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ABSTRACT

We revisit InfoMax for representation learning, using hyperspherical geometry
with a non-parametric von Mises-Fisher kernel density estimator and differential
entropy. This method is minimal with no asymmetry and trains stably. Results
are competitive on smaller datasets such as CIFAR-10, STL-10 and LC25000, but
lags behind modern baselines on ImageNet-1000. Experiments show that weaken-
ing the global entropy term consistently helps classification accuracy, suggesting
that strict mutual information classification favors coarse grouping over fine dis-
crimination.

1 INTRODUCTION

Self-supervised methods keep improving, but much of the progress has come from heuristics: archi-
tectural asymmetries, stop-grads, whitening, variance penalties, and carefully tuned augmentations.
These choices work, yet the connection to first principles is often indirect. In this work, we revisit
the InfoMax principle (Linsker, 1988b), and study a different estimator: a hyperspherical formula-
tion with a non-parametric density and differential entropy. Our goal is to test how this theoretical
backed formulation behaves, study what it is actually learning and where it breaks compared to
modern SSL methods.

In this paper, we study an implementation of the InfoMax principle, while keeping it close to the
mathematical foundation. We evaluate it with multiple datasets, showing that while it works well
in smaller datasets, the learned representations end up representing coarser structures as the number
of classes increases. We show that the low accuracy in ImageNet-1000 is the result of these coarser
structures, not a fundamental failure in the training process. Additionally, we performed several
experiments to determine how certain hyperparameters affect the classification accuracy, and found
that weakening the global separation makes accuracy improvement slower, but leads to higher ac-
curacy given enough epochs, while a stronger global separation leads to earlier higher accuracy but
eventual learning stagnation.

2 RELATED WORK

The InfoMax principle goes back to early neural coding work, where maximizing output entropy
under simple constraints was proposed as a driver for useful features (Linsker, 1988a). It later
grounded classic ICA via entropy maximization at the output layer (Bell & Sejnowski, 1995). A
complementary line formalizes representation learning through explicit mutual information terms
and variational bounds (Barber & Agakov, 2003; Belghazi et al., 2018).

Several deep methods are framed around maximizing mutual information between inputs and
learned representations. Deep InfoMax pursues both global and local agreements (Hjelm et al.,
2019). AMDIM extends this with multi-scale and patch-level objectives (Bachman et al., 2019).
Contrastive predictive coding casts InfoMax through a classification view and the InfoNCE bound
(van den Oord et al., 2019), a perspective that underlies later contrastive systems (Chen et al., 2020;
He et al., 2020). A different but related path maximizes MI between cluster assignments for seg-
mentation/cluster discovery (Ji et al., 2019).
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Beyond InfoNCE, there are broader MI estimators and f-divergence bounds used in practice (Barber
& Agakov, 2003; Belghazi et al., 2018; Nguyen et al., 2007). Work in information-theoretic learning
also explores entropy and divergence criteria directly (Principe, 2010). Our approach sits in this
space: we use a minimal, simple estimator on the hypersphere with differential entropy, keeping the
objective close to first principles.

A parallel theoretical foundation argues for shaping information rather than maximizing it: pre-
serve what predicts the task while discarding nuisance variability (Tishby et al., 2000). Many recent
SSL objectives can be read as mixing an InfoMax drive (agreement across views) with implicit
bottlenecks or regularizers—whitening, variance penalties, stop-grad, or architectural asymmetries
(Zbontar et al., 2021; Bardes et al., 2021; Grill et al., 2020). Our study focuses on the pure Info-
Max side and documents where that alone succeeds (coarse structure) and where extra bias appears
necessary (fine-grained recognition).

3 APPROACH

Our method is based on the InfoMax principle. The objective of InfoMax is to maximize the mutual
information between the source and the learned representations. The mutual information is defined
as I(X;Y ) = H(Y )−H(Y |X). Calculating entropy in high-dimensional spaces is usually consid-
ered intractable. For that reason, we opted to restrict the representation geometry to a hypersphere.
Under that geometry, we can use the von Mises-Fisher (vMF) kernel to estimate the density in a
non-parametric way.

For unit vectors xi,xj ∈ SD−1 with cosine similarity sij = x⊤
i xj , the von Mises–Fisher (vMF)

kernel with concentration κ and normalization constant CD(κ) is:
Kκ(xi,xj) = CD(κ) exp

(
κ sij

)
, (1)

Then, we estimate the global differential entropy as:

Hglobal = − 1

N

N∑
i=1

log

 1

N − 1

N∑
j=1
j ̸=i

Kκ(xi,xj)

 (2)

and the local differential entropy (only between the set P(i) of positive pairs of i) as:

Hlocal = − 1

N

N∑
i=1

log

 1

N − 1

N∑
j∈P(i)

Kκ(xi,xj)

 (3)

Finally, after adding two α and β factors (default to 1), we an express the mutual information formula
as

I(X;Y ) ≈ α ·Hglobal − β ·Hlocal (4)

For generating the views of each sample, we opted to a similar augmentation recipe as DINO (Caron
et al., 2021). In our case, we used two global views and six local views. Each global view takes a
crop of 40% to 100% of the sample. And each local view takes a crop of 5% to 40% of the sample.

