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ABSTRACT

Pre-trained language models (LMs) have been shown to memorize a substan-
tial amount of knowledge from the pre-training corpora; however, they are still
limited in recalling factually correct knowledge given a certain context. Hence,
they tend to suffer from counterfactual or hallucinatory generation when used in
knowledge-intensive natural language generation (NLG) tasks. Recent remedies to
this problem focus on modifying either the pre-training or task fine-tuning objec-
tives to incorporate knowledge, which normally require additional costly training
or architecture modification of LMs for practical applications.
We present Knowledge Infused Decoding (KID)—a novel decoding algorithm
for generative LMs, which dynamically infuses external knowledge into each
step of the LM decoding. Specifically, we maintain a local knowledge memory
based on the current context, interacting with a dynamically created external
knowledge trie, and continuously update the local memory as a knowledge-aware
constraint to guide decoding via reinforcement learning. On six diverse knowledge-
intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID
outperform many task-optimized state-of-the-art models, and show particularly
strong performance in few-shot scenarios over seven related knowledge-infusion
techniques. Human evaluation confirms KID’s ability to generate more relevant
and factual language for the input context when compared with multiple baselines.
Finally, KID also alleviates exposure bias and provides stable generation quality
when generating longer sequences. Code for KID is available at https://
github.com/microsoft/KID.

1 INTRODUCTION

Pre-trained language models (LMs) have been shown to capture rich semantic and syntactic features,
as demonstrated by the state-of-the-art performance on many generation tasks such as abstractive
summarization (Zhang et al., 2020b; Chu & Liu, 2019) and dialogue generation (Roller et al.,
2021; Zhang et al., 2020c). Their generations, however, can be quite limited in scenarios requiring
knowledge—they frequently struggle with issues such as being easily misguided by phrase co-
occurrence (e.g., “Talk? Birds can talk.”), failing to handle negation (e.g., “The theory of relativity
was not developed by Einstein.”) (Kassner & Schütze, 2020), and being unable to compare common-
sense concepts, such as time (Qin et al., 2021) and digits (Talmor et al., 2020).

To enhance the performance of LMs on knowledge-intensive NLG tasks1, prior studies have proposed
to re-train LMs with knowledge-aware objectives (Zhou et al., 2021; Xiong et al., 2020; Zhang et al.,
2019; Khandelwal et al., 2020) or add special architectures to encode knowledge (Bosselut et al.,
2019; Logan et al., 2019; Peters et al., 2019b) from external resources (e.g., knowledge graphs such as
CONCEPTNET (Speer et al., 2017) and ATOMIC (Sap et al., 2019)). These methods, though yielding
impressive results on many downstream tasks, can be computationally expensive. More importantly,

1We define knowledge-intensive NLG tasks as those whose input context alone does not provide complete
knowledge for a legitimate and plausible generation.
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knowledge implicitly parameterized in LM architectures is difficult to revise and expand (Lewis et al.,
2020b), and wrong generations are hard to diagnose due to lack of interpretation (Talmor et al., 2020),
which heavily limits their real-world applications.

More recent retrieval-based models try to tackle these problems by augmenting inputs with retrieved
knowledge evidence (Lee et al., 2019; Guu et al., 2020). For example, RAG (Lewis et al., 2020b) lever-
ages non-parametric memory to access extensive knowledge (in the form of unstructured documents),
and jointly fine-tunes a parametric LM (i.e., BART (Lewis et al., 2020a)) to enable knowledge-aware
generation. A key limitation of such methods is that they retrieve documents only once while ground-
ing them in the input static context, and thus cannot support the dynamic nature of the context as
new tokens are generated. The static knowledge becomes a major problem for tasks where longer
and abstractive generation is expected, such as open-ended story generation (Mostafazadeh et al.,
2016), multi-turn dialogues (Zhao et al., 2020), and conversation summarization (Gliwa et al., 2019).
Moreover, in a recent study, Krishna et al. (2021) replaced the knowledge retriever in RAG with a
random retriever and found little difference in the resulting performance on a long-form QA task
named ELI5 (Fan et al., 2019b), indicating the model may not be actually grounding its text generation
to the retrieved documents.

To address these limitations, in this work, we present a novel decoding algorithm KID, aiming to
better infuse knowledge into generation in a dynamic manner. Instead of solely relying on the static
knowledge retrieved at beginning, during each step of LM decoding, KID dynamically searches
promising continuation from retrieved knowledge, to guide the current step generation. Specifically,
KID maintains a local knowledge memory, interacts it with a knowledge trie dynamically created
from retrieved supporting documents, and updates the local memory as a knowledge-aware constraint
to guide the generation. The key intuition behind KID is that existing LM pre-training objectives
are usually defined at the token level yet do not explicitly model concept-centric knowledge (Xiong
et al., 2020) — thus motivating us to reshape the probability mass at each step decoding towards the
distribution of entities in knowledge.

The contribution of this work is three-fold: First, we introduce KID as a model and task agnostic
decoding method that integrates knowledge on the fly and can be applied to various knowledge-
intensive tasks with different generative LMs. Second, from a docoding perspective, on six knowledge-
intensive NLG tasks, GPT2 (Radford et al., 2019) and BART (Lewis et al., 2020a) equipped with KID
significantly outperform conventional beam search or sampling decoding by a large margin. Third,
from a knowledge infusion perspective, unlike seven strong knowledge-infusion baselines which
require either additional retraining or special architecture modifications, KID leverages knowledge
more effectively as a light-weight knowledge infusion solution. Additionally, in few-shot scenarios
KID significantly improves over them, demonstrating its generalization ability in low-resource and
domain shifting regimes.

2 RELATED WORK

We briefly review existing work enhancing LMs with external knowledge and representative decoding
algorithms for generation.

Enhancing Language Model with Knowledge. Large language models implicitly encode knowledge
in their parameters but with limits (Petroni et al., 2019; Kassner & Schütze, 2020; Lin et al., 2020a).
Several architectures and objective functions have been proposed to explicitly encode external
knowledge (Sun et al., 2020; Logan et al., 2019; Roberts et al., 2020; Levine et al., 2020), or to
augment LM pre-training data with retrieved knowledge (Lewis et al., 2020b; Guu et al., 2020; Lee
et al., 2019). However, Talmor et al. (2020) notes that the reasoning ability of such LMs is strongly
tied to the context seen during pre-training and is thus hard to generalize to new domains. Built on
LMs, KID incorporates extra knowledge from external resources (Wikipedia) and thus shows strong
performance in knowledge-intensive NLG tasks.

