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ABSTRACT

Graph Convolutional Neural Networks (GCNs) exploit convolution operators,
based on some neighborhood aggregating scheme, to compute representations of
graphs. The most common convolution operators only exploit local topological in-
formation. To consider wider topological receptive fields, the mainstream approach
is to non-linearly stack multiple Graph Convolutional (GC) layers. In this way, how-
ever, interactions among GC parameters at different levels pose a bias on the flow of
topological information. In this paper, we propose a different strategy, considering
a single graph convolution layer that independently exploits neighbouring nodes
at different topological distances, generating decoupled representations for each
of them. These representations are then processed by subsequent readout layers.
We implement this strategy introducing the Polynomial Graph Convolution (PGC)
layer, that we prove being more expressive than the most common convolution op-
erators and their linear stacking. Our contribution is not limited to the definition of
a convolution operator with a larger receptive field, but we prove both theoretically
and experimentally that the common way multiple non-linear graph convolutions
are stacked limits the neural network expressiveness. Specifically, we show that a
Graph Neural Network architecture with a single PGC layer achieves state of the
art performance on many commonly adopted graph classification benchmarks.

1 INTRODUCTION

In the last few years, the definition of machine learning methods, particularly neural networks, for
graph-structured input has been gaining increasing attention in literature (Defferrard et al., 2016;
Errica et al., 2020). In particular, Graph Convolutional Networks (GCNs), based on the definition
of a convolution operator in the graph domain, are relatively fast to compute and have shown good
predictive performance. Graph Convolutions (GC) are generally based on a neighborhood aggre-
gation scheme (Gilmer et al., 2017) considering, for each node, only its direct neighbors. Stacking
multiple GC layers, the size of the receptive field of deeper filters increases (resembling standard
convolutional networks). However, stacking too many GC layers may be detrimental on the network
ability to represent meaningful topological information (Li et al., 2018) due to a too high Laplacian
smoothing. Moreover, in this way interactions among GC parameters at different layers pose a bias
on the flow of topological information. For these reasons, several convolution operators have been
defined in literature, differing from one another in the considered aggregation scheme. We argue
that the performance of GC networks could benefit by increasing the size of the receptive fields, but
since with existing GC architectures this effect can only be obtained by stacking more GC layers, the
increased difficulty in training and the limitation of expressiveness given by the stacking of many
local layers ends up hurting their predictive capabilities.
Consequently, the performances of existing GCNs are strongly dependent on the specific architecture.
Therefore, existing graph neural network performances are limited by (i) the necessity to select an
appropriate convolution operator, and (ii) the limitation of expressiveness caused by large receptive
fields being possible only stacking many local layers.
In this paper, we tackle both the issues following a different strategy. We propose the Polynomial
Graph Convolution (PGC) layer that independently considers neighbouring nodes at different topo-
logical distances (i.e. arbitrarily large receptive fields). The PGC layer faces the problem of selecting
a suitable convolution operator being able to represent many existing convolutions in literature, and
being more expressive than most of them. As for the second issue a PGC layer, directly considering
larger receptive fields, can represent a richer set of functions compared to the linear stacking of two
or more Graph Convolution layers, i.e. it is more expressive. Moreover, the linear PGC design allows
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to consider large receptive fields without incurring in typical issues related to training deep networks.
We developed the Polynomial Graph Convolutional Network (PGCN), an architecture that exploits
the PGC layer to perform graph classification tasks. We empirically evaluate the proposed PGCN
on eight commonly adopted graph classification benchmarks. We compare the proposed method to
several state-of-the-art GCNs, consistently achieving higher or comparable predictive performances.
Differently from other works in literature, the contribution of this paper is to show that the common
approach of stacking multiple GC layers may not provide an optimal exploitation of topological
information because of the strong coupling of the depth of the network with the size of the topological
receptive fields. In our proposal, the depth of the PGCN is decoupled from the receptive field size,
allowing to build deep GNNs avoiding the oversmoothing problem.

2 NOTATION

We use italic letters to refer to variables, bold lowercase to refer to vectors, and bold uppercase
letters to refer to matrices. The elements of a matrix A are referred to as aij (and similarly for
vectors). We use uppercase letters to refer to sets or tuples. Let G = (V,E,X) be a graph, where
V = {v0, . . . , vn−1} denotes the set of vertices (or nodes) of the graph, E ⊆ V × V is the set of
edges, and X ∈ Rn×s is a multivariate signal on the graph nodes with the i-th row representing
the attributes of vi. We define A ∈ Rn×n as the adjacency matrix of the graph, with elements
aij = 1 ⇐⇒ (vi, vj) ∈ E. With N (v) we denote the set of nodes adjacent to node v. Let also
D ∈ Rn×n be the diagonal degree matrix where dii =

∑
j aij , and L the normalized graph laplacian

defined by L = I−D−
1
2AD−

1
2 , where I is the identity matrix.

With GConvθ(xv, G) we denote a graph convolution with set of parameters θ. A GCN with k levels
of convolutions is denoted as GConvθk(. . . GConvθ1(xv, G) . . . , G). For a discussion about the
most common GCNs we refer to Appendix A. We indicate with X̂ the input representation fed to
a layer, where X̂ = X if we are considering the first layer of the graph convolutional network, or
X̂ = H(i−1) if considering the i-th graph convolution layer.

3 POLYNOMIAL GRAPH CONVOLUTION (PGC)

In this section, we introduce the Polynomial Graph Convolution (PGC), able to simultaneously and
directly consider all topological receptive fields up to k − hops, just like the ones that are obtained
by the graph convolutional layers in a stack of size k. PGC, however, does not incur in the typical
limitation related to the complex interaction among the parameters of the GC layers. Actually,
we show that PGC is more expressive than the most common convolution operators. Moreover,
we prove that a single PGC convolution of order k is capable of implementing k linearly stacked
layers of convolutions proposed in the literature, providing also additional functions that cannot be
realized by the stack. Thus, the PGC layer extracts topological information from the input graph
decoupling in an effective way the depth of the network from the size of the receptive field. Its
combination with deep MLPs allows to obtain deep graph neural networks that can overcome the
common oversmoothing problem of current architectures. The basic idea underpinning the definition
of PGC is to consider the case in which the graph convolution can be expressed as a polynomial of
the powers of a transformation T of the adjacency matrix. This definition is very general, and thus it
incorporates many existing graph convolutions as special cases. Given a graph G = (V,E,X) with
adjacency matrix A, the Polynomial Graph Convolution (PGC) layer of degree k, transformation T
of A, and size m, is defined as

PGConvk,T ,m(X,A) = Rk,TW, (1)

where T (A) ∈ Rn×n, Rk,T ∈ Rn×s∗(k+1), Rk,T = [X, T (A)X, T (A)2X, .., T (A)kX], and
W ∈ Rs∗(k+1)×m is a learnable weight matrix. For the sake of presentation, we will consider W
as composed of blocks: W = [W0, . . . ,Wk]>, with Wj ∈ Rs×m. In the following, we show that
PGC is very expressive, able to implement commonly used convolutions as special cases.
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3.1 GRAPH CONVOLUTIONS IN LITERATURE AS PGC INSTANTIATIONS

The PGC layer in equation 1 is designed to be a generalization of the linear stacking of some of the
most common spatially localized graph convolutions. The idea is that spatially localized convolutions
aggregate over neighbors (the message passing phase) using a transformation of the adjacency matrix
(e.g. a normalized graph Laplacian). We provide in this section a formal proof, as a theoretical
contribution of this paper, that linearly stacked convolutions can be rewritten as polynomials of
powers of the transformed adjacency matrix.

