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ABSTRACT

Boolean functions constitute a fundamental object of study in machine learning
and, more broadly, in theoretical computer science. Among their various com-
plexity measures, Fourier sparsity, defined as the number of nonzero Fourier co-
efficients in a Boolean function’s Fourier expansion, serves as a key indicator of
structural simplicity. For over three decades, learning Boolean functions with
sparse Fourier representations has been a central focus of computational learning
theory. A notable achievement in this line of work is the development of learning
algorithms whose complexity primarily depends on the Fourier sparsity parameter.
However, these approaches generally assume prior knowledge of this parameter.
In this work, we address this gap in the literature on learning Fourier-sparse
Boolean functions. Specifically, we study the problem of Fourier sparsity testing:
given query access to a Boolean function f : F — {—1,+1}, decide whether it
is s-Fourier sparse or far (under Hamming distance) from every such function.
Our contributions are twofold. On the algorithmic side, we design a new tester
with query complexity O(s*), independent of the ambient dimension. On the
lower bound side, we prove that any tester requires at least )(s) queries. Both
bounds improve upon the best known results of Gopalan et al. (SICOMP 2011),
who presented a tester with query complexity O(s'*) and a lower bound of
Q(+/s). For our upper bound, we introduce a refined notion of a sampler from the
junta testing framework of Chakraborty et al. (ICALP 2011) and combine it with
{1-minimization-based compressed sensing techniques to construct our tester. In
the process, we develop a novel method for sampling the leaves of parity deci-
sion trees associated with Fourier-sparse Boolean functions. The lower bound
is obtained via a reduction from communication complexity, crucially leveraging
structural properties of the Fourier coefficients of a specific class of cryptographi-
cally hard functions.

1 INTRODUCTION

Boolean functions are fundamental in machine learning and theoretical computer science, as they
naturally model decision rules in binary classification, logical circuits, and related computational
processes. They have been extensively studied in learning theory (Kearns & Vazirani (1994))), com-
plexity theory (O’Donnell (2014)), and cryptography (Carlet (2020)). Their structural simplicity
has enabled researchers to design efficient algorithms across many domains of computer science.
Among various structural measures, one that is particularly important in the literature on learning
theory is Fourier sparsity, which counts the number of nonzero coefficients in the Fourier expansion
over FZ. Formally, for f : Fy — {—1,+1},

f(I) = Z .}/C\(O‘) Xa(x)v Xa(x) = (71)@;&)7
acly

with Fourier support supp(f) = {a : f(«) # 0}. A function is s-Fourier sparse if |supp(f)| < s.

Because many natural classes of Boolean functions are Fourier sparse, learning such functions has
long been a central theme in computational learning theory. Notable examples include hypergraph
cut functions (Stobbe & Krause|(2012)) and bounded-depth decision trees (Mansour| (1994)). The
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study of learning Fourier sparse Boolean functions dates back to the pioneering work of |[Kushile-
vitz & Mansour (1993), itself inspired by the Goldreich-Levin algorithm from |Goldreich & Levin
(1989). Over the past two decades, there has been renewed interest in exact reconstruction of Fourier
sparse Boolean functions with complexity primarily dependent on the sparsity parameter. Two main
algorithmic paradigms for this task are based on the Sparse Hadamard Transform e.g. |Indyk et al.
(2014); Hassanieh et al.|(2012), and compressed sensing techniques e.g. Haviv & Regev|(2017). A
common limitation of both approaches, however, is the assumption that the sparsity level is known
in advance. This creates a critical gap: before applying these methods, one must first ensure that the
target function is indeed Fourier sparse.

Our work addresses this gap by developing efficient procedures for testing Fourier sparsity, thereby
providing a natural preprocessing step for learning algorithms on Boolean functions. Specifically,
we study the problem of testing Fourier sparsity of Boolean functions f : F§ — {—1,+1} under
black-box query access, where one can evaluate the function on inputs of choice without knowledge
of its internal structure.

Problem Statement: Given a parameter ¢ > 0 and black-box query access to a
Boolean function f : Fy — {—1,+1}, decide whether f is s-Fourier sparse or
e-far from every s-Fourier sparse Boolean function, where distance is measured
under the Hamming sense:

disto(g,h) = Pr [g(z) # h(x)].

z€Fy

The efficiency of a Fourier sparsity tester is measured by its query complexity, and such testers can
serve as a crucial preprocessing step for learning algorithms on Fourier-sparse Boolean functions,
such as fast sparse Hadamard transforms |Scheibler et al.| (2015)); [Hassanieh et al.| (2012)).

Related Work. A related version has been studied for real-valued functions f : F§ — R, where
distance is measured via the Euclidean norm,

dista(f, 9) = (Eo[(f(x) — g(x))])*/2.

Yaroslavtsev & Zhou| (2020) showed that testing closeness to s-Fourier sparse functions under this
metric can be done with O(s) queries and established a matching 2(1/s) lower bound.

However, one should note that while closeness in the Hamming sense implies closeness in the Eu-
clidean sense, the converse may not be true. To illustrate, consider two scenarios. In the first, an
exactly k-Fourier sparse Boolean function with precisely k£ nonzero Fourier coefficients; by Gopalan
et al.| (2011), all of these must be large in magnitude. In the second, a Boolean function with k large
Fourier coefficients but also a tail of many small, nonzero coefficients with small {5 norm. A k-
Fourier sparsity tester under the Euclidean distance would accept both types of functions, whereas
a tester under the Hamming distance should accept only the first type. This makes testing Fourier
sparsity in the Hamming sense significantly harder: one must certify not only the presence of k large
Fourier coefficients but also the absence of a Fourier tail.