Better Decoding Algorithm. Two common strategies dominate the decoding algorithms used by
most generative models: beam search which maximizes likelihood in a local horizon (due to finite
beam size), and sampling decoding (e.g., top-k sampling (Fan et al., 2018; Holtzman et al., 2018))
which relies on randomness. Holtzman et al. (2020) find beam search often produces generic and
repetitive generation, while top-k sampling tends to pick unlikely tokens which creates incoherent and
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unrelated sequences. Existing attempts to mitigate these problems include reranking (Adiwardana
et al., 2020; Shao et al., 2017), adding control signals (Zhang et al., 2018; Xing et al., 2017),
and self-adaptive truncation (Welleck et al., 2020; Peters et al., 2019a). None of these decoding
algorithms consider integrating knowledge in the generation process. Reflective decoding (West et al.,
2021) and DeLorean (Qin et al., 2020) are two recent decoding algorithms that focus on abductive
commonsense reasoning. Reflective decoding in particular has the potential to be extended to other
knowledge-intensive tasks. We compare it with KID in our experiments.

3 KNOWLEDGE INFUSED DECODING

We detail the implementation of KID in this section. As shown in Figure 1, KID comprises of three
steps: retrieving relevant knowledge (§3.1), constructing external and local knowledge memory
(§3.2), and guiding current step decoding under the constraint of the knowledge trie (§3.3).

3.1 RETRIEVING EXTENSIVE KNOWLEDGE FROM WIKIPEDIA

The first step of KID is to retrieve several context-relevant documents to ground the following
generation. We use DPR (Karpukhin et al., 2020) as our general-purpose knowledge retriever, which
projects contexts and relevant documents to a 768-dim shared embedding space using a bi-encoder
network (i.e., two independent BERTs (Devlin et al., 2019)). Here, the documents refer to the 100-
word chunks of Wikipedia passages released by RAG (Lewis et al., 2020b), a total of 21M documents
as our knowledge source Z. We pre-load the weights from the latest checkpoint of DPR (March
2021), as it improves retrieval performance by using mined negative samples and contrastive learning,
which is also suggested by Jernite (2020). During retrieval, we perform a maximum inner-product
search (MIPS) with faiss2 accelerated by GPU (Johnson et al., 2019). Formally, we retrieve k most
relevant document z[1,...,k] ∈ Z for context xcontext as:

z[1,...,k] = {zi ∈ Z∣topk {BERT(xcontext)⊤ ⋅ BERT(zi)}} (1)

where BERT(⋅) means the vectors encoded by BERT. The number of retrieved documents k is a
task-specific hyper-parameter—we discuss its impact on performance in §4.3.

3.2 CONSTRUCTING EXTERNAL AND LOCAL KNOWLEDGE MEMORIES

We convert multi-document input retrieved from previous step into compressed knowledge memories,
in order to 1) allow relevant knowledge to be easily identified, 2) reduce the memory footprint of the
knowledge, whose size grows linearly with the number of retrieved documents.

Following design choice of previous successful methods (Bosselut et al., 2021; Huang et al., 2020; Fan
et al., 2019a), we adopt co-reference resolution and open information extraction (OpenIE) (Stanovsky
et al., 2018) to convert plain text into triplet form3. For example, knowledge statement like “Iceland
is a Nordic island country in the North Atlantic Ocean and it is the most sparsely populated country
in Europe.” will be converted to subject-relation-object triplets such as ⟨subj:Iceland, rel:is,
obj:Nordic island country⟩, ⟨subj:Iceland, rel:is, obj:most sparsely populated country in Europe⟩,
etc. To account for overlapping elements from these triplets, we use a prefix tree (namely Knowledge
Trie Gext) to store and organize the extracted triplets, by setting the subject in each triplet as the key
in the Gext. Note that unlike common character-level dictionary tries (Chen et al., 2020; Germann
et al., 2009), in Gext each triplet is stored in token unit as our goal is to efficiently query and traverse
the knowledge triplets stored in it.

A tree structure encoding knowledge is appealing to knowledge intensive NLG tasks, since 1) the
non-cyclic structure helps reduce repetitions in generations, and 2) querying a prefix tree can be
efficiently completed in constant time (O(∣xcontext∣)) which does not involve any costly traversal
on the graph (Ji et al., 2020; Zhang et al., 2020a), regardless of the scale of grounding knowledge
(normally ∣xcontext∣ ≪ ∣k Wiki docs∣). We also maintain a local memory Gloc (a first-in-first-out list)

2The faiss project can be found here: https://github.com/facebookresearch/faiss.
3As an empirical trick we also remove the stop words in the documents as they seldom carry knowledge.
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Figure 1: Overview of our KID decoding algorithm. For a given context xcontext, we first retrieve k
most relevant Wikipedia documents z[1,...,k] with a knowledge retriever (Step 1), and then convert
them into compressed knowledge trie Gext (Step 2). Meanwhile, the local memory Gloc which is a
first-in-first-out list will keep track of entities in current context, and in the final step (Step 3), it will
continuously query the knowledge trie with max number of hops hmax. Current step LM decoding
will be guided by the query results with policy gradient, to generate new token yi.

that records all the mentioned entities in current context, to focus on concept-centric knowledge (Zhou
et al., 2021; Lin et al., 2020b). More details about how we construct and query these knowledge
memories can be found in §A.2 of Appendix.

3.3 KNOWLEDGE TRIE CONSTRAINED DECODING VIA POLICY GRADIENT

Background. Current generative LMs are trained to maximize the probability of generating ground-
truth tokens at each decoding step. Assuming y

∗
1∶T = {y∗1 , y∗2 , ..., y∗T } is the ground-truth output

sequence for a given context xcontext, the MLE objective minimizes the following loss:

JMLE = −
T

∑
i=1

log p(y∗t ∣y∗1 , ..., y∗t−1, xcontext) . (2)

In knowledge-intensive NLG tasks, however, it is reported that the MLE training goal does not
explicitly model knowledge, and thus the LM often produces counterfactual generation by surface-
level misguidance (Zhou et al., 2021; Petroni et al., 2019). Furthermore, the teacher-forcing algorithm
used by MLE training leads to the exposure bias problem (Ranzato et al., 2016), as the LM has access
to ground truth sequence up to the next token during training, but does not have such signal during
testing, which causes accumulated errors when generating longer sequence (Paulus et al., 2018). Both
problems heavily limit the performance of popular LMs on diverse knowledge-intensive NLG tasks.
One remedy is to learn a generation policy that not only maximizes knowledge correctness but also
alleviates exposure bias in longer generation, which can be made possible with policy gradient in
reinforcement learning (RL).

