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ABSTRACT

Face identity provides a remarkably powerful signal for deepfake detection. Prior
studies have shown that even when not explicitly modeled, deepfake classifiers
tend to implicitly learn identity features during training. This has led to two
conflicting viewpoints in the literature: some works attempt to completely sup-
press identity cues to mitigate bias, while others rely on them exclusively as a
strong forensic signal. To reconcile these opposing stances, we conduct a de-
tailed empirical analysis based on two central hypotheses: (1) whether face iden-
tity alone is inherently discriminative for detecting deepfakes, and (2) whether
such identity features generalize poorly across manipulation methods. Through
extensive experimentation, we confirm that face identity is indeed a highly in-
formative signal—but its utility is context-dependent. While some manipulation
methods preserve identity-consistent artifacts, others distort identity cues in ways
that can harm generalization. These findings suggest that identity features should
not be suppressed or relied upon blindly. Instead, they should be explicitly mod-
eled and adaptively controlled based on their per-sample relevance. To this end,
we propose SELFI (SELective Fusion of Identity), a generalizable deepfake de-
tection framework that dynamically modulates identity usage. SELFI consists of:
(1) a Forgery-Aware Identity Adapter (FAIA) that explicitly extracts face iden-
tity embeddings from a frozen face recognition model and projects them into a
forgery-relevant space using auxiliary supervision, and (2) an Identity-Aware Fu-
sion Module (IAFM) that selectively integrates identity and visual features via a
relevance-guided fusion mechanism. Extensive experiments on four benchmark
datasets demonstrate that SELFI achieves strong generalization across manipu-
lation methods and datasets, outperforming prior state-of-the-art methods by an
average of 3.1% frame-level AUC in cross-dataset evaluations. Notably, on the
challenging DFDC benchmark, SELFI improves over the previous best by a sig-
nificant 6% margin, highlighting the effectiveness of adaptive identity control.
The code will be released upon acceptance of the paper.

1 INTRODUCTION

Recent advances in deepfake generation [Kowalski| (2018)); Thies et al.| (2016); [L1i et al.| (2019);
FaceSwapDevs|(2019) have raised serious concerns about the authenticity of visual media, driving a
surge in research on robust and generalizable detection methods|Yan et al.[(2024;2023a); Dong et al.
(2022); |Cheng et al.| (2024bza). While many existing detectors perform well on seen manipulation
types, they often struggle to generalize to unseen forgeries—a critical limitation for real-world de-
ployment|Afchar et al.|(2018)); Li & Lyu|(2018));|Yang et al.|(2019); |Qian et al.| (2020). One possible
explanation for this generalization gap lies in the treatment of face identity during training. Dong et
al. Dong et al.|(2023)) attribute poor generalization to implicit bias caused by face identity: because
identity is such a strong discriminative signal, models tend to rely on it unconsciously, leading to
overfitting to identity-specific patterns in the training data. In contrast, Huang et al. Huang et al.
(2023) argue that face identity itself is a powerful forensic cue, and that explicitly leveraging iden-
tity embeddings during training enhances robustness. These two opposing views—treating identity
as a harmful bias versus a beneficial signal—highlight the need for a deeper understanding of how
face identity influences detection performance across manipulation types.
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Figure 1: Overview of the proposed SELFI framework. Traditional deepfake detectors implicitly
rely on identity cues without control, risking overfitting and poor generalization across manipulation
types. In contrast, SELFI explicitly incorporates face identity features through a Forgery-Aware
Identity Adapter (FAIA) and adaptively fuses them with visual features using an Identity-Aware
Fusion Module (IAFM). This enables the model to leverage identity information when helpful and
suppress it when harmful, resulting in more robust and generalizable deepfake detection.

To address this, we conduct an in-depth analysis guided by two core hypotheses. First, we examine
whether face identity alone can meaningfully support deepfake detection. Specifically, we extract
identity embeddings from a pretrained face recognition model (IResNet100|Deng et al.|(2019)) that
has never seen manipulated data, and train a lightweight classifier on top. Despite the absence of
visual content and deepfake-specific supervision, we observe strong classification performance, con-
firming that face identity is inherently discriminative for this task. Second, we investigate whether
such identity features generalize across manipulation methods, or if they encode method-specific
patterns that hinder transferability. Using the FaceForensics++ |Rossler et al.|(2019) dataset, we per-
form a cross-manipulation experiment where models trained on one type of forgery are tested on
the others. This reveals three distinct identity behavior categories: (1) transferable identity cues,
observed in manipulations like DeepFakes |[FaceSwapDevs| (2019) and FaceSwap |[Kowalski (2018},
where identity information remains relatively intact and generalizes well; (2) method-specific iden-
tity artifacts, found in Face2Face [Thies et al.|(2016), where identity features are entangled with
generation-specific artifacts and do not transfer; and (3) ineffective identity cues, as in NeuralTex-
tures [Thies et al.| (2019), where identity features remain ambiguous, offering limited discriminative
value for detection. These observations collectively indicate that the utility of identity features is
highly context-dependent, and thus demand a more flexible, selective integration mechanism. In
particular, while face identity is undeniably a powerful signal that should not be disregarded, allow-
ing the model to implicitly absorb it without control can lead to generalization issues, especially
when identity cues interact differently across manipulation methods.

