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Abstract
Recent advances in diffusion bridge models
leverage Doob’s h-transform to establish fixed
endpoints between distributions, demonstrating
promising results in image translation and restora-
tion tasks. However, these approaches frequently
produce blurred or excessively smoothed image
details and lack a comprehensive theoretical foun-
dation to explain these shortcomings. To ad-
dress these limitations, we propose UniDB, a uni-
fied framework for diffusion bridges based on
Stochastic Optimal Control (SOC). UniDB for-
mulates the problem through an SOC-based opti-
mization and derives a closed-form solution for
the optimal controller, thereby unifying and gen-
eralizing existing diffusion bridge models. We
demonstrate that existing diffusion bridges em-
ploying Doob’s h-transform constitute a special
case of our framework, emerging when the termi-
nal penalty coefficient in the SOC cost function
tends to infinity. By incorporating a tunable ter-
minal penalty coefficient, UniDB achieves an op-
timal balance between control costs and terminal
penalties, substantially improving detail preserva-
tion and output quality. Notably, UniDB seam-
lessly integrates with existing diffusion bridge
models, requiring only minimal code modifica-
tions. Extensive experiments across diverse im-
age restoration tasks validate the superiority and
adaptability of the proposed framework. Our
code is available at https://github.com/
UniDB-SOC/UniDB/.

1. Introduction
The diffusion model has been extensively utilized across a
range of applications, including image generation and edit-
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ing (Ho et al., 2020; Kawar et al., 2022; Song et al., 2020;
Xia et al., 2023; Li et al., 2023), imitation learning (Wu et al.,
2024; Chi et al., 2023; Ze et al., 2024) and reinforcement
learning (Yang et al., 2023; Ding et al., 2024a), etc. Despite
its versatility, the standard diffusion model faces limitations
in transitioning between arbitrary distributions due to its
inherent assumption of a Gaussian noise prior. To over-
come this problem, diffusion models (Dhariwal & Nichol,
2021; Ho & Salimans, 2022; Murata et al., 2023; Ding et al.,
2024b; Chung et al., 2022; Tang et al., 2024) often rely on
meticulously designed conditioning mechanisms and clas-
sifier/loss guidance to facilitate conditional sampling and
ensure output alignment with a target distribution. However,
these methods can be cumbersome and may introduce man-
ifold deviations during the sampling process. Meanwhile,
Diffusion Schrödinger Bridge (Shi et al., 2024; De Bortoli
et al., 2021; Somnath et al., 2023) involves constraints that
hinder direct optimization of the KL divergence, resulting
in slow convergence and limited model fitting capability.

To address this challenge, DDBMs (Zheng et al., 2024) pro-
posed a diffusion bridge model using Doob’s h-transform.
This framework is specifically designed to establish fixed
endpoints between two distinct distributions by learning the
score function of the diffusion bridge from data, and then
solving the stochastic differential equation (SDE) based on
these learned scores to transition from one endpoint distribu-
tion to another. However, the forward SDE in DDBMs
lacks the mean information of the terminal distribution,
which restricts the quality of the generated images, par-
ticularly in image restoration tasks. Subsequently, GOUB
(Yue et al., 2023) extends this framework by integrating
Doob’s h-transform with a mean-reverting SDE, achieving
better results compared to DDBMs. Despite the promising
results in diffusion bridge with Doob’s h-transform, two fun-
damental challenges persist: 1) the theoretical mechanisms
by which Doob’s h-transform governs the bridging process
remain poorly understood, lacking a rigorous framework to
unify its empirical success; and 2) while effective for global
distribution alignment, existing methods frequently degrade
high-frequency details—such as sharp edges and fine tex-
tures—resulting in outputs with blurred or oversmoothed
artifacts that compromise perceptual fidelity. These limi-
tations underscore the need for both theoretical grounding
and enhanced detail preservation in diffusion bridges.
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UniDB

Diffusion Bridge via Doob’s h-transform is a special case when 𝛾 → ∞ in UniDB!
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Figure 1. Recent advances in diffusion bridge models leverage Doob’s h-transform to establish fixed endpoints between distributions,
which introduces an h function into the forward process of a standard stochastic differential equation (SDE) to forcibly match the two
endpoints. However, as shown in the figure, this method can lead to local blurring and distortion in the generated images. UniDB
formulates the forward process as a stochastic optimal control problem and employs the penalty coefficient γ, balancing realistic SDE
trajectories and target endpoint matching, to produce images with more realistic details. We also find that Doob’s h-transform is a special
case in our framework when γ → ∞. Therefore, our framework can seamlessly integrate with existing diffusion bridge models (with
Doob’s h-transform).

In this paper, we revisit the diffusion bridges through the
lens of stochastic optimal control (SOC) by introducing a
novel framework called UniDB, which formulates an opti-
mization problem based on SOC principles to implement dif-
fusion bridges. It enables the derivation of a closed-form so-
lution for the optimal controller, along with the correspond-
ing training objective for the diffusion bridge. UniDB identi-
fies Doob’s h-transform as a special case when the terminal
penalty coefficient in the SOC cost function approaches in-
finity. This explains why Doob’s h-transform may result in
suboptimal solutions with blurred or distorted details. To ad-
dress this limitation, UniDB utilizes the penalty coefficient
in SOC to adjust the expressiveness of the image details and
enhance the authenticity of the generated outputs. Our main
contributions are as follows:

• We introduce UniDB, a novel unified diffusion bridge
framework based on stochastic optimal control. This
framework generalizes existing diffusion bridge mod-
els like DDBMs and GOUB, offering a comprehensive
understanding and extension of Doob’s h-transform by
incorporating general forward SDE forms.

• We derive closed-form solutions for the SOC problem,
demonstrating that Doob’s h-transform is merely a
special case within UniDB when the terminal penalty
coefficient in the SOC cost function approaches infinity.
This insight reveals inherent limitations in the existing
diffusion bridge approaches, which UniDB overcomes.
Notably, the improvement of UniDB requires minimal
code modification, ensuring easy implementation.

• UniDB achieves state-of-the-art results in various
image restoration tasks, including super-resolution
(DIV2K), inpainting (CelebA-HQ), and deraining
(Rain100H), which highlights the framework’s superior
image quality and adaptability across diverse scenarios.

2. Related Work
Diffusion with Guidance. This technique tackles condi-
tional generative tasks by leveraging a differentiable loss
function for guidance without the need for additional train-
ing (Chung et al., 2022; Shenoy et al., 2024; Bradley &
Nakkiran, 2024). However, it often yields suboptimal im-
age quality and a prolonged sampling process due to the
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necessity of small step sizes. Most importantly, the sam-
pling process is prone to manifold deviations and detail
losses (Yang et al., 2024). Furthermore, enhancing the guid-
ance of the diffusion typically requires the introduction of
additional modules, thereby increasing the model’s compu-
tational complexity.

Diffusion Schrödinger Bridge. This approach aims to de-
termine a stochastic process, π∗ that facilitates probabilistic
transport between a given initial distribution Pprior, and a
terminal distribution Pdata (Liu et al., 2023; Shi et al., 2024;
De Bortoli et al., 2021) while minimizing the Kullback-
Leibler (KL) divergence. However, its training process is
usually intricate, involving constraints that hinder direct
optimization of the KL divergence, resulting in slow con-
vergence and limited model fitting capability. For instance,
DSB (Somnath et al., 2023) requires two independent for-
ward passes during training to obtain the target distribution,
thereby increasing both the complexity and time cost of
training.

Diffusion Bridge with Doob’s h-transform. Recent ad-
vances in diffusion bridging have demonstrated the efficacy
of Doob’s h-transform in enhancing transition quality be-
tween arbitrary distributions. Notably, DDBMs (Zhou et al.,
2023) pioneered this approach by employing a linear SDE
combined with Doob’s h-transform to construct direct dif-
fusion bridges. Subsequently, GOUB (Yue et al., 2023)
extends this framework by integrating Doob’s h-transform
with a mean-reverting SDE, achieving state-of-the-art per-
formance in image restoration tasks. Despite these empirical
successes, the theoretical foundations of Doob’s h-transform
in this context remain insufficiently explored. In addition,
these methods often result in images with blurred or over-
smoothed features, particularly affecting the capture of high-
frequency details crucial for perceptual fidelity.