We start showing how common graph convolution operators can be defined as particular instances of
a single PGC layer (in most cases with k = 1). Then, we prove that linearly stacking any two PGC
layers produces a convolution that can be written as a single PGC layer as well.

Spectral: The Spectral convolution (Defferrard et al., 2016) can be considered the application of
Fourier transform to graphs. It is obtained via Chebyshev polynomials of the Laplacian matrix. A
layer of Spectral convolutions of order k? can be implemented by a single PGC layer instantiating
T (A) to be the graph Laplacian matrix (or one of its normalized versions), setting the PGC k value to
k?, and setting the weight matrix to encode the constraints given by the Chebyshev polynomials. For
instance, we can get the output H of a Spectral convolution layer with k? = 3 by the following PGC:

H = [X,LX,L2,L3X]W, where W =

 W0 −W2

W1 − 3W3

2W2

4W3

 , Wi ∈ Rs×m. (2)

GCN: The Graph Convolution (Kipf & Welling, 2017) (GCN) is a simplification of the spectral
convolution. The authors propose to fix the order k? = 1 of the Chebyshev spectral convolution to
obtain a linear first order filter for each graph convolutional layer in a neural network. By setting
k = 1 and T (A) = D̃−

1
2 ÃD̃−

1
2 ∈ Rn×n, with Ã = A + I and d̃ii =

∑
j ãij , we obtain the

following equivalent equation:

H = [X, D̃−
1
2 ÃD̃−

1
2X]W, where W =

[
0

W1

]
, (3)

where 0 is a s ×m matrix with all entries equal to zero and W1 ∈ Rs×m is the weight matrix of
GCN. Note that the GCN does not consider a node differently from its neighbors, thus in this case
there is no contribution from the first component of Rk,T .

GraphConv: In Morris et al. (2019) a powerful graph convolution has been proposed, that is inspired
by the Weisfeiler-Lehman graph invariant. In this case, T (A) = A (the identity function), and k is
again set to 1. A single GraphConv layer can be written as:

H = [X,AX]W, where W =

[
W0

W1

]
, and W0,W1 ∈ Rs×m. (4)

GIN: The Graph Isomorphism Network (GIN) convolution was defined in Xu et al. (2019) as:
H′ = MLP ((1 + ε)X̂ + AX̂). Technically, this is a composition of a convolution (that is a linear
operator) with a multi-layer perceptron. Let us thus decompose the MLP () as f ◦ g, where g is an
affine projection via weight matrix W, and f incorporates the element-wise non-linearity, and the
other layers of the MLP. We can thus isolate the GIN graph convolution component and define it as a
specific PGC istantiation. We let k = 1 and T () the identity function as before. A single GIN layer
can then be obtained as:

H = [X,AX]W, where W =

[
(1 + ε)W1

W1

]
. (5)

Note that, differently from GraphConv, in this case the blocks of the matrix W are tied. Figure 1 in
Appendix B depicts the expressivity of different graph convolution operators in terms of the respective
constraints on the weight matrix W. The comparison is made easy by the definition of the different
graph convolution layers as instances of PGC layers. Actually, it is easy to see from eqs. (3)-(5) that
GraphConv is more expressive than GCN and GIN.
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3.2 LINEARLY STACKED GRAPH CONVOLUTIONS AS PGC INSTANTIATIONS

In the previous section, we have shown that common graph convolutions can be expressed as particular
instantiations of a PGC layer. In this section, we show that a single PGC layer can model the linear
stacking of any number of PGC layers (using the same transformation T ). Thus, a single PGC layer
can model all the functions computed by arbitrarily many linearly stacked graph convolution layers
defined in the previous section. We then show that a PGC layer includes also additional functions
compared to the stacking of simpler PGC layers, which makes it more expressive.
Theorem 1. Let us consider two linearly stacked PGC layers using the same transformation T . The
resulting linear Graph Convolutional network can be expressed by a single PGC layer.

Due to space limitations, the proof is reported in appendix C. Here it is important to know that the
proof of Theorem 1 tells us that a single PGC of order k can represent the linear stacking of any q
(T -compatible) convolutions such that k =

∑q
i=1 di, where di is the degree of convolution at level i.

We will now show that a single PGC layer can represent also other functions, i.e. it is more general
than the stacking of existing convolutions. Let us consider, for the sake of simplicity, the stacking of
2 PGC layers with k = 1 (that are equivalent to GraphConv layers, see eq. equation 4), each with
parameters W(i) = [W

(i)
0 ,W

(i)
1 ]>, i = 1, 2, W(1)

0 ,W
(1)
1 ∈ Rs×m1 , W

(2)
0 ,W

(2)
1 ∈ Rm1×m2 .

The same reasoning can be applied to any other convolution among the ones presented in Section 3.1.
We can explicitly write the equations computing the hidden representations:

H(1) = XW
(1)
0 + AXW

(1)
1 , (6)

H(2) = H(1)W
(2)
0 + AH(1)W

(2)
1 (7)

= XW
(1)
0 W

(2)
0 + AX(W

(1)
1 W

(2)
0 + W

(1)
0 W

(2)
1 ) + A2XW

(1)
1 W

(2)
1 .

A single PGC layer can implement this second order convolution as:

H(2) = [X,AX,A2X]

 W
(1)
0 W

(2)
0

W
(1)
1 W

(2)
0 + W

(1)
0 W

(2)
1

W
(1)
1 W

(2)
1

 . (8)

Let us compare it with a PGC layer that corresponds to the same 2-layer architecture but that has no
constraints on the weight matrix, i.e.:

H(2) = [X,AX,A2X]

[
W0

W1

W2

]
, Wi ∈ Rs×m2 , i = 0, 1, 2. (9)

Even though it is not obvious at a first glance, equation 8 is more constrained than equation 9,
i.e. there are some values of W0,W1,W2 in equation 9 that cannot be obtained for any W(1) =

[W
(1)
0 ,W

(1)
1 ]> and W(2) = [W

(2)
0 ,W

(2)
1 ]> in equation 8, as proven by the following theorem.

Theorem 2. A PGC layer with k = 2 is more general than two stacked PGC layers with k = 1 with
the same number of hidden units m.

We refer the reader to Appendix C for the proof. Notice that the GraphConv layer is equivalent to a
PGC layer with k = 1 (if no constraints on W are considered, see later in this section). Since the
GraphConv is, in turn, more general than GCN and GIN, the above theorem holds also for those
graph convolutions. Moreover, Theorem 2 trivially implies that a linear stack of q PGC layers with
k = 1 is less expressive than a single PGC layer with k = q.

If we now consider that in many GCN architectures it is typical, and useful, to concatenate the output
of all convolution layers before aggregating the node representations, then it is not difficult to see
that such concatenation can be obtained by making wider the weight matrix of PGC. Let us thus
consider a network that generates a hidden representation that is the concatenation of the different
representations computed on each layer, i.e. H = [H(1),H(2)] ∈ Rs×m, m = m1 + m2. We can
represent a 2-layer GraphConv network as a single PGC layer as:

H = [X,AX,A2X]

 W
(1)
0 W

(1)
0 W

(2)
0

W
(1)
1 W

(1)
1 W

(2)
0 + W

(1)
0 W

(2)
1

0 W
(1)
1 W

(2)
1

 . (10)
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More in general, if we consider k GraphConv convolutional layers (see eq. (4)), each with parameters
W(i) = [W

(i)
0 ,W

(i)
1 ]>, i = 1, . . . , k, W

(i)
0 ,W

(i)
1 ∈ Rmi−1×mi , m0 = s, m =

∑k
j=1, the weight

matrix W ∈ Rs·(k+1)×m can be defined as follows:
F0,1(W

(1)) F0,2(W
(1),W(2)) F0,3(W

(1),W(2),W(3)) . . .

