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ABSTRACT

Instruction Tuning (IT) has been proven to be an effective approach to unlock the
powerful capabilities of large language models (LLMs). Recent studies indicate
that excessive IT data can degrade LLMs performance, while carefully selecting
a small subset of high-quality IT data can significantly enhance their capabilities.
Therefore, identifying the most efficient subset data from the IT dataset to effec-
tively develop either specific or general abilities in LLMs has become a critical
challenge. To address this, we propose a novel and efficient framework called
NAIT. NAIT evaluates the impact of IT data on LLMs performance by analyzing
the similarity of neuron activation patterns between the IT dataset and the target
domain capability. Specifically, NAIT captures neuron activation patterns from
in-domain datasets of target domain capabilities to construct reusable and trans-
ferable neuron activation features. It then evaluates and selects optimal samples
based on the similarity between candidate samples and the expected activation fea-
tures of the target capabilities. Experimental results show that training on the 10%
Alpaca-GPT4 IT data subset selected by NAIT consistently outperforms methods
that rely on external advanced models or uncertainty-based features across vari-
ous tasks. Our findings also reveal the transferability of neuron activation features
across different capabilities of LLMs. In particular, IT data with more logical
reasoning and programmatic features possesses strong general transferability, en-
abling models to develop stronger capabilities across multiple tasks, while a stable
core subset of data is sufficient to consistently activate fundamental model capa-
bilities and universally improve performance across diverse tasks.

1 INTRODUCTION

IT of LLMs has become a foundational technique for activating LLMs instruction and knowledge
capabilities (Ouyang et al., 2022). Previous studies have shown that excessive IT data can degrade
LLMs performance, while selecting a small amount of high-quality IT data can significantly improve
model performance. For instance, LIMA (Zhou et al., 2023) achieved impressive results using only
1k IT data. However, a major challenge remains as current approaches lack interpretability in iden-
tifying “high-quality” data and fail to enhance the specific (one or more) target domain capabilities
of LLMs in an open dataset (Wu et al., 2023; Qin et al., 2024; Wang et al., 2024a). Moreover, ex-
isting SOTA IT data selection methods like Instruction Mining (Cao et al., 2023), AlpaGasus (Chen
et al., 2024) and SelectIT (Liu et al., 2024b) often rely on surface-level features, external models
and data for scoring, or the model’s uncertainty, which are computationally expensive. This limits
the scalability of these methods and their broader application to large-scale data.

Inspired by previous works on neuron activations and capabilities of LLMs (Voita et al., 2024; Xu
et al., 2024c), we address these concerns in NAIT (Neuronal Activation-based efficient IT data se-
lection framework), a novel approach designed to evaluate data quality and enhance specific domain
capabilities of LLMs by analyzing neuronal activation patterns related to the target domain capabili-
ties of the LLM. The NAIT framework is built on the core hypothesis that when an LLM processes a
given sample, the closer the model’s resulting neuronal activation pattern aligns with the activation
pattern of the target capability, the more effectively that sample enhances the LLM’s performance in
that specific domain.
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Figure 1: Overall framework of NAIT. First, we capture the neuron activation of the LLM using
in-domain data that we want the model to learn. Next, we construct an activation feature through
a dimensionality reduction method. Finally, we evaluate the feature alignment score between this
activation feature and the model’s activation on each candidate dataset to guide data selection.

NAIT operates in two main stages. First, we extract neuron activation features corresponding to
the LLM’s target capability. This process begins by providing a small set of in-domain examples
that exemplify the specific capability of interest. As the LLM processes these examples, its neuron
activation states are recorded to identify reusable activation features linked to the desired capability.
These features serve as a representation of the LLM’s response and neural activation preferences for
the target tasks, forming the foundation for the subsequent data selection phase. Next, we perform
capability-driven data selection by identifying and selecting IT data that can further activate and
enhance the model’s relevant capabilities. This is achieved by comparing the neuron activation fea-
tures of candidate data within an open and diverse dataset (e.g., Alpaca-GPT4) against the in-domain
activation features. By prioritizing data that closely matches the neuron activation patterns of the
target capability, NAIT ensures that the selected data is both relevant and effective for improving
the model’s specialized abilities. In general, NAIT exhibits the following properties: (1) Efficiency
(§4.2 & §5.1 & §5.2 & Appendix F): NAIT achieves strong performance with only a small number
of in-domain examples and IT data, eliminating the need for external models. It also boasts low
computational cost and minimal time requirements. (2) Robustness (§5.1): The framework demon-
strates excellent adaptability across different base models, IT datasets, and domain-specific datasets.
(3) Interpretability (§5.3): Qualitative analysis shows that NAIT unveils the logical reasoning and
programmatic features that possess strong general transferability. Additionally, NAIT identifies a
subset of core IT data that remains stable across different task-specific activation features.

