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Heterogeneous Network Representation Learning
Approach for Ethereum Identity Identification

Yixian Wang™, Zhaowei Liu

Abstract— Recently, network representation learning has been
widely used to mine and analyze network characteristics, and it
is also applied to blockchain, but most of the embedding methods
in blockchain ignore the heterogeneity of network, so it is difficult
to accurately describe the characteristics of the transaction.
As smart society evolves, Ethereum makes smart contracts reality,
while the mine of transaction characteristics appearing on the
Ethereum platform is scarce; thus, there is an urgent need to mine
Ethereum from contract and transfer. In this article, we propose a
heterogeneous network representation learning method to mine
implicit information inside Ethereum transactions. Specifically,
we construct an Ethereum transaction network by collecting
transaction data from normal and phishing Ethereum accounts.
Then, we propose a walk strategy that combines timestamps and
transaction amounts to represent the information that occurs
at the time of a transaction. To mine the types of nodes and
edges, we use a heterogeneous network representation learning
method to map the transaction network to a low-dimensional
space. Finally, we improve the accuracy of the embedding results
in the node classification task, which has important implications
for Ethereum mining as well as identity recognition.

Index Terms— Ethereum, heterogeneous network representa-
tion learning, node classification, transactions network.

I. INTRODUCTION

LOCKCHAIN [1] is an open distributed database and

is maintained through the consensus mechanism. Due
to its openness, decentralization, and anonymity, blockchain
technology is spreading rapidly in academia and industry.
With the progress of smart society, cryptocurrencies [2],
unlike traditional currencies commonly issued by authorized
financial institutions, are managed by consensus among users
in the network, thus giving an opportunity for unscrupulous
elements to take advantage of it. Meanwhile, the occurrence of
cybercrime incidents related to cryptocurrencies increases the
price volatility of target cryptocurrencies and the correlation of
a wide range of cross-cryptocurrencies, and it led to a negative
impact on the price of cryptocurrencies in society.
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Bitcoin [3] is a typical application of cryptocurrency and a
public transaction ledger applying blockchain technology [4],
and it has gained much attention since 2009. However, Bitcoin
does not support smart contracts [5], and Ethereum turns
“smart contracts” from theory to reality and created the
blockchain 2.0 phase. With the development of smart society,
Ethereum [6] designed to be computationally generic and
Turing-complete, and it has recently attracted a lot of attention.
To facilitate the implementation of smart contracts, Ethereum
introduced the concept of account, which exists formally
through an address. Currently, research on Ethereum focuses
on security and performance issues based on blockchain
technology, and there is an urgent need for research on the
interaction between account and smart contracts. However,
as the use of Ethereum becomes larger, various cybercrimes
occurring on Ethereum appeared [7].

In fact, illegal practices are frequently occurring on the
Ethereum transaction platform, and over 10% of Ethereum
accounts have reportedly been subjected to a variety of
scams, including phishing [8], money laundering [9], Ponzi
schemes [10], and other scams [11].

According to a report by Chainalysis [12], crime related
to cryptocurrencies declines significantly in 2020. While
cryptocurrencies are designed to be transparent and traceable,
allowing users to send funds instantly from anywhere, it still
gives criminals an opportunity to take advantage of them due
to anonymity of it. Although the share of illegal transactions
in all cryptocurrencies decreased to 0.34% in 2020, the total
amount of illegal transactions still reaches 10 billion. This is
a significant decrease from 2019 when the total amount of
illegal cryptocurrency transactions was 20 billion and illegal
activity accounted for approximately 2.1% in all cryptocur-
rency transactions, but still thousands of individual users lost
a total of up to 7.3 million.

Moreover, among the various security issues of blockchain
cryptocurrencies, although the total number of cryptocurren-
cies received by crimes represented by darknet markets [13]
and ransomware [14] has gradually increased, the number
of phishing, Ponzi scheme scams had still accounted for
more than 50% of all cybercrimes in Ethereum since 2017.
The report illustrated that fraud constituted the majority of
all cryptocurrency-related crimes, indicating that the issue of
transaction security had become an important issue in the
blockchain ecosystem.

Traditional methods of mining Ethereum transactions aim
to identify frauds by transaction characteristics. However,
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these approaches can only mine the simple transaction,
and the mining of the behavior is mostly done by
the experts’ detailed overview of the characteristics of
the transaction, which cannot detect unpredictable and
complex characteristics of the frauds, and this method
cannot ensure the real-time mining for the increasing
transactions.