The problem of testing Fourier sparsity under Hamming distance was first studied by Gopalan et al.
(2011), who gave a non-adaptive tester with query complexity O(s% log s/€% + s'4 log s) and proved
a lower bound of Q(4/s). Furthermore, as Fourier sparsity is an affine-invariant property, i.e., it
remains unchanged under affine transformations of the domain, it can in principle be tested us-
ing regularity-based frameworks e.g. [ Kaufman & Sudan| (2008)); Bhattacharyya et al.| (2015} [2013);
Hatami & Lovett| (2013); however, such approaches incur impractical tower-type query complexi-
ties.

Our Contributions. We close the gap between existing upper and lower bounds for Fourier spar-
sity testing. Our main results are:

e Upper bound: A non-adaptive algorithm with query complexity 5(34), improving over
the previous O(s'*) bound from |Gopalan et al.| (2011).

* Lower bound: A new, quadratically stronger lower bound of (s), improving over the
previous best Q(+/s) bound from |Gopalan et al.| (2011).
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More formally, we prove the following theorems.

Theorem 1.1. (Upper bound) Let s > 0, € > 0, and let f : Fy — {—1,4+1} be an unknown
Boolean function accessible via queries to its truth-table. There exists a non-adaptive property
testing algorithm that decides whether f is s-Fourier sparse or e-far (under Hamming distance)
Sfrom any such function with success probability at least 2/3, using at most O( max{s?,1/e} - 52)

querie

Theorem 1.2. (Lower bound) Any adaptive property testing algorithm that decides whether a
Boolean function is s-Fourier sparse or (1/4)-far (under Hamming distance) from every s-Fourier
sparse function, with success probability at least 23, must make at least )(s) queries.

For the upper bound (Theorem [I.1)), we design a tester that refines the notion of a sampler from
the junta testing framework (Chakraborty et al.[{(2011)) and combines it with ¢ -minimization based
compressed sensing framework. A key ingredient of our algorithm is a new sampling method for
parity decision trees, which arises naturally in the analysis of Boolean functions.

For the lower bound (Theorem [I.2), we achieve a quadratic improvement by reducing Fourier spar-
sity testing to a certain linear-algebraic problem in communication complexity. Exploiting structural
properties of the Maiorana—McFarland family (McFarland|(1973))), we show that any tester, adaptive
or non-adaptive, must make at least {2(s) queries.

Our techniques are of independent interest and have potential applications in learning theory, prop-
erty testing, and other algorithmic questions related to harmonic analysis.

2 PRELIMINARIES

We use the following notations and background results in the rest of the paper.

* By Boolean function we mean functions of the form f : F§ — {—1,+1}.
* Given f : F} — R, the expected value E, [f] is defined as By [f] := 27" >°, cpr f(2).

e For @« = (a1,...,ay) and 8 = (B1,...,0,) in FY, their inner product is (o, 5) :=
E?:l i f3;.
* For f,g : F§ — R, their inner product is (f,g) =27" Ewemg f(@)g(x).

* Given o € F%, character function x, : F§ — {—1,+1} corresponding to « is defined
as Xao(x) := (—1){*?), Note that the character functions {x, : « € F4} are orthogonal,
that is,

0 if
<XomXﬁ> = {1 ifz ig

and character functions also forms a basis for all real-valued functions on F7.

o~

* Fourier transformation of a function f : F§ — R is defined as f(a) := (f, xa)
E. [f(x)xa(z)], for all « € TFj. By, Fourier inversion formula we have f(z) =

~

Zae]pg f(a@)xa(z), for all z € FY.

* For a function f : Fy — R, Parseval’s identity says that (f, f) = Zaemg f(a)Q. Addi-
tionally, if f is also a Boolean functions then (f, f) = 1.

* For any two functions g,h : Fy — R, from Plancherel theorem we have (g,h) =
> wery G(0)h(a).

* Given Boolean functions f,g : F} — {—1,+1}, the Hamming distance (¢p-distance) is
defined as §(f, g) is 6(f,g) := % where d(f, g) := |[{z € Fy : f(x) # g(x)}].

» For A € F7'*", rank(A) denotes its rank over Fs.

"Here, O(-) hides factors polynomial in log s.
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3 IMPROVED UPPER BOUND FOR TESTING FOURIER SPARSITY

3.1 PROOF OUTLINE OF THEOREM[L.1]

The approach of employing learning algorithms for property testing, introduced by |Goldreich et al.
(1998)), is founded on the principle that any proper learning algorithm for a function class C can be
converted into a property tester for C. Nevertheless, while proper learning for most Boolean function
classes requires at least Q(logn) queries, property testing typically targets sublogarithmic or even
constant query complexity, independent of the ambient dimension n. A significant advancement in
this context was made by [Diakonikolas et al.| (2007)), who introduced the paradigm of testing via
implicit learning. The key insight underlying this framework is that many natural classes of Boolean
functions, such as monotone DNFs, decision lists, decision trees, branching programs, Boolean
formulas, sparse polynomials over F5, and Boolean circuits admit succinct representations and are
well-approximated by junta functions. For instance, every s-term DNF is e-close to another s-term
DNF depending on only O(log s + log(1/¢)) variables. The testing via implicit learning framework
leverages this structural approximation. Building on this idea, Chakraborty et al.|(2011) proposed a
query-efficient sample extractor that yields improved and in certain cases, optimal bounds for testing
membership in many of the subclasses of junta functions.

Returning to the problem of testing Fourier sparsity, we first recall that Gopalan et al.| (2011} de-
signed their tester for fourier sparsity testing by exploiting certain locally testable structural features
of Fourier-sparse functions, namely, the granularity of their nonzero Fourier coefficients, and sub-
sequently identifying these coefficients via a hashing-based technique. In contrast, our approach
is based on the paradigm of testing via implicit learning. However, a key challenge for us is that
existing techniques for testing membership in subclasses of junta functions are insufficient for han-
dling Fourier-sparse functions. This is because the class of Fourier-sparse functions is strictly more
general than the class of junta functions. For example, a linear function that depends on O(n) vari-
ables is 1-Fourier sparse, yet it is not a junta function, since its output depends on a linear number
of variables. Thus, testing Fourier sparsity following the principle of testing via implicit learning,
necessitates the development of new techniques that go beyond the existing junta testing framework.