F1,1(W
(1)) F1,2(W

(1),W(2)) F1,3(W
(1),W(2),W(3)) . . .

0 F2,2(W
(1),W(2)) F2,3(W

(1),W(2),W(3)) . . .

0 0 F3,3(W
(1),W(2),W(3)) . . .

. . . . . . . . . . . .

 , (11)

where Fi,j(), i, j ∈ {0, . . . , k}, i ≤ j, are defined as

Fi,j(W
(1), . . . ,W(j)) =

∑
(z1,..,zj)∈{0,1}j

s.t.
∑j

q=1 zq=i

j∏
s=1

W(s)
zs .

We can now generalize this formulation by concatenating the output of k + 1 PGC convolutions of
degree ranging from 0 up to k. This gives rise to the following definitions:

W =


W0,0 W0,1 W0,2 . . . W0,k

0 W1,1 W1,2 . . . W1,k

0 0 W2,2 . . . W2,k

...
...

...
. . .

...
0 0 0 . . . Wk,k

 , H =


(XW0,0)

>

(XW0,1 + T (A)XW1,1)
>

...
(XW0,k + · · ·+ T (A)kXWk,k)

>


>

(12)

where we do not put constraints among matrices Wi,j ∈ Rs×mj , m =
∑k
j=0mj , which are

considered mutually independent. Note that as a consequence of Theorem 2, the network defined
in equation 12 is more expressive than the one obtained concatenating different GraphConv layers as
defined in equation 11. It can also be noted that the same network can actually be seen as a single
PGC layer of order k + 1 with a constraint on the weight matrix (i.e., to be an upper triangular
block matrix). Of course, any weights sharing policy can be easily implemented, e.g. by imposing
∀j Wi,j = Wi, which corresponds to the concatenation of the representations obtained at level i
by a single stack of convolutions. In addition to reduce the number of free parameters, this weights
sharing policy allows the reduction of the computational burden since the representation at level i is
obtained by summing to the representation of level i− 1 the contribution of matrix Wi, i.e. AiXWi

3.3 COMPUTATIONAL COMPLEXITY

As detailed in the previous discussion, the degree k of a PGC layer controls the size of its considered
receptive field. In terms of the number of parameters, fixing the node attribute size s and the size
m of the hidden representation, the number of parameters of the PGC is O(s · k ·m), i.e. it grows
linearly in k. Thus, the number of parameters of a PGC layer is of the same order of magnitude
compared to k stacked graph convolution layers based on message passing (Gilmer et al., 2017) (i.e.
GraphConv, GIN and GCN, presented in Section 3.1).

If we consider the number of required matrix multiplications, compared to message passing GC
networks, in our case it is possible to pre-compute the terms T (A)iX before the start of training,
making the computational cost of the convolution calculation cheaper compared to message passing.
In Appendix E, we report an example that makes evident the significant improvement that can be
gained in training time with respect to message passing.

4 POLYNOMIAL GRAPH CONVOLUTIONAL NETWORK (PGCN)

In this section, we present a neural architecture that exploits the PGC layer to perform graph
classification tasks. Note that, differently from other GCN architectures, in our architecture (exploiting
the PGC layer) the depth of the network is completely decoupled from the size k of the receptive field.
The initial stage of the model consists of a first PGC layer with k = 1. The role of this first layer is to
develop an initial node embedding to help the subsequent PGC layer to fully exploit its power. In fact,
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in bioinfromatics datasets where node labels X are one-hot encoded, all matrices X,AX, . . . ,AkX
are very sparse, which we observed, in preliminary experiments, influences in a negative way learning.
Table 4 in Appendix F compares the sparsity of the PGC representation using the original one-hot
encoded labels against their embedding obtained with the first PGC layer. The analysis shows that
using this first layer the network can work on significantly denser representations of the nodes. Note
that this first stage of the model does not significantly bound the PGC-layer expressiveness. A dense
input for the PGC layer could have been obtained by using an embedding layer that is not a graph
convolutional operator. However, this choice would have made difficult to compare our results with
other state-of-the-art models in Section 6, since the same input transformation could have been
applied to other models as well, making unclear the contribution of the PGC layer to the performance
improvement. This is why we decided to use a PGC layer with k = 1 (equivalent to a GraphConv) to
compute the node embedding, making the results fully comparable since we are using only graph
convolutions in our PGCN. For what concerns the datasets that do not have the nodes’ label (like the
social networks datasets), using the PGC layer with k = 1 allows to create a label for each node that
will be used by the subsequent larger PGC layer to compute richer node’s representations. After this
first PGC layer, a PGC layer as described in eq. equation 12 of degree k is applied. In order to reduce
the number of hyperparameters, we adopted the same number m

k+1 of columns (i.e., hidden units) for
matrices Wi,j , i.e. Wi,j ∈ Rs×

m
k+1 . A graph-level representation s ∈ Rm∗3 based on the PGC layer

output H is obtained by an aggregation layer that exploits three different aggregation strategies over
the whole set of nodes V, j = 1, . . . ,m:

savgj = avg({h(j)v |v ∈ V }), smaxj = max({h(j)v |v ∈ V }), ssumj = sum({h(j)v |v ∈ V }),

s = [savg1 , smax1 , ssum1 , . . . , savgm , smaxm , ssumm ]>.

The readout part of the model is composed of q dense feed-forward layers, where we consider q
and the number of neurons per layer as hyper-parameters. Each one of these layers uses the ReLU
activation function, and is defined as yj = ReLu(Wreadout

j yj−1 + breadout), j = 0, . . . , q,
where y0 = s. Finally, the output layer of the PGCN for a c-class classification task is defined as:
o = LogSoftmax(Woutyq + bout).

5 COMPARISON VS MULTI-SCALE GCN ARCHITECTURES IN LITERATURE

Some recent works in literature exploit the idea of extending graph convolution layers to increase the
receptive field size. In general, the majority of these models, that concatenate polynomial powers
of the adjacency matrix A, are designed to perform node classification, while the proposed PGCN
is developed to perform graph classification. In this regard, we want to point out that the novelty
introduced in this paper is not limited to a novel GC-layer, but the proposed PGCN is a complete
architecture to perform graph classification. Atwood & Towsley (2016) proposed a method that
exploits the power series of the probability transition matrix, that is multiplied (using Hadamard
product) by the inputs. The method differs from the PGCN even in terms of how the activation is
computed and even because the activation computed for each exponentiation is summed, instead been
concatenated. Similarly in Defferrard et al. (2016) the model exploits the Chebyshev polynomials,
and, differently from PGCN sums them over k. This architectural choice makes the proposed method
less general than the PGCN. Indeed, as showed in Section 3.1, the model proposed in (Defferrard
et al., 2016) is an instance of the PGC.

In (Xu et al., 2018) the authors proposed to modify the common aggregation layer in such a way that,
for each node, the model aggregates all the intermediate representations computed in the previous
GC-layers. In this work, differently from PGCN, the model exploits the message passing method
introducing a bias in the flow of the topological information. Note that, as proven in Theorem 2, a
PGC layer of degree k is not equivalent to concatenate the output of k stacked GC layers, even though
the PGC layer can also implement this particular architecture.