The current analysis methods for Ethereum transactions
are similar to most of the transaction analysis methods,
where the information of transactions is generalized to the
network structure and the characteristics of the transactions
are analyzed based on the characteristics of the network
structure. In addition, machine learning has attracted a lot
of attention in the field of large-scale data analysis due to
its high accuracy, speed, automation, and scale when dealing
with large-scale datasets and has been applied to wearable
systems [15], as well as gesture recognition other cross-
cutting fields [16]. Meanwhile, there has been emerged [17]
an approach-based machine learning to analyze the identity
of Ethereum account and smart contracts. Compared with the
traditional identification of Ethereum account addresses by
manual annotation or code analysis, although it has better
usability for the huge number of Ethereum, it presents further
challenges on how to make better use of the structure and
attributes in the network structure.

In this article, we propose a feature representation-
based heterogeneous network embedding method to identify
Ethereum accounts by classifying the mined embedding results
as phishing nodes and normal nodes through a node classifica-
tion task, which is significance for the identification of fraud-
ulent account and the avoidance of fraudulent transactions in
Ethereum in the future. We represent attribute information
in the network and use it as an attribute in the heteroge-
neous network after building the transaction network from the
Ethereum data. Finally, we embed the whole heterogeneous
network into a low-dimensional space, obtain the embedding
vector, and use the node classification task to classify the
nodes in the heterogeneous network into fraud accounts and
normal accounts for the purpose of Ethereum identity iden-
tification. The main contributions of this article are given as
follows.

1) We applied a heterogeneous network representation
learning approach to mining Ethereum identity informa-
tion.

2) We present attributes in the Ethereum transactions and
map it to low-dimensional representations through rep-
resentation strategies based on transaction time and
transaction amount.

3) We utilize the information that exists in the nodes and
edges in the heterogeneous network of Ethereum trans-
actions and add attribute information while retaining the
characteristics of the heterogeneous network.

The other part of this article is given as follows. Section II
presents the relevant work. Section III describes the frame-
work of this article. Section IV conducts the evaluation and
analysis of the experiment. Finally, Section V summarizes the
work of this article.

II. RELATED WORK

Recently, Ethereum has become a widely adopted cryp-
tocurrency trading platform due to its own characteristics of
centralization, security, and anonymity and has been further
developed in various applied works driven by blockchain
technology. Compared with other cryptocurrency transactions,
Ethereum transactions support smart contracts so that the
transactions related to it are open, transparent, immutable, and
jointly maintained. At the same time, there are many types of
scams in Ethereum, and research on specific types of scams
has attracted more and more interest.

At present, there are two ways to detect scams in Ethereum.
One is to detect scams existing in smart contracts [18], and
the other is to detect Ethereum through graph learning. Graph
learning can be used to analyze the transactions and then
achieve the purpose of anomaly detection [8] or identifica-
tion [19]. Although the detection method of smart contracts
has high accuracy, for a large number of contract types in
Ethereum, this detection method has certain insufficient in
comprehensiveness.

The method of identifying fraudulent accounts in Ethereum
using graph learning is more flexible and changeable, so it is
a more preferable option. However, due to the huge amount of
data in the transaction, how to complete the detection quickly
and efficiently is also a major challenge. Network representa-
tion learning or network embedding, graph embedding [20],
is a relatively mature method to map the information in the
network to a low-dimensional space, which can effectively
represent the information of the network. It is also applied to
various machine learning tasks. Since real networks usually
consist of tens of millions of nodes and millions of edges,
in order to apply the network embedding method to large
networks, LINE [21] uses breadth-first search to first obtain the
node sequence- and second-order neighborhoods, and applying
the embedding results in a large-scale network with weights.
Node2vec [22] uses a biased random walk strategy controlled
by tuning hyperparameters to preserve node—neighborhood
relationships in the original network as much as possible in a
low-dimensional space.

However, how to effectively preserve multiple transac-
tions and account types in Ethereum is the problem, and
Chen et al.. [23] classified transaction data into transfer trans-
actions according to different transaction categories performed
in the collected dataset, create smart contracts, and call smart
contracts, constructed three graphs of transaction data, and
analyzed their security issues.

Heterogeneous network representation learning has attracted
extensive attention due to mapping of the rich structural prop-
erties and category information contained in complex hetero-
geneous networks into low-dimensional spaces and has been
applied to disease gene prediction [24], disease-associated
factor prediction [25], question routing recommendation [26],
task identification, illegal transactions, and account identifica-
tion [27].

