average scores on the tasks with extremely multi-modal datasets.

BC MDN AWAC WCGAN WCVAE LOM

FetchReach 14.3±3.4 17.1±2.3 32.4±0.2 42.3±3.1 40.8±2.1 47.247.247.2±3.1

FetchPush 11.8±0.9 18.9±4.7 26.8±1.4 41.2±3.7 41.8±2.4 44.344.344.3±2.7

FetchPick 3.6±0.8 8.1±1.3 22.7±2.3 29.2±2.8 30.5±2.1 34.234.234.2±3.6

9

Published as a conference paper at ICLR 2025

(a) M=2 (b) M=4 (c) M=10 (d) M=20 (e) M=50

Figure 4: Action modes learned by MDN with varying numbers of mixtures. Red dots represent
samples from the highest-reward mode. The original actions are clustered around (1, 1), (1,−1),
(−1,−1), and (−1, 1) but do not extend beyond these points. In (d) and (e), the red dots collapse
into a single point in the first quadrant due to the small standard deviation of the mode.

6.3 EFFECT OF THE NUMBER OF GAUSSIAN COMPONENTS

We analyse the influence of the number M of Gaussian components in the LOM algorithm. The
results, shown in Figure 4, are based on the multi-modal FetchReach environment. The figure
illustrates the decomposition of action modes using blue contours, while red dots represent the actions
imitated by LOM. When M is too large (Figure 4d and 4e), the standard deviation of the imitated
Gaussian mode becomes excessively small, leading to overly narrow the domains of action learning.
Conversely, smaller values of M results in modes with a large standard deviation (Figure 4a), causing
LOM to capture actions outside the dataset and imitate OOD actions. This highlights the need to
investigate LOM’s sensitivity to this hyper-parameter.

Figure 3: Normalised scores for varying numbers of Gaussian
components in the medium replay and full replay datasets.

Figure 3 compares LOM across M =
{1, 5, 10, 15, 20} in the medium-
replay and full-replay datasets from
the D4RL benchmark. The per-
formance generally improves as the
number of mixture components in-
creases, particularly in the medium-
replay dataset, where larger M val-
ues lead to continuous performance
gains. However, in the full-replay
datasets, performance increases only
up to M = 10. This indicates that
while increasing the number of com-
ponents benefits performance, there
may be diminishing returns beyond a certain threshold. Our experiments suggest that M primarily
influences the domain of the imitated actions, and improvements can be achieved with a moderate,
though not highly specific, value of M .

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced LOM, a novel offline RL method specifically designed to tackle the
challenge of multi-modality in offline RL datasets. Unlike existing methods that aim to model the
entire action distribution, LOM focuses on imitating the highest-rewarded action mode. Through
extensive experiments, we demonstrated that LOM achieves SOTA performance, and we attributed
these improvements to the central idea of learning on one mode, which simplifies the learning process
while maintaining robust performance.

We observed that the hyper Q-function satisfies a Bellman-like equation, opening the possibility
for learning it through Bellman updates. However, one challenge that emerges is the difficulty in
accurately estimating the Bellman target for the hyper Q-function, as it requires computing the
expectation over all possible hyper-actions, which may lead to extrapolation errors. Exploring a
deterministic hyper-policy is a promising future direction to mitigate this issue, potentially simplifying
the estimation process and further improving performance. Furthermore, the hyperparameter M
in LOM is intrinsically linked to the multi-modality present in the dataset. This parameter can be
estimated using statistical techniques like bump hunting (Friedman & Fisher, 1999) and peak finding
(Du et al., 2006), eliminating the need for fine-tuning. However, a key challenge lies in the fact
that each state corresponds to a distinct multi-modal action distribution, making it computationally
intensive to identify and count the modes for every individual state.

10

Published as a conference paper at ICLR 2025

Acknowledgments We acknowledge support from a UKRI AI Turing Acceleration Fellowship
(EPSRC EP/V024868/1).