Experimental results demonstrate that training LLaMA-2-7b on only 10% of the Alpaca-GPT4 IT
dataset selected using NAIT yields an average performance improvement of 3.00% across five tasks
compared to training on the entire dataset using IT. Further experiments show that NAIT consis-
tently improves performance across different numbers of in-domain data, base models, diverse IT
datasets and selection strategies, highlighting NAIT’s strong robustness. The method based on neu-
ron activation features also shows strong interpretability. Further analysis reveals that NAIT tends to
select IT data with more logical reasoning and programmatic neuron activation features. Such data
can effectively enhance the model’s reasoning ability and general ability across various downstream
tasks. The key contributions of this paper are as follows:

• Proposing NAIT, the first instruction data selection framework based on neuron activation pat-
terns, introducing a new paradigm for the targeted development of model capabilities.

• Revealing the correlation between neuron activation features and the retention of fundamental
model capabilities, while exploring the transferability of these features across different down-
stream tasks.

• Open-sourcing a cross-task neuron feature library and the Alpaca-NAIT dataset, a high-quality IT
dataset curated from the Alpaca-GPT4 dataset using our proposed NAIT.

2 RELATED WORK

IT plays a crucial role in bridging general pretraining and task-specific alignment, as summarized
in Appendix C. It enables LLMs to follow instructions, activate latent abilities, and significantly
enhance downstream task performance.
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Table 1: Comparison of our method and existing methods. " indicates the presence of a feature,
% indicates its absence, and ⃝ denotes partial support.

Method Feature Source Externally-Independent Targeted Ability Cost-Effective Interpretability

LIMA (Zhou et al., 2023) Human % % % %

Instruction Mining (Cao et al., 2023) PPL & Reward scores & ... " % % ⃝
AlpaGasus (Chen et al., 2024) ChatGPT Score % % % %

SelectIT (Liu et al., 2024b) Multi-granularity Uncertainty " % % ⃝
NAIT (Ours) Neuron Activation " " " "

2.1 HIGH-QUALITY IT DATA

Recent studies have highlighted the key role of high-quality IT data in enhancing the alignment of
LLMs with human preferences as well as generating accurate, relevant, and safe responses (Wang
et al., 2024a; Liu et al., 2024a). Typically, IT data consists of instruction-response pairs, which
can be created in two main ways: (1) by reformulating traditional NLP task data into the IT for-
mat (e.g., FLAN (Wei et al., 2022) and P3 (Sanh et al., 2022)) or (2) by synthesizing new data
using self-instruction based on a small set of manually crafted seed IT data (e.g., Alpaca (Taori
et al., 2023)). Subsequent work has further explored methods for synthesizing high-quality IT data.
For example, Vicuna (Chiang et al., 2023) enhanced data diversity with large-scale dialogue data,
while WizardLM (Xu et al., 2024a) used LLMs to automatically generate IT datasets with control-
lable complexity. Notably, LIMA (Zhou et al., 2023) demonstrated that LLMs fine-tuned on only
1k carefully curated IT data can achieve comparable performance of models trained with large-
scale dataset, highlighting the importance of data quality over quantity. These findings suggest that
pretrained LLMs already contain extensive world knowledge and require only a small amount of
high-quality instruction data to yield strong performance in the IT phase.

However, defining what constitutes “high-quality” IT data remains challenging. Data quality is
influenced by complex, multidimensional factors, and there is still a lack of interpretable selection
mechanisms and standardized criteria (Wang et al., 2024a).

2.2 EFFICIENT IT DATA SELECTION

Existing IT data selection strategies typically filter subsets based on metrics such as quality, diversity,
or importance (Qin et al., 2024). These strategies fall into four main categories based on how
these metrics are extracted: (1) Handcrafted Feature-Based Methods rely on manually designed
features. For example, DQI (Mishra et al., 2020) selects high-quality data by leveraging lexical
features, n-gram frequency, and relational features, while Xie et al. (2023) optimize data distribution
using n-gram features. Although these methods more interpretable, they are limited to surface-
level characteristics and cannot capture deeper data properties; (2) Model Feature-Based Methods
extract features such as uncertainty or perplexity from model outputs. For instance, Instruction
Mining (Cao et al., 2023) leverages perplexity and reward scores, and SelectIT (Liu et al., 2024b)
conducts multi-granularity uncertainty analysis for data selection. However, these methods depend
heavily on model outputs, which may introduce bias, and often exhibit “black-box” characteristics
that limit interpretability. (3) LLM-as-Scorer Methods utilize advanced LLMs, such as ChatGPT,
to score data based on complex criteria. For instance, InsTag (Lu et al., 2024) evaluates diversity
and complexity in IT data, while AlpaGasus (Chen et al., 2024) scores data quality similarly. These
approaches, though effective, are computationally expensive, lack transparency, and are difficult
to control or scale due to reliance on closed-source APIs. (4) Loss and Gradient-based Coreset
Sampling Methodsselect data based on loss values or gradient information. For example, Chen et al.
(2023) select samples to minimize evaluation loss, and Xia et al. (2024) use gradient signals to
identify critical data points. These methods are computationally intensive, especially for large-scale
models, and may suffer from approximation errors.