In Metapath2vec [28], in order to consider the node
types when walking, a meta-path-based method is proposed,
which predefined the change of node types, considering the
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change of node or edge types when selecting the walk
node. In GATNE [29], the GATNE-T and GATNE-I models
are proposed to consider the difference between transductive
learning and inductive learning, respectively. GATNE-T is to
aggregate neighbors of different edge types to the current node
and then generate a different vector representation for each
edge type, while GATNE-I takes the initial characteristics of
the nodes into account in order to handle unobserved data.
Although the above heterogeneous network representation
learning methods can map the network to a low-dimensional
space, it is difficult to retain the attribute information of the
network itself. Yuan et al.. [30] built Ethereum transaction
records onto subgraphs and used improved Graph2Vec to
extract latent features of subgraphs as address features for
subsequent phishing classification.

The above heterogeneous or homogeneous network rep-
resentation learning methods can significantly improve the
representation effect, but there are difficulties in the feature
representation of Ethereum transaction data, especially the
analysis of Ethereum transaction data and fraud detection.
According to the types of downstream tasks currently applying
graph embedding, including node classification, link predic-
tion, and node visualization, the application of tasks using
the above graph embedding in Ethereum data has been
appeared. Trans2vec [31] proposed a network embedding
method based on transactions and timestamps in Ethereum
transactions to extract features from transactions and identify
phishing accounts in transactions through an unsupervised
SVM classifier. Then, Liu et al.. [32] classified account into
miners, transfer account, ICO account, and phishing account
according to the characteristics of Ethereum in the node
classification task and used the visualization of nodes to
classify the classified account.

Subsequently, TWMDG [33] constructed transaction
records as a temporal weighted multidigraph and used it to
analyze and understand the dynamic transactions between
Ethereum accounts through the task of link prediction.
In addition, the same properties of TWMDG are applied to the
task of node classification [34]. Furthermore, Lin et al.. [35]
proposed a framework based on link prediction and quantified
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the influence of network features on the evolution of Ethereum
from a microscopic perspective, and Bai et al.. [36] used a
time window to construct the Ethereum transaction network
as a temporal subgraph and mined the evolutionary behavior
between the size of the Ethereum account and the transaction
network and the transaction price of Ethereum.

In summary, network embedding-based data mining of
Ethereum transactions is pioneering research in recent years,
and these Ethereum transaction mining methods are clas-
sified into the following categories according to the task
classification of network embedding: classification-based task
[31], [34], link prediction-based task [33], [35], visualization-
based task [32], and dynamic network evolution-based
task [36], while most of these networks are homogeneous,
some of them are using existing embedding strategies, and
others are embedding strategies designed based on Ethereum
transactions, offering the possibility of complex network min-
ing approach [30].

III. FRAMEWORK

In order to mine Ethereum transaction records sufficiently,
we propose a four-part framework, which is shown in Fig. 1:
1) data collection; 2) network construction; 3) random walk-
based feature representation; and 4) heterogeneous network
representation learning.

A. Data Collection

Due to the openness of Ethereum, we can indepen-
dently access the transaction records of it. Besides, we col-
lect Ethereum transaction records by running the Ethereum
client, which synchronizes all historical transaction records
in Ethereum. Since each Ethereum client contains the history
of all transactions, we query the transaction information of
each account according to the API provided by Etherscan
(etherscan.io) and extract the “time difference between the
first and last transaction,” “account balance,” and “minimum
amount of Ether received by the account” of each account
as the node characteristics. Then, the first-order transaction
data of each account are obtained, and 1048576 transaction
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Fig. 2. Attributed heterogeneous network built on Ethereum transactions.

record datasets are finally obtained. Each account corresponds
to a unique address, and each transaction represents a flow
of behavior between a pair of addresses. In the end, the
information we collected was used for network construction.

According to the different transaction characteristics of
Ethereum accounts, the accounts in the data collection are
divided into two parts: phishing accounts and normal accounts.
For the collection of phishing accounts, we collected data on
transactions marked as phishing frauds from an authoritative
website EtherScamDB (https://etherscamdb.info/scams) that
reported various illegal activities on Ethereum, and fraudulent
information guides Ethereum investors away from possible
fraud. In addition, the various fraud reports on the website
not only show the content of the fraud but also address the
suspect of fraud. We use a GET request to parse the available
addresses in the returned JSON object to obtain the addresses
of phishing accounts that have transacted with other accounts.