Diffusion with Stochastic Optimal Control. The integra-
tion of SOC principles into diffusion models has emerged
as a promising paradigm for guiding distribution transi-
tions. DIS (Berner et al., 2022) established a foundational
theoretical linkage between diffusion processes and SOC,
while RB-Modulation (Rout et al., 2024) operationalized
SOC via a simplified SDE structure for training-free style
transfer using pre-trained diffusion models. Close to our
work, DBFS (Park et al., 2024) leveraged SOC to construct
diffusion bridges in infinite-dimensional function spaces
and also established equivalence between SOC and Doob’s
h-transform. However, DBFS primarily extends Doob’s
h-transform to infinite Hilbert spaces via SOC, without ad-
dressing its intrinsic limitations. Our analysis reveals a
critical insight: Doob’s h-transform corresponds to a sub-
optimal solution that can inherently lead to artifacts such as
blurred or distorted details. To resolve this, we introduce
a unified SOC framework that jointly optimizes trajectory

costs and terminal constraints, enhancing detail preservation
and image quality.

3. Preliminaries
3.1. Denoising Diffusion Bridge Models

Starting with an initial d-dimensional data distribution
x0 ∼ qdata(x), diffusion models (Song et al., 2020; Ho
et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon,
2019) construct a diffusion process, which can be achieved
by defining a forward stochastic process evolving from x0

through a stochastic differential equation (SDE):

dxt = f(xt, t)dt+ gt dwt, (1)

where t ranges over the interval [0, T ], f : Rd×[0, T ]→ Rd

is the vector-valued drift function, g : [0, T ] → R signi-
fies the scalar-valued diffusion coefficient and wt ∈ Rd is
the Wiener process, also known as Brownian motion. To
promise the transition probability p(xt | xs) remains Gaus-
sian, almost all the diffusion SDEs take the following linear
form (Zheng et al., 2024) in (1):

f(xt, t) = f(t)xt, (2)

where f(t) is some scalar-valued function. To realize tran-
sition between arbitrary distributions, DDBMs introduces
Doob’s h-transform (Särkkä & Solin, 2019), a mathematical
technique applied to stochastic processes, which rectifies the
drift term of the forward diffusion process to pass through a
preset terminal point xT ∈ Rd. Precisely, the forward pro-
cess of diffusion bridges after Doob’s h-transform becomes:

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gt dwt, (3)

where h(xt, t,xT , T ) = ∇xt log p(xT | xt) is the h func-
tion. The diffusion bridge can connect the initial x0 to any
given terminal xT and thus is promising for various image
restoration tasks. Meanwhile, its backward reverse SDE
(Anderson, 1982) is given by

dxt =
[
f(xt, t) + g2t∇xt

log p(xT | xt)

− g2t∇xt
log p(xt | xT )

]
dt+ gt dw̃t.

(4)

where w̃t is the reverse-time Wiener process and the un-
known term∇xt

log p(xt | xT ) can be estimated by a score
prediction neural network sθ (Song et al., 2020).

3.2. Generalized Ornstein-Uhlenbeck Bridge

Generalized Ornstein-Uhlenbeck (GOU) process describes
a mean-reverting stochastic process commonly used in fi-
nance, physics, and other fields in the following SDE form
(Ahmad, 1988; Pavliotis & Pavliotis, 2014; Wang et al.,
2018):

dxt = θt (µ− xt) dt+ gt dwt, (5)



UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control

where µ is a given state vector, θt denotes a scalar drift co-
efficient and gt represents the diffusion coefficient with θt,
gt satisfying the specified relationship g2t = 2λ2θt where
λ2 is a given constant scalar. Based on this, Generalized
Ornstein-Uhlenbeck Bridge (GOUB) is a diffusion bridge
model (Yue et al., 2023), which can address image restora-
tion tasks without the need for specific prior knowledge if
we consider the initial state x0 to represent a high-quality
image and the corresponding low-quality image xT = µ as
the final condition. With the introduction of µ, xt tends to µ
as time t progresses. Through Doob’s h-transform, denote
θ̄s:t =

∫ t

s
θzdz, θ̄t =

∫ t

0
θzdz for simplification when s = 0

and σ̄2
s:t = λ2(1− e−2θ̄s:t), the forward process of GOUB

is formed as:

dxt =

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt) dt+ gt dwt. (6)

And the forward transition p(xt | x0,xT ) is given by

p(xt | x0,xT ) = N (µ̄′
t, σ̄

′2
t I),

µ̄′
t = e−θ̄t

σ̄2
t:T

σ̄2
T

x0 + (1− e−θ̄t
σ̄2
t:T

σ̄2
T

)xT , σ̄
′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

.

(7)
Also, GOUB presents a new reverse ODE called Mean-ODE,
which directly neglects the Brownian term of (4):

dxt =
[
f(xt, t) + g2t∇xt

log p(xT | xt)

− g2t∇xt
log p(xt | xT )

]
dt.

(8)

3.3. Stochastic Optimal Control

Stochastic Optimal Control (SOC) is a mathematical dis-
cipline that focuses on determining optimal control strate-
gies for dynamic systems under uncertainty. By integrating
stochastic processes with optimization theory, SOC seeks
to identify the best control strategies in scenarios involving
randomness, as commonly encountered in fields like finance
(Geering et al., 2010) and style transfer (Rout et al., 2024).
Considering the dynamics described in (1), let us exam-
ine the following Linear Quadratic SOC problem (Bryson,
2018; O’Connell, 2003; Kappen, 2008; Chen et al., 2023):

min
ut,γ∈U

E

[∫ T

0

1

2
∥ut,γ∥22 dt+

γ

2
∥xu

T − xT ∥22

]
s.t. dxt = (f(xt, t) + gtut,γ) dt+ gt dwt, x

u
0 = x0,

(9)

where xu
t is the diffusion process under control, x0 and xT

represent for the initial state and the preset terminal respec-
tively, ∥ut,γ∥22 is the instantaneous cost, γ

2 ∥x
u
T − xT ∥22 is

the terminal cost with its penalty coefficient γ. The SOC
problem aims to design the controller ut,γ to drive the dy-
namic system from x0 to xT with minimum cost.

4. Methods
4.1. Diffusion Bridges Constructed by SOC Problem

The forward SDE of the Diffusion Bridge with Doob’s h-
transform is enforced to pass from the predetermined origin
x0 to the terminal xT . With a similar purpose, UniDB con-
structs a SOC problem where the constraints are an arbitrary
linear SDE of the forward diffusion with a given initial state,
while the objective incorporates a penalty term steering the
forward diffusion trajectory towards the predetermined ter-
minal xT . Meanwhile, compared with the linear drift term
(2), we combined a given state vector term m with the same
dimension as xt and its related coefficient ht which is a
simple reformulation and generalization of the parameters
in GOU process (5):

f(xt, t) = ftxt + htm. (10)

Accordingly, our SOC problem with unified linear SDE (10)
is formed as:

min
ut,γ∈U

E

[∫ T

0

1

2
∥ut,γ∥22 dt+

γ

2
∥xu

T − xT ∥22

]
s.t.dxt =

(
ftxt + htm+ gtut,γ

)
dt+ gtdwt,x

u
0 = x0.

(11)

According to the certainty equivalence principle (Chen et al.,
2023; Rout et al., 2024), the addition of noise or perturba-
tions to a linear system with quadratic costs does not change
the optimal control. Therefore, we can modify the SOC
problem with the deterministic ODE condition to obtain the
optimal controller u∗

t,γ as follows,

min
ut,γ∈U

∫ T

0

1

2
∥ut,γ∥22 dt+

γ

2
∥xu

T − xT ∥22

s.t. dxt =
(
ftxt + htm+ gtut,γ

)
dt, xu

0 = x0.

(12)

We can derive the closed-form solution to the problem (12),
which leads to the following Theorem 4.1:

Theorem 4.1. Consider the SOC problem (12), denote
dt,γ = γ−1 + e2f̄T ḡ2t:T , f̄s:t =

∫ t

s
fzdz, h̄s:t =∫ t

s
e−f̄zhzdz and ḡ2s:t =

∫ t

s
e−2f̄zg2zdz, denote f̄t, h̄t and

ḡ2t for simplification when s = 0, then the closed-form
optimal controller u∗

t,γ is

u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ
, (13)

and the transition of xt from x0 and xT is

xt = ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
.

(14)
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The proof of Theorem 4.1 is provided in Appendix A.1.
With Theorem 4.1, we can obtain an optimally controlled
forward SDE connected from x0 to the neighborhood of
the terminal xT and the transition of xt for the forward
process. As for the backward process, similar to (4) and (8),
the backward reverse SDE and Mean-ODE are respectively
formulated as:

dxt =
[
ftxt + htm+ gtu

∗
t,γ

− g2t∇xt log p(xt | xT )
]
dt+ gtdw̃t,

(15)
dxt =

[
ftxt + htm+ gtu

∗
t,γ − g2t∇xt

log p(xt | xT )
]
dt.