In summary, existing data selection methods often require substantial computational resources, ad-
ditional model training, or expensive queries, which limit their scalability to large datasets. Further-
more, they may struggle to enhance specific target domain capabilities of LLMs when applied to
open datasets.
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3 OUR NAIT METHOD

3.1 PRELIMINARY

Neuron activation analysis provides insights into the knowledge storage and operational mechanisms
of LLMs (Voita et al., 2024; Durrani et al., 2020; Xu et al., 2024c). Recent studies show that
subsets of neurons are activated by specific tasks, playing a critical role in LLMs’ ability to process
knowledge and solve various tasks (Yu & Ananiadou, 2024; Wang et al., 2024b; Tang et al., 2024).

Motivation Inspired by these findings, we hypothesize that the effectiveness of instruction data
may lie in its ability to activate task-relevant neurons. Specifically, when an LLM processes a given
sample, the closer the neuron activation pattern aligns with the activation characteristics of the target
capability, the more effective the sample is in improving the LLM’s performance in that domain.

Comparison Compared to existing methods, the proposed NAIT approach offers significant ad-
vantages, as shown in Table 1. Specifically, NAIT directly leverages neuron activation patterns
within LLMs, eliminating the need for external models or complex proxy features and greatly im-
proving data selection efficiency. Furthermore, due to the strong correlation between neuron activa-
tion and the internal knowledge and tasks of LLMs, NAIT can effectively improve both the model’s
specialized and general domain capabilities. By capturing the internal neuron activation states dur-
ing LLM operation, NAIT also provides robust interpretability for data selection. Overall, NAIT
outperforms existing methods in efficiency, scalability, and interpretability, offering a more effective
solution for IT data selection.

3.2 OUR DATA SELECTION FRAMEWORK

NAIT identifies IT data that effectively enhances specific domain capabilities C in the LLM M via
two main modules: (a) Neuron Activation Feature Extraction and (b) Activation Feature-Guided
Data Selection, as illustrated in Figure 1. The proposed framework is detailed below:

3.2.1 MODULE (A). NEURON ACTIVATION FEATURE EXTRACTION FOR TARGET
CAPABILITIES C

To establish the neuron activation features associated with target capabilities C, we implement a
three-stage features extraction process:

• In-domain Dataset Preparation Let P denote the capabilities-specific in-domain dataset con-
taining I representative data from the C-related tasks:

P = {Pi}Ii=1 where Pi ∼ PC (1)

where PC represents the intrinsic data distribution of capabilities C.
• Neuron Activation States Capture For each input sequence Pi = (t1, . . . , tK) with K tokens,

we record the activation states of all J neurons in M at each token tk at the decoder layer, which
provide a comprehensive view of the model’s internal representations:

A(tk) = [a
(k)
j ]Jj=1 ∈ RJ , k ∈ 1, . . . ,K. (2)

For each token tk, we record the neuron-level activation change by comparing the activation state
of each neuron Nj with the beginning token of data b:

∆A(tk) = A(tk)−A(b) = [δaj ]
J
j=1 ∈ RJ (3)

where δaj = a
(tk)
j − a

(b)
j quantifies the activation changes of neuron Nj for token tk. To summa-

rize the activations for the entire sequence, we compute the mean activation across all K tokens:

∆A(Pi) =
1

K

K∑
k=1

A(tk) ∈ RJ . (4)

Here, ∆A(Pi) represents the average activation state of all J neurons over the sequence Pi.
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• Neuron Activation Feature Construction
To obtain compact feature representations and identify key features, we apply Principal Compo-
nent Analysis (PCA) for dimensionality reduction:

VPi
= PCA (∆A(Pi), d) ∈ Rd (5)

The characteristic activation feature for capabilities C is then derived as the centroid of in-domain
features:

VP =
1

|P|
∑I

i=1
VPi

∈ Rd (6)

3.2.2 MODULE (B). ACTIVATION FEATURE-GUIDED DATA SELECTION

Given candidate dataset D = {Dn}Nn=1, we perform IT data selection through neuron activation
features matching:

• Feature Alignment Scoring For each candidate Dn ∈ D, capture its neuron activation states
A(Dn). Then, measure alignment with computed neuron activation features by projecting: the
activations features vector of candidate Dn ∈ D onto the computed neuron activation features:

S(Dn) = A(Dn) · VP (7)

• Data Ranking & Selection Select top-k candidates maximizing alignment scores:
Dselected = top-k

Dn∈D
(S(Dn)) (8)

4 EXPERIMENTS

4.1 SETUPS

Benchmark We evaluate NAIT across five representative capability domains using widely
adopted benchmarks: factual knowledge with MMLU (Hendrycks et al., 2021), mathematical rea-
soning with GSM (Cobbe et al., 2021), general reasoning with BBH (Suzgun et al., 2023), mul-
tilingual understanding with TyDiQA (Clark et al., 2020), and coding ability with BigCodeBench
(Zhuo et al., 2024) and HumanEval (Chen et al., 2021). We use in-domain splits as capability ref-
erences and conduct evaluation on the corresponding test sets. Benchmark setups are provided in
Appendix D.