All normal nodes are also obtained through Etherscan, but
considering that the time spent collecting a large number
of externally owned accounts (EOAs) is huge, only success-
ful transactions with a nonzero value are included in the
dataset, and set the block height range from 10876500 to
10877500 for all nodes. The block height is the identifier
of the block, which refers to the position of the block
in the blockchain. After filtering out nonunique accounts,
5366 untagged accounts were randomly selected as normal
accounts.

B. Network Construction

After collecting the transaction dataset, due to the different
sources of data collection, the accounts are divided into
normal and phishing accounts. When establishing the network,
according to the account type, the corresponding node type
is also normal or phishing node. The transaction network
behavior established based on the collected dataset is shown
in Fig. 2.

According to the data collection part, most of the main
behaviors in Ethereum are related to transactions, and the
attribute of each transaction is also particularly important.
Therefore, in order to fully express transaction information
clearly, we adopt an attributed heterogeneous network to
represent the collected transaction data. The specific network

is defined as G = (V, E, X, M), which is similar to the
heterogeneous network, in which each node » has a unique
node type z € Z, corresponding to the account in the dataset
type. In addition, each edge e has a unique edge type r € R
corresponding to the transaction types in the dataset. Also,
if and only if |Z| 4+ |R| > 2 is regarded as an attributed
heterogeneous network, X /M has similar characteristics to the
attributed network, X = x;|v; € V is the attribute set of all
nodes, where x; is the attribute associated with node v;, and
M = m;le; € E is the attribute set of all edges, where m; is
the attribute associated with a certain edge e;.

C. Random Walk-Based Feature Representation

In recent years, network representation learning methods
based on random walks have been widely proposed and
applied to network feature extraction. Taking DeepWalk and
Node2vec as examples of the network representation learning
method based on random walk, the nodes in the network are
mapped out through the mapping function f : V — RI!VIx¢,
in which the structural information is retained while max-
imizing the probability of neighbor nodes appearing in the
d-dimensional feature space.

The process of feature representation consists of three parts.
The first part is to generate random walks, which is used
to capture the structural relationship between nodes. The
second part is different walk strategy, which is used to capture
different information between nodes. The final part is the skip-
gram architecture, which is used to learn node embeddings by
solving maximum likelihood optimization problems.

1) Random Walk: Given the source node u, we obtain the
walk sequence [ between vertices by using a random walk.
Assuming that the first node of the sequence is ¢y, then the
nodes between the walk sequence [ are represented by c;. The
probability that the next node of ¢;_; is x; is

77:ux

, if (u,x)eE
Pr(ci=x|cici=u)=1 Z (1)
0, otherwise
where Z represents the normalization constant.

2) Sample Strategy: We still use a random walk method
to obtain the neighbor sequence of a node. The difference is
that in the Ethereum transaction network, the edge between a
pair of nodes usually includes the transaction amount or the
timestamp of the occurrence. In order to express the indis-
pensability of information in the transaction network more
pertinently, we propose three biased random walk strategies.

1) Strategy 1 (Walk Strategy Based on Timestamp):

Since each edge between two nodes corresponds to a
timestamp, we assume that the later event occurs in the
transaction, the closer relationship between two nodes.
Therefore, V,, is used to represent the set of nodes
directly connected to the node u, and we use mapping
functions 7' to map real timestamps to discrete time steps

T (u,x)
Zx’eVu T(u’ x/)

where T (u, x) represents the timestamp of the latest
transaction between nodes u# and x.

PT,. = (2)
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2) Strategy 2 (Walk Strategy Based on Transaction
Amount): In addition to the timestamp of the transaction,
each transaction in Ethereum is accompanied by a trans-
fer transaction and GAS consumption, if the transaction
amount between two nodes is larger, we believe that
the relationship between the two connected nodes is
closer. The total transaction amount is calculated by
the linear function summation method, and the sampling
probability is generated by PA,

PA,, = L}c), 3)
Zx'ev,, Au, x")
where A(u, x) represents the total amount of transac-
tions between nodes u and x.