Knowledge Trie Constrained Decoding. To formulate NLG as a RL problem, we define the state
as the generated tokens before t (i.e., st = y<t), and the action as the current step output token (i.e.,
at = yt). The softmax output of the language modeling head, i.e., a categorical distribution pt over
the entire vocabulary, is considered as the policy πt for picking token yt (action at) given the state
st = y<t (Guo et al., 2021; Liu et al., 2020). Note that pt (i.e., πt) could be from either a pre-trained
LM or a LM fine-tuned with task data. While conventional sampling decoding and beam search pick
next token directly from pt, here we look to inject knowledge to adjust pt to guide decoding.

For current input context xcontext at step t, we first take its concept mentions in local memory
{c1, c2, ..., cm} ⊂ Gloc, and then query the knowledge trie Gext with these concepts by max hops of
hmax. The union of queried results of all hops Vi = {vi1, vi2, ..., vin} for i = 1, .., hmax then serve as
knowledge demonstrations for current step generation. To put probability mass on tokens aligning
with these demonstrations, we compute the t-th step knowledge gain rt as the total log probability of
all retrieved tokens from Gext under decoding policy πt as rt = ∑hmax

i=1 ∑v∈Vi
I[v]⊤ ⋅ log πt, where

I[⋅] is the indicator function that will output an one-hot vector with a 1 in the coordinate of token v
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in the vocabulary and 0’s elsewhere. With rt, we define the t-th step reward JRL,t on trajectories τ
induced by πt as:

JRL,t = Eτ∼πt
(π

∗
t (at∣st)
πt(at∣st)

⋅ rt) − βKL(πt∣∣π∗
t ) , (3)

where π∗
t is the desired policy (a vector initialized from πt) to produce tokens approaching knowledge

demonstrations, and the KL penalty term KL(πt∣∣π∗
t ) is to avoid the updated policy drifts too much

away from the original one, also known as trust region constraint (Schulman et al., 2017; 2015). Note
that we use off-policy sampling to collect trajectories, with an importance weight π∗

t /πt to calibrate
the knowledge gain rt, which can stabilize the optimization (Munos et al., 2016).

Algorithm 1: Trie-Constrained Policy Gradient
for t = 1, 2, . . . do

Collect samples (at∣st) by vanilla policy πt;
Compute reward JRL,t by Eq. (3);
Compute updated policy
π
∗
t ← argmaxπ∗

t
JRL,t by taking K steps of

SGD (via Adam);
if KL(πt∣∣π∗

t ) ≥ 2σ then
βt+1 = 2βt;

else if KL(πt∣∣π∗
t ) ≤ σ/2 then

βt+1 = βt/2;
end
Generate token yt with updated policy π

∗
t ;

end

Algorithm 1 shows how we obtain the
updated policy through policy gradient.
We set β dynamically to control the KL
penalty within the reward function. The
target divergence σ tunes the strength of
knowledge infusion—smaller σ means
less infusion while larger σ provides
more space for policy gradient (We set
σ to 0.02 across all tasks). To generate
the actual token for step t, we pick from
the updated policy π

∗
t with sampling de-

coding. The token should conform to
the knowledge demonstrations, since its
corresponding hidden states have shifted
towards V due to policy gradient. We
empirically choose K = 3 for good per-
formance in most cases.

Prior approaches have also explored to set sequence-level metrics such as BLEU (Papineni et al.,
2002) as the reward to directly optimize the generation quality (Li et al., 2016; Paulus et al., 2018).
However, many studies report such sparse reward will cause low efficiency optimization (i.e., Jt = 0,
∀t < T ) (Guo et al., 2021). Our trie-constrained policy gradient method seemingly mitigates this
problem by using an immediate reward (Jθ

∗

RL) at each step with reasonable approximation. Recent
off-line RL for NLG work show promising results when using data itself (rather than metrics) to
estimate rewards (Pang & He, 2021; Jaques et al., 2020)—our design of knowledge trie echoes their
findings. The gold data distribution memorized in trie is treated as guidance to reshape each step
probability distribution, and thus brings benefits on alleviating exposure bias during long generation.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

We consider three diverse types of knowledge-intensive tasks for evaluation (statistics see §A.1):

Abstractive Question Answering. We study Abstractive QA, which requires the model to generate
free-form answers to the questions. We choose long-form QA task ELI5 (Fan et al., 2019b) and
MSMARCO NLG task v2.1 (Nguyen et al., 2016) as two commonsense QA tasks whose questions
can be mostly answered by referring to Wikipedia passages. We also use two extra QA tasks
PIQA (Bisk et al., 2020) and PubMedQA (Jin et al., 2019) whose questions require domain-

specific knowledge to answer (i.e., physical interaction knowledge for PIQA, and medical knowledge
for PubMedQA). We calculate BLEU-1 and ROUGE-L scores to be able to compare directly with
related work (Lewis et al., 2020b; Krishna et al., 2021).

Logic-centric Writing. We also investigate whether KID can benefit NLG tasks that do not have
an explicit query form for certain knowledge (i.e., with specific questions, like QA tasks). We
study ROC story ending generation (Mostafazadeh et al., 2016), which requires generating a
legitimate ending given a four-sentence context, and αNLG (Bhagavatula et al., 2020) which
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Table 1: Benchmark results on six diverse knowledge-intensive tasks. Compared with beam search
(Beam) and sampling decoding (Sample), KID decoding improves the generation quality in general
(by at most 15%). For each LM, we report their performance in zero-shot setting (*), and that of
being fine-tuned (FT). We color ( ) those results of KID that achieve > 5% improvement over
the next-best performance. We also annotate the performance reported by published state-of-the-art
models to date (- means missing official reports).

ELI5 MSMARCO ROC αNLG WoW MuTual

Existing Method B-1 R-L B-1 R-L B-1 R-L B-1 R-L F-1 R-L MRRG R-L

GPT2-M [345M]* 14.6 16.1 28.8 30.1 12.0 13.9 13.2 15.0 9.3 10.8 29.7 7.1
- FT + Beam 22.9 24.6 44.1 50.6 26.4 20.6 19.4 25.7 10.3 12.1 47.9 11.3
- FT + Sampling 23.8 25.4 46.2 51.2 26.0 20.0 18.9 25.1 12.6 11.9 51.6 20.3
- FT + KID 27.9 26.6 47.4 53.9 28.1 21.2 21.7 26.9 16.4 15.9 53.3 22.4
BART-L [406M]* 21.4 20.6 19.1 19.7 12.5 16.7 24.6 28.0 8.1 8.5 35.1 12.9
- FT + Beam 25.6 24.7 44.5 50.5 22.3 20.2 31.9 34.1 10.9 11.9 49.2 20.6
- FT + Sampling 25.8 25.1 48.4 53.5 24.4 20.9 30.5 33.6 12.2 15.0 53.7 20.4
- FT + KID 27.4 26.3 51.9 56.9 26.5 21.3 33.4 35.6 15.7 16.6 54.5 22.7

Published SotA◊ - 26.2 - 57.2 26.3 20.8 - 45.0 13.5 15.5 - -

requires generating reasonable hypothesis given two observations. We follow related work (Zhou
et al., 2021; Guan et al., 2020) in using BLEU-1 and ROUGE-L as evaluation metrics.