Baselines We compare NAIT against a diverse set of representative IT data construction and se-
lection approaches: Alpaca-GPT4 (Peng et al., 2023), a widely used self-instruct dataset synthesized
by GPT-4; LIMA (Zhou et al., 2023), which shows that a small amount of carefully curated high-
quality IT data can be highly effective; AlpaGasus (Chen et al., 2024), which leverages ChatGPT
to score and filter data; Q2Q (Li et al., 2024), which evaluates data quality via loss signals from
a precursor model; and SelectIT (Liu et al., 2024b), which selects high-quality data by exploiting
uncertainty estimates from base LLMs. Detailed descriptions are provided in Appendix D.

Implementation Details In this study, we adopt LLaMA-2-7b as the foundational model for fine-
tuning. The detailed fine-tuning and text generation settings are provided in Appendix D.

4.2 MAIN RESULTS

Overall Performance The NAIT method effectively enhances model’s overall performance by
leveraging neuron activation features across multiple domain capabilities. As shown in Table 2,
System 01 represents the baseline performance of the Alpaca-GPT4, while System 12 demonstrates
the proposed NAIT method surpassing Alpaca-GPT4 under full fine-tuning setting. Notably, NAIT
achieves up to a 3% performance improvement across five test datasets using only 10% of the orig-
inal data, significantly surpassing existing IT data selection methods, such as AlpaGasus (System
03), Q2Q (System 04), and SelectIT (System 05). This demonstrates NAIT’s advantages in terms
of data efficiency and generalization. We also observe that activating certain domain capabilities
can affect the model’s performance on other downstream tasks. For example, activating only the
in-domain capability with TydiQA (System 10) leads to decreased performance on math and code
tasks. In contrast, when all in-domain capabilities are activated (System 12), model’s mathematical
performance improves.

5
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Table 2: Performance comparison of baslines using 10% of the IT data. This table shows the
results of various tasks across multiple baselines. NAIT (e.g., NAIT (MMLU)) refers to the process
where in-domain dataset to guide the IT data selection. Random refers to a randomly sampled
10% subset of the IT data. The Bold and Underline represent the best and second performance
respectively in each column. ∆ (↑) indicates the performance improvement relative to the ID 01.

System ID Method MMLU BBH GSM TydiQA CodeX AVG ∆ (↑)

Full Fine-tuning
01 Alpaca-GPT4 (Peng et al., 2023) 46.87 39.94 14.63 39.48 27.87 34.16 -
02 LIMA (Zhou et al., 2023) 45.20 39.91 15.76 44.92 27.75 34.71 +1.61%
03 01 + AlpaGasus (Chen et al., 2024) 43.21 39.91 13.34 44.70 23.94 33.02 -3.33%
04 01 + Q2Q (Li et al., 2024) 46.73 40.34 14.50 44.41 25.19 34.23 +0.22%
05 01 + SelectIT (Liu et al., 2024b) 47.90 40.33 15.40 43.91 27.92 35.09 +2.72%
06 01 + Random Baseline 47.14 39.21 14.13 44.16 25.55 34.04 -0.35%

Our Proposed Method (Individual Capability Features)
07 01 + NAIT (MMLU) 47.81 38.52 15.68 47.16 25.23 34.88 +2.11%
08 01 + NAIT (BBH) 47.78 40.46 13.34 45.93 25.15 34.53 +1.09%
09 01 + NAIT (GSM) 46.45 40.28 16.00 46.54 27.84 35.42 +3.70%
10 01 + NAIT (TydiQA) 46.17 40.00 13.80 47.78 25.02 34.55 +1.16%
11 01 + NAIT (CodeX) 47.51 39.72 15.53 44.19 28.49 35.09 +2.72%

Our Proposed Method (All Capability Features)
12 01 + NAIT (7 + 8 + 9 + 10 + 11) 46.83 40.02 16.53 46.09 26.44 35.18 +3.00%

NAIT with Distinct Capability Features The experimental results from System 07 to 11 demon-
strate that the NAIT method can achieve more consistent and stable performance improvements when
targeting individual-specific abilities. Notably, this advantage is particularly pronounced in complex
tasks such as GSM, TydiQA, and CodeX, with improvements of 1.87%, 3.62%, and 2.94% over the
random baseline, respectively. Further analysis reveals that the contributions of neuron activation
features vary across different task domains and exhibit a certain degree of cross-domain transfer-
ability. For instance, neuron activation features extracted based on the BBH in-domain dataset can
significantly enhance the model’s performance on the MMLU task, while those extracted from the
CodeX in-domain dataset can likewise effectively improve the model’s performance on the GSM
task, with the improvement approaching that of their respective original activation states. It is worth
mentioning that the performance of the NAIT method on the GSM dataset reaches as high as 3.80%,
even surpassing the model under multi-capability activation (System 12). These results fully demon-
strate that the NAIT method not only effectively eliminates redundant or highly similar samples, but
also maintains data diversity, thereby further validating its effectiveness and generalization capabil-
ity in optimizing data utilization and enhancing task-specific performance.