3) Strategy 3 (Walk Strategy Combining Transaction
Amount and Timestamp): Besides, in order to take the
timestamp and transaction amount into account, we con-
sider the transaction amount and transaction timestamp
to be equally important. Similar to the above two
strategies, we also regard the number of transactions and
the sequence of timestamps as a walk strategy. V,, is used
to represent the set of nodes directly connected to node
u, A(u,x) represents the total amount of transactions
between nodes u and x, and T (u, x) represents the latest
transaction between nodes u# and x timestamp expressed
by the formula as

A(u, x)T (u, x)
Dvev, A, x)T (u, x")
Finally, in order to balance the walk strategy, we use
the hyperparameter ¢ to control the walk preference.

The probabilities obtained by different walk strategies
are given as follows:

PAux Tux =

“)

PT,,, if0 <g <0.5
Tux(q) = { PAuxTur, if g =0.5 5)
PAy, if 0.5 <qg < 1.

The time complexity of our feature representation Algo-
rithm 1 is O(nul), where u is the number of nodes, n is the
number of walks per node, and / is the walk length.

3) Feature Representation and Optimization: The function
f(u) is a mapping function that maps node « to an embedding
vector. For each node u in the network, by defining different
sampling strategies s, the collection of all neighbors Ns(u) of
u of the source node is sampled. The optimization goal of the
function f(u) is to maximize the probability of the neighbor
node n € Ns(u) given the source node u. In fact, we use
skip-gram to optimize the following objective function:

max uezvlogPr(Nc(u) | f(w)). (6)

The optimization method for the function f is further solved
by using the stochastic gradient descent method.

D. Representation Learning for Attributed Heterogeneous
Network

Through the part of feature representation, we can select
a biased random walk strategy and represent representing

Algorithm 1 Random Walk-Based Feature Representation
Input: Transaction network G = (V, E) search bias para-
meter g, embedding dimension d, walk length /, number of
walks per node n, neighborhood size k
Output: Mapping function f
Chosen P; using Eq. (2), Eq. (3), Eq. (4)
Calculate P; using Eq. (5)

T = PI(G’Q)
G =(V,E,x)
walks = []

for iter =1 to n do
for each node u € V do
walks=strategy(G’, u, )
Append walk to walks
end for
end for
f = StochasticGradientDescent(k, d, walks)
Optimization Eq. (6) by random gradient descent
return f

the connection between nodes in a low-dimensional space.
Specifically, we use the mapping function f in Algorithm 1 to
map the connectivity of nodes to m; and finally use M to
represent the node information in the transaction network

fw) — m;, m; e M. N

Then, we combined with the representation learning method
of the attributed heterogeneous network to conduct further
research on the Ethereum transaction network.

More specifically, we proposed a method, in which in order
to represent an attributed heterogeneous network, we divide
the entire representation learning into three parts: the rep-
resentation learning of specific nodes v;, the representation
learning of different types of edges r connected to the node
v;, and the representation learning of the attributes of nodes
and edges; all in all: base embedding, edge embedding, and
attribute embedding. The specific representation structure is
shown in Fig. 3.

For the basic embedding, we learn the embedding of the
attribute x; corresponding to node »; through a neural network
or linear transformation by parameterizing the function u_, that
is, u;(x;). u, is a conversion function and corresponds to the
type of node z. Since different nodes have different node types,
it also corresponds to attributes x; of different dimensions, and
it can be used to learn nodes that do not appear in the test
set. Usually, the parameterized function u, uses graph neural
network (GNN) [37] or multilayer perceptron (MLP), and in
our algorithm, we choose GNN as parameterized function.

The basic embedding for a certain node v; is usually
expanded between different types of edges, where N;, cor-
responds to all neighbor nodes of the node v; of the edge
type r. For the kth embedding Oi(’]f.) eR, (1 <k <K) of
the type r of the edge of the node v;, it is formed by the
edge embedding aggregation of the corresponding neighbor
nodes, i.e.,

oi(,kr) = aggregator({oﬁ-’?l), Yo, € Ni,r}). (8
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For the initialization edge embedding 01(,2) of the node v;,
a parameterized function /. is used for calculation, which is
specifically expressed as ofg) = h,,(x;), where x; represents
the v; attribute of the node. More specifically, /., represents
a conversion function that transforms the feature of node v;
into the edge embedding of node v; corresponding to the edge
type r. Besides, z also corresponds to the type of node v;.
In order to represent the collection of all edge embeddings of

node v;, we use O; to represent
. Om). )