These observations collectively indicate that the utility of identity features is highly context-
dependent, and thus demand a more flexible, selective integration mechanism. In particular, while
face identity is undeniably a powerful signal that should not be disregarded, allowing the model to
implicitly absorb it without control can lead to generalization issues, especially when identity cues
interact differently across manipulation methods. To explicitly address the challenges highlighted
by this analysis regarding the context-dependent nature of identity cues and the necessity for selec-
tive integration, we design a solution that enables explicit and context-aware identity control. We
propose SELFI (SELective Fusion of Identity), a novel framework that dynamically combines face
identity features and backbone features to produce highly discriminative yet generalizable represen-
tations by adaptively leveraging identity based on its estimated relevance. SELFI consists of two
core modules: (1) the Forgery-Aware Identity Adapter (FAIA), which projects identity embeddings
extracted from a frozen face recognition model into a forgery-relevant representation space using a
learnable transformation matrix. This projection is guided by an auxiliary supervision signal, the
Forgery-Aware Guidance Loss, which encourages the projected features to be discriminative for
real-vs-fake classification even without visual cues, thereby making the identity information more
pertinent to the detection task. (2) the Identity-Aware Fusion Module (IAFM), which adaptively
integrates identity and visual features. IAFM includes a Relevance Predictor, a lightweight neural
network that estimates the importance of identity cues for each input, and a Soft Fusion Operator
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that combines the two feature types via a weighted sum based on the predicted relevance score. This
design allows SELFI to amplify identity information when it provides genuine forensic signals, and
to downweight it when it risks introducing manipulation-specific bias, directly implementing the
selective integration mechanism identified as necessary. The resulting fused feature representation
jointly captures content and identity cues in a task-adaptive manner, enabling robust and general-
izable deepfake detection. Fig. [I]illustrates the overall comparison between traditional approaches
and our SELFI framework under different identity relevance scenarios.

* We conduct a quantitative analysis using a pretrained face recognition model, showing that
identity features alone can distinguish real from fake content, and further identify three
behavioral patterns across manipulation types: transferable, method-specific identity cues,
and ineffective.

* Motivated by this observation, we propose SELFI, a framework that explicitly separates
identity features from visual content and adaptively fuses them through two modules:
FAIA, which projects identity embeddings into a forgery-discriminative space, and IAFM,
which dynamically adjusts their contribution based on per-sample relevance.

» Extensive experiments demonstrate that SELFI outperforms existing methods in both in-
domain and cross-domain settings. Specifically, SELFI achieves an average improvement
of 3.1% in frame-level AUC across four cross-dataset benchmarks (CDFv2, DFD, DFDC,
DFDCP), and surpasses the previous best on DFDC by a significant 6.0% margin.

2 RELATED WORKS

Deepfake Detection and Generalization. Early deepfake detection approaches primarily target vi-
sual artifacts introduced by manipulation techniques, such as blending boundaries |Li et al.| (2020al),
inconsistent textures Wang & Chow| (2023), and abnormal frequency patterns |Gu et al.| (2022a);
Liu et al.| (2021); [Luo et al|(2021); Wang et al.| (2023a)). While these methods achieve promising
performance on seen manipulation types, they often struggle to generalize to unseen forgeries or
datasets due to their reliance on spurious and non-transferable cues. To enhance generalization, var-
ious strategies emerge. Frequency-domain methods aim to capture spectral inconsistencies between
real and fake content|Qian et al.[(2020); [Durall et al.| (2020); |Luo et al.[(2021); |Wang et al.|(2023a);
Li et al.| (2024), while spatiotemporal modeling approaches leverage temporal dynamics and cross-
modal signals to detect subtle manipulation traces |Wang et al.[ (2023b); Xu et al.| (2023); |Gu et al.
(2022b)). Other studies employ latent space augmentation |Yan et al.| (2024)); (Chot et al.| (2024) or
self-blending techniques [Shiohara & Yamasakil (2022)); [L1 et al.| (2020a)) to diversify training data,
and disentangle task-relevant features using representation separation Yan et al.|(2023a)); Yang et al.
(2023) or progressive regularization |[Cheng et al.| (2024b). Nevertheless, most of these methods
focus predominantly on low-level visual cues, overlooking face identity—a semantically rich and
manipulation-sensitive signal that remains underexplored despite its potential to offer deeper in-
sights into forgery characteristics.

Face Identity in Deepfake Detection. Several studies explore the role of facial identity in deep-
fake detection, revealing two contrasting perspectives. One line of research actively leverages face
identity as a strong semantic cue to improve detection robustness. For instance, Dong et al. Dong
et al| (2022) propose ICT, an identity consistency transformer that measures coherence between
inner and outer face regions, while Huang et al. Huang et al.| (2023) introduce IID, which defines
implicit identity to detect face swapping by contrasting it with explicit identity embeddings. These
methods demonstrate that explicitly modeling identity cues reveals forgery-specific inconsistencies.
However, overreliance on face identity may cause models to overlook important visual cues, lim-
iting their ability to capture manipulation artifacts beyond identity mismatches. In contrast, other
works identify facial identity as a source of bias that harms generalization across datasets. Dong et
al. Dong et al.|(2023)) show in IIL that binary classifiers unintentionally learn identity boundaries,
leading to implicit identity leakage and overfitting. Similarly, Kim et al. Kim et al.| (2024)) propose
FRIDAY, which suppresses facial identity embeddings during training by encouraging the detector
to diverge from a frozen face recognizer, thereby improving cross-domain robustness.

Motivated by these opposing findings, we aim to reconcile the contrasting views on face identity by
conducting a systematic analysis grounded in two key hypotheses: (1) whether identity embeddings
alone carry sufficient forensic information to detect manipulations, and (2) whether such features
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Figure 2: Preliminary Analysis of Identity-Only Detection. (a) Training loss and accuracy curves
for identity-only detection using a frozen face recognition model (IResNet100) on FF++, DFD, and
CelebDFv2. The results show consistent decreases in loss and increases in accuracy, indicating that
face identity alone provides strong discriminative power for real-vs-fake classification. (b) Cross-
manipulation AUC heatmap, where rows indicate training forgery types and columns indicate test
types. The results reveal that identity features are transferable for some manipulations (DF and FS),
but highly method-specific (F2F) or ineffective for others (NT), highlighting the need for explicit
identity control.

generalize reliably across different forgery methods. Our empirical findings reveal that face identity
is indeed a highly discriminative signal, but its utility varies significantly depending on the manipu-
lation context.