5 ANALYSIS

This section aims to analyze further and address the following research questions: (1) How do the
number of in-domain datasets, the proportion of IT datasets, model size, and IT data methods affect
NAIT? (see § 5.1) (2) What are the advantages of NAIT in cost efficiency? (see § 5.2) (3) How
interpretable in NAIT? (see § 5.3) (4) How does NAIT perform in target domain? (§ Appendix F)

5.1 ABLATION STUDY

Proportion of Selected IT Dataset Although NAIT demonstrates excellent performance in data
evaluation and ranking, selecting the optimal data proportion from IT datasets with a large amount of
redundant information remains challenging. To further investigate this, we adjusted the proportion
of the selected IT dataset from 10% to 100% and analyzed the performance of NAIT under different
IT data proportions. As shown in Figure 2, the top 30% of IT samples selected by NAIT exhibited
the best performance. Notably, as the proportion of training data continued to increase, the model’s
performance showed an overall downward trend, reaching its lowest point when the entire dataset
(100%) was used. These results indicate that excessive redundant data may undermine the model’s
generalization, further emphasizing the need for data selection to maximize model performance.
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Figure 2: Performance at different propor-
tions of the IT dataset. Task performance in
NAIT (the in-domain dataset), e.g., MMLU in
NAIT, refers to using in-domain data to guide
IT data selection and to assess task outcomes.
The comprehensive results correspond to Sys-
tem 12.

Number of In-domain Data The number of in-
domain data is a critical parameter in our method,
as it directly influences the effectiveness of extract-
ing neuron activation features for specific domain
capabilities. As shown in Figure 3, we fine-tune the
model using IT data selected based on the activa-
tion patterns of each in-domain data group and eval-
uate its performance on corresponding tasks. The
results indicate that NAIT outperforms the random
selection baseline across all tasks in most cases.
Even when the data size is small (e.g., 16, 64, or
256 samples), most cases exceed the random base-
line. This suggests that even with limited data, the
extracted features effectively capture the required
capabilities. As the number of in-domain data in-
creases, performance improvements gradually level
off, with most tasks reaching their maximum per-
formance at the largest data size. However, for
GSM and TydiQA, peak performance is achieved at
18.35 and 47.57, respectively, when the data size is
4096. This highlights that the quality of in-domain
data also plays an important role in enabling NAIT
to capture task-specific features.
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Figure 3: Comparison of NAIT with random data selection across different in-domain data
scales at 30% IT dataset. Task performance in NAIT (in-domain dataset), such as MMLU in
NAIT (MMLU), refers to using the in-domain dataset to guide IT data selection and evaluate task
performance. The dashed line indicates the 30% of the IT dataset random selection baseline.

Table 3: Effectiveness of NAIT Across Models.
Alpaca and Random are trained on the full dataset
and a random of 10% subset, while NAIT selects
a task-relevant 10% subset.

Method MMLU BBH GSM TydiQA CodeX Overall

AVG ∆ (↑)

LLama-2-13b
Alpaca 53.90 45.00 20.85 44.13 34.84 39.74 -

+Random 52.70 47.59 22.06 44.66 36.79 40.76 +2.57%
+NAIT 54.10 47.04 24.11 48.89 38.53 42.53 +7.02%

Mistral-7b
Alpaca 47.00 40.19 12.89 35.40 34.42 33.98 -

+Random 48.37 46.11 17.36 34.80 41.81 37.69 +10.92%
+NAIT 52.90 49.07 18.95 41.22 45.02 41.43 +21.92%

Llama-3-8b
Alpaca 59.60 48.38 29.11 48.38 57.36 48.57 -

+Random 48.37 55.93 37.23 54.65 69.63 52.10 +7.27%
+NAIT 60.80 60.93 43.91 47.72 74.78 57.63 +18.65%

Various Foundation Models Our method
demonstrates significant performance improve-
ments when fine-tuning the LLaMA-2-7b model
with the curated Alpaca-NAIT dataset. To
evaluate its robustness and generalizability, we
extend our study to other foundational mod-
els, including (1) LLaMA-2-13b, representing
models of different scales; and (2) Mistral-
7b and LLaMA-3-8b, representing models with
different architectures. As shown in Table 3,
NAIT achieves similar performance improve-
ments on LLaMA-2-13b, demonstrating effec-
tiveness across models of varying sizes. Ad-
ditionally, NAIT achieves gains of +21.92%
on Mistral-7b and +18.65% on LLaMA-3-8b,
highlighting its potential for diverse architec-
tures and advanced models.
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Figure 4: Comparison of NAIT across different
IT dataset. Task performance in NAIT refers to
using the all in-domain dataset to guide IT data
selection and evaluate task performance.

Different Instruction Tuning Datasets
To further verify the effectiveness of our
method, we extend our IT selection method to
other IT datasets, including Evo-Instruct (Xu
et al., 2024a) using WizardLM and Orca-
GPT4 (Mukherjee et al., 2023). The experi-
mental results are shown in Figure 4, as the
proportion of IT data increases, the model
performance rises and then declines. Notably,
the efficient IT data subsets selected by NAIT
achieve optimal performance at 50% (Orca-
GPT4) and 80% (Evo-Instruct), significantly
outperforming the use of the full dataset.
Additionally, Evol-Instruct and Orca-GPT4
require a higher proportion of data, especially
Evol-Instruct, which needs up to 80% to
achieve optimal performance, reflecting their
higher quality, complexity, and information density compared to Alpaca-GPT4.