Dialogue Generation. Chitchat dialogues are normally multi-turn discussions over a variety of topics
or concepts, which often involve topical and factual knowledge (Petroni et al., 2021). We study two
dialogue datasets that require knowledge grounding: Wizard of Wikipedia (WoW) (Dinan et al.,
2019), where the speaker in the conversation must ground their utterances in Wikipedia passages, and
MuTual (Cui et al., 2020), where utterances have to be a logically-coherent continuation of the given

multi-turn context. We follow existing work and the leaderboard of WoW in using F-1/ROUGE-L for
WoW and MRR/ROUGE-L for MuTual evaluations.

We take two representative language models to demonstrate the effectiveness of KID: 1) GPT2-
medium (Radford et al., 2019) which is an auto-regressive LM, and 2) BART-large (Lewis et al.,
2020a) which is a text-to-text LM. We tune the hyperparameters based on the models’ performance
on an in-house split dev set, and report the results that were best on the official dev set4.

4.2 MAIN RESULTS ON DECODING PERFORMANCE

Comparison with off-the-shelf decoding methods. Table 1 compares the results of GPT2-medium
and BART-large on six diverse NLG tasks with beam search (Beam), sampling (Sampling), and our
proposed KID decoding algorithm. Compared with the other two commonly used decoding algo-
rithms, knowledge-guided KID achieves better results for all the cases, with significant improvements
(with p-value p < 0.01) over the next-best decoding strategy (e.g., 4.1 absolute increase for BLEU-1
in ELI5 (GPT2)). We also notice that KID brings greater improvements to auto-regressive language
models – above 5% improvement in 9 out of 12 metrics for GPT2-medium, in contrast to 5 out of
12 for text2text language model (BART-large). The reason could be that the reinforcement learning
objective of KID is more similar to the MLE objective of GPT2 than the denoising objective of
BART (Pang & He, 2021; Guo et al., 2021). Compared with task-specific state-of-the-art models5,
task-agnostic LMs armed with KID can beat SOTA results on three different tasks (ELI5, ROC,
WoW), which is not possible when beam search and sampling decoding is used. This interesting
observation demonstrates a huge potential in inference-time optimization, which we believe is worth
exploring further.

4For sampling decoding, we run experiments with all combinations of top-p (p ∈ [0, 0.1, ..., 1]) and top-k
(k ∈ [0, 10, ..., 100]), while for beam search, we sweep the number of beams from 1 to 10. With the updated
decoding policy, KID uses sampling decoding (with similar search to get optimum p and k) to pick actual tokens.

5Published SotA models to date (October 2021): ELI5 (RAG; 2020b), MSMARCO (RAG; 2020b),
ROC(Knowledge-enhanced GPT2; 2020), αNLG (T5; 2019), WoW (BART+DPR; 2021), and MuTual (Human
Performance; 2020). The information mainly comes from corresponding leaderboards.
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Table 2: Performance of six related works on Wiki-answerable ELI5 and MSMARCO, and out-of-
domain PIQA and PubMedQA QA tasks. We report ROUGE-L score with 10% and 100% of the
training data. As a model-agnostic method, KID shows particularly strong performance in few-shot
scenarios, which can better help LMs transfer to new domain with minimum training data.

ELI5 MSMARCO PIQA PubMedQA

Method / Available FT Data 10% 100% 10% 100% 10% 100% 10% 100%

GPT2 + Knowledge (KG Triplets Post-train; 2020) 9.3 15.7 22.3 42.1 7.5 16.2 3.6 8.4

GPT2 + COMeT Emb. (KG Embedding Fuse; 2020) 13.4 17.3 30.3 44.6 6.4 16.5 4.5 5.8

RAG (Wiki Retrieval Augmented; 2020b) 5.7 21.4 25.4 57.2 3.2 17.3 1.2 6.7

FiD-T5 (Two-step Retrieval + Seq2Seq; 2021b) 3.9 18.1 23.7 53.1 4.5 17.4 1.3 4.5

QA-GNN (GNN + Attention; 2021) 6.2 19.5 21.3 50.5 6.3 19.1 7.8 11.7
ReFlective (Forward + Backward LMs; 2021) 8.7 18.2 23.5 44.7 5.9 16.7 4.1 9.2

Ours: KID (with GPT2-medium) 15.2 26.6 32.3 53.9 10.5 18.4 9.9 11.5

Comparison with existing knowledge-infusion methods. Besides evaluating KID from a pure
decoding perspective, we also compare KID with existing methods of integrating knowledge for
knowledge-intensive NLG tasks. In addition to ELI5 and MSMARCO, we also evaluate on two
extra QA tasks: PIQA and PubMedQA (discussed in §4.1), where answers are considered to be
not fully covered by Wiki knowledge. Besides RAG (Lewis et al., 2020b), we consider several
competitive prior methods incorporating knowledge including a) GPT2 + Knowledge (Guan et al.,
2020), which post-trains GPT2 on triplets-converted augmentation data (e.g., ⟨helium, is, gas⟩ →

“helium is gas.”); b) GPT2 + COMeT Embeddings, which fuses knowledge-aware embeddings (e.g.,
from CoMET (Bosselut et al., 2019); c) FiD-T5 (Izacard & Grave, 2021b;a), which concatenates
retrieved grounding documents with context as new input; d) QA-GNN (Yasunaga et al., 2021),
which traverses a graph neural network; e) Reflective decoding (West et al., 2021), which relies on
forward and backward LMs to encode bi-directional context for generation.

As shown in Table 2 (columns with 100% training data), KID outperforms all other methods in
ELI5 (with 5.2 ROUGE-L points improvements over the second-best method (RAG)), and achieves
competitive results requiring neither specific model architecture nor additional training to infuse
knowledge. We also evaluate on a few-shot setting, where only 10% of task training data is available
to mimic domains for which ample training data is unavailable or difficult to acquire in practice. This
setting also tests a method’s ability to transfer to new domain and to generalize to unseen entities,
concepts or events. Also shown in Table 2, KID with a LM similar in size to the baselines (GPT2-
medium) achieves best few-shot performance in all four tasks, including PIQA and PubMedQA. Our
experiments find baseline methods tend to generate off-topic and hallucinatory answers when the
expected answer length is long (e.g., ELI5 and PIQA). RAG shows limited performance in few-shot
scenarios, due to its static knowledge retrieved by initial context cannot be generalized to newly
generated tokens. KID, instead, dynamically searches references for grounding, thus showing more
agility in unfamiliar context. Comparison with more baselines can be found in §A.3 of Appendix.