3 PRELIMINARY ANALYSIS

3.1 THE POWER OF FACE IDENTITY IN DEEPFAKE DETECTION

Hypothesis 1. Face identity itself serves as a highly discriminative signal for deepfake detection,
even without explicit modeling of forgery artifacts.

While face identity has long been considered an important cue for deepfake detection—albeit often
implicitly—recent studies have expressed conflicting views on its role [Dong et al.| (2023)); Huang
et al.[ (2023)); [Kim et al.| (2024); [Dong et al.| (2022). Some suggest that identity is a reliable signal
for detecting manipulations, while others argue that reliance on identity introduces undesirable bias
that hinders generalization. Motivated by this controversy, we aim to explicitly evaluate whether
face identity alone carries sufficient forensic information to support deepfake detection.

To this end, we formulate Hypothesis 1 and conduct an experiment using identity embeddings ex-
tracted from a pretrained face recognition model that has never been exposed to deepfake data.
Specifically, we adopt IResNet100 Deng et al.[|(2019), a widely used and well-established identity
representation model, and freeze all of its parameters. We then train only a lightweight classifier
head on top of the identity embeddings to assess whether face identity alone can support deepfake
classification. Detailed experimental settings, architectural illustration, and analysis of the training
outcomes beyond loss or accuracy curves are provided in Sec.[A.2]

We conduct training and evaluation on three widely-used deepfake detection benchmarks: Face-
Forensics++Rossler et al.| (2019), Celeb-DF v2|Li et al.|(2020b), and DeepFakeDetection Al (2019).
As shown in Fig. 2| (a), the classification loss consistently decreases and the accuracy steadily in-
creases across all datasets, even with the backbone completely frozen. These result provide strong
evidence that face identity contains inherently discriminative signals for real-vs-fake classification,
and can serve as a standalone foundation for deepfake detection models. We next investigate whether
the identity features captured in this setting remain robust across different manipulation types, or if
they instead encode method-specific biases that compromise generalization.
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3.2 THE GENERALIZATION RISK OF IDENTITY-SPECIFIC FEATURES

Hypothesis 2. Different deepfake generation methods manipulate face identity in distinct ways.
Therefore, over-reliance on identity cues that work well for specific methods may hinder general-
ization to unseen manipulations.

To test this hypothesis, we conduct a cross-manipulation experiment using the FaceForensics++
dataset Rossler et al.| (2019), which includes four representative manipulation types: Deep-
Fakes [FaceSwapDevs| (2019)), FaceSwap [Kowalski| (2018)), Face2Face Thies et al.| (2016)), and Neu-
ralTextures [Thies et al.| (2019). For each method, we train a classifier using identity embeddings
extracted from a frozen IResNet100 model, and evaluate both in-domain and cross-domain perfor-
mance. For example, a model trained on DeepFakes is tested not only on DeepFakes but also on the
other three types.

The results, illustrated in Fig. 2] (b), reveal three distinct identity behavior patterns: (1) Transferable
identity cues, as seen in DeepFakes and FaceSwap, where identity information is well preserved
and generalizes effectively across methods (e.g., 84.6% — 74.5%); (2) Method-specific identity
artifacts, as in Face2Face, where in-domain performance is high (82.6%) but generalization is poor
(e.g., 52.3% on DeepFakes), indicating overfitting to generation-specific patterns; and (3) Ineffective
identity cues, as in NeuralTextures, which produces weak or distorted identity features, leading to
both low in-domain (60.8%) and cross-domain (e.g., 53.5%) performance.

These findings demonstrate that the effectiveness of identity features is highly dependent on the
manipulation method. Some techniques preserve identity in a way that supports generalization,
while others entangle identity with artifacts or suppress it entirely. Consequently, uniformly relying
on identity cues can harm generalization when such cues encode method-specific biases.

We argue that a more robust strategy is to explicitly separate identity from visual content and adap-
tively regulate its use based on context. This insight directly motivates the design of our proposed
framework, SELFI, which selectively integrates identity features according to their per-sample rel-
evance.

4 PROPOSED METHOD

Motivated by the observations in Sec. [3| we introduce SELFI (SELective Fusion of Identity), a
framework designed for generalizable deepfake detection by adaptively fusing identity and visual
cues. As illustrated in Fig. 3] SELFI incorporates a Forgery-Aware Identity Adapter (FAIA) to
transform identity embeddings into a forgery-relevant space and an Identity-Aware Fusion Module
(IAFM) to dynamically integrate these with visual features based on estimated relevance. This
adaptive fusion strategy allows SELFI to leverage reliable identity signals while suppressing biases,
thereby enhancing generalization across diverse manipulation types, with detailed module designs
presented in the following subsections.

4.1 FORGERY-AWARE IDENTITY ADAPTER (FAIA)

The goal of FAIA is to extract face identity information from an input image and transform it into a
representation that is more suitable for deepfake detection. While identity features from pretrained
face recognition models are optimized for verifying who appears in an image, our preliminary anal-
ysis reveals that they can already serve as a surprisingly strong signal for deepfake detection. How-
ever, these embeddings are not specifically tailored for capturing forgery-related artifacts. To better
align identity features with manipulation cues, FAIA learns to project them into a forgery-aware
space where their utility for classification is maximized.

FAIA operates in two main stages. First, we extract a face identity embedding from the input image
using a frozen face recognition model &ig:

fu = &a(x), (D

where x is the input image and £,y € R is the identity embedding. Here, D;q denotes the output
dimensionality of the face recognition model. In our study, we use IResNet100 |Deng et al.| (2019),
for which Djy = 512.
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Figure 3: Architecture of the proposed SELFI framework. SELFI consists of two main modules:
(1) the Forgery-Aware Identity Adapter (FAIA), which projects frozen identity embeddings into a
forgery-relevant space using a trainable transformation and auxiliary supervision (Sec. #.I); and (2)
the Identity-Aware Fusion Module IAFM), which adaptively fuses identity and visual features based
on a predicted relevance score (Sec. {.2). By explicitly modeling and controlling identity usage,
SELFI enables robust and generalizable deepfake detection across diverse manipulation types.