At the core of our technique lies an exact learning procedure for s-Fourier sparse Boolean functions
(see Algorithm[2)), which leverages ¢1-minimization techniques from compressed sensing (see Chap-
ter 4 of Moitral(2018)). This approach critically relies on a recent result by [Haviv & Regev|(2017),
which establishes that subsampled Fourier-Hadamard matrices satisfy the Restricted Isometry Prop-
erty (RIP). A key implication of this result is that, given O(s - log? s - n) uniformly random samples
from an s-Fourier sparse Boolean function, it is possible to exactly recover the function via an appro-
priate ¢1-minimization procedure. However, a direct application of this method to our setting proves
inadequate, as the above-mentioned sample complexity continues to depend on the ambient dimen-
sion n. To address this limitation, we leverage a structural result by Sanyal|(2019), which establishes
that the dimension of the linear span of the nonzero Fourier coefficients of an s-Fourier sparse func-
tion is at most O(+/s). This implies that any s-Fourier sparse function f : F§ — {—1,+1} can be
expressed as a function

ffiFy = {-1,41} = fo L,

where L : Fy — T} is certain linear transformation and = O(4/s). It follows from the RIP result
of Haviv & Regev| (2017) that the above mentioned reconstruction technique would require only

O(s%/? - log” s) random samples of f* : F; — {—1, 41} to recover it exactly.

Motivated by this insight, our approach focuses on reconstructing the composition f o U o R, where
U : F§ — F7% is an unknown linear transformation, and R : Fy — [ is a known linear map. The
key machinery for this part of our proof is Algorithm 3] a subroutine that generates random samples
from foUoR using only a small number of queries. Our readers may note that this can be viewed as a
generalization of the sampler designed by (Chakraborty et al.|(2011) within the junta subclass testing
framework discussed earlier. At the core of this algorithm is a local list-correction procedure for the
Hadamard code, inspired by the tester of (Gopalan et al.|(2011) for testing induced subclasses of low
dimensional functions. Though our adaptation differs substantially in both construction and analysis,
yielding a significant improvement in query complexity, specifically, a polynomial improvement
corresponding to a factor of six in the exponent.
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3.2 PROOF OF THEOREM[I.1]

We begin by introducing the notion of coset sampling, which plays a key role in generating samples
for the exact learning machinery, albeit in a low-dimensional space. Let (9;1 denote the sampling
procedure with respect to a subspace H, given query access to the function f, as described in Algo-
rithm[I] Throughout this work, we refer to the samples produced by this procedure as coset samples
of f with respect to the subspace H.

Algorithm 1: SubspaceExplicitCosetSampler

Input: Subspace H with basis B := {f1, 52, - - 8-}, and query access to f
Output: An uniform random sample of the function f restricted to a random coset of H~+

1. Sample b uniformly at random from F% and define the coset C'(b)
Cb) ={aeF3 [ (a,fi) = bi}.

2. Select a uniformly random element p from C(b).
3. Return the pair (b, f(p)).

Let Sy denote the subspace spanned by the vectors corresponding to the nonzero Fourier coefficients
of f. Observe that the coset samples generated by Of;f can be interpreted as uniform samples

drawn from the set of leaves of 7, the non-adaptive parity decision tree representation of f. For a
parameter 6 > 0, the f-restricted Fourier span Sy(¢) is defined as the subspace spanned by those

~

vectors « € F% for which | f(«)| > 6. In this work, we build a query-efficient implementation of
0% (0)° given query access to f and the threshold § > 0, where g = f o A for some unknown

invertible linear transformation A : F§ — FZ.

Lemma 3.1. There exists an algorithm SubspacelmplicitCosetSampler (Algorithm |3) that given
query access to a Boolean function f : Fy — {—1,4+1}, a threshold § > 0, and a parameter
A € N, generates a set of \-many uniform coset samples &, with respect to the subspace Syo4(6),
for a function f o A where A is some non-singular (and possibly unknown) linear transformation of
F5. The query complexity of the algorithm is O (9% + max {9%, )\} . 9%), and the failure probability
of the algorithm is at most %.

While the proof of Lemma 3.1]is deferred to the latter part of this section, we assume its validity for
now and proceed to demonstrate how it can be used to establish Theorem|1. 1

Proof of Theorem In Algorithm [2] the subroutine SubspaceImplicitCosetSampler (Algo-
rithm [3)) is invoked with parameters 6 and A. By Lemma [3.1] this procedure produces A uniformly
random coset samples (as described in Algorithm with respect to the subspace Syo4(6). Using
these coset samples, we define a lower-dimensional Boolean function f* : F§ — {—1, 1}, where
ff=foToA and T : Fy — I} is a linear transformation mapping the standard basis vectors e’
of F% to the corresponding standard basis vectors e} of F5, for i € {1,2,...,r}. The transformation
T also maps each of the 2" cosets of Sy, 4(0)* (the orthogonal subspace of Sro A4(0)1) to unique
elements of IF5.

The next step is to determine whether the function f* is s-Fourier sparse. It is kind of folklore
(see Chapter 4 of Moitra (2018)) that for any Boolean function h : F§, — {—1,+1} with at most
s nonzero Fourier coefficients, if there exists an m x 2" subsampled Walsh—-Hadamard matrix M
satisfying the Restricted Isometry Property (RIP) of order k& with constant d;, < % (and daf, + 03, <
1), then the Fourier spectrum of A can be recovered exactly with high probability. This recovery
is achieved by solving the following ¢;-minimization problem using m uniformly random labeled
examples (z,y = h(zx)):

h =argmin||h|; subjectto Mh =y.