(16)

4.2. Connections between SOC and Doob’s h-transform

We can intuitively see from the SOC problem that when
γ → ∞ in Theorem 4.1, it means that the target of SDE
process is precisely the predetermined endpoint (Chen et al.,
2023), which is also the purpose of Doob’s h-transform and
facilitates the following theorem:

Theorem 4.2. For the SOC problem (12), when γ →∞, the
optimal controller becomes u∗

t,∞ = gt∇xt
log p(xT | xt),

and the corresponding forward and backward SDE with the
linear SDE form (10) are the same as Doob’s h-transform
as in (3) and (4).

The proof of Theorem 4.2 is presented in Appendix A.2.
This theorem shows that existing diffusion bridge models
using Doob’s h-transform are merely special instances of
our UniDB framework, which offers a unified approach to
diffusion bridges through the lens of SOC.

Furthermore, using Doob’s h-transform in diffusion bridge
models is not necessarily optimal, as letting the terminal
penalty coefficient γ →∞ eliminates the consideration of
control costs in SOC. To support this argument, we present
Proposition 4.3, which asserts that the diffusion bridge with
Doob’s h-transform is not the most effective choice.

Proposition 4.3. Consider the SOC problem (12), denote
J (ut,γ , γ) ≜

∫ T

0
1
2 ∥ut,γ∥22 dt+

γ
2 ∥x

u
T − xT ∥22 as the over-

all cost of the system, u∗
t,γ as the optimal controller (13),

then
J (u∗

t,γ , γ) ≤ J (u∗
t,∞,∞). (17)

Detailed proof of Proposition 4.3 is provided in Appendix
A.3. Proposition 4.3 shows that finite γ achieves a lower to-
tal cost not by sacrificing performance, but by optimally trad-
ing minor terminal mismatches for significantly smoother
and more natural diffusion paths. Doob’s h-transform re-
quires larger controller ∥u∗

t,∞∥22 ≥ ∥u∗
t,γ∥22 in SDE trajec-

tory to force exact endpoint matching (the controlled target
is precisely the preset endpoint ∥xu∗

T − xT ∥22 = 0 when

γ → ∞), which may disrupt the inherent continuity and
smoothness of images. Prioritizing pixel-perfect endpoints
over smooth trajectories leads to “mathematically correct
but visually unrealistic” outputs. As shown in Figure 1,
Doob’s h-transform can lead to artifacts along edges and
unnatural patterns in smooth regions. Therefore, maintain-
ing the penalty coefficient γ as a hyperparameter is a more
effective approach.

4.3. Training objective of UniDB

In this section, we focus on constructing the training ob-
jective of UniDB. According to maximum log-likelihood
(Ho et al., 2020) and conditional score matching (Song
et al., 2020), the training objective is based on the forward
transition p(xt | x0,xT ). Thus, we begin by deriving this
probability. The closed-form expression in (14) represents
the mean value of the forward transition after applying repa-
rameterization techniques. However, this expression lacks
a noise component after the transformation based on the
certainty equivalence principle. To address this issue, we
employ stochastic interpolant theory (Albergo et al., 2023)
to introduce a noise term σ̄′

tϵ with σ̄′
0 = σ̄′

T = 0. We define
σ̄′2
t = σ̄2

t σ̄
2
t:T /σ̄

2
T similar to (7), leading to the following

forward transition:

p(xt | x0, xT ) = N (µ̄t,γ , σ̄
′2
t I),

µ̄t,γ = ef̄t
( dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m
)
,

σ̄2
s:t = e2f̄t ḡ2s:t, σ̄′2

t =
σ̄2
t σ̄

2
t:T

σ̄2
T

.

(18)
The derailed derivation is provided in Appendix A.4. Sim-
ilar to (Yue et al., 2023) using the l1 loss form to bring
improved visual quality and details at the pixel level (Boyd,
2004; Hastie et al., 2017), we can derive the training ob-
jective. Denote at,γ = ef̄tdt,γ , assuming µt−1,θ, σ2

t−1,θ

and µt−1,γ , σ2
t−1,γ are respectively the mean values and

variances of pθ(xt−1 | xt, xT ) and p(xt−1 | x0,xt, xT ),
suppose the score ∇xt

log p(xt | xT ) is parameterized as
−ϵθ(xt, xT , t)/σ̄

′
t, the final training objective is as follows,

Lθ = Et,x0,xt,xT

[
1

2σ2
t−1,θ

∥∥µt−1,θ − µt−1,γ

∥∥
1

]
,

µt−1,θ = xt − ftxt − htm− gtu
∗
t,γ +

g2t
σ̄′
t

ϵθ(xt, xT , t),

µt−1,γ = µ̄t−1,γ +
σ̄′2
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ), σt−1,θ = gt.

(19)

Please refer to Appendix A.5 for detailed derivations. There-
fore, we can recover or generate the origin image x̂0 through
Euler sampling iterations. So far, we’ve built the UniDB
framework, which establishes and expands the forward and
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backward process of the diffusion bridge model through
SOC and comprises Doob’s h-transform as a special case.

4.4. UniDB unifies diffusion bridge models

Our UniDB is a unified framework for existing diffusion
bridge models: DDBMs (VE) (Zhou et al., 2023), DDBMs
(VP) (Zhou et al., 2023) and GOUB (Yue et al., 2023).
Proposition 4.4. UniDB encompasses existing diffusion
bridge models by employing different hyper-parameter
spacesH as follows:

• DDBMs (VE) corresponds to UniDB with hyper-
parameterHVE(ft = 0, ht = 0, γ →∞)

• DDBMs (VP) corresponds to UniDB with hyper-
parameterHVP(ft = − 1

2g
2
t , ht = 0, γ →∞)

• GOUB corresponds to UniDB with hyper-parameter
HGOU(ft = θt, ht = −θt,m = µ, γ →∞)

Details of the proposition 4.4 are provided in Appendix A.6.

4.5. An Example: UniDB-GOU

It is evident that these diffusion bridge models like DDBMs
(VE), DDBMs (VP) and GOUB all based on Doob’s h-
transform are all special cases of UniDB with γ → ∞.
However, according to Proposition 4.3, these models are
not the effective choices. Therefore, we introduce UniDB
based on the GOU process (5), hereafter referred to as
UniDB-GOU, which retains the penalty coefficient γ as
the hyper-parameter. Considering the SOC problem with
GOU process (5), the optimally controlled forward SDE is:

dxt =

(
θt + g2t

e−2θ̄t:T

γ−1 + σ̄2
t:T

)
(xT−xt)dt+gtdwt, (20)

and the mean value of forward transition p(xt | x0, xT ) is

µ̄t,γ = e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT .

(21)

Please refer to Appendix A.7 for detailed proof.

Remark 1. It’s worth noting that our UniDB model can
be a plugin module to the existing diffusion bridge with
Doob’s h-transform. Taking UniDB-GOU as an example,
we highlight the key difference between UniDB-GOU and
GOUB (the coefficient of x0 in the mean value of forward
transition and h-function term) as follows:

e−θ̄t
σ̄2
t:T

σ̄2
T

⇒ e−θ̄t
γ−1 + σ̄2

t:T

γ−1 + σ̄2
T

gth =
gte

−2θ̄t:T (xT − xt)

σ̄2
t:T︸ ︷︷ ︸

GOUB

⇒ u∗
t,γ =

gte
−2θ̄t:T (xT − xt)

γ−1 + σ̄2
t:T︸ ︷︷ ︸

UniDB-GOU
(22)

Algorithm 1 UniDB Training
repeat

Take a pair of images x0 = x0 and xT = xT

t ∼ Uniform({1, ..., T})
σt−1,θ = gt

at,γ = e−θ̄t σ̄2
t:T

σ̄2
T

← GOUB

at,γ = e−θ̄t γ−1+σ̄2
t:T

γ−1+σ̄2
T

← UniDB-GOU

xt = at,γx0 + (1− at,γ)xT + σ̄′
tϵ

µ̄t,γ = at,γx0 + (1− at,γ)xT

µt−1,θ = xt −
(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

+
g2
t

σ̄′2
t
ϵθ(xt, xT , t) ← GOUB

µt−1,θ = xt −
(
θt + g2t

e−2θ̄t:T

γ−1+σ̄2
t:T

)
(xT − xt)

+
g2
t

σ̄′2
t
ϵθ(xt, xT , t) ← UniDB-GOU

µt−1,γ = µ̄t−1,γ +
σ̄′
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ)

Take gradient descent step on∇θLθ

until converged

Hence, only a few lines of code need to be adjusted to gen-
erate more realistic images using the same training method.
We provide pseudo-code Algorithm 1 and Algorithm 2 for
the training and sampling process of UniDB-GOU, respec-
tively. The two algorithms encapsulate the core methodolo-
gies employed by our model to learn and explain how to
restore HQ images from LQ images. Also, the red and the
green parts highlight the main difference between UniDB
and GOUB. Beyond the GOUB model, our UniDB frame-
work can be similarly extended to other diffusion bridge
models, such as DDBMs (VE) and DDBMs (VP). For de-
tailed information on UniDB-VE and UniDB-VP, please
refer to Appendix A.8.