REFERENCES

Dmitry Akimov, Vladislav Kurenkov, Alexander Nikulin, Denis Tarasov, and Sergey Kolesnikov.
Let offline RL flow: Training conservative agents in the latent space of normalizing flows. In 3rd
Offline RL Workshop: Offline RL as a Launchpad, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified Q-ensemble. In Advances in Neural Information Processing
Systems, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2022.

Alex Beeson and Giovanni Montana. Balancing policy constraint and ensemble size in uncertainty-
based offline reinforcement learning. Machine Learning, 113(1):443–488, Jan 2024. ISSN
1573-0565.

Christopher M. Bishop. Mixture density networks. Technical report, Aston University, Birmingham,
1994.

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In Advances in Neural Information Processing Systems, 2021.

Yuanying Cai, Chuheng Zhang, Li Zhao, Wei Shen, Xuyun Zhang, Lei Song, Jiang Bian, Tao Qin,
and Tie-Yan Liu. TD3 with reverse KL regularizer for offline reinforcement learning from mixed
datasets. In IEEE International Conference on Data Mining, 2023.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Jianhao Wang, Alex Yuan Gao, Wenzhe Li, Liang Bin, Chelsea
Finn, and Chongjie Zhang. LAPO: Latent-variable advantage-weighted policy optimization for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2022.

Pan Du, Warren A. Kibbe, and Simon M. Lin. Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22(17):
2059–2065, 07 2006. ISSN 1367-4803.

Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-dimensional data. Statistics and
Computing, 9(2):123–143, Apr 1999. ISSN 1573-1375.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020.

11

Published as a conference paper at ICLR 2025

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning, 2020.

Chengzhong Ma, Deyu Yang, Tianyu Wu, Zeyang Liu, Houxue Yang, Xingyu Chen, Xuguang
Lan, and Nanning Zheng. Improving offline reinforcement learning with in-sample advantage
regularization for robot manipulation. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–13, 2024.

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via f-advantage regression. In Advances in Neural Information Processing
Systems, 2022.

Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported trust region
optimization for offline reinforcement learning. In International Conference on Machine Learning,
2023.

Geoffrey J McLachlan and Kaye E Basford. Mixture models: Inference and applications to clustering,
volume 38. M. Dekker New York, 1988.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC: Accelerating online
reinforcement learning with offline datasets, 2021.

Takayuki Osa, Akinobu Hayashi, Pranav Deo, Naoki Morihira, and Takahide Yoshiike. Offline
reinforcement learning with mixture of deterministic policies. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In International Conference on
Learning Representations, 2020.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting in
value-based deep-RL: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. In Advances in Neural Information Processing Systems, 2022.

Mianchu Wang, Yue Jin, and Giovanni Montana. Goal-conditioned offline reinforcement learning
through state space partitioning. Machine Learning, 113(5):2435–2465, May 2024a. ISSN
1573-0565.

Mianchu Wang, Rui Yang, Xi Chen, Hao Sun, Meng Fang, and Giovanni Montana. GOPlan: Goal-
conditioned offline reinforcement learning by planning with learned models. Transactions on
Machine Learning Research, 2024b. ISSN 2835-8856.

Qing Wang, Jiechao Xiong, Lei Han, peng sun, Han Liu, and Tong Zhang. Exponentially weighted
imitation learning for batched historical data. In Advances in Neural Information Processing
Systems, 2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representations,
2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas. Critic
regularized regression. In Advances in Neural Information Processing Systems, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019.

12

Published as a conference paper at ICLR 2025

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline RL. In
International Conference on Learning Representations, 2022a.

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential
for unseen goal generalization of offline goal-conditioned RL? In International Conference on
Machine Learning, 2023.

Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A behavior
regularized implicit policy for offline reinforcement learning, 2022b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems, 2020.

Wenxuan Zhou, Sujay Bajracharya, and David Held. PLAS: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, 2020.

13

Published as a conference paper at ICLR 2025

A MOTIVATING EXAMPLE

To illustrate the challenge of capturing complex multi-modal action distributions, we present a toy
example in Fig. 5. In this example, we generate a dataset where each state is associated with multiple
valid actions, simulating the multi-modal nature of real-world offline RL datasets. We evaluate
four models — Gaussian, Conditional Variational Auto-Encoder (CVAE) (Zhou et al., 2020; Chen
et al., 2022), Conditional Generative Adversarial Networks (CGAN) (Yang et al., 2022b; Wang
et al., 2024b), and Mixture Density Network (MDN) (Bishop, 1994) — on their ability to model the
multi-modal action distribution.