A bound on m determines the number of required random examples and, consequently, the number
of coset samples needed from f o A. To establish this bound, we recall the result of [Sanyal (2019),



Under review as a conference paper at ICLR 2026

which states that for any Fourier sparse function f4, the dimension of the subspace spanned by its
nonzero Fourier coefficients is at most O(+/s). Following result of Haviv & Regev| (2017), says that

m=0 (33/2 - poly(log s)) random samples suffice for exact recovery of f*.

Lemma 3.2 (Haviv & Regev| (2017)). Let M € CN*N be a unitary matrix satisfying | M ||oo <
O(1/V/'N), and let § > 0 be sufficiently small. Construct a measurement matrix B € CT*N by
selecting q rows uniformly and independently from M, each scaled by \/N/q. If

= O (log*(1/8) - 672 - k -log®(k/J) - log N ,

then, with probability at least 1 — 2~ N10&(k/9)) " the matrix B satisfies the Restricted Isometry
Property of order k with isometry constant 6.

Algorithm 2: EffcientFourierSparsityTester

Input: Fourier sparsity s, and query access to f,
Output: Whether f has fourier sparsity s or € far from every such function

Initialization: 6 = -, A = max {1, C's? - poly(log s) } where C'is some large constant

1. (¢,r) < SubspaceImplicitCosetSampler(6, \)
2. Initialize ® such that for each (z,y) € ¢ and for each z € F%, set

Blalls) = Sy - (-1

3. Solve the following optimization problem:

minz |h| subjectto (®[z][*]-h) =y, forall (z,y)e (.

4. If h corresponds to the Fourier spectrum of some s-Fourier sparse Boolean function,
accept; otherwise, reject.

We now show that if the input function f is s-Fourier sparse, then the algorithm always accepts.

Lemma 3.3 (Completeness). If the function f is s-Fourier sparse, then Algorithm 2] accepts.

Proof. We begin by recalling a result from Gopalan et al. (2011), which states that if a functlon fis
s-Fourier sparse, then all of its nonzero Fourier coefficients are integer multiples of 2flog -7 More-
over, Fourier sparsity is invariant under nonsingular linear transformations. When the subroutme
SubspacelmplicitCosetSampler (Algorithm (3) is invoked with the threshold parameter § = -,
Lemma [3.1] guarantees that it indeed discovers the Fourier span of f o A, for some unknown i 1n-
vertible linear transformation A. Additionally, the algorithm produces A uniform coset samples,
where

A\ = max {i, O (s - poly(log s))} .

By the guarantees of the sparse recovery algorithm discussed previously, these samples suffice to
exactly reconstruct the Fourier spectrum of the projected function f* = f o T o A. Hence, the
algorithm accepts. O

Lemma 3.4 (Soundness). If the function f is e-far from every s-Fourier sparse Boolean function,
then Algorithm 2] rejects.

Proof. We argue by contraposition. Suppose Algorithm |2 I accepts. Then there exists a function 1,
obtained via composition with appropriate linear transformations, such that it agrees with f on all A

uniform samples collected during Step 4 of Algorlthml 3l and moreover f is s-Fourier sparse. Let us
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define the set GOOD as the set of inputs where fand f agree, and BAD as the complement. The
probability that all A samples fall within the GOOD set is

| _ [BAD| A
o )

If this probability is at least a constant, say 2(1), then by a standard union bound and Markov’s
inequality, we must have

IBAD| 1
<

on = O\

which implies that f is ﬁ-close to some s-Fourier sparse function f. O

We now analyze the query complexity of Algorithm 2] The algorithm initializes with parameters

0 = O(1/s) and
A= max{i, 5(52)} .

The only queries made are via calls to Algorithm [3] According to Lemma [3.1] the total number of
queries made within that algorithm is bounded by

~ (1 1 1
O (94 +Inax{92, )\} . 92>

Substituting § = O(1/s), we obtain the final query complexity:

6 (54 +max{s2, 1} . 52) .
€

One may verify that Algorithm 2] fails with probability at most % + o(1) < 1.

3.3 PROOF OF LEMMA[3.1]

We prove this theorem by showing that SubspaceImplicitCosetSampler (Algorithm 3) satisfies the
theoretical guarantees of Lemma[3.1] Here, we provide only a high-level overview of the algorithm;
the full proof is presented in the appendix.

At a high level, SubspaceImplicitCosetSampler is inspired by the implicit learning framework
introduced in |Gopalan et al.| (2011) for designing their algorithm for testing induced subclasses
of low-dimensional functions. However, our method achieves a significant improvement in query
complexity, owing to a refined analysis of the underlying coset hashing process. In particular, we
revisit coset decomposition and establish new concentration bounds (Lemmas and for the
£1- and /9-norms of the projected Fourier spectrum. These results show that, within any coset, the
norm of the Fourier projection is dominated by the contribution of heavy coefficients. Our analysis is
inspired by techniques for heavy-hitter detection in the streaming literature: /5 concentration plays
a role analogous to the COUNT-MIN SKETCH, while ¢; concentration corresponds to the COUNT
SKETCH. Below, we provide a brief sketch of the overall algorithm.

* Detecting Heavy Fourier Coefficients. We begin by projecting the Fourier spectrum of f
onto cosets of a random subspace H of dimension log O(1/6*). This induces a pairwise-
independent hashing of the Fourier coefficients of f into O(1/6%) cosets of H. With
high probability, all Fourier coefficients of magnitude at least 6 fall into distinct cosets
(Lemmal[A.T). A key ingredient is LemmalA.3] which shows that the £,-norm of the Fourier
projection within each coset is concentrated around its dominant Fourier coefficient. Given
sufficiently accurate {5 estimates for individual cosets, this allows us to identify all cosets
containing a heavy Fourier coefficient.