Algorithm 2 UniDB Sampling
Input: Low-Quality images xT = xT .
for t = T to 1 do
z ∼ N(0, I) if t > 1, else z = 0

xt−1 = xt −
(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

+
g2
t

σ̄′2
t
ϵθ(xt, xT , t)− gtz ← GOUB

xt−1 = xt −
(
θt + g2t

e−2θ̄t:T

γ−1+σ̄2
t:T

)
(xT − xt)

+
g2
t

σ̄′2
t
ϵθ(xt, xT , t)− gtz ← UniDB-GOU

end for
Return High-Quality images x̃0
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Figure 2. Qualitative comparison of visual results between GOUB (SDE) and UniDB (SDE) on DIV2K with zoomed-in image local
regions (UniDB based on GOU process).

Building upon equations (20) and (21), we further present
a proposition to characterize how the penalty coefficient γ
affects the controlled terminal distribution as follows:

Proposition 4.5. Denote the initial state distribution x0,
the terminal distribution xu

T by the controller and the pre-
defined terminal distribution xT , then

∥xu
T−xT ∥22 =

e−2θ̄T(
1 + γλ2(1− e−2θ̄T )

)2 ∥xT−x0∥22. (23)

The detailed derivations of proposition 4.5 are provided in
Appendix A.9. Notably, as γ approaches infinity, the control
terminal converges to the predefined endpoint. However, as
analyzed in Proposition 4.3, this can result in suboptimal
outcomes with blurry or overly smoothed image details. To
address this, it is crucial to balance the control cost and
terminal term by selecting the value of γ. In the follow-
ing section, we will present comprehensive experiments to
evaluate the impact of different γ values on the results.

5. Experiments
In this section, we evaluate our models in image restora-
tion tasks including Image 4×Super-resolution, Image De-
raining, and Image Inpainting. We take four evaluation
metrics: Peak Signal-to-Noise Ratio (PSNR, higher is bet-
ter) (Fardo et al., 2016), Structural Similarity Index (SSIM,
higher is better) (Wang et al., 2004), Learned Perceptual Im-
age Patch Similarity (LPIPS, lower is better) (Zhang et al.,

2018) and Fréchet Inception Distance (FID, lower is better)
(Heusel et al., 2017). For simple expressions in the follow-
ing sections, UniDB (SDE) and UniDB (ODE) are applied
to represent the UniDB-GOU with reverse SDE and reverse
Mean-ODE, respectively. Please refer to Appendix B and C
for all related implementation details and more experiment
results, respectively.

Figure 4. The distances between target and controlled terminal
distributions for different datasets (CelebA-HQ, Rain100H, and
DIV2K) with different penalty coefficients γ. The red shaded area
and blue dotted line highlight our choice of γ.

5.1. Experiments Setup

According to Proposition 4.5, we first quantitatively analyze
the l2-norm distances between the two terminal distributions
depicted in Figure 4. We computed the average distances
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Table 1. Qualitative comparison with the relevant baselines on DIV2K, Rain100H, and CelebA-HQ 256×256 datasets.

METHOD Image Super-Resolution METHOD Image Deraining METHOD Image Inpainting
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

Bicubic 26.70 0.774 0.425 36.18 MAXIM 30.81 0.902 0.133 58.72 PromptIR 30.22 0.918 0.068 32.69
DDRM 24.35 0.592 0.364 78.71 MHNet 31.08 0.899 0.126 57.93 DDRM 27.16 0.899 0.089 37.02
IR-SDE 25.90 0.657 0.231 45.36 IR-SDE 31.65 0.904 0.047 18.64 IR-SDE 28.37 0.916 0.046 25.13

GOUB (SDE) 26.89 0.7478 0.220 20.85 GOUB (SDE) 31.96 0.9028 0.046 18.14 GOUB (SDE) 28.98 0.9067 0.037 4.30
GOUB (ODE) 28.50 0.8070 0.328 22.14 GOUB (ODE) 34.56 0.9414 0.077 32.83 GOUB (ODE) 31.39 0.9392 0.052 12.24
UniDB (SDE) 25.46 0.6856 0.179 16.21 UniDB (SDE) 32.05 0.9036 0.045 17.65 UniDB (SDE) 29.20 0.9077 0.036 4.08
UniDB (ODE) 28.64 0.8072 0.323 22.32 UniDB (ODE) 34.68 0.9426 0.074 31.16 UniDB (ODE) 31.67 0.9395 0.052 11.98
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Figure 3. Qualitative comparison of visual results between GOUB (SDE) and UniDB (SDE) on the Rain100H dataset on Image Deraining
(Left) and CelebA-HQ dataset on Image Inpainting (Right) with zoomed-in image local regions (UniDB based on GOU process).

between high-quality and low-quality images in the three
datasets (CelebA-HQ, Rain100H, and DIV2K) related to the
subsequent experimental section as the distances ∥xT−x0∥22
in (23). As can be seen, for all three datasets, these distances
remain relatively small, ranging from 10−4 to 10−10 when
γ is within the range of 1× 105 to 1× 109. Therefore, our
subsequent experiments will focus on the γ of this range to
further investigate the performance of UniDB-GOU.

5.2. Experimental Details

Image 4×Super-Resolution Tasks. In super-resolution, we
evaluated our models based on DIV2K dataset (Agustsson &
Timofte, 2017), which contains 2K-resolution high-quality
images. During the experiment, all low-resolution images
were 4× bicubic upscaling to the same image size as the
paired high-resolution images. For comparison, we choose
Bicubic interpolantion (Kawar et al., 2022), DDRM (Kawar
et al., 2022), IR-SDE (Luo et al., 2023), GOUB (SDE) (Yue
et al., 2023) and GOUB (Mean-ODE) (Yue et al., 2023) fol-
lowing abbreviated as GOUB (ODE) as the baselines. The
qualitative and quantitative results are illustrated in Table 1

and Figure 2. Visually, our proposed model demonstrates
a significant improvement over the baseline across various
metrics. It also excels by delivering superior performance
in both visual quality and detail compared to other results.

Image Deraining Tasks. For image deraining tasks, we
conducted the experiments based on Rain100H datasets
(Yang et al., 2017). Particularly, to be consistent with other
deraining models (Ren et al., 2019; Zamir et al., 2021; Luo
et al., 2023; Yue et al., 2023), PSNR and SSIM scores on
the Y channel (YCbCr space) are selected instead of the
origin PSNR and SSIM. MAXIM (Tu et al., 2022), MHNet
(Gao et al., 2025), IR-SDE (Luo et al., 2023), GOUB (SDE)
(Yue et al., 2023) and GOUB (ODE) (Yue et al., 2023) are
chosen as the baselines. The relevant experimental results
are shown in the Table 1 and Figure 3. Similarly, our model
achieved state-of-the-art results in the deraining task. Vi-
sually, it can also be observed that our model excels in
capturing details such as the eyebrows, eye bags, and lips.

Image Inpainting Tasks. In image inpainting tasks, we
evaluated our methods on CelebA-HQ 256×256 datasets
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Table 2. Quantitative evaluation results for DIV2K, CelebA-HQ and Rain100H of UniDB-GOU with different penalty coefficients γ.

TASKS METRICS Different γ

5× 105 1× 106 1× 107 1× 108 ∞

Image 4×Super-Resolution

PSNR↑ 24.94 24.72 25.46 25.06 26.89
SSIM↑ 0.6419 0.6587 0.6856 0.6393 0.7478
LPIPS↓ 0.234 0.199 0.179 0.289 0.220

FID↓ 20.33 18.37 16.21 23.76 20.85

Image Inpainting

PSNR↑ 28.73 29.15 29.20 28.65 28.98
SSIM↑ 0.9065 0.9068 0.9077 0.9062 0.9067
LPIPS↓ 0.038 0.036 0.036 0.039 0.037

FID↓ 4.49 4.12 4.08 4.64 4.30

Image Deraining

PSNR↑ 29.44 31.96 32.00 32.05 31.96
SSIM↑ 0.8715 0.9018 0.9029 0.9036 0.9028
LPIPS↓ 0.058 0.045 0.046 0.045 0.046

FID↓ 24.96 18.37 17.87 17.65 18.14

(Karras, 2017). For comparison, we choose DDRM (Kawar
et al., 2022), PromptIR (Potlapalli et al., 2023), IR-SDE
(Luo et al., 2023), GOUB (SDE) (Yue et al., 2023) and
GOUB (ODE) (Yue et al., 2023) as the baselines. As for
mask type, we take 100 thin masks consistent with the
baselines. The relevant experimental results are shown in
Table 1 and Figure 3. It is observed that our model achieved
state-of-the-art results in all indicators and also delivered
highly competitive outcomes on other metrics. From a
visual perspective, our model excels in capturing details
such as faces, eyes, chins, and noses.