4.3 ABLATION STUDIES FOR THE BEST PERFORMING KID

How to choose retriever? We experiment with replacing the default DPR document retriever of
KID, with popular retrievers including the TF-IDF retriever from DrQA (Chen et al., 2017), and
the Wiki retriever used in BLINK (Wu et al., 2020). We also experiment with a random retriever
baseline that retrieves documents randomly given the context. We choose two tasks ELI5 and WoW
that provide ground-truth knowledge provenance, which are also the only two KILT tasks requiring
long and abstractive generation (Petroni et al., 2021). Following KILT benchmarking metrics, we
use precision@1 (Prec@1) to measure the top-1 retrieval accuracy, and ROUGE-L (R-L) to evaluate
generation quality. We also consider directly measuring how much knowledge in the ground-truth
evidence (provenance) appear in the actual generation. We compute knowledge Coverage (Cov)
(used in Guan et al. (2020)) which is the 1-gram overlap between the triplets of provenance and the
generation, to measure the extent to which our generation is actually using the retrieved knowledge.
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Figure 2: Impact of hyperparameters on KID’s ELI5 performance when (a) more documents are
retrieved, and (b) more hops taken when querying the knowledge trie. (c) Average human ratings on
different-length sequences generated by KID, sampling, beam search, and reflective decoding. KID
generation has more stable quality across lengths by restraining exposure bias.

Table 3 shows the corresponding results. For reference, RAG obtains nearly equivalent performance
(R-L and Cov) with random retriever and the DPRFT6, which indicates its generation mainly relies
on the fine-tuned BART and ignores retrieved knowledge (also observed in Krishna et al. (2021)).
In contrast, KID with the default DPR retriever outperforms all other retrievers and RAG variants
in retrieval accuracy (Prec@1), knowledge coverage (Cov) and final generation quality (R-L). We
observe high correlation between (Cov, R-L) and Prec@1, indicating that a good knowledge retrieval
is essential for knowledge-intensive NLG tasks.

Table 3: A closer comparison of BART-L with KID and
RAG (Lewis et al., 2020b) which also leverages retrieved
Wikipedia passages as knowledge. We switch between differ-
ent retrievers to study its impact on retrieval accuracy (Prec@1),
generation quality (R-L), and knowledge coverage (Cov).

ELI5 WoW

Prec@1 R-L Cov Prec@1 R-L Cov

RAG w/. Random 3.4 21.3 2.62 15.6 10.4 9.12
RAG w/. DPRFT 16.7 21.4 2.68 26.3 11.8 11.8

KID w/. Random 3.4 16.5 1.34 15.6 9.5 7.79
KID w/. TF-IDF 11.0 20.9 3.88 41.9 15.4 12.8
KID w/. BLINK 8.9 21.5 2.87 24.3 10.0 8.31
KID w/. DPR (default) 17.3 26.3 4.39 45.5 16.6 15.7

Table 4: The performance (R-L) on
ELI5 of LMs with different sizes
(similar architecture). Vanilla LMs
(*) benefit more with KID than the
fine-tuned ones (FT). (The absolute
gain over the next-best is annotated.)

ELI5

Model Beam Sample KID

GPT2-M* 16.0 16.1 20.2▲4.1

GPT2-MFT 24.6 25.4 26.6▲1.2

GPT3-1.3B* 21.7 22.0 24.5▲2.5

GPT3-1.3BFT 24.9 25.5 26.6▲1.1

GPT3-2.7B* 22.8 24.6 26.7▲2.1

How much knowledge do we need? We also study the impact of number of documents (k) we
retrieve and number of hops (hmax) we use to query the knowledge trie, two factors that determine
how much knowledge we use to ground the generation. As shown in Figure 2 (a) and (b), for the
example task ELI5, we find the generation performance measured by ROUGE-L does not benefit from
simply more retrieved documents—an optimum k is 5 through empirical observation, and similarly,
hmax = 4 brings best performance. A larger k might risk retrieving less relevant Wiki documents
and a larger hop hmax with deeper traverse through the knowledge trie tends to bring in off-topic
knowledge. We also plot the average time consumed for generating each sentence as reference (the
second y-axis in Figure 2 (a) and (b)), which demonstrate the best performing k = 5 and hmax = 4
achieve a reasonable trade-off between generation quality and decoding speed.

In Figure 2 (c), we quantify the exposure bias problem through human judgements. We first sample
200 ELI5 test set questions and generate answers of various lengths {80, 100, ..., 260} (260 is the
average sequence length in training set) with beam search, sampling, reflective (West et al., 2021),
and KID. We then ask humans to rate these generations with 7-point Likert scoring (Joshi et al., 2015)
how likely the generated text is a natural sentence. Each generation receives at least 15 ratings. We
observe that both beam search and sampling methods suffer from the exposure bias problem7, since

6RAG fine-tunes the query encoder of DPR with BART, which differs the off-the-shelf DPR used in KID.
7We use beam size 5 for beam search, and top p = 0.9 and k = 20 for sampling decoding, as they yield best

ROUGE-L score during automatic evaluation.
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Table 5: Human assessments of generation in terms of Relevance, Factuality, and Grammaticality
on a 7-point Likert scale. We run paired sample t-test comparing human references (Gold) with
beam search (BM) with beam size 5, sampling (SP) with top p = 0.9 and k = 20, reflective (RFLC)
decoding, and our KID generation. p value describes the significance of difference from Gold. (*
corresponds to p-value< 0.05 and ** to 0.01.)

ELI5 aNLG WoW

Gold BM SP RFLC KID Gold BM SP RFLC KID Gold BM SP RFLC KID

Relevance Mean 5.14 4.51 4.97 4.73 5.07 5.42 5.22 5.10 5.27 5.36 4.62 4.68 4.44 4.35 4.57
p-value - .00** .10 .03* .30 - .14 .02* .17 .23 - .12 .10 .06 .30

Factuality Mean 4.95 4.37 4.61 4.23 4.87 5.35 5.17 5.19 5.25 5.30 4.72 4.20 4.38 4.41 4.53
p-value - .14 .00** .00** .24 - .05 .06 .30 .41 - .00** .06* .15 .29

Fluency Mean 5.66 5.52 5.54 5.07. 5.50 5.40 5.23 5.34 4.97 5.27 4.53 4.48 4.40 4.14 4.33
p-value - .09 .11 .02* .07 - .15 .20 .04* .16 - .18 .10 .05 .08

their ratings deteriorate as the length grows. Reflective decoding exhibits similar trend since it stills
relies on MLE training. KID, instead, dynamically infuses global knowledge with LM predictions at
each step and thus can mitigate exposure bias by imitating non-local demonstrations.