Another interesting approach is proposed in (Tran et al., 2018), where the authors consider larger
receptive fields compared to standard graph convolutions. However, they focus on a single convolution
definition (using just the adjacency matrix) and consider shortest paths (differently from PGCN that
exploits matrix exponentiations, i.e. random walks). In terms of expressiveness, it is complex to
compare methods that exploit matrix exponentiations with methods based on the shortest paths.
However, it is interesting to notice that, thanks to the very general structure of the PGC layer, it is
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easy to modify the PGC definition in order to use the shortest paths instead of the adjacency matrix
transformation exponentiations. In particular, we plan to explore this option as the future development
of the PGCN.

Wu et al. introduce a simplification of the graph convolution operator, dubbed Simple Graph
Convolution (SGC) (Wu et al., 2019). The model proposed is based on the idea that perhaps the
nonlinear operator introduced by GCNs is not essential, and basically, the authors propose to stack
several linear GC operators. In Theorem2 we prove that staking k GC layers is less expressive
than using a single PGC layer of degree k. Therefore, we can conclude that the PGC Layer is a
generalization of the SGC.

In (Liao et al., 2019) the authors construct a deep graph convolutional network, exploiting particular
localized polynomial filters based on the Lanczos algorithm, which leverages multi-scale information.
This convolution can be easily implemented by a PGC layer. In (Chen et al., 2019) the authors propose
to replace the neighbor aggregation function with graph augmented features. These graph augmented
features combine node degree features and multi-scale graph propagated features. Basically, the
proposed model concatenates the node degree with the power series of the normalized adjacency
matrix. Note that the graph augmented features differ from Rk,T , used in the PGC layer. Another
difference with respect to the PGCN resides on the subsequent part of the model. Indeed, instead
of projecting the multi-scale features layer using a structured weights matrix, the model proposed
in (Chen et al., 2019) aggregates the graph augmented features of each vertex and project each of
these subsets by using an MLP. The model readout then sums the obtained results over all vertices
and projects it using another MLP.

Luan et al. (2019) introduced two deep GCNs that rely on Krylov blocks. The first one exploits a GC
layer, named snowball, that concatenates multi-scale features incrementally, resulting in a densely-
connected graph network. The architecture stacks several layers and exploits nonlinear activation
functions. Both these aspects make the gradient flow more complex compared to the PGCN. The
second model, called Truncated Krylov, concatenates multi-scale features in each layer. In this model,
differently from PCGN, the weights matrix of each layer has no structure, thus topological features
from all levels are mixed together. A similar approach is proposed in (Rossi et al., 2020). Rossi et. al
proposed an alternative method, named SIGN, to scale GNN to a very large graph. This method uses
as a building block the set of exponentiations of linear diffusion operators. In this building block,
every exponentiation of the diffusion operator is linearly projected by a learnable matrix. Moreover,
differently from the PGC layer, a nonlinear function is applied on the concatenation of the diffusion
operators making the gradient flow more complex compared to the PGCN.

Very recently Liu et al. (2020) proposed a model dubbed Deep Adaptive Graph Neural Network,
to learn node representations by adaptively incorporating information from large receptive fields.
Differently from PGCN, first, the model exploits an MLP network for node feature transformation.
Then it constructs a multi-scale representation leveraging on the computed nodes features transfor-
mation and the exponentiation of the adjacency matrix. This representation is obtained by stacking
the various adjacency matrix exponentiations (thus obtaining a 3-dimensional tensor). Similarly to
(Luan et al., 2019) also in this case the model projects the obtained multi-scale representation using
weights matrix that has no structure, obtaining that the topological features from all levels are mixed
together. Moreover, this projection uses also a (trainable) retainment scores. These scores measure
how much information of the corresponding representations derived by different propagation layers
should be retained to generate the final representation for each node in order to adaptively balance
the information from local and global neighborhoods. Obviously, that makes the gradient flow more
complex compared to the PGCN, and also impact the computational complexity.

6 EXPERIMENTAL SETUP AND RESULTS

In this section, we introduce our model set up, the adopted datasets, the baselines models, and the
hyper-parameters selection strategy. We then report and discuss the results obtained by the PGCN.
For implementation details please refer to Appendix G.

Datasets. We empirically validated the proposed PGCN on five commonly adopted graph classifica-
tion benchmarks modeling bioinformatics problems: PTC (Helma et al., 2001), NCI1 (Wale et al.,
2008), PROTEINS, (Borgwardt et al., 2005), D&D (Dobson & Doig, 2003) and ENZYMES (Borg-
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Model \ Dataset PTC NCI1 PROTEINS D&D ENZYMES COLLAB IMDB-B IMDB-M

PSCN1 60.00 76.34 75.00 76.27 - 72.60 71.00 45.23
±4.82 ±1.68 ±2.51 ±2.64 - ±2.15 ±2.29 ±2.84

FGCNN2 58.82 81.50 74.57 77.47 - - - -
±1.80 ±0.39 ±0.80 ±0.86 - - - -

DGCNN2 57.14 72.97 73.96 78.09 - - - -
±2.19 ±0.87 ±0.41 ±0.72 - - - -

DGCNN3 - 76.4 72.9 76.6 38.9 57.4 53.3 38.6
- ±1.7 ±3.5 ±4.3 ±5.7 ±1.9 ±5.0 ±2.2

GIN3 - 80.0 73.3 75.3 59.6 75.9 66.8 42.2
- ±1.4 ±4.0 ±2.9 ±4.5 ±1.9 ±3.9 ±4.6

DIFFPOOL3 - 76.9 73.7 75.0 59.5 67.7 68.3 45.1
- ±1.9 ±3.5 ±3.5 ±5.6 ±1.9 ±6.1 ±3.2

GraphSAGE3 - 76.0 73.0 72.9 58.2 71.6 69.9 47.2
- ±1.8 ±4.5 ±2.0 ±6.0 ±1.5 ±4.6 ±3.6

Baseline3 - 69.8 75.8 78.4 65.2 55.0 50.7 36.1
- ±2.2 ±3.7 ±4.5 ±6.4 ±1.9 ±2.4 ±3.0

PGCN 60.50 82.04 75.31 79.45 70.5 74.1 72.60 47.39
±0.67 ±0.26 ±0.31 ±0.29 ±1.77 ±1.69 ±3.80 ±3.51

Table 1: Accuracy comparison between PGCNN and several state-of-the-art models on graph
classification task. 1(Niepert et al., 2016) , 2(Navarin et al., 2020), 3(Errica et al., 2020).

wardt et al., 2005). Moreover, we also evaluated the PGCN on 3 large graph social datasets: COLLAB,
IMDB-B, IMDB-M (Yanardag & Vishwanathan, 2015). We report more details in Appendix D.