Unless mentioned otherwise, all trainings were done using AdamW optimizer, a batch size of 128
and a learning rate of 1e − 3. To make our runs reproducible, we implemented our code using
the Lightly Framework and used the evaluation setup developed by Kalapos & Gyires-Tóth (2024).
Models trained on LC25000 were trained for 25000 epochs, the ones trained on ImageNet-1000
were trained for 100 epochs, and the ones trained on CIFAR-10 and STL-10 were trained for 200
epochs.

4 MAIN RESULTS

We trained and evaluated our method on CIFAR-10 (Krizhevsky & Hinton, 2009), STL-10 (Coates
et al., 2011), LC-25000 (Borkowski et al., 2019) and ImageNet-1000 (Deng et al., 2009) datasets.
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Linear K-NN
Dataset Method Arch Top 1 Top 5 Top 1 Top 5

STL-10 Supervised RN18 71.86 97.41 72.43 87.69
STL-10 Ours RN18 81.98 99.25 76.85 93.83
STL-10 Ours VIT-T16 85.98 99.66 80.31 94.65
STL-10 VICReg RN18 81.69 99.14 78.48 93.85
STL-10 SimCLR RN18 82.89 99.36 79.16 94.91
STL-10 Barlow Twins RN18 82.19 99.04 78.20 93.98
STL-10 BYOL RN18 81.28 99.28 77.14 94.39
STL-10 DINO RN18 79.75 99.11 76.85 93.53
CIFAR-10 Supervised RN18 84.17 98.97 84.16 93.36
CIFAR-10 Ours RN18 72.54 97.97 68.11 89.14
CIFAR-10 VICReg RN18 74.72 98.14 72.67 90.59
CIFAR-10 SimCLR RN18 72.58 97.86 69.16 90.25
CIFAR-10 Barlow Twins RN18 74.63 97.91 71.81 90.87
CIFAR-10 BYOL RN18 69.37 97.81 65.54 89.74
CIFAR-10 DINO RN18 72.46 98.02 70.07 90.34
LC-25000 Supervised RN18 99.83 - 100.00 -
LC-25000 Ours RN18 99.75 - 99.99 -
LC-25000 Ours VIT-T16 98.54 - 99.89 -
LC-25000 VICReg RN18 99.30 - 100.00 -
LC-25000 SimCLR RN18 98.35 - 99.99 -
LC-25000 Barlow Twins RN18 98.09 - 99.98 -
LC-25000 BYOL RN18 95.94 - 99.54 -
LC-25000 DINO RN18 98.46 - 99.99 -
IM-1000 Ours RN50 52.12 77.81 35.37 64.50
IM-100* Ours* RN50 68.15 89.68 55.25 77.38

Table 1: Training results. Linear and K-NN accuracies (top-1 and top-5). *IM-100 metrics were
calculated using the ImageNet-1000 trained model.

The network architectures trained were ResNet-18 (He et al., 2016), ResNet-50 (for ImageNet-1000)
and ViT-Tiny (Dosovitskiy et al., 2021) (for STL-10 and LC-25000). The training was done on a
single NVIDIA H100 GPU with 80GB of GPU memory hosted in the cloud. The classification
accuracy is summarized in Table 1. While the results were good for datasets with a low number
of “latent classes”, it is clear that our method did not fare well for more diverse datasets such as
ImageNet-1000. However, the gap between top 1 and top 5 accuracy suggests that despite the low
top 1 accuracy, our method still produced a good coarse structure. We can confirm this if we take
our ImageNet-1000 model and evaluate its linear probe and K-NN accuracy on the ImageNet-100
dataset: the results are much better than in ImageNet-1000, even if the gap is smaller.

4.1 EMERGENT FOCUSING ON OBJECTS

Neural networks trained using our method learned to focus on main objects in an image. This
behavior was detected both in the ResNet50 trained on ImageNet-1000 and a ViT-Tiny trained on
STL-10. As shown in Figure 1, when visualized the gradients using SmoothGrad-CAM technique
applied to the ResNet-50 trained on ImageNet-1000, we can see that the network learned with some
success to focus on the main objects in each image. On the other hand, in Figure 2, we visualized
the average CLS-to-patch attention across all transformers blocks of a ViT-Tiny trained on STL-10
using our method. In both cases, we can see that the networks learned to focus on the main objects
in the image.