Does the size of LM matter? We run experiments with different sizes of LMs that have the similar
architecture (GPT2-medium, and GPT3 with 1.3B, and 2.7B parameters8). Table 4 shows that overall
larger LMs benefits all decoding methods with KID consistently outperforming Beam search and
sampling decoding. In addition, KID brings more gain for non-finetuned LMs than fine-tuned ones,
potentially because the fine-tuning LM is already fit onto the new domain thus less knowledge
infusion is needed. Interestingly with KID, vanilla GPT3-2.7B outperforms its 1.3B fine-tuned
counterpart, which is especially meaningful since ever-large foundation models (Bommasani et al.,
2021) are expensive to fine-tune effectively on common hardware settings (Liu et al., 2021).

4.4 HUMAN EVALUATION

We recruited 300 MTurk participants to manually examine generated outputs of several decoding
algorithm in terms of relevance, factuality, and fluency. Each participant was asked to review five
sample generations without revealing their source. We used paired samples t-tests to examine the
difference between human references and other decoding methods generation. As Table 5 shows,
KID generates similar quality sequences as human references without significant differences across
all three tasks, while in ELI5, beam search and reflective decoding generation are rated significantly
low in both relevance and factuality, partially due to exposure bias in longer generation. There is
no significant difference in grammaticality between KID and vanilla decoding methods. The exact
questions we asked participants can be found in §A.5 of Appendix.

5 CONCLUSIONS AND FUTURE WORK

In this work, we proposed KID, a novel decoding algorithm which in each step of decoding dy-
namically fetches knowledge and guides token decoding via interaction between a local knowledge
memory and a constructed external knowledge trie. Given its decoding nature, KID doesn’t require
architecture changes to existing LMs and is applicable to various generative LMs. Evaluations on
eight knowledge-intensive NLG tasks demonstrated the effectiveness of KID and that its generations
are aligned with human references well. In addition, KID is also found to alleviate exposure bias and
maintain quality for long generations.

Future work of KID could study more efficient data structures to accelerate knowledge fetching and
integration. One could also investigate combining KID with prompt based generations to further
boost the performance, especially in the few-shot settings. Another direction is to further study the
integration of KID with full size foundation models, like GPT-3 175B to understand KID’s potential.

8We adopt the public implementation of GPT3—GPT-Neo (github.com/EleutherAI/gpt-neo).
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ETHICS AND REPRODUCIBILITY STATEMENT

The goal of KID is to provide a general-purpose knowledge infusing decoding algorithm by leveraging
retrieved Wikipedia documents. Still, the generation of KID can be affected by certain biases
from the LM it is based on though those biases may be partially mitigated by the knowledge
demonstrations (Liu et al., 2022; Rae et al., 2021). Another major ethical consideration is that
KID can mimic undesirable attributes of the target knowledge source documents that could be non-
contemporary and do not represent current norms and practices—and KID has no scheme to diagnose
these problems (Lewis et al., 2020b). Furthermore, our experiments and analysis are done in English,
and therefore we do not claim that our findings will generalize across all languages, although our
framework has potential to be extended to other languages with necessary modifications.

For reproducibility, evaluations of KID and baseline methods are all conducted on public NLG data
sets. We compare results from published papers and public leaderboards. Code and scripts for
reproducing KID is available on GitHub at https://github.com/microsoft/KID.
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A APPENDIX

A.1 DATASETS STATISTICS

We chose eight knowledge intensive NLG tasks to evaluate KID. Here we present the dataset statistics
of these tasks in Table A1. The links to these datasets can be found in §4.1.

Table A1: The dataset statistics of the eight knowledge-intensive NLG tasks we evaluate for KID.
Split ELI5 MSMARCO PIQA PubMedQA ROC αNLG WoW MuTual

Train 272,764 153,725 16,115 800 52,665 50,481 63,734 7,088
Dev 1,507 12,467 1,838 100 1,571 7,252 3,054 886
Test 600 12,467 3,000 100 4,081 14,313 2,944 886

A.2 DETAILS ON KNOWLEDGE TRIE CONSTRUCTION AND QUERY

A.2.1 KNOWLEDGE TRIE CONSTRUCTION

In this section, we detail the process of constructing the knowledge trie and how we query for the
knowledge in a dynamic fashion. In Figure A1 (a), for a given question (say from the ELI5 dataset),
the DPR retriever (Karpukhin et al., 2020) would retrieve k documents (the effect of choosing
different k on performance has been discussed in §4.3; we use k = 3 here for simplicity) from 21M
100-token Wiki documents as the grounding passages for the question. We then use co-reference
resolution to replace the pronouns with their referents (colored in red), normalize the text (e.g.,
removing links, lower-casing, etc.), and pass them through the OpenIE (Stanovsky et al., 2018) to
obtain knowledge triplets (the use of OpenIE can be also seen in related prior work (Trisedya et al.,
2019; Wu et al., 2019; Fan et al., 2019a)). The end nodes of the extracted triplets (i.e., the subj and
obj) serve as the key-value pairs when they are stored in the external knowledge trie (Gext), and the
relations between nodes are translated to the edges. We use the stems of the tokens as the keys in
Gext (e.g., “driving” → “drive”), in order to compress duplicated nodes in a concept-centric manner.

During knowledge trie construction, besides the one-step key-value pairs from the triplets, we also
consider multiple-step relations by looking for key mentions in the values of previous keys (e.g.,
value: “influence of drugs” → next-hop key: “drug”). Such iterative procedure will end when there
are no more keys appearing in the values. Specifically, we use depth-first search (DFS) to record the
maximum depth of the child branch for each key node, and also memorize the corresponding values
(and its next-hop key) on the branch to facilitate further query.

A.2.2 DYNAMIC QUERYING FOR KNOWLEDGE

Since retrieving knowledge from millions of documents is slow (even with GPU acceleration), the
knowledge trie described above is constructed off-line. We pre-compute and store this knowledge trie
on the disk, and build the local knowledge memory on the fly. The local knowledge memory is simply
a First-in-First-out (FIFO) list which continuously stores newly generated entities (Gloc; initialized
with entities in the input question), whose length will be limited by wmax (we set wmax = hmax
empirically, where hmax is the max query hops). In Figure A1 (b) we show a query example with
the query word “driving” in the local memory. The query word is firstly converted to its stem (i.e.,
“drive”), and then its demonstrations are retrieved with the key “drive”.

We show the whole generation loop of KID in Algorithm 2. At each step of the decoding, we first
collect knowledge demonstrations by querying Gext with each entity in Gloc as key. The collected
demonstrations (a list of tokens) will then serve as target word space to guide current step generation
(has been detailed in §3.3). The local knowledge memory is updated only when a new entity is
generated. This is because the non-entity words (such as stop words, digits, etc.) a) are rarely the keys
in the Gext (which are subj in OpenIE triplets), and b) rarely lead to meaningful next-step constraints
(it’s hard to answer what’s a proper continuation of “the”).