Subfigures 5 (a-e) show the action distributions learned by each model. Specifically, we visualise how
well each model captures distinct modes in the action space. The Gaussian model fails to separate
modes, while the CVAE, CGAN, and MDN demonstrate stronger mode separation, with the MDN
showing minimal mode overlap and the clearest boundaries between modes.

Additionally, we assess each model’s ability to capture high-reward actions. Subfigures 5 (f-j)
illustrate the models’ performance in learning positively-rewarded multi-modal action distributions.
Our results reveal that the MDN with ranked components closely adheres to in-distribution actions
and achieves superior outcomes in terms of reward, compared to the other models.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: An example of modelling the multi-modal behaviour policy in a one-step MDP. The x-axis
represents the state, and the y-axis represents the corresponding multi-modal actions. (a) shows the
action distribution from the offline dataset. (b)-(e) illustrate the action distributions learned by a
Gaussian model, a conditional VAE, a conditional GAN, and an MDN, respectively. (f) shows the
action distribution of the offline dataset with rewards, where actions in the first and third quadrants
receive a reward of 1, and others receive 0. (g)-(i) illustrate the action distributions learned by
weighted Gaussian, weighted conditional VAE, and weighted conditional GAN models, respectively.
(j) shows the action distribution learned by the top 10 of the 20 MDN components, ranked by a hyper
Q-function.

B THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 1

Proposition 1 The hyper Q-function can be linked to the standard value function Qπ(s, a) via:

QζH(s, u) = Ea∼ϕu(·|s) [Q
πζ (s, a)] . (19)

14

Published as a conference paper at ICLR 2025

Proof:

QζH(s, u) =Es1,u1,···∼ζ

[
T∑
t=0

γtrH(st, ut) | s0 = s, u0 = u

]

=rH(s, u) +

T−1∑
t=0

∑
s,u

p(st+1 = s | ζ)ζ(u | s)γt+1rH(s, u)

=
∑
a

ϕu(a | s)r(s, a) +
T−1∑
t=0

∑
s

p(st+1 = s | ζ)
∑
u

ζ(u | s)γt+1
∑
a

ϕu(a | s)r(s, a)

=
∑
a

ϕu(a | s)r(s, a) +
T−1∑
t=0

∑
s

p(st+1 = s | ζ)
∑
u,a

ζ(u | s)ϕu(a | s)γt+1r(s, a)

=
∑
a

ϕu(a | s)r(s, a) +
T−1∑
t=0

∑
s,a

p(st+1 = s | ζ)πζ(a | s)γt+1r(s, a)

=
∑
a

ϕu(a | s)

[
r(s, a) +

T−1∑
t=0

∑
s,a

p(st+1 = s | ζ)πζ(a | s)γt+1r(s, a)

]

=
∑
a

ϕu(a | s)

[
r(s, a) +

T−1∑
t=0

∑
s,a

p(st+1 = s | πζ)πζ(a | s)γt+1r(s, a)

]
=Ea∼ϕu(·|s) [Q

πζ (s, a)] .
(20)

B.2 PROOF OF THEOREM 1

Theorem 1. The composite policy induced by the greedy hyper-policy improves upon the behaviour
policy:

V πζg (s) ≥ V πb(s), ∀s ∈ S.

Proof. Now, we prove that the improved policy πζg is uniformly as good as or better than the
behaviour policy πb.