Different Selection Strategies We also conducted experiments using context length and perplex-
ity as measures of data complexity, following Liu et al. (2024c), to provide an additional insight into
our method’s effectiveness, as detailed in Appendix E.

5.2 COST EFFICIENCY

Table 4: Efficiency Comparison of Different
Methods on NVIDIA A800 80GB with Batch
Size set to 8. API costs follow the official Ope-
nAI pricing ($2.00/million input tokens, $8/mil-
lion output tokens for GPT-4.1); GPU costs are es-
timated based on the Google Cloud pricing ($1.15
per GPU hour for NVIDIA A800 80GB).

Method Externally-Independent Time Cost

AlpaGasusChen et al. (2024) ✗ 19.07h $178.02
Q2QLi et al. (2024) ✗ 3.52h $4.05

SelectITLiu et al. (2024b) ✓ 23.20h $26.68
NAIT ✓ 1.32h $1.52

We compare inference time and cost between
NAIT and existing approaches, including Al-
paGasus (GPT-4o), Q2Q (GPT-4o), and Selec-
tIT, on the Alpaca-GPT4 dataset (52k). As
shown in Table 4, NAIT achieves up to 19×
and 4× cost reductions compared to AlpaGasus
and Q2Q, respectively, along with significant
improvements in inference speed by 17.75 and
2.2 hours. Compared to SelectIT, NAIT reduces
cost by 94.3% and achieves a 17.58× speedup.
These results highlight the feasibility and effec-
tiveness of NAIT in real-world applications.

5.3 INTERPRETABILITY ANALYSIS

Transferability of Neural Activation Feature From the results in Table 2, we observe that the
neural activation features corresponding to different capabilities exhibit remarkable variation in their
transferability. For instance, the neural activation feature extracted based on GSM significantly en-
hances the overall average performance of LLMs, and it also yields positive effects on BBH and
CodeX tasks. To further investigate the relationships between the transferability of neural activa-
tion features, we introduce Transferability to evaluate each capability during the transfer process.
Transferability of capability i reflects to what extent i can enhance other capabilities when activated.
It is defined as

Transferabilityi = Acc(i, j)− Acc(j, j) (9)

where Acc(i, j) is the performance on task j activated by feature i, and Acc(j, j) is task j’s baseline
performance with its own activation feature.

5 4 3 2 1 0 1 2 3 4 5

NAIT(MMLU)

5 4 3 2 1 0 1 2 3 4 5

NAIT(BBH)

5 4 3 2 1 0 1 2 3 4 5

NAIT(GSM)

5 4 3 2 1 0 1 2 3 4 5

NAIT(TydiQA)

5 4 3 2 1 0 1 2 3 4 5

NAIT(CodeX)

5 4 3 2 1 0 1 2 3 4 5

NAIT(Comprehensive)

Transferability

MMLU BBH GSM TydiQA CodeX Comprehensive

Figure 5: Transferability of neural activation features across capabilities. Each column repre-
sents the capability to which the neural activation feature is applied. Icons with an outline border
indicate the capability’s performance on its own task, which serves as the baseline reference.
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As shown in Figure 5, the transferability across capabilities can be directly observed. On the one
hand, activation features of single capabilities such as GSM and CodeX exhibit evident positive
transfer in cross-task settings, indicating that logical reasoning and programmatic features possess
strong general power. In contrast, the activation features of TydiQA show weaker or even neg-
ative transfer, and their performance within the task itself is relatively limited, reflecting both a
dependence on language-specific patterns and shortcomings in cross-domain adaptability. On the
other hand, when multiple capabilities are aggregated into a comprehensive activation direction, the
model achieves optimal overall transferability. This finding demonstrates the existence of a universal
core feature whose neural activation patterns remain stable across tasks, thereby providing a solid
foundation for the model’s integrated capabilities.

MMLU

BBH

GSM

TydiQA

CodeX

Comprehensive

Figure 6: Comparison of the direc-
tion of activation feature extracted by
NAIT across different capabilities.

Relation of Activation Features To further investigate
the interpretability of NAIT, we apply T-SNE to project
the neuron activation features into representation space
(see Figure 6). The figure shows that the feature’s di-
rections corresponding to different targeted capabilities
form relatively separable clusters in the representation
space, indicating their consistency with the task-specific
reasoning mechanisms or knowledge domains. TydiQA
is farther from the other capability directions, suggesting
weaker transferability. Notably, the comprehensive, as an
aggregated representation across multiple tasks, reveals
the general core capabilities. This indicates that there
exist general data or features capable of simultaneously
activating multiple distinct abilities, thereby supporting
cross-task knowledge transfer and capability integration.

Comprehensive
CodeX
GSM
MMLU
BBH
TydiQA

Figure 7: Distribution of 10% IT
dataset selected by NAIT. Each subset
selected by different activation features
shows more than 70% overlap with the
comprehensive subset.