Since the external knowledge trie is constructed off-line, the query time mainly depends on the number
of query words in the local knowledge memory (with max length wmax), and the maximum number of
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in some studies to have a negative effect on driving ability. The British Medical Journal indicated
that "drivers who consume cannabis within three hours of driving are nearly twice as likely to
cause a vehicle collision as those (who) drivers are not under the influence of drugs or alcohol".
In "Cannabis and driving: a review of the literature and commentary", the United Kingdom's
Department for Transport reviewed data on cannabis and driving, finding "Cannabis impairs
driving behaviour. However, this impairment is mediated in that subjects under cannabis
treatment appear to perceive that they are indeed impaired. Where they can compensate, they

alcohol concentration is performed using three methods – blood, breath, or urine. For law
enforcement purposes, breath is the preferred method, since results are available almost
instantaneously. Drug testing screens are typically performed in scientific laboratories so that
the results will be admissible in evidence at trial. Due to the overwhelming number of impairing
substances that are not alcohol, drugs are classified into different categories for detection purposes.
Drug impaired drivers still show impairment during the battery of standardized field sobriety tests,
but there are additional tests to help detect drug impaired driving. The Drug Evaluation and
Classification program is

for life. Driving under the influence of drugs “to an extent as to be incapable of having proper
control” is illegal. The Police may require suspects to undergo an objective (at the police station)
Impairment Test. Suspects who fail the test shall surrender (their) suspects who fail the test driving
licence for 24 hours. Regarding common drugs, the Road Safety Council reminds drivers to check
the side effects before driving. The law prohibits driving with any concentration of illicit drugs:
heroin, cocaine, ketamine, methamphetamine, cannabis and MDMA . Drug–impaired driving
Drug–impaired driving, in the context of its legal definition, is the act of driving a

drive drug

cannabis

vehicle collision

influence of drugs

testing screens

impaired drivers impair

driving behaviour

subjects under cannabis

(a)

(b)

Paragraph 1

ID: 20644819

Paragraph 2

ID: 16441766

Paragraph 3

ID: 16441788

ELI5 Question: Does marijuana impair driving ability? marijuana, driving, ability

marijuana, driving, ability, ... cannabis, vehicle, collision, influence, drugs,
impaired, drivers, testing, screens, driving, ...

Figure A1: A sample of KID’s retrieved documents for the ELI5 question “Does marijuana impair
driving ability?” and its corresponding knowledge trie. (a) The top three relevant documents retrieved
by DPR. We annotate the triplets end nodes (subj and obj) picked by OpenIE for knowledge trie
construction in green. (b) The partially observed knowledge trie when we query “driving” in the
current local knowledge memory (blue) by wmax hops. We perform co-reference resolution to replace
pronouns with actual entities in the documents, and use the stems of the tokens as the query words
and keys in the external knowledge trie. The retrieved demonstrations (values in the trie; purple) in
multiple hops will then serve as guidance for current step decoding, after split into single tokens.

hops we query the external knowledge trie (hmax) with, which is approximately wmax ∗ hmax in total.
We claim this is actually constant time complexity because hmax and wmax are fixed hyper-parameters
(normally 1-5, as discussed §4.3) and it will not scale up with sequence length or the number of
grounding documents retrieved.

A.3 MORE COMPARISON WITH IMPROVED DECODING ALGORITHMS

Besides the baselines we compare in the paper, there are other inference-time decoding methods
that focus on improving generation quality in different perspectives, such as diversity (Baheti et al.,
2018), and attributes controlling (Dathathri et al., 2020), and entity appearance (Mao et al., 2020)9.

9We cannot find its official implementation, and thus we do not include it in the following comparison.
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Algorithm 2: The Generation Loop of KID
Input: constructed knowledge trie Gext, local knowledge memory Gloc, input context q, max

query hop hmax, max sequence length L.
Output: generated tokens {x1, x2, ..., xt}.

Gloc ← entities in q;

while current sequence length < L do
Knowledge demonstrations D ← [];

for each entity e in Gloc do
Query Gext with e by hmax hops to collect demonstrations, and store in D.

Use D to guide current step decoding by Algorithm 1, and generate token xt.

if xt is entity then
Append xt to Gloc, and slim Gloc by window size wmax.

return {x1, x2, ..., xt}

We also notice some methods that are training-time optimization, such as CTRL (Keskar et al.,
2019), which requires re-training language models conditioned on a set of static control words,
and fusion-in-decoder (FiD) (Izacard & Grave, 2021b;a), which concatenates additional retrieved
grounding sentences with input text, and fine-tunes text2text language models (e.g., T5 (Roberts et al.,
2020)). KID differs from all these methods, since 1) KID aims to improve knowledge awareness
during decoding, though we also find KID could mitigate exposure bias, and 2) KID can function as
a standalone module requiring neither specific model architecture nor re-training or fine-tuning the
language model (as shown in §4.3, the experiments with vanilla GPT3-2.7B). In the following part, we
compare KID with all above methods except CTRL since it requires costly language model retraining
on each new domain and how to pick control words for dynamic knowledge seems ambiguous. We
also prepare a naive version of KID (Little KID) which uses plain list instead of graph structure (the
knowledge trie) to store knowledge, where we directly use all the end nodes of extracted triplets
from the documents as constraints without any dynamic query. We run experiments on QA tasks
as FiD was trained on, and discuss their differences on performance, deployment, and efficiency
(time/space).

A.3.1 PERFORMANCE ON KNOWLEDGE AWARENESS

In Table A2 we present the comparison results about performance on knowledge awareness. Not
surprisingly, FiD is the strongest baseline among others, as it also explicitly leverages retrieved
documents to ground its generation. Compared with KID, we find the performance of FiD is
relatively limited when the NLG tasks requires longer and creative generation. For example, ELI5,
whose average reference length is around 220 tokens, and FiD tends to generate generic and repeated
sequence after about 80 tokens from our observation, potentially because though FiD fuses knowledge
during training, there is no scheme to guarantee the knowledge parameterized in the model can be
expressed during inference. Diverse Decoding, and PPLM show mediocre performance in these tasks
because no knowledge-aware object was considered, but relatively well on longer generation tasks
(e.g., ELI5), which seems to demonstrate the advantage of inference-time optimization methods (as
KID). Little KID is not able to dynamically query knowledge when new context is generated, and
thus performs not as good as KID, especially in longer generation (e.g., ELI5).