V πζg (st) =Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[Q(st+1, at+1)]]

=Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1)+

γEst+2,at+2∼πζg
[Qπζg (st+2, at+2)]]]

=Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πζg

[r(st+H−1, at+H−1) + γEst+H ,at+H∼πζg
[r(st+H , at+H)]]]

≥Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πζg

[r(st+H−1, at+H−1) + γEst+H ,at+H∼πb
[r(st+H , at+H)]]]

=Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πζg

[Qπb(st+H−1, at+H−1)]]] (21)

≥Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πb

[Qπb(st+H−1, at+H−1)]]] (22)
≥ · · ·
≥Eat∼πζg

[r(st, at) + γEst+1,at+1∼π̃b
[Qπb(st+1, at+1)]]]

≥Eat∼πb
[r(st, at) + γEst+1,at+1∼π̃b

[Qπb(st+1, at+1)]]]

=V πb(st)

15

Published as a conference paper at ICLR 2025

The derivation from Eq. 21 to Eq. 22 is based on:

Es,a∼πζg
[Qπb(s, a)]

= Es,u∼ζgEa∼ϕu(·|s)[Q
πb(s, a)]

= EsEu∼ζg [Q
ζb
H (s, u)]

≥ EsEu∼ζb [Q
ζb
H (s, u)]

= Es,u∼ζbEa∼ϕu(·|s)[Q
πb(s, a)]

= Es,a∼πb
[Qπb(s, a)]

(23)

B.3 PROOF OF THEOREM 2
Theorem 2 LOM learns a policy πL, which is uniformly as good as or better than the improved
policy πζg and the behaviour policy πb. That is,

∀s ∈ S, V πL(s) ≥ V πζg (s) ≥ V πb(s). (24)

Proof. The proof is structured in two parts. First, we show that the LOM-learned policy πL is
at least as good as the improved policy πζg ; specifically, for all states s ∈ S, we establish that
V πL(s) ≥ V πζg (s). Second, we prove that the improved policy πζg performs no worse than the
behaviour policy πb, i.e., V πζg (s) ≥ V πb(s) for all s ∈ S.

As established in Wang et al. (2018), the following lemma provides a sufficient condition for proving
that one policy is no worse than another. We restate this result as the following lemma:

Lemma (from Wang et al. (2018)): Suppose two policies π and π̃ satisfy:

g(π̃(a | s)) = g(π(a | s)) + h(s,Aπ(s, a)), (25)

where g(·) is a monotonically increasing function, and h(s, ·) is monotonically increasing for any
fixed s. Then we have:

V π̃(s) ≥ V π(s), ∀s ∈ S. (26)

This means that π̃ is uniformly as good as or better than π.

Since the LOM-learned policy imitates the optimal policy π∗, we have:

π∗(a | s) = 1

Z(s)
πζg (a | s) exp

(
1

β
Aπζg (s, a)

)
, (27)

which gives:

log πL(a | s) = log
1

Z(s)
+ log πζg (a | s) + 1

β
Aπζg (s, a), (28)

where log(·) is a monotonically increasing function and log 1
Z(s) is a constant. Therefore, πL is

uniformly as good as or better than the improved policy πζg .

B.4 PROOF OF THEOREM 3
Theorem 3 The LOM algorithm learns a policy πL, whose improvement upon the composite policy
induced by the greedy hyper-policy πζg is bounded: for all s ∈ S:

V πL(s)− V πζg (s) ≥ 1

1− γ
η̂(πL)−

Amax

1− γ

√
1

2
DKL(dπL

||dπζg
), (29)

where Amax = maxs,a |Aπζg (s, a)|. The proof is provided in Appendix B.4.

Proof. Following performance difference lemma (Kakade & Langford, 2002), we have

V πL(s)− V πζg (s) =
1

1− γ
Es∼dπL

,a∼πL
[Aπζg (s, a)] . (30)

16

Published as a conference paper at ICLR 2025

Our goal is to express the right-hand side in terms of η̂(πL), which uses dπg
rather than dπL

. To do
this, we define the discrepancy between dπL

and dπζg
as:

∆(s) = dπL
(s)− dπζg

(s). (31)
We can decompose the expectation over dπL

as:
Es∼dπL

[f(s)] = Es∼dπζg
[f(s)] + Es∼∆[f(s)], (32)

where Es∼∆[f(s)] =
∑
s∆(s)f(s).