Sigmoid
Bx1

Next, we project this identity embedding into the backbone feature space using a trainable weight
matrix Wy € RPwevoneXDid where Dpaexbone denotes the feature dimensionality of the visual back-
bone. In our implementation, we use CLIP Radford et al.| (2021) as the backbone, for which
Dyackbone = 768 (see Sec. @ for the rationale behind choosing trainable weight matrix instead
of MLP):

fi = Wafiq. ()

To guide the transformation W to produce identity features that are discriminative for forgery detec-
tion, we introduce an auxiliary supervision called the Forgery-Aware Guidance Loss. Specifically,
we attach a lightweight binary classifier Cy,, to the projected feature f; and train it using the standard
CrossEntropy loss:

Efag = CE(Cfag(fﬁ)a y>7 (3)
where y € {0, 1} indicates whether the input is real or fake.

This auxiliary supervision encourages Wy to produce forgery-aware identity embeddings that are
semantically aligned with manipulation cues. The resulting projected feature f; € RPrcivore i then
fused with visual features in the Identity-Aware Fusion Module (IAFM).

4.2 IDENTITY-AWARE FUSION MODULE (IAFM)

While forgery-aware identity features can be informative, they are not equally useful across all sam-
ples or manipulation types. Over-reliance on identity cues in irrelevant contexts may even hurt gen-
eralization. To address this, IAFM adaptively integrates identity and visual features by estimating
the relevance of identity information for each input.

Given the projected identity feature fz € RPwcoone from FAIA and the visual feature fy;; € RDPbackbone
extracted from the visual encoder (CLIP [Radford et al.| (2021)), we first concatenate the two and
feed them into a lightweight relevance predictor (see Sec. [A.7] for the rationale behind choosing
concatenation):

pP= R([fvis§ fﬁ])7 €]

where R (-) denotes a small feedforward network that outputs a scalar relevance score p € [0, 1] via
a sigmoid activation. In our implementation, R (-) consists of two linear layers with ReLU activation
in between, followed by a sigmoid at the end:

R(-) = Sigmoid(Lineary(ReLU(Linear;(+)))).
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Table 1: Frame-level AUC Performance. All models are trained on FF++ c23|Rossler et al.|(2019).
The best and second-best results are highlighted in bold and underlined, respectively. Reported
scores for prior methods are taken from DeepfakeBench |Yan et al.|(2023b)) and their original publi-
cations |Cheng et al.| (2024b); Yan et al.| (2024)); Kashiani et al.| (2025). A dash (=) indicates that the
corresponding result is not available in the original papers.

Method | Publication | FF++ CDFv2 DFD DFDC DFDCP C-Avg.
Xception |Chollet|(2017) CVPR’17 0.964 0.737  0.816  0.708 0.737 0.750
Meso4 |Atchar et al.|(2018) WIFS’18 0.608 0.609  0.548 0.556 0.599 0.578
FWA|L1 & Lyu|(2018) CVPRW’18 | 0.877 0.668 0.740 0.613 0.638 0.665
EfficientB4|Tan & Le|(2019) ICML’ 19 0.957 0.749 0.815 0.696 0.728 0.747
Capsule|Nguyen et al.|(2019) ICASSP’19 | 0.842 0.747  0.684 0.647 0.657 0.684
X-ray |Li et al.|(2020a) CVPR’20 0.959 0.679  0.766  0.633 0.694 0.693
F3Net|Qian et al.|(2020) ECCV’20 0.964 0.735 0.798 0.702 0.765 0.750
SPSL|Liu et al.|(2021) CVPR’21 0.961 0.765 0.812  0.704 0.741 0.756
SRM |Luo et al.|(2021) CVPR’21 0.958 0.755 0.812  0.700 0.741 0.752
CORE|Ni et al.|(2022) CVPRW’22 | 0.964 0.743  0.802 0.705 0.734 0.746
Recce|Cao et al.|(2022) CVPR’22 0.962 0.732 0.812 0.713 0.742 0.750
UCF|Yan et al.|(2023a) ICCVv’23 0.971 0.753  0.807 0.719 0.759 0.760
OPR |Cheng et al.|(2024b) NerulPS°24 | 0.959 0.845 - 0.724 0.812 -
LSDA [Yan et al.|(2024) CVPR’24 - 0.830 0.880 0.736 0.815 0.815
FreqDebias |Kashiani et al.|(2025) CVPR’25 0.975 0.836  0.868 0.741 0.824 0.817
SELFI (Ours) ‘ ‘ 0.980 0.839 0907 0.796 0.840 0.846

We then compute the final fused representation as a weighted combination of the identity and visual
features:

ffused =p- fﬁ + (]- - P) : fvis~ (5)

This soft fusion strategy enables the model to conditionally emphasize identity or visual cues de-
pending on their relevance to the input, improving both flexibility and generalization. Finally, the
fused feature ff,5q is passed to the final classification head C.s to produce the prediction:

y = Ccls(ffused)a (6)
where § € [0, 1] represents the probability of the input being a fake.

4.3 OVERALL LOSS FUNCTION

We jointly optimize two objectives: the main classification loss based on the fused representation
and an auxiliary guidance loss applied to the projected identity features. The overall loss is defined
as:

Lol = - Legs + B Efaga (7N
where L is the standard CrossEntropy loss on the final prediction from Cg, and Ly, supervises
the identity projection via Cg,,. We use a = 1.0 and 3 = 1.0 in all experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. We train our models on the FaceForensics++ (FF++) dataset Rossler et al. (2019),
using the ¢23 (lightly compressed) version comprising four manipulation types: DeepFakes
(DF) |[FaceSwapDevs| (2019), Face2Face (F2F) [Thies et al.| (2016), FaceSwap (FS) [Kowalski| (2018)),
and NeuralTextures (NT). To evaluate cross-dataset generalization, we test on four disjoint datasets:
Celeb-DF v2 (CDFv2) [Li et al.| (2020b), DeepfakeDetection (DFD) |All (2019), the Deepfake De-
tection Challenge (DFDC) and its preview version (DFDCP) Kagglel These benchmarks differ
in content, manipulation methods, and post-processing, providing a comprehensive generalization
testbed.