5.3. Ablation Study

Penalty Coefficient γ. To evaluate the specific impact of
different penalty coefficients γ on model performance, we
conducted the experiments above with several different γ.
The final results are shown in Table 2. The results across
all tasks show that the choice of γ significantly influences
the model’s performance on all tasks, different optimal γ
for different tasks, and our UniDB achieves the best perfor-
mance in almost all metrics. Particularly in super-resolution
tasks, we focus more on the significantly better perceptual
scores (LPIPS and FID) (Luo et al., 2023), demonstrating
that UniDB ensures to capture and preserve more intricate
image details and features as shown in Figure 2. These
findings underscore the importance of carefully tuning γ to
achieve the best performance for specific tasks.

6. Conclusion
In this paper, we presented UniDB, a unified diffusion
bridge framework based on stochastic optimal control prin-
ciples, offering a novel perspective on diffusion bridges.
Through this framework, we unify and extend existing diffu-

sion bridge models with Doob’s h-transform like DDBMs
and GOUB. Moreover, we demonstrate that the diffusion
bridge with Doob’s h-transform can be viewed as a specific
case within UniDB when the terminal penalty coefficient
approaches infinity. This insight helps elucidate why Doob’s
h-transform may lead to suboptimal image restoration, often
resulting in blurred or distorted details. By simply adjusting
this terminal penalty coefficient, UniDB achieves a marked
improvement in image quality with minimal code modi-
fications. Our experimental results underscore UniDB’s
superiority and versatility across various image processing
tasks, particularly in enhancing image details for more real-
istic outputs. Despite these advantages, UniDB, like other
standard diffusion bridge models, faces the challenge of
computationally intensive sampling processes, especially
with high-resolution images or complex restoration tasks.
Future work will focus on developing strategies to acceler-
ate the sampling process, enhancing UniDB’s practicality,
particularly for real-time applications.
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A. Proof
A.1. Proof of Theorem 4.1

Theorem 4.1. Consider the SOC problem (12), denote dt,γ = γ−1 + e2f̄T ḡ2t:T , f̄s:t =
∫ t

s
fzdz, h̄s:t =

∫ t

s
e−f̄zhzdz and

ḡ2s:t =
∫ t

s
e−2f̄zg2zdz, denote f̄t, h̄t and ḡ2t for simplification when s = 0, then the closed-form optimal controller u∗

t,γ is

u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ
, (13)

and the transition of xt from x0 and xT is

xt = ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
. (14)

Proof. According to Pontryagin Maximum Principle (Levine, 1972; Kirk, 2004) recipe, one can construct the Hamiltonian:

H(t,xt,ut,γ ,pt) =
1

2
∥ut,γ∥22 + pT

t (ftxt + htm+ gtut) . (24)

By setting:
∂H

∂ut,γ
= 0 ⇒ u∗

t,γ = −gtpt. (25)

Then the value function becomes

V ∗ = min
ut,γ

H(t,xt,pt,ut,γ) = H(t,xt,pt,u
∗
t,γ) = −

g2t
2
∥pt∥22 + ftp

T
t xt + htp

T
t m. (26)

Now, according to minimum principle theorem to obtain the following set of differential equations:

dxt

dt
= ∇ptH

(
xt,pt,u

∗
t,γ , t

)
= −g2tpt + ftxt + htm, (27)

dpt

dt
= −∇xtH (xt,pt,u

∗
t , t) = −ptft, (28)

x0 = x0, (29)

pT = γ (xT − xT ) . (30)
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Solving the Equation (28), we have:

pt = p0e
−f̄t ,

pT = p0e
−f̄T .

(31)

Solve the Equation (27):

dxt

dt
= ftxt + htm− g2tpt

⇒ d(e−f̄txt)

dt
= e−f̄thtm− e−f̄tg2tpt,

⇒ e−f̄txt − x0 = mh̄t − p0ḡ
2
t ,

⇒ e−f̄txt − x0 = mh̄t − p0ḡ
2
t .

Hence, we can get:

xT = ef̄T x0 +mef̄T h̄T − pT e
2f̄T ḡ2T , (32)

and

xt = ef̄tx0 +mef̄t h̄t − pT e
f̄tef̄T ḡ2t . (33)

Take the Equation (32) into the Equation (30) and solve pT ,

pT = γ
(
ef̄T x0 +mef̄T h̄T − pT e

2f̄T ḡ2T − xT

)
(34)

⇒ pT =
γ
(
ef̄T x0 +mef̄T h̄T − xT

)
1 + γe2f̄T ḡ2T

. (35)

Also, take the Equation (34) into the equation (33),

xt = ef̄tx0 +mef̄t h̄t − ef̄tef̄T ḡ2t
ef̄T x0 +mef̄T h̄T − xT

γ−1 + e2f̄T ḡ2T

= ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
.

(36)

Preserve γ,

u∗
t,γ = −gtpt

= −gte−f̄tef̄T
ef̄T x0 +mef̄T h̄T − xT

γ−1 + e2f̄T ḡ2T

= gte
f̄t:T

xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ
,

(37)

with the fact (36)

xt = ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
, (38)

which concludes the proof of the Proposition 4.1.
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A.2. Proof of Theorem 4.2

Theorem 4.2. For the SOC problem (12), when γ →∞, the optimal controller becomes u∗
t,∞ = gt∇xt log p(xT | xt), and

the corresponding forward and backward SDE with the linear SDE form (10) are the same as Doob’s h-transform as in (3)
and (4).

Proof. Since in Proposition 4.1 we have solved the control problem and the optimal controller u∗
t,∞ is:

u∗
t,∞ = lim

γ→∞
u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

e2f̄T ḡ2t:T
. (13)

Now we calculate the transition probability p(xT | xt) and related h function h(xt, t,xT , T ).

Consider F (xt, t) = xte
−f̄t , according to the Ito differential formula, we get:

dF = −ftxte
−f̄tdt+ e−f̄tdxt (39)

⇒ dF = −ftxte
−f̄tdt+ e−f̄t

(
(ftxt + htm) dt+ gtdwt

)
, (40)

⇒ dF = hte
−f̄tmdt+ e−f̄tgtdwt, (41)

⇒ xT e
−f̄T − xte

−f̄t = mh̄t:T +

∫ T

t

e−f̄zgzdwz, (42)

⇒ xT ∼ N
(
ef̄t:T xt +mef̄T h̄t:T , e

2f̄T ḡ2t:T I
)
, (43)

⇒ ∇xt log p(xT |xt) = −∇xt

(xT − ef̄t:T xt −mef̄T h̄t:T )
2

2e2f̄T ḡ2t:T
=

ef̄t:T
(
xT − ef̄t:T xt −mef̄T h̄t:T

)
e2f̄T ḡ2t:T

, (44)

⇒ u∗
t,∞ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

e2f̄T ḡ2t:T
= gt∇xt

log p(xT |xt) = gth(xt, t,xT , T ). (45)

The forward SDEs obtained through SOC and Doob’s h-transform are both formed as

dxt =

ftxt + htm+ g2t

ef̄t:T
(
xT − ef̄t:T xt −mef̄T h̄t:T

)
e2f̄T ḡ2t:T

dt+ gtdwt, (46)

and the both backward SDEs are

dxt =

ftxt + htm+ g2t

ef̄t:T
(
xT − ef̄t:T xt −mef̄T h̄t:T

)
e2f̄T ḡ2t:T

− g2t∇xtp(xt|xT )

 dt+ gtdwt, (47)

which concludes the proof of the Theorem 4.2.

A.3. Proof of Proposition 4.3

Proposition 4.3 Consider the SOC problem (12), denote J (ut,γ , γ) ≜
∫ T

0
1
2 ∥ut,γ∥22 dt +

γ
2 ∥x

u
T − xT ∥22 as the overall

cost of the system, u∗
t,γ as the optimal controller (13), then

J (u∗
t,γ , γ) ≤ J (u∗

t,∞,∞). (48)
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Proof. According to (13) and (14), denote a = ef̄T x0 − xT +mef̄T h̄T ,

u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ

⇒ u∗
t,γ = −gte−f̄tef̄T

ef̄T x0 +mef̄T h̄T − xT

dt,γ
,

⇒ ∥u∗
t,γ∥22 = g2t e

−2f̄te2f̄T
∥ef̄T x0 +mef̄T h̄T − xT ∥22

d2t,γ
,

⇒ ∥u∗
t,γ∥22 = g2t e

−2f̄te2f̄T
∥a∥22
d2t,γ

.