Selected IT Data Distribution To further explore this
general capability, we conduct a statistical analysis of
the IT subsets selected from different activation features.
The results show that when the selection proportion is
set to 30%, more than 80% of the subsets overlap across
different capabilities. Even under a stricter 10% selec-
tion proportion, the overlap still exceeds 70%, indicating
that NAIT tends to identify a stable set of general core
data across tasks. we draw the distribution of the 10%
IT dataset selected by NAIT. As shown in Figure 7, a
considerable portion of the selected samples are repeat-
edly shared across multiple targeted capabilities, while a
smaller fraction remains task-specific, further validating
the universal capability that NAIT achieves in identifying
data with broad applicability.

6 CONCLUSION

In this paper, we propose NAIT, an efficient framework for selecting high-quality IT data by lever-
aging neural activation patterns. NAIT identifies the optimal data subset by evaluating the alignment
between candidate samples and neural activation features associated with target capabilities. Exper-
imental results demonstrate that models fine-tuned on selected data consistently outperform baseline
methods. Ablation studies further verify that only a small number of samples are sufficient to accu-
rately extract activation features that capture model capabilities. In addition, NAIT exhibits strong
robustness and reveals significant cross-task transferability of neural activation features. Further
analysis shows that data with logical reasoning and programmatic characteristics tend to activate
stronger general capabilities in the model, and that a stable core subset of data exists that can uni-
versally enhance performance across a variety of tasks.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics1. Our research focuses on improving the efficiency
and interpretability of IT for LLMs through neurally informed data selection. We do not introduce
new data collection involving human participants, nor do we use private or personally identifiable
data. All datasets employed (e.g., Alpaca-GPT4, GSM8K, MMLU, BBH, TyDiQA, CodeX) are
publicly available and widely used in the research community. We carefully respect data licenses
and ensure compliance with privacy and intellectual property standards. Our method aims to re-
duce the computational and environmental cost of developing LLMs by selecting smaller subsets of
high-quality data, which aligns with the principle of minimizing harm. However, as with other LLM
research, there is the potential risk of misuse in generating biased or harmful outputs. To mitigate
this, we explicitly analyze fairness and generalization across different task domains and report trans-
ferability results that highlight both strengths and limits of our approach. We disclose all relevant
details transparently to foster responsible use of our method.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. Firstly, we describe the construc-
tion process of our neuron activation feature framework in § 3 with explicit mathematical definitions.
Additionally, detailed descriptions of the model architectures, datasets, hyperparameters, and train-
ing setups are provided in § 4.1 and § Appendix D. Further experimental details, including ablation
studies and comparisons with baselines, are presented in § 5 and § Appendices E to F. All in-domain
datasets and IT datasets used in our experiments (e.g., Alpaca-GPT4, Evo-Instruct, Orca-GPT4) are
publicly available, and dataset statistics are summarized in § Appendix D. To facilitate reproducibil-
ity, we commit to open-sourcing the implementation of NAIT, the cross-task neuron feature library,
and the Alpaca-NAIT dataset upon acceptance. These resources, along with clear documentation,
will allow researchers to fully reproduce and extend our experiments.
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A LIMITATION

Model Scale Due to computational limitations, our analysis is restricted to models with fewer than
20B parameters. Future studies could evaluate this method on larger models to provide insights into
its scalability and broader implications for optimizing LLMs.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

Polishing the Writing with a Large Language Model In preparing this paper, we used a large
language model to refine the writing. Typical applications included: (1) enhancing grammar and
style; (2) ensuring consistency of terminology; and (3) improving the quality of translations.

C COMPARATIVE ANALYSIS BEFORE AND AFTER IT

Table 5: Comparison of model functions before and after instruction tuning.

Function Before Instruction Tuning After Instruction Tuning

Enhancing instruction-following ability Limited to text completion Capable of following instructions
Activating latent abilities Relies on knowledge from pertaining Activates abilities not evident in pretrain-

ing, such as logical reasoning or task de-
composition

Enhancing downstream task performance General knowledge capabilities Improved downstream task capabilities

The following table 5 compares the main functional differences of models before and after IT. As
shown, IT significantly improves instruction-following abilities, activates latent skills such as rea-
soning and task decomposition, and leads to notable gains in downstream task performance.
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Benchmark Settings We evaluated our approach on various downstream tasks using their data as
in-domain data (detailed dataset descriptions are in Appendix D):

• Factual Knowledge: We evaluate the Massive Multitask Language Understanding (MMLU)
dataset (Hendrycks et al., 2021), splitting it into in-domain and test sets, and report 5-shot re-
sults.

• Math Capability: We use the Grade School Math (GSM) dataset (Cobbe et al., 2021), divided
into in-domain and test sets, and report 5-shot results under the CoT setting.

• Reasoning: We assess the Big-Bench-Hard (BBH) dataset (Suzgun et al., 2023), with in-domain
and test splits, and report 5-shot results under the CoT setting.

• Multilingual Understanding: We evaluate the TyDiQA benchmark (Clark et al., 2020), a multi-
lingual QA dataset, using in-domain and test splits, and report 5-shot results with the gold-passage
setup.

• Coding Capability: We evaluate coding ability using BigCodeBench (Zhuo et al., 2024) and
HumanEval (Chen et al., 2021), reporting pass@10 results with a sampling temperature of 0.8.