5.2 OVERALL PERFORMANCE ON COMPREHENSIVE DATASETS

We follow the DeepfakeBench |Yan et al| (2023b) framework, with detailed settings provided in
Appendix [A.T]
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Figure 4: Robustness to Unseen Perturbations. We report video-level AUC (%) across five degra-
dation levels for five types of perturbations|Jiang et al.| (2020).

Table 2: Ablation study of SELFI modules Table 3: Cross-dataset AUC of SELFI with
with CLIP backbone. FAIA-only denotes sim-  different backbones. SELFI consistently im-
ple feature concatenation without adaptive fu-  proves generalization across all architectures.

sion. (see Sec. [E]for details)

Backbones \ CDFv2 DFD DFDCP Avg
Modules | CLIP CLIP ‘0.795 0.830 0793  0.806

FAIA Ly, IAFM | CDFv2 DFD DFDCP Avg +SELFI 0.839 0907 0.840 0.862

X 0.795 0830 0793 0.806 ResNet34 ‘ 0.739 0.810 0.690  0.746

X 0.804 0.887 0.844  0.845
y 0819 0899 0830 0.849 +SELFI 0.762 0.822 0.731  0.772
v

0.839 0.907 0.840 0.862 EfficientB4 0.747 0.823 0.685 0.751
+SELFI 0.755 0.812  0.733  0.767

NS %
N X% X %

Frame-level Generalization Performance. As shown in Tab. [I| we evaluate our model by training
on FF++ and testing both in-domain (FF++) and cross-domain (CDFv2, DFD, DFDC, DFDCP)
datasets. Our method achieves superior performance in the in-domain setting compared to all
existing approaches. In the more challenging cross-domain scenario, our model outperforms all
prior methods on every dataset except for CDFv2, where it ranks second. Notably, compared to
LSDA |Yan et al.| (2024)—one of the most recent and competitive state-of-the-art detectors—our ap-
proach achieves an average improvement of 3.5% frame-level AUC across the cross-domain bench-
marks, highlighting its strong generalization capability. A comparison with video-level deepfake
detectors is provided in Sec.

Robustness to Unseen Perturbations. To evaluate the robustness of our method against unseen
perturbations, we conducted experiments using five types of perturbations introduced in Deeper-
Forensics [Jiang et al.| (2020) and compared our approach with three recent state-of-the-art deepfake
detection models: OPR [Cheng et al.|(2024b), LSDA |Yan et al| (2024), and SBI [Shiohara & Ya-
masaki| (2022). As shown in Figure @ our method consistently achieves competitive or superior
video-level AUC scores across all perturbation types and degradation levels, showing a particularly
large margin under Gaussian Blur, which severely degrades high-frequency forgery cues. Moreover,
when averaged across all perturbation types and levels, our method outperforms existing models,
demonstrating its stronger generalization ability to previously unseen corruptions. While baseline
models exhibit substantial performance degradation as the perturbation level increases, our method
maintains relatively stable performance, highlighting its robustness to distribution shifts caused by
unseen perturbations.

5.3 ABLATION STUDY

Module-Wise Contribution Analysis. To verify the contribution of each component within SELFI,
we perform a step-by-step ablation using CLIP as the backbone (Tab. [2). Incorporating only the
Forgery-Aware Identity Adapter (FAIA), where identity features are projected and simply concate-
nated with backbone features before classification, improves average AUC by 3.9% over the base-
line. This suggests that even unmodulated identity features can serve as useful cues when aligned
with visual content. The detailed architecture of this configuration is described in Sec. Introduc-
ing the Identity-Aware Fusion Module (IAFM), which adaptively weighs the relevance of identity
information, further improves performance by 0.4%, highlighting the benefit of conditional identity
integration. Finally, when supervised with the forgery-specific guidance loss Ly, the full SELFI
framework achieves an additional 1.3% gain, validating the synergistic effect of jointly learning
forgery-aware identity representations and adaptive fusion. For additional ablation results on other
backbones, please refer to Sec.
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Table 4: Effect of auxiliary feature sources on frame-level AUC. Only identity-aware features
improve generalization, while others offer limited benefit.

Auxiliary Source ‘ Backbone ‘ FF++ CDFv2 DFD DFDC DFDCP C-Avg.
X (No Fusion) - 0979  0.795 0.830 0.810 0.793 0.807
Random Intialization ResNet101 0.542 0.544  0.513  0.552 0.581 0.548
ImageNet ResNet101 0.726  0.586  0.650 0.617 0.615 0.617
Deepfake-Trained OPR |Kashiani et al.|(2025) 0.975 0.856 0.874 0.767 0.795 0.823
Face Identity IResNet100Deng et al.|(2019) | 0.980  0.839  0.907 0.796 0.840 0.846

Effect of Auxiliary Feature Source. To verify that the performance gain of SELFI does not stem
from a simple ensemble effect but from the use of face identity features, we designed an ablation
study with four different auxiliary sources: (1) Random Initialization, representing purely uninfor-
mative features; (2) ImageNet, trained on generic object recognition tasks and not specific to faces;
(3) Deepfake-Trained, trained for forgery detection but lacking explicit identity information (we
adopted features from OPR |Kashiani et al.| (2025)); and (4) Face Identity, our proposed identity
feature extracted from a frozen face recognition model. We replaced only the frozen face recogni-
tion model in the SELFI architecture while keeping the rest of the framework fixed. As shown in
Tab. [I0] identity-aware features lead to the best generalization, boosting the cross-dataset average
AUC by 23.8% over Random, 22.9% over ImageNet, and 2.3% over Deepfake-Trained features.
These findings confirm that the fusion benefits of SELFI arise not from the ensemble size but from
the quality and relevance of the auxiliary signal. This highlights that identity semantics, rather than
mere forgery correlations, are essential for achieving robust and transferable deepfake detection.