» Evaluating Heavy Fourier Coefficients. Once the heavy cosets are identified, we proceed
to evaluate the corresponding heavy Fourier characters, without knowing them explcitly.
This step relies on Lemma which shows that the /1-norm of the projected Fourier
spectrum in each coset is dominated by its heaviest coefficient. Consequently, for any
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x € F7, the projection of the Fourier coefficients can be well approximated by the evalu-
ation of the heaviest coefficient at x. However, the probability that this approximation is
sufficiently accurate for a fixed « is only constant. Since the algorithm requires many such
evaluations, we employ an amplification step in the spirit of the original Goldreich—Levin
algorithm |Goldreich & Levin|(1989)).

* Generating Coset Samples. Given sufficiently many evaluations of the heavy Fourier
characters for enough points z, one can recover a linear basis among the heavy Fourier
coefficients, thereby identifying the coefficients up to a linear transformation. In our work,
we show that this is sufficient for our purposes.

4 IMPROVED LOWER BOUND FOR TESTING FOURIER SPARSITY

We begin by defining a class of Boolean functions known as the Maiorana—McFarland functions.
These functions have a long history in theoretical computer science, including applications in circuit
lower bounds and studies of Boolean function structure, e.g., seePaul| (1977); Blum|(1984); Nisan &
Szegedy| (1992); [Sanyal| (2019). They are also widely used in symmetric-key cryptography, partic-
ularly in stream cipher design, where they provide desirable Fourier and autocorrelation properties,
see |Sarkar & Maitral (2000)).

Definition 4.1. Given positive integers n and r with r < n, the family of Maiorana—McFarland
functions, denoted MM, ,, IMcFarland)(1973), consists of functions f : Fy — {—1,+1} of the form

g(z,y) = (=)W (2,y) € Fy x Fy 7,
where @ : F5~" — F% is an arbitrary mapping.

A key property of these functions is that, when composed with linear transformations, their Fourier
sparsity is governed by the rank of the transformation.

Lemma 4.2. Letn = r + logr, let ¢ : F3™" — F5 have r linearly independent outputs, and let
L € Fy*" be linear. Define

gr(w,y) = (1) Foel,

Then the Fourier sparsity of g, satisfies

|supp(gr)| < rank(L) - 7.

Proof. For (u,v) € F§ x F5~", the Fourier coefficient is
9z (u,0) =Eqy (—1%LL@@””*“@*Hvﬂﬁ ::Ey[(—1)“40Ex(—1ﬂLTW“”+%zq.

The inner expectation is 1 if u = LT¢(y) and 0 otherwise. Hence, (u,v) can be in the Fourier
support only if u € Im(L” o ¢), which has at most rank(L) distinct values. For each u, there are
choices for v, yielding the claimed bound. O

Randomized communication complexity studies the minimum number of bits two or more par-
ties must exchange to compute a function using shared or private randomness, while producing
a correct output with high probability. The Approximate Matrix Rank Problem is defined as fol-
lows: Alice and Bob hold A, B € F5*" and are promised that rank(A + B) € {r,r/4}. Their
goal is to determine which case holds using minimal communication and public randomness. We
denote the randomized communication complexity (with public coins) with error at most 1/3 by

R; 5(RANK, ,/4).

Theorem 4.3 (Sherstov & Storozhenko| (2024)).
13(RANK, . ./4) = Q(r?).

Equipped with these definitions, we now establish a Fourier sparsity testing lower bound that is
quadratically stronger than the previously known result/Gopalan et al.| (201 1).
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4.1 PROOF OF THEOREMI[I.2]

We prove the theorem via a reduction from the Approximate Matrix Rank problem. Alice has A, Bob
has B, and C' = A + B satisfies rank(C) € {r, r/éliAlice constructs f4, Bob constructs fp, and

together they define f = fo = fayp. By Lemmai.2} if rank(C') = r, then \supp(f)| = r2, and
if rank(C) = r/4, then [supp(f)| < r?/4. The following lemma quantifies the distance between
these two cases.

Lemma 4.4. [frank(C) = r, then f is at least (1/4)-far from any function with Fourier sparsity at
most r2 /4.

Proof. Leth :F3y — {—1,+1}bea %—Fourier sparse function. Then,
Pr[h(x) # f(x)] = Prlh(a) # f(z)] 1)

1 1
1 1 N A
=3 + B} a%F:" h(a)f(a)

> k@) f(w). )

a€supp(h)

+

N —
N | =

Recall that for Boolean function f : F§ — {—1,+1}, supp(]?) = {a eFy : f(oz) # 0}. Now
applying Cauchy-Schwarz inequality, we get

Y h(@f(@ Y- Y

agsupp(h) aEEupp(h) ocEsupp(ﬁ)

- [ P 3)
aESupp(ﬁ)

Note that A is a ——Fourler sparse Boolean function, that is, \supp( )| < g. Observe that, by

the construction of function f (see Lemma [.2), the absolute values of any two non-zero Fourier
coefficients are equal and the Fourier support supp( f ) = r?. Using the fact that >_ ery f ( 2 =1
(Parseval’s identity), we get

1
2( - 4
> Pleo)<; 4)
a€supp(h)
Finally, plugging the bound from equation []into equation I} we conclude that

1 1 1 1

Pr[h B (I

i) £ S 2 5+ 5 (-5) = 1
O

Suppose there exists a tester T for Fourier sparsity with parameter s and query complexity (s, 1/4).
Here, s = r2/4. To simulate a query x, Alice computes f4(z), Bob computes fp(x), and they
exchange one bit each. Since fo(z) = fa(x)fp(x), each query costs two bits of communication.
By Theorem [4.3] solving the rank problem requires €(r?) bits. Therefore, ¢(s,1/4) = Q(r?) =
Q(s), establishing the claimed lower bound.