D DETAILS OF TRAINING AND EVALUATION SETUP

Statistics of the in-domain, IT, and Test dataset Table 6 summarizes the statistics of the In-
domain, IT, and Test datasets.

Table 6: Statistics of the Number of in-domain, IT, and Test datasets Used in Experiment.

DownStream Task MMLU BBH GSM Tydiqa CodeX

In-domain Dataset 1,531 4,556 7,473 49,400 1140
Alpaca-GPT4 IT Dataset 52,002
Evol-Instruct IT Dataset 70,000
Oral-GPT4 IT Dataset 100,000
Test Dataset 14042 1080 1319 900 164
Test few-Shot 5 1 8 1 0

Baselines Settings Our comparison baselines cover a variety of advanced methods for evaluating
and improving IT datasets:

• Alpaca-GPT4 (Peng et al., 2023): A widely utilized IT dataset that leverages a self-instruct
methodology, enabling the autonomous generation of instructions through the advanced capa-
bilities of GPT-4.

• LIMA (Zhou et al., 2023): It primarily comprises 1,000 meticulously crafted, high-quality IT data
points designed to enhance the alignment capabilities of LLMs.

• AlpaGasus (Chen et al., 2024): This approach employs the advanced capabilities of ChatGPT to
evaluate and selectively curate data from the original Alpaca dataset.

• Q2Q (Li et al., 2024): It functions by training a precursor model and assessing the quality of the
instructional data based on two distinct loss values derived from this model.

• SelectIT (Liu et al., 2024b): A novel method that leverages the intrinsic uncertainty of LLMs to
select high-quality IT data without requiring external resources.

Fine-tuning Parameters The model is fine-tuned over 3 epochs with a batch size of 128 to ensure
efficient learning while avoiding overfitting. The optimization process employs the Adam optimizer
with hyperparameters set to β1 = 0.9 and β2 = 0.999, which are standard values for stable
and effective training. The learning rate follows a cosine decay schedule, starting at 2e-5 and
decreasing gradually to 0, a strategy known to improve convergence by reducing oscillations during
later training stages. To maximize the model’s performance, we utilize an input sequence length
of 2048 tokens, as this configuration has been demonstrated to be effective for LLMs in handling
long-context tasks. Table 7 provides an overview of the key hyperparameters used during training
on 4 A800 GPUs with 1 node.
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Table 7: Key hyperparameter settings for supervised fine-tuning.

Parameter Key Value

Learning rate 2.0e-5
batch size 128
cutoff length 2048
Ir scheduler type cosine
bf16 True
warmup ratio 0.03
weight decay 0.1
epoch 3

Text Generation Settings For text generation, we employ greedy search for computational ef-
ficiency, and set the temperature to 0.8 and the top-p to 0.95 following the HumanEval set-
ting (Chen et al., 2021), to enhance the creativity and diversity of the generated content while
maintaining its accuracy and contextual relevance.

E THE DETAILS OF DIFFERENT SELECTION STRATEGIES

Table 8: Performance comparison of different selection strategies using 10% of the IT data.
The Bold represents the best performance respectively in each column. ∆ (↑) indicates the perfor-
mance improvement relative to the ID 01 baseline.

Method MMLU BBH GSM TydiQA CodeX Overall

AVG ∆ (↑)

Alpaca-GPT4 46.87 39.94 14.63 39.48 27.87 34.16 -
+ Hard (PPL) 45.52 22.22 8.72 27.87 20.56 24.98 -26.87%
+ Easy (PPL) 46.78 38.15 15.39 33.12 28.93 32.47 -5.53%

+ Hard (Length) 46.10 36.94 16.00 34.32 30.89 32.85 -3.83%
+ Easy (Length) 44.15 10.28 6.37 28.07 17.00 21.17 -38.03%

+ NAIT 46.83 40.02 16.53 46.09 26.44 35.18 +3.00%

F NAIT FOR CROSS-LINGUAL

Table 9: Overall results on machine translation with LLMs using the ALMA-7b. NAIT indicates
selecting the top 30% of data by NAIT, Rand. refers to randomly selecting 30% of data, and Full
uses the full dataset.

Method En⇒De De⇒En Zh⇒En En⇒Zh Overall

COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

+ Full 84.54 28.24 83.13 29.06 79.80 22.89 84.15 34.58 82.91 28.69
+ Rand. 82.44 28.29 81.12 27.20 78.53 21.11 82.12 33.91 81.05 27.63
+ NAIT 85.14 29.02 82.50 28.70 80.22 23.11 83.89 35.92 82.94 29.19

As shown in Table 9, we further evaluate the cross-lingual data selection capability of NAIT on the
multilingual IT dataset in the context of machine translation. We adopt the powerful ALMA-7b (Xu
et al., 2024b) model as the backbone and conduct experiments on four representative translation
directions: English-German, German-English, Chinese-English, and English-Chinese. The experi-
mental results demonstrate that the NAIT method outperforms both random selection (Rand.) and
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using the full dataset (Full) on most evaluation metrics. Notably, NAIT achieves the highest overall
COMET (82.94) and BLEU (29.19) scores, further highlighting its superior generalization ability
and robustness in both target domains and cross-lingual scenarios.
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