Baselines and Hyper-parameter selection. We compare PGCN versus several GNN architectures,
that achieved state-of-the-art results on the used datasets. Specifically, we considered PSCN (Niepert
et al., 2016), Funnel GCNN (FGCNN) model (Navarin et al., 2020), DGCNN (Zhang et al., 2018),
GIN (Xu et al., 2019), DIFFPOOL (Ying et al., 2018) and GraphSage (Hamilton et al., 2017). Note
that these graph classification models exploit the convolutions presented in Section 3.1. From (Errica
et al., 2020) we report also the results of a baseline models that is structure-agnostic.
The results were obtained by performing 5 runs of 10-fold cross-validation. The hyper-parameters
of the model (number of hidden units, learning rate, weight decay, k, q) were selected using a grid
search, where the explored sets of values were changed based on the considered dataset. Other details
about validation are reported in Appendix I.
The results reported in Xu et al. (2019); Chen et al. (2019); Ying et al. (2018) are not considered
in our comparison since the model selection strategy is different from the one we adopted and this
makes the results not comparable. The importance of the validation strategy is discussed in Errica
et al. (2020), where results of a fair comparison among the considered baseline models are reported.
For the sake of completeness, we also report (and compare) in Appendix J the results obtained by
evaluating the PGCN method with the validation policy used in Xu et al. (2019); Chen et al. (2019);
Ying et al. (2018).

6.1 RESULTS AND DISCUSSION

The results reported in Table 1 show that the PGCN achieves higher results in all (except one)
considered datasets compared to competing methods. In particular, on NCI1 and ENZYMES the
proposed method outperforms state-of-the-art results. In fact, in both cases, the performances of
PGCN and the best competing method are more than one standard deviation apart. Even for PTC,
D&D, PROTEINS, IMDB-B and IMDB-M datasets PGCN shows a slight improvement over the
results of FGCNN and DGCNN models. Furthermore, the results of PGCN in Bioinformatics datasets
achieves a significant lower standard deviation (evaluated over the 5 runs of 10-fold cross-validation).
For what concerns the COLLAB datasets, PGCN obtained the second higher result in the considered
state-of-the-art methods. Note however that the difference with respect to the first one (GIN) is within
the standard deviation.
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Dataset \ k 3 4 5 6
PTC 74.0 68.86 69.14 69.43

±2.81 ±2.44 ±2.33 ±1.78

NCI1 82.68 83.16 84.40 84.04
±0.22 ±0.70 ±0.14 ±0.83

PROTEINS 79.20 78.48 78.48 78.84
±0.81 ±0.56 ±1.04 ±0.80

D&D 81.95 82.03 81.69 82.54
±1.19 ±1.06 ±0.68 ±1.09

ENZYMES 77.50 76.83 78.17 77.18
±1.27 ±0.85 ±0.68 ±0.92

Dataset \ k 3 5 7 9
COLLAB 76.94 76.32 76.96 76.72

±1.47 ±1.45 ±2.14 ±1.60

IMDB-B 76.70 76.60 76.38 77.88
±3.48 ±3.84 ±2.90 ±3.11

IMDB-M 52.37 52.7 52.41 52.97
±3.02 ±2.84 ±2.85 ±2.67

Table 2: PGCN accuracy comparison on the validation set of the datasets for different values of k.

Significativity of our results. To understand if the improvements reported in Table 1 are significant
or can be attributed to random chance, we conducted the two-tailed Wilcoxon Signed-Ranks test
between our proposed PGCN and competing methods. This test considers all the results for the
different datasets at the same time. According to this test, PGCN performs significantly better
(p-value < 0.05) than PSCN, DGCNN3, GIN, DIFFPOOL and GraphSAGE. As for FGCNN and
DGCNN2, four datasets are not enough to conduct the test.

Impact of receptive field size on PGCN. Most of the proposed GCN architectures in literature
generally stack 4 or fewer GCs layers. The proposed PGC layer allows us to represent a linear version
of these architectures by using a single layer with an even higher depth (k), without incurring in
problems related to the flow of the topological information. Different values of k have been tested to
study how much the capability of the model to represent increased topological information helps to
obtain better results. The results of these experiments are reported in Table 2. The accuracy results
in this table are referred to the validation sets, since the choice of k is part of the model selection
procedure. We decided to take into account a range of k values between 3 and 6 for bioinformatics
datasets, and between 3 to 9 for social networks datasets. The results show that it is crucial to select
an appropriate value for k. Several factors influence how much depth is needed. It is important to take
into account that the various datasets used for the experiments refer to different tasks. The quantity
and the type of topological information required (or useful) to solve the task highly influences the
choice of k. Moreover, also the input dimensions and the number of graphs contained in a dataset
play an important role. In fact, using higher values of k increases the number columns of the Rk,T
matrix (and therefore the number of parameters embedded in W), making the training of the model
more difficult. It is interesting to notice that in many cases our method exploits a larger receptive
field (i.e. a higher degree) compared to the competing models. Note that the datasets where better
results are obtained with k = 3 (PTC and PROTEINS) contain a limited amount of training samples,
thus deeper models tend to overfit arguably for the limited amount of training data.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we analyze some of the most common convolution operators evaluating their expres-
siveness. Our study shows that their linear composition can be defined as instances of a more general
Polynomial Graph Convolution operator with a higher expressiveness. We defined an architecture
exploiting a single PGC layer to generate a decoupled representation for each neighbor node at a
different topological distance. This strategy allows us to avoid the bias on the flow of topological
information introduced by stacking multiple graph convolution layers. We empirically validated the
proposed Polynomial Graph Convolutional Network on five commonly adopted graph classification
benchmarks. The results show that the proposed model outperforms competing methods in almost all
the considered datasets, showing also a more stable behavior.

In the future, we plan to study the possibility to introduce an attention mechanism by learning a
transformation T that can adapt to the input. Furthermore, we will explore whether adopting our
PGC operator as a large random projection can allow to develop a novel model for learning on graph
domains.
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A GRAPH NEURAL NETWORKS

A Graph Neural Network (GNN) is a neural network model that exploits the structure of the graph
and the information embedded in feature vectors of each node to learn a classifier or regressor on a
graph domain. Due to the success in image processing, convolutional-based neural networks have
become one of the main architectures (ConvGNN) applied to graph processing. The typical structure
of a ConvGNN comprises a first part of processing where convolutional layers are used in order to
learn a representation hv ∈ Rm for each vertex v ∈ V . These representations are then combined to
get a representation of the whole graph, so that a standard feed-forward (deep) neural network can be
used to process it. Convolutional layers are important since they define how the (local) topological
information is mixed with the information attached to involved nodes, and what is the information
to pass over to the subsequent computational layers. Because of that, several convolution operators
for graphs have recently been proposed (Defferrard et al., 2016; Kipf & Welling, 2017; Morris et al.,
2019; Xu et al., 2019).

The first definition of neural network for graphs has been proposed by Sperduti & Starita (1997).More
recently, Micheli (2009) proposed the Neural Network for Graphs (NN4G), exploiting an idea that
has been re-branded later as graph convolution, and Scarselli et al. (2008) defined a recurrent neural
network for graphs.In the last few years, several models inspired by the graph convolution have been
proposed. Many recent works defining graph convolutional networks (GCNs) extend the NN4G
formulation (Micheli, 2009), for instance the Graph Convolutional Network (GCN) (Kipf & Welling,
2017) is based on a linear first-order filter based on the normalized graph Laplacian for each graph
convolutional layer in a neural network. SGC (Wu et al., 2019) proposes a fast way to compute the
result of several linearly stacked GCNs. Note that SGC considers just the GCN convolution, while
our proposed PGC is more expressive than any number of linearly stacked graph convolutions among
the ones presented in Section 3.1 of the main paper. DGCNN (Zhang et al., 2018) adopts a graph
convolution very similar to GCN (Kipf & Welling, 2017) (a slightly different propagation scheme
for vertices’ representations is defined, based on the random-walk graph Laplacian). While GCN is
focused on node classification, DGCNN is suited for graph classification since it incorporates the
readout.