Generalization Across Backbones. To evaluate the versatility of SELFI, we integrate it with three
different backbone architectures—CLIP, ResNet34, and EfficientNet-B4—and compare their per-
formance with and without SELFI (Tab.[3). Across all configurations, SELFI consistently improves
cross-dataset AUC: CLIP shows the largest gain with a 5.6% improvement, followed by ResNet34
with 2.6% and EfficientNet-B4 with 1.6%. These results demonstrate that SELFI is highly transfer-
able and can be seamlessly plugged into diverse feature extractors, offering consistent improvements
regardless of model capacity or architecture. This backbone-agnostic behavior underscores the prac-
tical utility of SELFI as a general-purpose deepfake detection enhancement module.

Limitations. Although SELFI adaptively fuses identity and visual features based on a learned rel-
evance score, its effectiveness may be influenced by the following factors: (1) the quality of the
extracted identity embeddings, which may be unreliable when the face is partially visible or cap-
tured from extreme angles (e.g., side profiles); and (2) when trained solely on a single manipulation
type whose face identity cues are ineffective or non-transferable (e.g., NT and F2F), SELFI may
suffer degraded cross-manipulation performance (see Sec.[A.6]for details).

Furthermore, while our work focuses on identity-related bias as a primary factor, other sources of
bias—such as background, ethnicity, or compression artifacts—have also been discussed in prior
studies|Yan et al.[(2023a)); Lin et al.|(2024)). A comprehensive analysis of these factors is beyond the
scope of this work, but presents a valuable direction for future exploration.

6 CONCLUSION

This work presents SELFI, a novel framework for generalizable deepfake detection that explic-
itly and adaptively incorporates face identity information. Through extensive analysis, we show
that identity features—when used indiscriminately—can act as both powerful cues and harmful
biases, depending on the manipulation context. Motivated by this observation, SELFI separates
identity cues from visual content and learns to fuse them based on per-sample relevance, leveraging
their benefits while mitigating overfitting. Our method consistently outperforms strong baselines
across both in-domain and cross-domain settings, and demonstrates robust performance across di-
verse backbones. Furthermore, ablation studies confirm that SELFI’s gains stem from semantically
meaningful identity information, rather than naive feature ensembling. We believe these insights
offer a principled and practical direction for enhancing the generalization ability of deepfake de-
tectors, and encourage future work to extend adaptive feature integration to other sources of bias
beyond identity.
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SUPPLEMENTARY MATERIAL

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Implementation Details for Tab. [I| All experiments follow the training configuration and prepro-
cessing procedures defined by the DeepfakeBench |Yan et al.| (2023b) framework. We use CLIP as
the backbone in our best-performing model. The input frames are resized to 224 x 224, and the
model is trained with a batch size of 64 for 10 epochs. The hyperparameters « and 3 are both set to
1. During training, we monitor the frame-level AUC on the validation set and save the model with
the highest score. All experiments are conducted using five NVIDIA Titan RTX GPUs.

A.2 DETAILS OF EXPERIMENTAL SETTING FOR SEC.[3]

Input &

> =,
"‘— », |
‘g IResNet100

Figure 5: Architecture of the identity-only detection setting. A lightweight classifier is trained on
top of frozen face identity embeddings extracted from a face recognition model, without any access
to visual content. This setup is used to investigate whether face identity alone can support deepfake
detection.

Real/Fake

ISTJISSE[D)

To investigate whether face identity alone can support deepfake detection, we design an identity-only
detection setup where no visual content is used. Specifically, we extract identity embeddings from a
pretrained face recognition model (IResNet100), which is frozen throughout training. A lightweight
classifier head is then trained on top of these embeddings to classify whether the input is real or fake.
The overall architecture is illustrated in Fig.[5] Since the output of IResNet100 is a 512-dimensional
feature vector, we append a linear classifier that maps this 512-dimensional identity representation
into a 2-class prediction space (real or fake).

We conduct cross-manipulation experiments using the FaceForensics++ dataset, focusing on four
manipulation types: Deepfake (DF), FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT).
In each setting, we train the classifier using identity features from one manipulation method and
evaluate its generalization to the remaining ones. This setup allows us to examine how well identity-
based signals transfer across manipulation types. The full results are reported in Tab. 5]
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Table 5: Cross-manipulation performance of identity-only detection. Each model is trained us-
ing identity features extracted from a frozen face recognition model, without visual content, and
evaluated across different manipulation types. Diagonal entries represent in-domain performance,
while off-diagonal entries indicate cross-manipulation generalization. Results show that some ma-
nipulations (e.g., DF, FS) retain transferable identity cues, whereas others (e.g., NT) lead to poor
generalization.

Train | NT FS F2F DF | Avg

NT 0.608 0.535 0.569 0.540 | 0.563
FS 0.509 0.846 0.565 0.745 | 0.666
F2F 0.524 0.509 0.826 0.523 | 0.595
DF 0519 0.721 0.537 0.901 | 0.670

All | 0550 0.756 0.714 0.807 | 0.707

For all experiments, we use the standard CrossEntropy loss and train the classifier with the AdamW
optimizer. The learning rate is set to 0.0002. Each model is trained for 10 epochs, and we save the
best model based on frame-level AUC on the validation set.

A.3 VIDEO-LEVEL AUC COMPARISOON

Table 6: Video-level AUC Performance. Scores for other methods are reported from Haliassos
et al.| (2022) and their respective original publications [Zhao et al.| (2023); Wang & Chow| (2023);
Zhang et al.|(2024); |Yan et al.| (2024).