DISCLAIMER ON LLM USAGE

A large language model (LLM) was used solely for polishing the writing. No part of the technical
contributions, ideation, or literature survey was generated using the LLM. All technical content and
research results are entirely the authors’ own.
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A ANALYSIS OF SUBSPACEIMPLICITCOSETSAMPLER (PROOF OF

LEMMA [3.1))

Proof. We first give the details of Algorithm [3] and subsequently give its theoretical guarantees.
Table|[T] gives the notations used in Algorithm 3[and its analysis.

Notation | Description

4 A random coset decomposition of F5
C Individual cosets of ¢
C Set of cosets of € that contains a heavy Fourier coefficient of f

a*(C) | The Fourier coefficient in C' with the highest absolute value
We > gec I (B), total Fourier weight of coset C
WE 72 (a*(C)), weight of the heaviest Fourier coefficient in C

~

Pc(z) | 2opec [(B)xs(2), projection of f(z) into coset C'
PE(2) Flar(0) Xa+(c)(2), projection of f(z) onto the heaviest Fourier coefficient of C'
xc(z) | Alternative notation for -y ()

Table 1: Notations for Algorithm [3]

We now proceed with the details of Algorithm |3} As a first step, we project the Fourier spectrum of
f onto ¥, a randomly permuted coset structure of a randomly chosen subspace of codimension

y {1 . 100}
= |log —|.
n?
This coset structure is defined as follows. First we select ¢t vectors 1, ..., 5; independently and

uniformly at random from F% and define the subspace

H= Span{ﬂh s 7/8t}J_'

This subspace has codimension ¢ and consists of all vectors in 5 that are orthogonal to 34, ..., 5;.
For each b € %, we define the coset

D) = {a € Fy | (o, B;) = b; for all i}.

Further, to introduce additional randomness, we select a random shift z € ]Fg and relabel each coset
D(b) as D(b + z), thereby obtaining a randomly permuted coset structure. Gopalan et al. |Gopalan
et al.| (2011) showed that such a coset decomposition process behaves like a pairwise independent
hashing scheme over elements of '3 when considering their placement in cosets. We present their
results below, with slight changes in notation.

Lemma A.1 (Proposition 3, |Gopalan et al.| (2011)). Let (H,C) be a random permuted t-
dimensional coset structure, where t > 2log s + log 100. Then

e If o and o are distinct elements of T3, the probability that they belong to the same bucket
is 27¢,

o Forany set S C FY with |S| < s + 1, then, except with probability at most 0, all elements
of S are assigned to distinct buckets.

In Step 2, we estimate the Fourier weight of each coset in % and discard those whose weight esti-
mates fall below a specified threshold. Given the parameter settings in the algorithm, we demonstrate
that at the end of Step 3 of Algorithm 3] we successfully identify a set of cosets C C % that collec-
tively contain all heavy Fourier coefficients while ensuring that its size remains bounded. One may
observe a resemblance to the celebrated Goldreich-Levin theorem |Goldreich & Levin! (1989). This
resemblance is not coincidental; in fact, the first part of this algorithm can be viewed as an implicit
version of the Goldreich-Levin algorithm. We now formally state and prove the following lemma.

12
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Lemma A.2. Let € be a randomly permuted coset structure of codimension log 100 " with n = %
(see Algorithm|3). Then, except with probability at most a
set of cosets C C (5 such that

20, after Step 3, our algorzthm identifies

o ForanyC € €, lf|]?(oz*(C))\ > 0, then C belongs to C
e For every C € C, the Fourier coefficient satisfies | f(*(C))| > 0. .

The proof of Lemma relies on the crucial observation that, for every C' € %, the weight of
the coset, We = 3 5.c P(ﬁ), is concentrated around W¢, = |f(a*(C))
dominant Fourier coefficient, with high probability. We formally state and prove this below.

Lemma A.3. Ler f : F} — {—1,4+1}, and € be a randomly permuted coset structure of codimen-
sion log %. Then, for all C € € and for all T > 0, we have

P _ * 2 < 1
We - Wl > 7] < 15

when Fourier coefficients of f is projected onto €.

Proof. First we show that, for random permuted coset structure of sufficiently large codimension,
E [We — W¢] is small. Let Iz be the indicator random variable indicating, whether a*(C') and
B € (Fy \ o*(C)) fall in the same bucket C' or not. Then,

E[We - Wel] = Zf ZE[ B)| Ells] =Y F(AEL]
B

By LemmaA.1] when a random permuted coset structure of codimension ¢ is defined over F%, the
probability that distinct oy € F4 and as € F5 are placed in the same bucket is 217 Using this
observation, we get,
4 “z
n"f7(5) 77
E[[We — W —

In the final inequality, we used the fact that >, f s ( ) < 1, since f is a Boolean function. Notably,
we have W — W( > 0. Applying Markov’s inequality, we obtain,
EY] o 9

n?2  100n2 100

Pr[We = We| > n?] <

Equipped with Lemma[A.3] we now give the proof of Lemma [A.2]below.

Proof of LemmalA.2] We claim that when the Fourier spectrum of f is projected onto a randomly
permuted coset structure ¢ of codimension log 2%, all Fourier coefficients with absolute magnitude
at least 17 are mapped to distinct cosets of €. To see this, note that by Parseval’s identity for Boolean
functions, there can be at most n% Fourier coefficients with absolute magnitude at least 7. By

Lemma these n% large coefficients are mapped to distinct cosets of €.
We also assume that in Step 2 of the algorithm, all weight estimates are accurate within j:nQ, with

confidence at least 1 — 1/poly(1/6). It remains to show that the threshold of 2562 in Step 3 ensures
that all heavy cosets are retained and all light cosets are discarded.

To see this, consider a coset C' that contains a Fourier coefficient with absolute value at least 8. The
total weight of such a coset is at least #2, and its estimated weight is at least

g2 2 63 56

o _ 702 92
K = 64

ensuring that such a coset is not discarded at Step 3.