A more straightforward approach in defining convolutions on graphs is PATCHY-SAN
(PSCN) (Niepert et al., 2016). This approach is inspired by how convolutions are defined over
images. It consists in selecting a fixed number of vertices from each graph and exploiting a canonical
ordering on graph vertices. For each vertex, it defines a fixed-size neighborhood, exploiting the same
vertex ordering. It requires the vertices of each input graph to be in a canonical ordering, which is as
complex as the graph isomorphism problem (no polynomial-time algorithm is known).

Another interesting proposal for the convolution over the node neighborhood is GraphSage Hamilton
et al. (2017), which proposes to perform an aggregation over the neighborhoods by using sum,
mean or max-pooling operators, and then perform a linear projection in order to update the node
representation. In addition to that, the proposed approach exploits a particular neighbors sampling
scheme. GIN (Xu et al., 2019) is an extension of GraphSage that avoids the limitation introduced
by using sum, mean or max-pooling by using a more expressive aggregation function on multi-sets.
DiffPool (Ying et al., 2018) is an end-to-end architecture that combines a differentiable graph encoder
with its polling mechanism. Indeed, the method learns an adaptive pooling strategy to collapse nodes
on the basis of a supervised criterion.

The Funnel GCNN (FGCNN) model (Navarin et al., 2020) aims to enhance the gradient propagation
using a simple aggregation function and LeakyReLU activation functions. Hinging on the similarity
of the adopted graph convolutional operator, that is the GraphConv, to the way feature space
representations by Weisfeiler-Lehman (WL) Subtree Kernel (Shervashidze et al., 2011) are generated,
it introduces a loss term for the output of each convolutional layer to guide the network to reconstruct
the corresponding explicit WL features. Moreover, the number of filters used at each convolutional
layer is based on a measure of the WL kernel complexity.

B EXPRESSIVENESS OF COMMONLY USED GRAPH CONVOLUTIONS

Thanks to the possibility to express commonly used graph convolutions as instances of PGC, and from
the discussion in Section 3 of the paper, it is easy to characterize the expressiveness of commonly
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used graph convolutions. In Figure 1 we represent the inclusion relationships among the sets of
functions which can be implemented by GCN, GIN, GraphConv, Spectral.

Figure 1: Expressiveness of commonly used graph convolution operators. Each ellipse represents the
set of functions that can be implemented by a single graph convolution operator.

C PROOFS OF THEOREMS

Theorem 1. Let us consider two linearly stacked PGC layers using the same transformation T . The
resulting linear Graph Convolutional network can be expressed by a single PGC layer.

Proof. With no loss of generality, let the first PGC being of degree k1, while the second stacked PGC
of degree k2, i.e.

H(1) = [X, . . . , T (A)k1X]W(1),

H(2) = [H(1), . . . , T (A)k2H(1)]W(2),

where

W(i) =


W

(i)
0

W
(i)
1
...

W
(i)
ki

 , i = 1, 2.

By expanding H(1) inside H(2) equation, we get:

H(2) = [[XW
(1)
0 + . . .+ T (A)k1XW

(1)
k1

], . . . ,

T (A)k2 [XW
(1)
0 + . . .+ T (A)k1XW

(1)
k1

]]W(2)

= [XW
(1)
0 W

(2)
0 + . . .+ T (A)k1XW

(1)
k1

W
(2)
0 +

. . .+ T (A)k2XW
(1)
0 W

(2)
k2

+ . . .+

T (A)k1+k2XW
(1)
k1

W
(2)
k2

]. (13)

In this case, by defining D1 = {0, .., k1}, D2 = {0, .., k2}, and auxiliary functions Fi(),
i = 0, .., k1 + k2, defined as

Fi(W
(1),W(2)) =

∑
(z1,z2)∈D1×D2
s.t. z1+z2=i

W(1)
z1 W(2)

z2 ,

matrix W can be written as

W =


F0(W(1),W(2))
F1(W(1),W(2))

. . .
Fk1+k2(W(1),W(2))

 ,
13
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and consequently the hidden representation becomes

H(2) = [X, T (A)X, . . . , T (A)k1X, . . . , T (A)k1+k2X]W,

which is the output of a PGC with k = k1 + k2.

Theorem 2. A PGC layer with k = 2 is more general than two stacked PGC layers with k = 1 with
the same transformation T and the same number of hidden units m.

Proof. Since all PGCs use the same transformation T , we can focus on the weights only. We prove
our theorem providing a counterexample, i.e. we fix m = 1, s = 1 (the input dimension) and show an
instantiation of the weight matrix W = [W>

0 ,W
>
1 ,W

>
2 ]> of a PGC layer with k = 2 that cannot

be expressed by the composition of two PGC layers with k = 1 (equivalent to GraphConv). Let us
consider the simplest case in which W0,W1,W2 ∈ R, i.e. they are 1 × 1 matrices. Let us now
consider the case where W0 = 5,W1 = 7,W2 = 3. Let us also, for the sake of clarity, rename the
1× 1 matrices of the two PGCs with k = 1 as: W(1)

0 ← a,W
(2)
0 ← b,W

(1)
1 ← c,W

(2)
1 ← d. We

get the following system of equations:{
ab = 5

ad+ cb = 7
cd = 3

{
a = 5/b
d = 3/c

15/cb+ cb = 7

 a = 5/b
d = 3/c

(cb)2 − 7cb+ 15 = 0
(14)

where we assume b and c are different from zero (it is easy to see that either b = 0 or c = 0
would not lead to any solution). If we compute the ∆ of the third equation (solving for cb), we get
∆ =

√
49− 60 = i

√
11, i.e. a complex number. Thus there is no real value for cb that satisfies our

system of equations. We thus conclude that there are no values that we can assign to the parameters
of the PGCs with k = 1 that would lead to the considered PGC weight matrix.

Moreover, Theorem 2 implies the following corollary.

Corollary 2.1. A linear stack of q T -compatible PGC layers with k = 1 is less expressive than a
single T -PGC layer with k = q.

Proof. Since all PGCs use the same transformation T , we can focus on the weights only. We
prove the corollary by induction. The base case is provided by Theorem 2. Let us now prove
the inductive case. Let us assume that a stack of i PGC layers with k = 1 (with parameters
set θ(i)

1 = {W(j) ∈ R2s×m, j = 0, . . . , i}) is less expressive than a single PGC layer with k = i

(with parameters set θ(i)
2 = W ∈ R(i+1)s×m), and let us prove the same result for i + 1. We

can consider the set of functions that can be implemented by the stack of i + 1 PGC layers
with k = 1 as the composition of two functions coming from two differrent sets: the first one
PGC

(i)
k=1 = {f | ∃ θ̂(i)

1 s.t. f ≡ PGC(i)
k=1(θ̂

(i)
1 )}, is the set of functions that can be computed stack-

ing i PGC layers with k = 1, and the second one PGC(1)
k=1 = {f | ∃ θ̂(1)

1 s.t. f ≡ PGC(1)
k=1(θ̂

(1)
1 )},

is the set of functions computed by a single PGC layer with k = 1. We can then characterize the set
of functions PGC(i+1)

k=1 as:

PGC
(i+1)
k=1 = {f ◦ g | f ∈ PGC(i)

k=1, g ∈ PGC
(i)
k=1}.

From Theorem 1, we know that PGC(1)
k=i+1 ⊇ {f ◦g | f ∈ PGC

(1)
k=i, g ∈ PGC

(1)
k=1}. Since we know

that PGC(1)
k=i ⊃ PGC

(i)
k=1 (it is more general), we conclude that PGC(1)

k=i+1 ⊃ PGC
(i+1)
k=1 .