Similarly,

∥u∗
t,∞∥22 = g2t e

−2f̄te2f̄T
∥a∥22

(e2f̄T ḡ2T )
2
. (49)

Furthermore, take t = T in (14),

xu
T =

(
γ−1ef̄T

γ−1 + e2f̄T ḡ2T

)
x0 +

(
e2f̄T ḡ2T

γ−1 + e2f̄T ḡ2T

)
xT + ef̄T

(
γ−1h̄T

γ−1 + e2f̄T ḡ2T

)
m, (50)

which implies

∥xu
T − xT ∥22 = ∥

(
γ−1ef̄T

γ−1 + e2f̄T ḡ2T

)
x0 +

(
e2f̄T ḡ2T

γ−1 + e2f̄T ḡ2T

)
xT + ef̄T

(
γ−1h̄T

γ−1 + e2f̄T ḡ2T

)
m− xT ∥22

= ∥

(
γ−1ef̄T

γ−1 + e2f̄T ḡ2T

)
x0 −

(
γ−1

γ−1 + e2f̄T ḡ2T

)
xT + ef̄T

(
γ−1h̄T

γ−1 + e2f̄T ḡ2T

)
m∥22

= ∥

(
ef̄T

1 + γe2f̄T ḡ2T

)
x0 −

(
1

1 + γe2f̄T ḡ2T

)
xT + ef̄T

(
h̄T

1 + γe2f̄T ḡ2T

)
m∥22

=
∥ef̄T x0 − xT +mef̄T h̄T ∥22

(1 + γe2f̄T ḡ2T )
2

=
∥a∥22

(1 + γe2f̄T ḡ2T )
2
,

(51)

and
lim
γ→∞

γ

2
∥xu

T − xT ∥22 = lim
γ→∞

γ

2(1 + γe2f̄T ḡ2T )
2
∥a∥22 = 0. (52)

Hence,

1

2

∫ T

0

(
∥u∗

t,∞∥22 − ∥u∗
t,γ∥22

)
dt =

1

2
e2f̄T ∥a∥22ḡ2T

(
1

(e2f̄T ḡ2T )
2
− 1

(γ−1 + e2f̄T ḡ2T )
2

)
=

1

2
e2f̄T ∥a∥22ḡ2T

1 + 2γe2f̄T ḡ2T
(e2f̄T ḡ2T )

2(1 + γe2f̄T ḡ2T )
2

=
1

2

1 + 2γe2f̄T ḡ2T
(e2f̄T ḡ2T )(1 + γe2f̄T ḡ2T )

2
∥a∥22

≥ 1

2

γe2f̄T ḡ2T
(e2f̄T ḡ2T )(1 + γe2f̄T ḡ2T )

2
∥a∥22

=
1

2

γ

(1 + γe2f̄T ḡ2T )
2
∥a∥22

=
γ

2
∥xu

T − xT ∥22

=
γ

2
∥xu

T − xT ∥22 − lim
γ→∞

γ

2
∥xu

T − xT ∥22.

(53)
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Therefore,

γ

2
∥xu

T − xT ∥22 − lim
γ→∞

γ

2
∥xu

T − xT ∥22 ≤
1

2

∫ T

0

(
∥u∗

t,∞∥22 − ∥u∗
t,γ∥22

)
dt (54)

⇔ 1

2

∫ T

0

∥u∗
t,γ∥22dt+

γ

2
∥xu

T − xT ∥22 ≤
1

2

∫ T

0

∥u∗
t,∞∥22dt+ lim

γ→∞

γ

2
∥xu

T − xT ∥22, (55)

⇔ J (u∗
t,γ , γ) ≤ J (u∗

t,∞,∞), (56)

which concludes the proof of Proposition 4.3.

A.4. Derivation of the transition probability (18)

Suppose µ̄t,γ and σ̄′
t denote the mean value and variance of the transition probability p(xt | x0, xT ), then

p(xt | x0, xT ) = N (µ̄t,γ , σ̄
′2
t I),

µ̄t,γ = ef̄t
( dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m
)
,

σ̄2
s:t = e2f̄t ḡ2s:t, σ̄′2

t =
σ̄2
t σ̄

2
t:T

σ̄2
T

.

(18)

Proof. Since µ̄t,γ remains the same as the closed-form relationship (14), we would focus on how to obtain σ̄2
s:t and σ̄′2

t .

In Equation (39) of Theorem 4.2, we’ve obtained:

p(xt | xs) ∼ N
(
ef̄s:txs +mef̄t h̄s:t, e

2f̄t ḡ2s:tI
)
,

∼ N
(
ef̄s:txs +mef̄t h̄s:t, σ̄

2
s:tI
)
.

(57)

Take σ̄2
s:t = e2f̄t ḡ2s:t as the coefficient of the noise term, then, through Bayes’ formula,

p(xt | x0, xT ) =
p(xT | xt, x0)p(xt | x0)

p(xT | x0)
=

p(xT | xt)p(xt | x0)

p(xT | x0)

⇒ σ̄′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

,

which concludes the derivation of the the transition probability (18).

A.5. Derivation of the training objective (19)

Denote at,γ = ef̄tdt,γ , assuming µt−1,θ, σ2
t−1,θ and µt−1,γ , σ2

t−1,γ are respectively the mean values and variances of
pθ(xt−1 | xt, xT ) and p(xt−1 | x0,xt, xT ), suppose the score ∇xt

log p(xt | xT ) is parameterized as −ϵθ(xt, xT , t)/σ̄
′
t,

the final training objective is as follows,

Lθ = Et,x0,xt,xT

[
1

2σ2
t−1,θ

∥∥µt−1,θ − µt−1,γ

∥∥
1

]
,

µt−1,θ = xt − ftxt − htm− gtu
∗
t,γ +

g2t
σ̄′
t

ϵθ(xt, xT , t),

µt−1,γ = µ̄t−1,γ +
σ̄′2
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ), σt−1,θ = gt.

(19)
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Proof. Firstly, as for the training objective (19), according to GOUB (Yue et al., 2023):

Ep(x0)[log pθ(x0 | xT )] ≥ Ep(x0)

[
Ep(x1|x0) [log pθ (x0 | x1, xT )]

−
T∑

t=2

Ep(xt|x0)[KL (p (xt−1 | x0,xt, xT ) ||pθ (xt−1 | xt, xT ))]

]
= ELBO.

(58)

Accordingly,

KL (p (xt−1 | x0,xt, xT ) ||pθ (xt−1 | xt, xT ))

=Ep(xt−1|x0,xt,xT )

log 1√
2πσt−1

e−(xt−1−µt−1,γ)
2/2σ2

t−1

1√
2πσθ,t−1

e−(xt−1−µθ,t−1)
2/2σ2

θ,t−1


=Ep(xt−1|x0,xt,xT )

[
log σθ,t−1 − log σt−1 − (xt−1 − µt−1,γ)

2/2σ2
t−1 + (xt−1 − µθ,t−1)

2/2σ2
θ,t−1

]
= log σθ,t−1 − log σt−1 −

1

2
+

σ2
t−1

2σ2
θ,t−1

+
(µt−1,γ − µθ,t−1)

2

2σ2
θ,t−1

.

(59)

Hence, we ignore some constants and minimizing the negative ELBO, leading to the training objective:

L = Et,x0,xt,xT

[
1

2σ2
t−1,θ

∥µt−1,θ − µt−1,γ∥

]
, (60)

Then, as for solving the closed form of µt−1,θ, σ2
t−1,θ and µt−1,γ , through Bayes’ formula,

p (xt−1 | x0,xt, xT ) =
p(xt | x0,xt−1, xT )p(xt−1 | x0,xT )

p(xt | x0, xT )

=
p(xt | xt−1, xT )p(xt−1 | x0,xT )

p(xt | x0, xT )
.