13
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Conversely, consider a coset D that survives Step 3 (i.e., it is not discarded). Its actual weight must
be at least 56 55

92— p? = 292

6a° T T 61

Assuming Lemmal[A.2]holds for this coset, the weight of its heaviest Fourier coefficient, denoted by

W, satisfies
55 54 7\’
0 —nP=_0*> (-0
640 " T 64 8 )"
which implies that the absolute value of the heaviest Fourier coefficient in coset D is at least g@.

It remains to bound the probability of failure in Lemma[A.2] Failure can occur in two cases:

* Lemma [A.T] does not hold: Two distinct Fourier coefficients, each with absolute value at

least n, fall into the same coset. By Lemma the probability of this event is at most Tl)o

* Lemma[A.3] does not hold: There exists a coset C € C where Lemma fails. Since
cosets with estimated weight below 2—202 are discarded, each surviving coset has actual
weight at least 2—202. By Parseval’s identity, cFr f(a)? = 1, so the total number of
surviving cosets is at most %02. Applying Lemma and a union bound over these
cosets, the failure probability is at most

i.%92<i

100 55 50"

Combining both failure probabilities, the overall probability of failure is at most

1 1 _1
100~ 50 ~20°

O

The core step in Step 4 involves computing X - (c)(z) for a uniformly chosen x € F3, for each
coset C' € C. It is important to note that the identity of a*(C) is not known explicitly. To address
this, we employ a self-correction procedure based on Hadamard codes. Formally, we establish the
following lemma:

Lemma A.4. Consider a coset C' for which Lemmaholds, ensuring that |We — WE| < n?. Let
x,y ~ Iy be independently and uniformly chosen. Then,

Pr [sign(Po(z +1)) - sign(Po(y)) = xe ()] 2 £

The proof of this Lemmal[A.4Jrelies on the observation that for every coset C, for uniformly sampled

z,Po(2) =) scc f(ﬁ)xg(z), the projection of f(z) onto a coset C' is highly concentrated around
Pi(z) == flor (C))Xa=(c)(2). More formally, we establish the following concentration result.
Lemma A.5. Let z is chosen uniformly at random from F3 and C be a coset of € such that |W¢ —
W | < Then

qud@—ﬁ%wﬂ>n+ﬂ§ﬂa

2

Proof. To establish this, we first recall that Fourier characters act as pairwise independent hash
functions y : Fy — {—1,+1}. Specifically, when z is sampled uniformly from F%, each coordinate
z; is independent and uniformly distributed over {0,1}. For any non-empty subset o« C [n], we
have: ] 1

E.[Xa(2)] = E.[(-1){?] = ;) +5(=1)=0.

Moreover, for distinct subsets a1, e C [n], the joint expectation satisfies:

E:[Xa1 (2) - Xaa (2)] = Eo[(=1) (14929 = 0 = E.[Xa, (2)] - Ez[Xas (2)]-

14
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Algorithm 3: SubspacelmpicitCosetSampler

Input: Threshold: §, Number of samples : A, Distance: €
Output: Coset Samples of f o A, with respect to subspace S(6)
Parameters: 7 = %, x = max(40062, \), v = log 100k,

Step 1: Let € be a randomly permuted coset structure of a randomly chosen subspace of
codimension log %;
Step 2: foreach C' € € do
| Estimate weight of C' within +7? accuracy;
end
Step 3: Discard any coset with estimated weight < %6‘2; Let C be the set of surviving cosets;
Step 4: fori € {1,2,3,--- ,x} do
Sample z; uniformly at random from F% and set F[z;] <+ f(z;);
Sample {y1,¥2, ..., Yy} each uniformly at random from F4;
foreach y; do
foreach C € C do
| Estimate Pc f(y;) and P f(z; + y;), each within +£6 accuracy;
end
end
Set Q[i][C] « median{sign(Pc [/ (y;)]) - sign(Po(f (x: +y5)])};

end

Step 5: Relabel the columns of Q) as { B, ..., By}, where By = e}, By = €},..., B, = eZ,
such that forall ¢ € {r 4+ 1, ..., k}, the column B; is a linear combination of { By, ..., B, }.
Here, (e');c[r) denote the standard basis vectors of I3 along coordinate direction 4.

Step 6: foreach = € {z1,z2, 23, -+ ,2,} do

Let b € F5 such that b; = % forall j € [r];
C{b, f(z)} UG
end

Step 7: Construct the matrix H € F,*"™ whose rows are the vectors By, Ba, ..., B,
Step 8: return {H,{,r}

15
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We now proceed to bound the expectation of |Pc(z) — P (z)|, analyzing two separate cases de-
pending on whether 0 € C” or not, where C’ = {C' — o*(C)}.

Case I: When C does not contain 0 or O is the leader of the coset C

E[|Pc(z) — Po(2) =E[ Y F(B)xs(2)] = > EJ(B)] Elxs(2)] = > E[f(B)]-0=0.

pecC’ pecC’ pecC”’

Case II: When C contains 0 and O is not the leader of the coset C.

E(|Pc(z) = P&(2)] = B[ Y f(B)xs(2)] + F(0)] = 0+ f(0)| = n.

Bec’

For the final inequality, observe that after projecting the function onto a randomly permuted coset
structure of codimension log %, all Fourier coefficients with an absolute magnitude of at least 7 are

mapped to distinct cosets. It follows that the second-largest Fourier coefficient in any coset has an
absolute value of at most 7. The second equality follows directly by substituting the analysis from
Case I into the left operand of the sum.

Next, we show that the variance of Y is small by analyzing the sum over all 8 € C":

Var[Pe (2) — P(2)] = Var | Y F(B)xs(2)

Bec’

= 3 Var [f(B)xs(2)]

Bec’

< 3| (fome)

BecC’

=3 (7)) E [0s)°]

Bec’

-y (7®)

BecC’
= We — W5
<.