D DATASETS

We empirically validated the proposed PGC-GNN on five commonly adopted graph classification
benchmarks modeling bioinformatics problems: PTC (Helma et al., 2001), NCI1 (Wale et al., 2008),
PROTEINS, (Borgwardt et al., 2005), D&D (Dobson & Doig, 2003) and ENZYMES (Borgwardt
et al., 2005). The first two of them contains chemical compounds represented by their molecular
graph, where each node is labeled with an atom type, and the edges represent bonds between them.
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Dataset #Graphs #Node #Edge Avg #Nodes/Graph Avg.#Edges/Graph

PTC 344 4915 10108 14.29 14.69
NCI1 4110 122747 265506 29.87 32.30

PROTEINS 1113 43471 162088 39.06 72.82
D&D 1178 334925 1686092 284.32 715.66

ENZYMES 600 19580 74564 32.63 124.27

COLLAB 5000 372474 24572158 74.50 4914.43
IMDB-B 1000 19773 193062 19.773 193.06
IMDB-M 600 19502 197806 13.00 131.87

Table 3: Datasets statistics.

PTC contains chemical compounds and the task is to predict their carcinogenicity for male rats. In
NCI1 the graphs represent anti-cancer screens for cell lung cancer. The last three datasets, PROTEINS,
D&D and ENZYMES, contain graphs that represent proteins. Each node corresponds to an amino
acid and an edge connects two of them if they are less then 6Å apart. In particular ENZYMES,
differently than the other considered datasets (that model binary classification problems) allows
testing the model on multi-class classification over 6 classes. We additionally considered three
large social graph datasets: COLLAB, IMDB-B, IMDB-M (Yanardag & Vishwanathan, 2015). In
COLLAB each graph represents a collaboration network of a corresponding researcher with other
researchers from three fields of physics. The task consists in predicting the physics field the researcher
belongs to. IMDB-B and IMDB-M are composed of graphs derived from actor/actress who played in
different movies on IMDB, together with the movie genre information. Each graph has a target that
represents the movie genre. IMDB-B models a binary classification task, while IMDB-M contains
graphs that belong to three different classes. Differently from the bioinformatics datasets, the nodes
contained in the social datasets do not have any associated label. Relevant statistics about the datasets
are reported in Table 3.

E PGCN COMPUTATION COMPLEXITY EXAMPLE

Consider a dataset with nG graphs, and the 2-layers GraphConv defined with a message passing
formulation in equations equation 6 and equation 7 (assuming m1 = m2 = m). Each GraphConv
layer requires 3 matrix multiplications. The AX term in the first layer can be pre-computed since it
remains the same over all training. Thus a 2-layer GCN performs 5 · nG matrix multiplications in the
forward pass for each epoch (generally the size of A is different for each graph, but for the sake of
discussion we can assume their dimension is comparable). Assuming 100 epochs for training, the
total number of such multiplications is then 5 · 100 ·nG + 1. If we now consider the PGC formulation
with k = 2 in eq. equation 9 (that we recall is more expressive than 2 stacked GraphConv layers, as
shown in Section 3.1), the number of matrix multiplications required for each graph is 6. However,
the terms AX and A2X remain the same, for each graph, during all the training. They can thus
be pre-computed and stored in memory. With this implementation, eq. equation 9 would require
just 3 matrix multiplications, for a total number of matrix multiplications for 100 training epochs of
3 · 100 ·nG + 3. While this does not modify the asymptotic complexity of PGC compared to message
passing, it significantly improves the training times.

F INITIAL NODE EMBEDDINGS

Some datasets that we used in the experiments, encode node labels (i.e., X) by using a one-hot
encoding. That makes the nodes representations very sparse. In preliminary experiments, we observed
that such sparse representations negatively influence learning. In Table 4, we show how the use
of a sparse node representation as input leads to have sparse input matrices X,AX, . . . ,AkX.
Specifically, in order to estimate the difference in terms of the sparsity degree with or without an
initial PGC layer with k = 1, we computed the average ratio between the number of null entries (we
round all the embedding values to the 4th decimal digit) and the total number of entries of the input
matrices on the whole dataset for all the used bioinformatics datasets. We evaluated the sparsity of
each PCG-layer block, considering the values of k in the interval [0, . . . , 5]. It is interesting to notice
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input PTC NCI1 PROTEINS D&D ENZYMES

X 0.94 0.97 0.67 0.99 0.26
PGCk=1(X) 0 0 0 0 0

AX 0.93 0.96 0.45 0.95 0.13
APGCk=1(X) 0 3.67 · 10−3 9.28 · 10−5 0 1.87 · 10−3

A2X 0.90 0.95 0.38 0.89 0.11
A2 PGCk=1(X) 0 3.67 · 10−3 9.28 · 10−5 0 1.87 · 10−3

A3X 0.89 0.95 0.36 0.86 0.10
A3 PGCk=1(X) 0 3.67 · 10−3 9.28 · 10−5 2.39 · 10−8 1.87 · 10−3

A4X 0.88 0.94 0.35 0.87 0.10
A4 PGCk=1(X) 0 3.67 · 10−3 9.28 · 10−5 0 1.87 · 10−3

A5X 0.8 0.94 0.35 0.81 0.10
A5 PGCk=1(X) 0 3.67 · 10−3 9.28 · 10−5 4.71 · 10−8 1.87 · 10−3

Table 4: Average ratio of the number of null entries over the total number of entries in the input
components up to k = 5 without (top row) and with (bottom) the PGCk=1 layer for the used datasets.
Note that the value 0 corresponds to a dense matrix, while the value 1 to a null matrix.

that in all datasets the use of the initial PGC leads to a sparsity ratio near 0 (therefore the subsequent
PGC-layer has in input dense embeddings). That is very useful, in particular for datasets like NCI1,
PTC, and D&D, where the percentage of zeros in the labels representation is near 90%.

G PGCN IMPLEMENTATION DETAILS

We implemented the PGCN in PyTorch-Geometric (Fey & Lenssen, 2019). To reduce the covariate
shift during training and to attenuate overfitting, we applied batch normalization and dropout on the
output of each yj layer. We used the Negative Log Likelihood loss, the Adam optimizer (Kingma &
Ba, 2014), and the identity function for T . For more details please check the publicly available code1.
For our experiments, we adopted 2 types of machines, respectively equipped with:

• 2 x Intel(R) Xeon(R) CPU E5-2630L v3, 192GB of RAM and a Nvidia Tesla V100;

• 2 x Intel(R) Xeon(R) CPU E5-2650 v3, 160 GB of RAM and Nvidia T4.

H SPEED OF CONVERGENCE

Here, we discuss the results in terms of computation demand between a proposed PGCN and FGCNN
(Navarin et al., 2020). We decided to compare these two models since they present a similar readout
layer, therefore the comparison best highlights how the different methodology manage the number of
considered k-hops, from the point of view of performance. In Table 5, we report the average time
(over the ten folds) to perform a single epoch of training and to perform the classification with both
method. In the evaluation we considered similar architectures using 3 layers for the FGCNN and
k = 3 for PGCN. The other hyper-parameters were set with the aim to get almost the same number of
parameters in both models, to ensure a fair comparison. The batch sizes used for this evaluation are
the same selected by the PGCN model selection. The results show a significant advantage in using a
PCG layer instead of the message passing based method exploited by FCGNN.
Concerning the speed of convergence of the two models, in Figure 2 we report the training curves
for two representative datasets (D&D and NCI). In the x-axis we report the computational time in
seconds, while in the y-axis we report the loss value. Both curves end after 200 training epochs. From
the curves it can be seen that PGCN converges faster or with a similar pace than FCGNN.