(61)

According to Appendix A.4, applying the reparameterization tricks:

xt = ef̄t

(
γ−1 + e2f̄T ḡ2t:T
γ−1 + e2f̄T ḡ2T

x0 +
ef̄T ḡ2t

γ−1 + e2f̄T ḡ2T
xT +

(
h̄t −

e2f̄T h̄T ḡ
2
t

γ−1 + e2f̄T ḡ2T

)
m

)
+ σ̄′

tϵt

≜ at,γx0 + bt,γxT + ct,γm+ σ̄′
tϵt,

xt−1 = ef̄t−1

(
γ−1 + e2f̄T ḡ2t−1:T

γ−1 + e2f̄T ḡ2T
x0 +

ef̄T ḡ2t−1

γ−1 + e2f̄T ḡ2T
xT +

(
h̄t−1 −

e2f̄T h̄T ḡ
2
t−1

γ−1 + e2f̄T ḡ2T

)
m

)
+ σ̄′

t−1ϵt−1

= at−1,γx0 + bt−1,γxT + ct−1,γm+ σ̄′
t−1ϵt−1.

(62)

Therefore, eliminating x0 to obtain the relationships between xt, xt−1, xT , m and noise ϵ,

⇒ xt =
at,γ

at−1,γ
xt−1 +

(
bt,γ − bt−1,γ

at,γ
at−1,γ

)
xT +

(
ct,γ − ct−1,γ

at,γ
at−1,γ

)
m+

√
σ̄′2
t − σ̄′2

t−1

a2t,γ
a2t−1,γ

ϵ. (63)
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The mean value µt−1,γ of p(xt−1 | x0,xt, xT ) can be calculated as:

µt−1,γ =
σ̄′2
t−1

at,γ

at−1,γ

[
xt −

(
bt,γ − bt−1,γ

at,γ

at−1,γ

)
xT −

(
ct,γ − ct−1,γ

at,γ

at−1,γ

)
m
]
+
(
σ̄′2
t − σ̄′2

t−1
a2
t,γ

a2
t−1,γ

)
µ̄t−1,γ

σ̄′2
t

= µ̄t−1,γ −
a2t,γ σ̄

′2
t−1

a2t−1,γ σ̄
′2
t

µ̄t−1,γ +
at,γ σ̄

′2
t−1

at−1,γ σ̄′2
t

[
xt −

(
bt,γ −

at,γbt−1,γ

at−1,γ

)
xT −

(
ct,γ −

at,γct−1,γ

at−1,γ

)
m

]
= µ̄t−1,γ +

at,γ σ̄
′2
t−1

at−1,γ σ̄′2
t

xt −
at,γ σ̄

′2
t−1

at−1,γ σ̄′2
t

µ̄t,γ

= µ̄t−1,γ +
σ̄′2
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ).

(64)

with the fact that

µ̄t,γ =
at,γ

at−1,γ
µ̄t−1,γ +

(
bt,γ −

at,γbt−1,γ

at−1,γ

)
xT +

(
ct,γ −

at,γct−1,γ

at−1,γ

)
m, (65)

which can be easily proved by expanding and comparing the both sides of the equation.

As for µθ,t−1 and σ2
t−1,θ, parameterized from the SDE (15):

xt−1 = xt −

[
ftxt + htm+ g2t

xT − ef̄t:T xt −mef̄T h̄t:T

e−f̄t:T (γ−1 + e2f̄T ḡ2t:T )
− g2t∇xt

log p(xt | xT )

]
− gtϵt

≈ xt −

[
ftxt + htm+ g2t

xT − ef̄t:T xt −mef̄T h̄t:T

e−f̄t:T (γ−1 + e2f̄T ḡ2t:T )
− g2t

σ̄′
t

ϵθ(xt, xT , t)

]
− gtϵt,

(66)

where ϵt ∼ N(0,dtI).

Hence,

µθ,t−1 = xt −

[
ftxt + htm+ g2t

xT − ef̄t:T xt −mef̄T h̄t:T

e−f̄t:T (γ−1 + e2f̄T ḡ2t:T )
− g2t

σ̄′
t

ϵθ(xt, xT , t)

]
,

σθ,t−1 = gt,

(67)

which concludes the derivation of the training objective (19).

A.6. Proof of Proposition 4.4

Proposition 4.4. UniDB encompasses existing diffusion bridge models by employing different hyper-parameter spacesH as
follows:

• DDBMs (VE) corresponds to UniDB with hyper-parameterHVE(ft = 0, ht = 0, γ →∞)

• DDBMs (VP) corresponds to UniDB with hyper-parameterHVP(ft = − 1
2g

2
t , ht = 0, γ →∞)

• GOUB corresponds to UniDB with hyper-parameterHGOU(ft = θt, ht = −θt,m = µ, γ →∞)

Proof. DDBMs (VE).

HVE(ft = 0, ht = 0, γ →∞)

⇔ SOC problem with SDE: dxt = gtdwt as γ →∞

⇔ dxt =
xT − xt∫ T

t
g2zdz

dt+ gtdwt

⇔ dxt =
xT − xt

σ2
T − σ2

t

dt+ gtdwt with g2t =
d

dt
σ2
t

⇔ DDBMs (VE) with Doob’s h-transform
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DDBMs (VP).

HVP(ft = −
1

2
g2t , ht = 0, γ →∞)

⇔ SOC problem with SDE: dxt = −
1

2
g2t xtdt+ gtdwt as γ →∞

⇔ dxt =

(
−1

2
g2t xt + g2t e

∫ t
0

g2z
2 dz e

− 1
2

∫ t
0
g2
zdzxT − e−

1
2

∫ T
0

g2
zdzxt

e
1
2

∫ T
t

g2
zdz − e−

1
2

∫ T
t

g2
zdz

)
dt+ gtdwt

⇔ dxt =

−1

2
g2t xt + g2t

αtxT − αTxt

α2
tσ

2
T

αT
− σ2

tαT

dt+ gtdwt where αt = e−
1
2

∫ t
0
g2
zdz and g2t =

d

dt
σ2
t + g2t σ

2
t

⇔ dxt =

(
−1

2
g2t xt + g2t

αt

αT
xT − xt

σ2
t (

SNRt

SNRT
− 1)

)
dt+ gtdwt where SNRt =

α2
t

σ2
t

⇔ DDBMs (VP) with Doob’s h-transform

GOUB.

HGOU(ft = θt, ht = −θt,m = µ, γ →∞)

⇔ SOC problem with SDE: dxt = θt (µ− xt) dt+ gtdwt as γ →∞

⇔ dxt =

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)dt+ gtdwt

⇔ GOUB with Doob’s h-transform

which concludes the proof of the Proposition 4.4.

A.7. Derivation of UniDB-GOU (forward SDE (20) and mean value of forward transition (21))

Consider the SOC problem with GOU process (5), the optimally-controlled forward SDE is

dxt =

(
θt + g2t

e−2θ̄t:T

γ−1 + σ̄2
t:T

)
(xT − xt)dt+ gtdwt, (20)

and the mean value of the probability p(xt | x0, xT ) is

µ̄t,γ = e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT . (21)

Proof. Consider the SOC problem with GOU process (5) in the deterministic form:

min
ut,γ

∫ T

0

1

2
∥ut,γ∥22dt+

γ

2
∥xu

T − xT ∥22

s.t. dxt = (θt(xT − xt) + gtut,γ) dt, x0 = x0

(68)

where the definition of µ and gt is the same as GOUB: µ = xT g2t = 2λ2θt.

Similarly to the proof of Proposition A.1, according to minimum principle theorem to obtain the following set of differential
equations:

dxt

dt
= ∇pt

H
(
xt,pt,u

∗
t,γ , t

)
= θtxT − θtxt − g2tpt, (69)
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dpt

dt
= −∇xt

H
(
xt,pt,u

∗
t,γ , t

)
= θtpt, (70)

x0 = x0, (71)

pT = γ (xT − xT ) . (72)

Solving the equation (70), we have:

pt = p0e
θ̄t ,

pT = p0e
θ̄T ,

(73)

Then we solve the equation (69):

dxt

dt
= θtxT − θtxt − g2tpt

⇒ d(eθ̄txt)

dt
= eθ̄tθtxT − eθ̄tg2tpt,

⇒ eθ̄txt − x0 = xT

∫ t

0

eθ̄zθzdz − p0

∫ t

0

g2ze
2θ̄zdz,

⇒ eθ̄txt − x0 = xT (e
θ̄t − 1)− λ2p0(e

2θ̄t − 1).

Hence, we can get:

xT = e−θ̄T x0 + (1− e−θ̄T )xT − λ2pT (1− e−2θ̄T ), (74)

and
xt = e−θ̄tx0 + (1− e−θ̄t)xT − λ2e−θ̄TpT (e

θ̄t − e−θ̄t). (75)

Take the equation (74) into the equation (72) and solve pT ,

pT = γ
(
e−θ̄1x0 + (1− e−θ̄T )xT − λ2pT (1− e−2θ̄T )− xT

)
⇒ pT =

γe−θ̄T (x0 − xT )

1 + γλ2(1− e−2θ̄T )
.