Applying Chebyshev’s inequality, we obtain:

[ V)

Var [Pe(2) = PE(2)

Pr{[Pc(z) = Po(2)| > n+7] < 5 =

LS

T

Equipped with Lemma[A.5] we now return to the proof of Lemmal[A.4]

Proof of LemmalA.4} We now show that for a uniform random choice of z € F%, the sign of P (2)
matches the sign of Pc(z) with high probability. To see why, let us fix 7 = %0 and define the

following event:

1 1 5

Remember that by Lemma[A.2] for every C' € C
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So, assuming &, occurs, the deviation between P (z) and P (z) is at most

7 5 1
PL(z) =P <-0-—-60=-6.
[Pe(z) — Po() < 0 — 20 = 5
Since this deviation is small, it follows that the signs of P/, (z) and P¢(z) do match. Using this fact,
we can apply a self-correction procedure to compute x¢(z) as follows:

sign(Pe(y)) - sign(Po(z +y)) = sign(Pe(y)) - sign(Pe (2 +5)) = Xas(c) (%)

It is easy to see that this self-correction fails with probability at most %. [

However, the algorithm does know P¢(z) exactly, though it can estimate P (z) with reasonable

accuracy. In particular, if the estimated value P¢(z) lies within ig of the true value, the preceding
argument still remains valid. Furthermore, to proceed to the next phase of the algorithm, we need to
compute X s (x) for a sufficiently large number of « and for all C' € C. This requires improving the
success probability of the self-correction process. To achieve this, we employ the median trick, a
standard technique for error reduction. Specifically, for a fixed x, we perform multiple independent
trials using different values of y and take the median of the observed outcomes. By applying a
standard Chernoff bound, it follows that taking O(log ) independent samples is sufficient to amplify
the success probability to at least 1 — 1/poly(1/6).

Having access to evaluation of x - (¢ (z) for sufficiently many x, we can now identify the characters
a*(C) for all C' € C, up to linear transformation, without knowing their explicit identity. To see
how, let S be a subset of C such that

> ar(C)=0"

cesS

Then, for every x € F, we have

[T xor@(@) = JT (1)@ = (1) (Zees " @m) — 1,

ces ceS

Thus, for any such set S, the product of the corresponding columns of (), denoted as Ilg, always
equals 1*. On the other hand, consider any subset B C C where the vectors {a*(C) : C' € B} are
linearly independent. We aim to show that the probability of all entries of [ Xa=(c)(2) being
equal to 1 is small.

Lemma A.6. The probability that all entries of [[c3 Xa=(c)(%:) are equal to 1 is at most 27",
Moreover, for any given B, the same event occurs for every subset of B with probability close to

1,/100.

Proof. Since the vectors a*(C') are linearly independent and the points 1, ..., z, are uniformly
distributed in [F5, we have
1
P * 7)) — == —=.
I[H Xa (C)(x) 1] 2
ceB

Thus, the probability that this holds for all x independent trials is at most 2~". Furthermore, since
1
the number of possible subsets of B is at most 2/l = 29(32) it follows that the event

I xar oy (@) =1

CceD

occurs for every D C B, except with probability at most

27 . 20(32) < o(1).
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We cannot explicitly determine o*(C'), but using the linear relationships established in the previous
lemma, we can identify them up to a linear transformation. Specifically, in step 5 of the algorithm,
we extracted a basis of size r for the span of *(C') and relabeled them as the standard basis vectors
e in FY. Let H be the subspace spanned by these basis vectors. Define the matrix M € F5*" with
rows given by the basis vectors,

Then, for every € {x1, 22, -+, 2.}, the coset of H containing x is determined by the set of
linear equations Mx = b, where b is defined in Step 6 of the algorithm. Finally, we analyze the
probability distribution of cosets of the subspace H- when an element = € F% is chosen uniformly
at random and its corresponding coset is determined. We show that the distribution over the cosets
of H+, induced by the uniform random selection of an element x € F7, is uniform.

Lemma A.7. Given any G C F%, the distribution of cosets induced by uniform random selection of
x € FY is uniform over the cosets of the subspace G.

Proof. Let G C I} be a subspace of dimension k. The cosets of G in 5 are of the form C, = z+G
for z € F%, and the total number of cosets is 2"~ %. We randomly select = € F% uniformly, and then
determine which coset C}, the element x belongs to. Since the size of each coset C, is 2% and the
total size of Fy is 2", the probability that x belongs to a particular coset C,, is:

|C.| 2F 1

P L) = =—= :
(CU eC ) |]F§| on on—k

Since this probability is the same for all cosets C,, the distribution over the cosets of G is uniform.
O

It remains to bound the failure probability of Lemma [3] Assuming that all estimates in Step 2 and
Step 4 are accurate within the specified accuracy and confidence level of 1 —1/poly(1/6), the prob-
ability of failure in either of these steps is at most o(1). Similarly, in Step 6, the linear relationship
detection routine fails with probability at most o(1). The only significant failure probability arises
in Step 3, which, by Lemma is bounded above by %. Therefore, the total failure probability is

at most 55 + o(1) < 7.
Finally, we upper bound the total number of function queries made by the algorithm. In Step 2,
estimating the weight

Wiin = Eperp zens Xr(2) - f(2) - fz + 2)]

for each coset within 7> accuracy and with confidence 1 — 1/poly(1/6) requires O(1/6*) queries,
by standard applications of the Chernoff bound. Observe that the same set of queries, namely
{f(x), f(x 4+ 2)}pcp+, can be used to compute W, pr for all cosets r + H of H simultaneously.

Similarly, in Step 4, estimating
Pria(x) =Eycpr X (y) - f(z+y)]

within £ accuracy and with confidence 1 — 1/poly(1/6) requires O(1/6?) queries. Again, the
same batch of samples can be reused for all cosets. Finally, recall that x = max(1/6%, \) samples
must be generated. Combining all the steps, the total query complexity of the algorithm is:

~ (1 1 1
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