5 IMPACT OF HYPERPARAMETERS

We explored variations of the number of dimensions in the projector, the impact of different κ (band-
width parameter) in the final accuracy and the weight of the local entropy estimation (β parameter).
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Figure 1: SmoothGrad-CAM visualization of gradients produced by a ResNet-50 trained on Ima-
geNet 1000. Example images are out of training distribution.

Figure 2: Attention overlays from a ViT-Tiny trained on STL-10, obtained by averaging CLS-to-
patch attention across all transformer blocks. Example images are out of distribution.
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Unlike other methods such as Barlow Twins, we did not find any noticeable difference for changing
the number of dimensions of the projector. On the other hand, κ influence is more noticeable.

5.1 PROJECTOR DIMENSIONS

We trained a ResNet-18 using our method on STL-10, changing the number of dimensions of the
final projector to 128, 256, 512, 1024, 2048 and 4096. There is no clear advantage of increasing the
size of the final projector, and the learning curves are very similar in all cases, as shown in Figure 3.
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Figure 3: Linear probe top 1 accuracy per epoch, varying the number of dimensions of the projector.

5.2 BANDWIDTH PARAMETER

We trained a ResNet-18 using our method on STL-10, varying the bandwidth parameter κ to 0.1,
0.6931 ≈ ln 2, 1, 10 and 20. Recall that κ is the concentration (bandwidth) of the vMF kernel
used in our non-parametric density estimate: larger κ produces a sharper kernel and a smaller κ a
smoother one. In this case, we found that higher κ values accelerate early accuracy, however, if it
is too high it hinders the learning process after the initial epochs. Smaller κ values lead to slower
accuracy improvements, but given enough epochs seems to eventually catch up. In the Figure 4 the
accuracy per epoch is shown for each κ evaluated.
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Figure 4: Linear probe top 1 accuracy per epoch, varying the bandwidth parameter.

5.3 LOCAL ENTROPY ESTIMATION WEIGHT

Additionally, we modified the weight of the local entropy estimation. We found that reducing the
β weight, alternatively weighting separation more, leads to higher early accuracy. However, these
setups seems to get stuck after some epochs, and runs with higher local weight end up having a
higher final accuracy, despite the slower early accuracy gains. The accuracy during training of those
variations is shown in Figure 5. Below in that figure, a zoom in section is shown, where we can
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Figure 5: Linear accuracy over epochs by changing the β weight (above). Below, a zoom in, high-
lighting the curves for β = 0.1 and β = 0.75

appreciate how the accuracy of β = 0.1 stalls compared to other settings, particularly β = 0.75.
This suggests that longer training would benefit from a softer separation force. Which is interesting,
as this suggests that at least for this sort of classification problems, the best representation may not
be the one with maximum mutual information.

6 CONCLUSION

In this paper, we discussed an implementation of the InfoMax idea of maximizing Mutual Informa-
tion. In this case, we opted to use hypersphere geometry, non-parametric kernel density estimators
and differential Shannon entropy. We found that this method can generate good representations
in datasets with low number of classes, but it starts to lag behind for datasets with higher level of
classes. However, the metrics suggest that lower accuracy is due to a learned coarse structure, and
not a failure to learn good representations. Our experiments additionally point in the direction that
we can get better representations if we relax our global entropy term. This suggests that, at least
for classification, representations should not look to maximize mutual information, but instead there
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may be another theoretical objective that may explain better how to produce strong fine-grained
structures.
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A LEARNING CURVES

The curves for linear top-1 accuracy are shown at Figure 6. It is interesting to note that no method
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stuck around 70% linear top-1 accuracy.
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Figure 6: Top 1 accuracy of a linear classifier trained at the end of each epoch.
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B IMAGENET-100 CLASS CENTROID SIMILARITY

To visualize how the learned representations may overlap between classes, we opted to create a
heatmap of the cosine similarity of the class centroids of ImageNet-100 classes, shown in Figure 7.
For this, we used a ResNet-50 trained on ImageNet-1000. From this visualization, we can infer that
the model has some classes with more overlap than others. For instance, the big square in the middle
corresponds to animals. That square itself can be divided in dogs and other animals, being the dogs
the most intense square in the lower right corner, and other four legged wild animals above at the
left. The rest of the animals are in the weaker big square at the right bottom of the visualization.
The weak square at the top left is dominated by human created objects.
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Figure 7: Cosine similarity of ImageNet-100 class centroids, calculated using a ResNet-50 trained
on ImageNet-1000.
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