Hence,

xt = e−θ̄tx0 + (1− e−θ̄t)xT − λ2e−θ̄T (eθ̄t − e−θ̄t)
γe−θ̄T (x0 − xT )

1 + γλ2(1− e−2θ̄T )

=

(
e−θ̄t − γλ2e−2θ̄T (eθ̄t − e−θ̄t)

1 + γλ2(1− e−2θ̄T )

)
x0 +

(
1− e−θ̄t +

γλ2e−2θ̄T (eθ̄t − e−θ̄t)

1 + γλ2(1− e−2θ̄T )

)
xT

=

(
e−θ̄t

1 + γλ2(1− e−2θ̄t:T )

1 + γλ2(1− e−2θ̄T )

)
x0 +

(
1− e−θ̄t

1 + γλ2(1− e−2θ̄t:T )

1 + γλ2(1− e−2θ̄1)

)
xT

= e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT ,

(76)

which implies

µ̄t,γ = e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT . (77)
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Then,

u∗
t,γ = −gtpt

= −gteθ̄te−θ̄T
γe−θ̄T (x0 − xT )

1 + γλ2(1− e−2θ̄T )

= −gteθ̄te−θ̄T
γe−θ̄T (x0 − xT )

1 + γσ̄2
T

= −gteθ̄te−θ̄T
γe−θ̄T eθ̄t(xt − xT )

1 + γσ̄2
t:T

= gt
e−2θ̄t:T (xT − xt)

γ−1 + σ̄2
t:T

.

(78)

And the optimally-controlled dynamics can be:

dxt =

(
θt + g2t

e−2θ̄t:T

γ−1 + σ̄2
t:T

)
(xT − xt)dt+ gtdwt, (79)

which concludes the derivation of UniDB-GOU (forward SDE (20) and mean value of forward transition (21)).

A.8. Examples of UniDB-VE and UniDB-VP

Similar to section 4.5, we provide the other examples of UniDB-VE and UniDB-VP, highlighting the key difference of the
coefficient of x0 in the mean value of forward transition and h-function term between UniDB and them respectively.

UniDB-VE
σ2
T − σ2

t

σ2
T − σ2

0

⇒ γ−1 + σ2
T − σ2

t

γ−1 + σ2
T − σ2

0

h =
xT − xt

σ2
T − σ2

t︸ ︷︷ ︸
VE

⇒
u∗
t,γ

gt
=

xT − xt

γ−1 + σ2
T − σ2

t︸ ︷︷ ︸
UniDB-VE

(80)

UniDB-VP

αt

(
1− SNRT

SNRt

)
⇒ αt

1−
α2

tαT

σ2
tσ

2
T
γ−1 + SNRT

α2
tαT

σ2
tσ

2
T
γ−1 + SNRt


h =

αt

αT
xT − xt

σ2
t (

SNRt

SNRT
− 1)︸ ︷︷ ︸

VP

⇒
u∗
t,γ

gt
=

αt

αT
xT − xt

γ−1 αt

αT
+ σ2

t (
SNRt

SNRT
− 1)︸ ︷︷ ︸

UniDB-VP

(81)

A.9. Proof of Proposition 4.5

Proposition 4.5. Denote the initial state distribution x0, the terminal distribution xu
T by the controller and the pre-defined

terminal distribution xT , then

∥xu
T − xT ∥22 =

e−2θ̄T(
1 + γλ2(1− e−2θ̄T )

)2 ∥xT − x0∥22. (23)

Proof. According to Appendix A.7, we’ve learned that

xu
t = e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT +

σ̄2
t σ̄

2
t:T

σ̄2
T

ϵ. (82)

Take t = T , then

xu
T =

e−θ̄t

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
T

)
xT . (83)
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Therefore, since σ̄2
T = λ2(1− e−2θ̄T ),

∥xu
T − xT ∥22 =

∥∥∥ e−θ̄t

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
T

)
xT − xT

∥∥∥2
2

=
e−2θ̄T(

1 + γλ2(1− e−2θ̄T )
)2 ∥xT − x0∥22,

(84)

which concludes the proof of the Proposition 4.5.

B. Implementation Details
In Image Restoration Tasks (Image 4×Super-resolution, Image Deraining and Image Inpainting), we follow the experiment
setting of GOUB (Yue et al., 2023): the same noise network which is similar to U-Net structure (Chung et al., 2022), steady
variance level λ2 = 302/2552, coefficient eθ̄T = 0.005 instead of zero, sampling step number T = 100, 128 patch size
with 8 batch size when training, Adam optimizer with β1 = 0.9 and β2 = 0.99 (Kingma, 2014), 1.2 million total training
steps with 10−4 initial learning rate and decaying by half at 300, 500, 600, and 700 thousand iterations. With respect to the
schedule of θt, we choose a flipped version of cosine noise schedule (Nichol & Dhariwal, 2021; Luo et al., 2023),

θt = 1−
cos( t/T+s

1+s
π
2 )

2

cos( s
1+s

π
2 )

2
(85)

where s = 0.008 to achieve a smooth noise schedule. gt is determined through g2t = 2λ2θt. As for the datasets of the three
main experiments, we take 800 images for training and 100 for testing for the DIV2K dataset, 1800 images for training
and 100 for testing for the Rain100H dataset, 27000 images for training and 3000 for testing for the CelebA-HQ 256×256
dataset. Our models are trained on a single NVIDIA H20 GPU with 96GB memory for about 2 days.
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C. Additional Experimental Results
Here we will illustrate more experimental results.

Table 3. Qualitative comparison between different bridge models (DDBMs (VE) and DDBMs (VP)) and ours (UniDB-VE and UniDB-VP)
on DIV2K and Rain100H datasets.

METHOD Image 4× Super-Resolution Image Deraining

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
DDBMs (VE) 23.34 0.4295 0.372 32.28 29.34 0.7654 0.185 43.22

UniDB-VE 23.84 0.4454 0.357 31.29 29.46 0.7671 0.185 42.57
DDBMs (VP) 22.11 0.4059 0.491 48.09 29.58 0.828 0.113 35.46

UniDB-VP 22.42 0.4097 0.486 44.52 30.11 0.8414 0.102 33.17

Table 4. Image 4×Super-Resolution. Qualitative evaluation of the CelebA-HQ 256×256 datasets with baselines.

METHOD Penalty Coefficient γ PSNR↑ SSIM↑ LPIPS↓ FID↓
DDBM (VE) ∞ 25.84 0.5099 0.381 67.98
UniDB-VE 1× 107 25.37 0.504 0.265 53.98

DDBM (VP) ∞ 27.13 0.6497 0.194 42.54
UniDB-VP 1× 107 27.44 0.6631 0.174 42.06

GOUB ∞ 28.63 0.7776 0.104 19.02
UniDB-GOU 1× 107 28.70 0.7894 0.090 17.59

Table 5. Image 4×Super-Resolution. Qualitative evaluation of the FFHQ 256×256 dataset with baselines.

METHOD LPIPS↓ FID↓
DDRM 0.339 59.57
DPS 0.214 39.35
DDBM (VE) 0.239 42.85
DDBM (VP) 0.177 39.63
GOUB 0.072 21.77

UniDB-GOU 0.069 20.24

Table 6. Image Inpainting. Qualitative comparison with the relevant baselines on CelebA-HQ with thick mask.

METHOD PSNR↑ SSIM↑ LPIPS↓ FID↓
DDRM 19.48 0.8154 0.1487 26.24
IRSDE 21.12 0.8499 0.1046 11.12
GOUB 22.59 0.8573 0.0917 8.49

UniDB-GOU 23.02 0.8571 0.0884 7.46
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LQ UniDB LQ UniDB LQ UniDB LQ UniDB LQ UniDB LQ UniDB

Figure 5. Additional visual results on deraining with Rain100H datasets.

LQ UniDB LQ UniDB LQ UniDB LQ UniDB LQ UniDB

Figure 6. Additional visual results on 4×super-resolution with FFHQ datasets.
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LQ UniDB LQ UniDB LQ UniDB LQ UniDB LQ UniDB

Figure 7. Additional visual results on 4×super-resolution with CelebA-HQ datasets.

GT GOUB UniDB GT GOUB UniDB GT GOUB UniDB

Figure 8. Additional visual results on thin mask inpainting with CelebA-HQ datasets to show our excellence.



UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control

LQ UniDB LQ UniDB LQ UniDB LQ UniDB

Figure 9. Additional visual results on thin mask inpainting with CelebA-HQ datasets.
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GT GOUB UniDB

Figure 10. Additional visual results on 4×super-resolution with DIV2K datasets.