1omitted for double-blind review.
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Train Classification
Dataset \Model PGCN FGCNN PGCN FGCNN

D&D 0.718±0.098 0.975±0.146 0.054±0.011 0.055±0.006
ENZYMES 0.164±0.015 0.247±0.032 0.011±0.001 0.016±0.002
NCI1 0.883±0.119 1.568±0.263 0.052±0.005 0.089±0.011
PROTEINS 0.296±0.036 0.456±0.0599 0.024±0.003 0.027±0.004
PTC 0.084±0.009 0.139±0.016 0.006±0.002 0.009±0.003

COLLAB 1.507±0.175 2.048±0.378 0.137±0.014 0.109±0.014
IMDB-B 0.223±0.024 0.373±0.054 0.018±0.003 0.027±0.004
IMDB-M 0.326±0.044 0.554±0.087 0.022±0.003 0.034±0.005

Table 5: Time in second to perform a single training epoch (2nd and 3rd column) and to perform
classification (4th and 5th column), using PGCN and FGCNN (Navarin et al., 2020), respectively.
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Figure 2: PGCN and FGCNN training curves for D&D and NCI-1 datasets.

I HYPER-PARAMETERS SELECTION

Due to the high computational time required to perform an extensive grid search, we decided to limit
the number of values taken into account for each hyper-parameter, by performing preliminary tests to
identify useful ranges of values.

The hyper-parameters of the model (number of hidden units, learning rate, weight decay, k) were
selected by using a limited grid search, where the explored sets of values do change based on the
considered dataset. Due to the high time requirements of performing an extensive grid search, we
decided to limit the number of values taken into account for each hyper-parameter, by performing
some preliminary tests.Preliminary tests showed that for the social network datasets, it is more
convenient to use the Laplacian L as T (A). This behavior could be due to lack of label associated
to nodes. In Table 6, we report the sets of hyper-parameters values used for model selection via
grid search. As evaluation measure, we used the average accuracy computed over the 10-fold cross-
validation on the validation sets, and we used the same set of selected hyper-parameters for each fold.
For what concerns the selection of the epoch, it was performed for each fold independently based on
the accuracy value on the validation set.
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Dataset/k m learning rate weight decay drop out batch size k readout(#layers [dims])

PTC 15, 30, 60 10−3, 5 · 10−4, 10−4 5 · 10−3, 5 · 10−4 0.4, 0.6 16, 32 3, 4, 5, 6 1 [m/2], 2 [m ∗ 2,m]

NCI1 50, 100 10−3, 5 · 10−4 5 · 10−3, 5 · 10−4 0.3, 0.5 16, 32 3, 4, 5, 6 1 [m/2], 2 [m ∗ 2,m]

PROTEINS 25, 50 10−3, 5 · 10−4, 10−4 5 · 10−3, 5 · 10−4 0.3, 0.5 16, 32 3, 4, 5, 6 1 [m/2], 2 [m ∗ 2,m]

D&D 50, 75 5 · 10−4, 5 · 10−5 5 · 10−3, 5 · 10−4 0.3, 0.5 16, 32 3, 4, 5, 6 1 [m/2], 2 [m ∗ 2,m]

ENZYMES 50, 100 10−3, 10−4 5 · 10−3, 5 · 10−4 0.3, 0.5 16, 32 3, 4, 5, 6 1 [m/2], 2 [m ∗ 2,m]

COLLAB 7, 15, 30 10−3, 5 · 10−4 5 · 10−3, 5 · 10−4 0, 0.5 16, 32 3, 5, 7, 9 1 [m/2], 2 [m ∗ 2,m]

IMDB-B 50, 75 10−4, 10−5 5 · 10−4, 5 · 10−5 0, 0.5 16, 32 3, 5, 7, 9 1 [m/2], 2 [m ∗ 2,m]

IMDB-M 50, 75, 100 10−4, 5 · 10−5 5 · 10−3, 5 · 10−4 0, 0.5 16, 32 3, 5, 7, 9 1 [m/2], 2 [m ∗ 2,m]

Table 6: Sets of hyper-parameters values used for model selection via grid search.

Model \ Dataset PTC NCI1 PROTEINS D&D ENZYMES COLLAB IMDB-B IMDB-M

GIN Xu et al. (2019) 64.6 82.7 76.2 - - 80.2 75.1 52.3
±7.0 ±1.7 ±2.8 - - ±1.9 ±5.1 ±2.8

GFN Chen et al. (2019) - 82.77 76.46 78.78 70.17 81.50 73.00 51.80
- ±1.49 ±4.06 ±3.49 ±5.58 ±2.42 ±4.35 ±5.16

GCN Chen et al. (2019) - 83.65 75.65 79.12 69.50 81.72 73.30 51.20
- ±1.69 ±3.24 ±3.07 ±7.37 ±1.64 ±5.29 ±5.13

DIFFPOOL Ying et al. (2018) - - 76.25 80.64 62.53 75.48 - -
PGCN 74.0 84.40 79.20 82.54 78.17 76.96 77.88 52.97

±2.81 ±0.14 ±0.81 ±1.09 ±0.68 ±2.14 ±3.11 ±2.67

Table 7: PGCN accuracy comparison using different values of k. The validation policy is the same
used in Xu et al. (2019); Chen et al. (2019); Ying et al. (2018). In Ying et al. (2018) the variance is
not reported.

J EXPERIMENTAL RESULTS OMITTED IN THE RESULTS COMPARISON

As validation test methodology we decided to follow the method proposed in Errica et al. (2020),
that in our opinion, turns out to be the fairest. For this reason, some results reported in the literature
cannot be directly compared with the ones that we obtained.

Specifically, the results reported in Xu et al. (2019); Chen et al. (2019); Ying et al. (2018) are not
considered in our experimental comparison since the model selection strategy is different from the
one we adopted. Indeed the results reported r cannot be compared with the other results reported in
Table 1 of the paper, because the authors state “The hyper-parameters we tune for each dataset are
[...] the number of epochs, i.e., a single epoch with the best cross-validation accuracy averaged over
the 10 folds was selected.”. Similarly, for the result reported in Chen et al. (2019) for the GCN and
the GFN models, the authors state “We run the model for 100 epochs, and select the epoch in the same
way as Xu et al. (2019), i.e., a single epoch with the best cross-validation accuracy averaged over the
10 folds is selected”. In both cases, the model selection strategy is clearly biased and different from
the one we adopted. This makes the results not comparable.
Moreover, in Xu et al. (2019) the node descriptors are augmented with structural features. In GIN
experiments the authors add a one-hot representation of the node degree. We decided to use a common
setting for the chemical domain, where the nodes are labeled with a one-hot encoding of their atom
type. The only exception is ENZYMES, where it is common to use 18 additional available features.
Also in Ying et al. (2018) there is a similar problem since the authors add the degree and the clustering
coefficient to each node feature vector. For the sake of completeness in Table 7 we report the results
obtained by the proposed method following the same validation policy used in Xu et al. (2019); Chen
et al. (2019); Ying et al. (2018). The table shows that the PGCN outperforms the methods proposed
in the literature in almost all datasets.
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