A.3.2 COMPARISON OF TIME AND SPACE CONSUMPTION

The time and space cost of running KID could be a matter of concern especially when we consider
real-world applications. In Table A3, we compare the time complexity of KID with other baselines,
including vanilla beam search and sampling decoding. We provide a breakdown for different stages:
retrieving knowledge (retrieving), training the generative model (training), and the actual generation
(inference). Beam search and sampling decoding only have noticeable cost when there is sorting
process filtering the candidate tokens (common in beam search and top-p or top-k sampling), which
will often bring O(k log k) cost (O(1) when pure random sampling without any sorting). Diverse
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Table A2: Compare KID with additional baselines. Note that only FiD (Izacard & Grave, 2021b;a)
is explicitly optimized for knowledge awareness. Diverse Decoding (Baheti et al., 2018) aims to
improve generation diversity by constraining decoding distribution with topic and semantic similarity.
PPLM (Dathathri et al., 2020) uses a static set of tokens as global constraints to do conditional
generation. KID differs from all these methods as its knowledge awareness and dynamic nature.
Little KID is a naive implementation of KID that uses plain list instead of trie to store knowledge.

ELI5 MSMARCO PIQA PubMedQA

Method B-1 R-L B-1 R-L B-1 R-L B-1 R-L

FiD-T5 (base) 15.3 11.3 45.3 47.3 12.9 11.9 4.0 4.4
FiD-T5 (large) 15.7 18.1 51.9 53.1 14.8 17.4 4.0 4.5
Diverse Decoding 4.6 15.7 27.5 22.9 11.3 15.5 3.5 3.8
PPLM 11.9 15.0 23.4 26.6 10.3 11.9 3.8 4.2
Little KID (ref.) 12.1 14.3 40.2 46.3 12.2 13.5 5.2 6.6
Ours: KIDGPT2 27.9 26.6 47.4 53.9 17.7 18.4 9.7 11.5

Decoding, PPLM, and KID are similar as all are inference-time optimization (not necessarily need
model fine-tuning, denoted as “LM FT / –”), but KID requires additional off-line knowledge trie
construction (nearly the same time cost as RAG and FiD). During inference, KID takes constant
time for query (as discussed in §A.2.2), and several iterations policy gradient (by constant number of
steps) to guide the generation. We also analyze the space cost of KID and other baselines (Table A4).
The difference between KID and RAG / FiD is the external and local knowledge memory, which is
relatively small (normally < 10Mb) from our observation. Other decoding methods do not have the
ability to infuse knowledge, and thus do not bring additional space cost.

Table A3: Time complexity analysis of KID and other baselines. We study the time consumption
during knowledge retrieving, model training, and inference (i.e., generation). KID has comparable
time efficiency as RAG and FiD, but outperforms them in knowledge infusing (discussed in the §4.2).
Note that KID can function as a standalone module operating only at inference time, rather than rely
on a specific model fine-tuning or pre-training together (such as RAG and FiD).
Method / Time Retrieving Training Inference
Beam Search – – O(k log k), k = # of beams
Sampling – – O(1) or O(k log k), k = top-k
RAG O(#docs), #docs ≈ 10 LM FT ≥ O(1)
FiD-T5 (base) O(#docs), #docs ≈ 100 LM FT ≥ O(1)
FiD-T5 (large) O(#docs), #docs ≈ 100 LM FT ≥ O(1)
Diverse Decoding – LM FT / – Two Neural Models Prediction + O(1)
PPLM – LM FT / – O(#control words ∗ step)
Ours: KID O(#docs) + DFS, #docs ≈ 5 LM FT / – O(h2

max) ≈ O(1)

A.4 SAMPLE GENERATIONS

We list several generation samples of KID and RAG. In general, the generated texts of both methods
are highly readable; however, we find RAG’s generation tends to off-topic and not coherent with
current on-going concepts flow when the generation is long (e.g., ELI5, “smoking inside the vehicle”),
or the context is multi-fold and complicated (e.g., multi-turn dialogue WoW, “do some exercise”)—
these are legit continuation if we only consider immediate context. KID is superior especially in
longer generation, which seems to echo our findings that KID can mitigate exposure bias.

We show some generation samples of KID and RAG in Table A5.

A.5 ACTUAL QUESTIONS WE ASK HUMAN ANNOTATORS

We asked participants about: 1) Relevance (i.e., “What’s the relevance level between the generated
text and the given context?” Answer is from 1-totally not relevant to 7-totally relevant), 2) Factuality
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Table A4: Memory footprint of KID and other baselines. Similar to RAG and FiD, KID requires
pre-store the grounding documents on disk (and corresponding dense vectors). In addition, KID
builds a knowledge trie off-line (less than 10Mb for all the tasks we studied), and a local knowledge
memory (a limited length FIFO list), to enable knowledge infusion during generation.

Method / Space External Resources / Model Knowledge?
Beam Search – %

Sampling – %

RAG 13.4G Docs + 64.6G Index / BART !

FiD-T5 (base) 13.4G Docs + 64.6G Index / T5 !

FiD-T5 (large) 13.4G Docs + 64.6G Index / T5 !

Diverse Decoding Two Models 2.8G in Total / LM %

PPLM BoW or Classifier / LM %

Ours: KID 13.4G Docs + 64.6G Index + Gloc + Gext / LM !

Table A5: Sample generation of KID and RAG on ELI5 (QA), ROC (Logic-centric Writing), and
WoW (Dialogue) with fine-tuned language models.

ELI5

Question Does marijuana impair driving ability?

RAG

Marijuana does impair your ability to drive, but you can avoid this
by not being asleep together in class together and using a napkin for balance..
One way to avoid discomfort would be smoking inside the vehicle.
That being said, smoking in public can do the same thing as smoking outside.

KID

Marijuana does impair your ability to drive because cannabis is a depressant drug,
which means it slows reaction times and information processing.
A person who has been using cannabis is more likely to cause a vehicle collision,
but may still think that they can drive safely.

ROC

Context

Keith lived in an area that had occasional earthquakes.
But he thought keeping an first aid kit was unnecessary.
The next day, he cut his hand while cutting food.
And he had to drive himself to a hospital.

RAG Keith quickly became worried and sad.

KID Keith eventually learned first Aid at a clinic instead of building his own kit.

WoW

Utterance

f : would you like some tea or coffee ?
m : no thank you . it ’s very late now , that will keep me awake the whole night .
f : then what about some water ?
m : yes , please .
f : do n’t work too late since you were not in good health .
you should be careful with your health .

RAG m : thank you. i would sleep earlier and do some exercise in the morning

KID m : thank you for your concern. could i have some water please .

(i.e., “What’s the factuality level of the generated text?” Answer is from 1-totally not factual to
7-very well factual), and 3) Grammaticality (i.e., “How much the text is similar to human-generated
text?” Answer is from 1-not similar at all to 7-very much similar).
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