Method | Publication | CDFv2 DFDC  Avg
LipForensics|Haliassos et al.|(2021) CVPR’21 0.824 0.735  0.780
FTCN|Zheng et al.|(2021) ICCVv’21 0.869 0.740  0.805
RealForensics|Haliassos et al.|(2022) CVPR’22 0.869 0.759 0.814
ISTVT Zhao et al.|(2023) TIFS’23 0.841 0.742  0.792
NoiseDF|Wang & Chow |(2023) AAAT23 0.759 0.639  0.699
NACO [Zhang et al.|(2024) ECCV’24 0.895 0.767  0.831
LSDA |Yan et al.|(2024) CVPR’24 0911 0.770  0.841
SELFI (Ours) | | 0.893 0.820 0.857

In addition to frame-level evaluations, we compare our method against recent state-of-the-art video-
level detectors, as summarized in Tab. @ Since our model operates at the frame level, we follow the
evaluation protocol commonly used in other frame-level studies, where 32 evenly sampled frames
are extracted from each video and individually classified. The final video-level prediction is then ob-
tained by averaging the frame-level outputs. While our method slightly underperforms the strongest
baseline on CDFv2, it achieves the best performance on DFDC and records the highest average
video-level AUC overall. Notably, our method surpasses NACO [Zhang et al.| (2024)—the most
recent and competitive video-level detector—by 2.6% in average AUC, despite relying solely on
frame-level information without any explicit modeling of temporal dynamics. This demonstrates
the strength of our spatial feature representation in generalizing across videos without temporal
supervision.

A.4 DETAILS OF EXPERIMENTAL SETTING FOR TAB.[2]

To analyze the contribution of each component within the SELFI framework, we perform a step-by-
step ablation study under four configurations. The first setting disables all modules (FAIA, Ly, and
IAFM), where the model is trained solely using the backbone feature. The second setting enables
only FAIA, where identity embeddings are projected and simply concatenated with visual features
before classification—without using the relevance predictor or soft fusion. In the third setting, both
FAIA and TAFM are activated, allowing conditional fusion via the relevance predictor, but without
the forgery-aware guidance loss. The final setting corresponds to the full SELFI model, which
combines all modules.

In addition to CLIP, we also evaluate the ablations on two alternative backbones—EfficientNet-B4
and ResNet34—to assess the consistency of SELFI’s modular benefits across architectures. The
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Table 7: Ablation study of SELFI framework on EfficientNetb4 and ResNet34. We incrementally
add FAIA, Lg, and IAFM to examine their contributions. Best results per backbone are bolded.

Modules \ EfficientNetb4 \ ResNet34
FAIA L IAFM ‘ CDFv2 DFD DFDCP  Avg ‘CDFVZ DFD DFDCP  Avg

X X X 0.747 0.823 0.685 0.751 | 0.739 0.810 0.690 0.746
v X X 0.737 0.851 0.689 0.759 | 0.755 0.813 0.678  0.749
4 X 4 0721 0.818 0.695 0.745 | 0.739 0.814 0.730 0.761
4 v v 0.755 0812 0.733 0.767 | 0.762 0822 0.731  0.772

results are presented in Tab.|7} showing that each module incrementally contributes to performance
improvements, and that the full SELFI configuration achieves the highest average AUC on both
backbones. Notably, adding only FAIA yields a noticeable gain over the baseline, demonstrating that
identity embeddings alone—when properly aligned—are useful for detection. Incorporating IAFM
further improves performance by adaptively weighing identity relevance. Finally, the inclusion of
the forgery-aware guidance loss Ly consistently enhances results, confirming the importance of
supervising identity transformation with task-specific signals. These trends are consistent across
both EfficientNet-B4 and ResNet34, validating SELFI’s backbone-agnostic effectiveness.

For both EfficientNet-B4 and ResNet34, we use input resolution of 256x256 and train models using
the Adam optimizer with a learning rate of 0.0002, 5; = 0.9, B2 = 0.999, and weight decay of
0.0005. All models are trained for 10 epochs, and the best model is selected based on validation
AUC. Both backbones are initialized with ImageNet pretraining.

A.5 DETAILS OF EXPERIMENTAL SETTING FOR TAB.

Table 8: Standalone performance of the Deepfake-Trained ResNet101 model used as an auxiliary
source in Tab. @} All results are reported as frame-level AUC.

Method | FF++ CDFv2 DFD DFDC DFDCP C-Avg.
ResNet101 | 0.977 0.720  0.781  0.693 0.680 0.719

All auxiliary sources used in Tab. [I0]are extracted from the same backbone architecture, ResNet101,
to ensure fair comparison. For the Face Identity extractor, we utilize a pretrained IResNet100
model, which applies Batch Normalization to its output features. To maintain consistency, we apply
Batch Normalization to the output features of all other ResNet101-based extractors before feeding
them into the IAFM module.

The Deepfake-Trained ResNet100 is trained separately using a standard deepfake classification
setup. Its standalone performance (i.e., without fusion) is reported in Tab. [§| for reference. All
auxiliary feature extractors are frozen during SELFI training and only their projected features are
used for fusion with CLIP features.