Applying this to the expression:

V πL(s)− V πζg (s) =
1

1− γ

(
Es∼dπζg

,a∼πL
[Aπζg (s, a)] + Es∼∆,a∼πL

[Aπζg (s, a)]
)
. (33)

The first term is exactly η̂(πL) scaled by 1
1−γ . We need to bound the error term:

ϵ =
1

1− γ
Es∼∆,a∼πL

[Aπζg (s, a)] (34)

Assuming the advantage function Aπζg (s, a) is bounded:
|Aπζg (s, a)| ≤ Amax. (35)

We can then bound ϵ by

|ϵ| ≤ Amax

1− γ

∑
s

|∆(s)| = Amax

1− γ
||dπL

− dπζg
||1 =

Amax

1− γ
DTV (dπL

||dπζg
) (36)

By applying Pinsker’s inequity, we have

DTV (dπL
||dπζg

) ≤
√

1

2
DKL(dπL

||dπζg
) (37)

Finally, we have

V πL(s) ≥ V πζg (s) +
1

1− γ
η̂(πL)−

Amax

1− γ

√
1

2
DKL(dπL

||dπζg
) (38)

C FURTHER EXPERIMENTAL DETAILS

C.1 BASELINES

In the experiments discussed in Section 6, we compare LOM with other multi-modal modelling
approaches, such as WCGAN and WCVAE, in capturing complex action distributions in offline
reinforcement learning. These models are evaluated on their ability to reconstruct and learn from
the multi-modal behaviour policy in the FetchReach, FetchPush, and FetchPickAndPlace tasks, and
across various D4RL benchmarks.

Weighted Conditional GAN (WCGAN): The WCGAN learns a discriminator D and a generator
π to optimise the following adversarial objectives:

max
D

min
π

E(s,a)∼D [w(s, a) logD(s, a)] + Es∼D,a′∼π(·|s) [log(1−D(s, a′))] , (39)

where w(s, a) = expclip

(
1
βA

πb(s, a)
)

. Here, Aπb represents the advantage of the behaviour policy
πb. The WCGAN aims to generate action distributions that are weighted by this advantage, prioritising
actions that yield higher returns.

Weighted Conditional VAE (WCVAE): The WCVAE learns a conditional variational autoencoder
with an encoder E and decoder D. The objective is to optimize:

max
E,D

E(s,a)∼D,z∼E(s,a) [w(s, a) logD(a | z, s)− w(s, a)DKL(E(z | s, a) ∥ p(z | s))] , (40)

where p(z | s) is the unit Gaussian prior distribution of the latent variable conditioned on s. The
weighting function w(s, a) encourages the WCVAE to focus on high-reward actions.

C.2 HYPERPARAMETERS

The hyperparameters used in LOM were largely the same for all of the experiments reported. In
Table 3, we give a list and description of them, as well as their default values. The hyperparameters
M used in Table 1 are selected from {2, 5, 10, 15, 20}.

17

Published as a conference paper at ICLR 2025

Symbol in paper Description Default values
M Number of Gaussian components Please check Figure 3
β Advantage weights 5
C Weight clips 50
ρ Ployak averaging coefficient 0.995

update_delay Target update delay 2
πρ Gaussian mixture model [state_dim, 512, 512, 2 * ac_dim + M]
πθ Policy learned by LOM [state_dim, 512, 512, ac_dim]
Qψ Q-network [state_dim + ac_dim, 512, 512, 1]
Qϕ Behaviour hyper Q-function [state_dim + M , 512, 512, M]

Table 3: Hyperparameters used in the experiments.

18

	Introduction
	Related Work
	Preliminaries
	Method
	Multi-modal Behavioural Policy
	Hyper-Markov Decision Process
	Hyper Q-function
	Mode Selection
	Weighted Imitation Learning on One Mode

	Practical Algorithm
	Behaviour Policy Modelling
	Hyper Q-function Learning
	Policy Learning

	Experimental Results
	LOM Achieves SOTA Performance in D4RL Benchmark
	Learning on One Mode Drives Improvements
	Effect of the Number of Gaussian Components

	Conclusions and Discussions
	Motivating Example
	Theoretical Results
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Further Experimental Details
	Baselines
	Hyperparameters