A.6 ABLATION ON CROSS-MANIPULATION COMPARISON

SELFI is specifically designed for multi- . .
manipulation real-world scenarios, where di- Table 9: Cross-manipulation frame-level AUC re-

verse generation techniques are encountered si- Sults from Kashiani et al.|(2025).
multaneously. The core philosophy of SELFI is

. . . . . Trai Method DF F2F FS NT
to explicitly disentangle the role of face identity ain | ethod ____|
. . . ) GFF|Luo et al.|(2021}) 0.999 0.769 0472 0.729
in such environments, as stated in Hypothesis DCL{Sun et al. (2022} 1000 0771 0610 0750
. Ty IID|Huang et al.|(2023) 0.995 - 0.638 -
2: DeepFakf.: (DF_) apd F aceSWap (FS) exhibit  or SFDG{Wang et al. (20232 | 0.997 0865 0753 0.6l
transferable identity information, whereas Neu- FreqDebias|Kashiani et al[{2025) | 0.998 0.881 0.759 0.885
. SELFI (Ours 1.000 0.630 0.808 0.583
ralTextures (NT) and Face2Face (F2F) contain Ours)__
. . . . . GFF|Luo et al.|(2021}) 0.892 0991 0.613 0.648
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tion and evaluated on unseen manipulations

(cross-manipulation), as the model cannot fully

leverage its adaptive identity-handling mecha-

nism. Nevertheless, SELFI demonstrates two

key strengths. First, it achieves state-of-the-

art performance in most in-domain settings,

with the exception of NT, which inherently

lacks effective identity cues. Second, in cross-

manipulation scenarios where identity informa-

tion is transferable (e.g., between DF and FS), SELFI significantly outperforms prior methods. For
example, when trained on DF and tested on FS, SELFI shows a 4.9% improvement over the previous
state-of-the-art. Similarly, when trained on FS and tested on DF, it achieves an even larger 11.9%
improvement.

In summary, SELFI excels at cross-manipulation detection when identity cues are transferable, while
its performance is relatively weaker on manipulations like NT and F2F, where identity information is
method-specific or ineffective. This observation further supports the importance of SELFI’s adaptive
framework in capturing identity semantics for robust and generalizable deepfake detection.

A.7 ABLATION ON FUSION METHODS IN RELEVANCE PREDICTOR

The Relevance Predictor is a critical sub-module within the Identity-Aware Fusion Module (IAFM)
of SELFI as provided in Sec. Its primary role is to estimate the relevance score (p), which
is then used as the weighting factor in the soft fusion process of IAFM. In our best-performing
configuration, we adopt a concatenation (Concat) strategy, where the projected identity feature (f5)
and the visual feature (fy;s) are concatenated and fed into the Relevance Predictor.

Below is a brief overview of the fusion strategies we explored. Except for Dot, all methods involve
feeding the resulting feature into a shared MLP for relevance prediction:

(1) Identity_mlp: Uses only the projected identity embedding as input to the MLP.
z=fs
(2) Visual_mlp: Uses only the visual embedding from CLIP as input to the MLP.
z = fus
(3) Dot: Computes the scalar dot product between the two embeddings and applies a sigmoid,

without an MLP.
p=0 (f nT I/ Vis)

(4) Diff: Uses the element-wise absolute difference between the two embeddings as input to the

MLP.
Z = |f fi — f vis|

(5) Product: Uses the element-wise product between the two embeddings as input to the MLP.
2= fa © fus

(6) Add: Uses the element-wise sum of the two embeddings as input to the MLP.
z= fa+ fus
(7) Concat: Concatenates both embeddings and feeds the result into the MLP.
z = Concat ( fs, fvis)

As shown in Table the Concat strategy achieves the best average performance (C-Avg = 0.846),
significantly outperforming other fusion methods. Single-source strategies such as Identity_mlp and
Visual_mlp show lower performance on cross-manipulation datasets (e.g., CDFv2, DFDCP), indi-
cating that both identity and visual information are necessary for robust generalization. The Dot
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Table 10: Comparison of Fusion Methods in Relevance Prediction. The C-Avg column denotes
the average performance across all datasets. The Concat strategy achieves the best overall perfor-
mance.

Fusion Method | FF++ CDFv2 DFD DFDC DFDCP C-Avg.

Identity only 0981 0.810 0.833 0.770 0.806 0.805
Visual only 0.983 0.760  0.805 0.760 0.737 0.763
Dot 0.819  0.586 0.626  0.629 0.582 0.606
Diff 0980 0.825 0.825 0.784 0.791 0.806
Product 0980 0.763  0.868 0.755 0.784 0.793
Add 0980  0.775 0.817 0.752 0.763 0.777
Concat 0980  0.839 0907 0.796 0.840 0.846

Table 11: Effect of Projection Depth in FAIA. The C-Avg column denotes the average performance
across all datasets. The Single Projection strategy achieves the best overall performance.

Method | FF++ CDFv2 DFD DFDC DFDCP C-Avg.
3-Layer (MLP-ReLU) 0.975 0.759 0.848 0.763 0.790 0.790
2-Layer (MLP-ReLU) 0.976 0.847 0905 0.790 0.826 0.842

1-Layer (Single Projection) | 0.980 0.839  0.907 0.796 0.840 0.846

method, which lacks an MLP and directly applies a sigmoid, performs worst overall (C-Avg =
0.606), highlighting the importance of nonlinear interactions between features. Among element-
wise operations, Diff and Product perform reasonably well but still fall short compared to Concat.
These results confirm that explicitly combining the full representations of fg and fy;s through con-
catenation provides the most discriminative input for the Relevance Predictor.

A.8 ABLATION ON IDENTITY EMBEDDING PROJECTION

In FAIA, a projection weight is utilized to transform existing face identity features to better suit the
deepfake domain. We conducted an ablation study to compare three different projection methodolo-
gies, specifically investigating the effects of using a Multi-Layer Perceptron (MLP) for projection
and observing phenomena as the layer depth increases.

Our findings, summarized in Tab. indicate that the mere use of an MLP for projection results
in a slight performance degradation. Furthermore, deeper layers lead to a more significant drop in
performance. For instance, increasing the number of layers from two to three causes approximately
a 5 percentage point decrease in performance based on the C-Avg metric.

This observation suggests that face identity features are inherently effective for deepfake detection.
A shallower projection layer, which involves less information transformation, is therefore more
beneficial. Conversely, a deeper layer leads to excessive transformation of the identity information,
resulting in performance loss. Consequently, our research adopts the Single Projection method,
which demonstrates superior performance.
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