The connection is made by m edge embeddings of s dimen-
sion, where m represents the number of edge types and s
represents the dimension of each type of edge embedding. The
parameter a; » € R™ is calculated by using the self-attention
mechanism [38], which represents the linear combination
in 0,‘

O; = (0i,1,0i2, ..

a;,» = softmax(w, tanh -(W, 0;)). (10)

In fact, w, and W, represent the learnable parameters of size
d and d x s, respectively, which are converted into matrix
transformation by the superscript 7

Y

a, B, and y are hyperparameters, which, respectively, represent
the proportion of basic embedding, edge embedding, and
attribute embedding in the overall embedding. D! is the
feature transformation matrix on node v; corresponding to
node type z, D! is the feature transformation matrix on
edge e; corresponding to edge type r, where u,(x;) is the
corresponding basic embedding of node v;, and CI € R*¢
is a trainable transformation matrix, x; corresponding to the
attribute of node v; and y; corresponding to the attribute of
the edge e;.

We will further study and optimize the proposed model.
We learn the embedding result according to the sequence
of generating nodes through random walk and obtaining the
walking sequence of nodes through skip-gram. Since our input

Vir = u.(x;) +aC} Oia;, + BD!x; + y D] y;.

Representation learning framework for attributed heterogeneous network.

network is heterogeneous, we use meta-path-based random
walks.

Random walk is also used to generate node sequences
and then perform skip-gram over the node sequences to
learn embeddings. Since each view of the input network is
heterogeneous, we use meta-path-based random walks. The
random walk with length / on edge type r follows a path
P = (p1,...,0p) such that (vp—1,0,) € E-(t =2,...,1)
denote v,, context as C = {vlopx € P, 1k — 1t |< ¢, t # k),
where c¢ is the radius of the window size. Thus, given a node
v; with its context C of a path, our objective is to minimize
the following negative log likelihood:

—long({vj v, € C} | vi) = Z —long(vj |vi). (12)
v;eC

Then, following metapath2vec and GATNE, we use the hetero-
geneous softmax function, which is normalized with respect
to the node type of node v;. Specifically, the probability of v;
given v; is defined as

T
exp(cj -v,»,,.)
Po(v; 1) = =)
ey, (e - vir)
Finally, we use heterogeneous negative sampling to approx-
imate the objective function —log Py(v;lv;) for each node
pair (v;,v;)

13)

L

_ Z E,[logo (—c{ - vir)]

=1

E =—logo(c] - viy) (14)

where o (x) is the sigmoid function, L is the number of
negative samples corresponding to a positive training sample,
and vy is randomly drawn from a noise distribution P, (v)
defined on node v;’s corresponding node set V;.

We summarize our algorithm in Algorithm 2. The time
complexity of our random walk-based algorithm is O (nmdL),
where n is the number of nodes, m is the number of edge
types, d is the overall embedding size, and L is the number
of negative samples per training sample (L > 1).
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Algorithm 2 HNRL
Input: Transaction network G = (V, E, X, M), embedding
dimension d, edge embedding dimension s, attribute dimen-
sion a, learning rate #, coefficient a, f, y, parameters 6
Output: overall embeddings v; , for all nodes on every edge
type r
Initialize all the model parameters ¢
Generate random walks on each edge type r as P,
Generate training samples (v;, v, r) from random walks P,
on each edge (v;, v;)
While not converged do
for each (v;,v;,r) € training samples do
Calculate v;  using Eq. (11)
Sample L negative samples and calculate objective
function E using Eq. (14)
Update model parameters 6 by %
return embedding v; ,

IV. EXPERIMENTS

In this section, we first introduce the details of transaction
dataset and the evaluation criteria. Then, we explain the
comparison baseline method in detail. Finally, we perform the
node classification task on the Ethereum transaction dataset to
demonstrate the effectiveness of our proposed algorithm and
give an analysis of parameter sensitivity experimental results.

A. Datasets

In our collected Ethereum transaction dataset, there are
10122 nodes and 1048576 edges. Each node is represented
by two types of accounts, namely, phishing accounts or
normal accounts. Each edge is represented as three types
of transactions: create contract, call contract, and transfer
transaction.

In order to facilitate the understanding of the behavior
differences of different node types, as shown in Fig. 4,
we analyzed the proportion of all node degrees in the graph.
Compared with the phishing nodes, the normal nodes generally
have a small number of degrees, which means that the phishing
nodes send phishing multiple times. Message to complete the
fraud has important implications for fraud analysis.

B. Evaluation Criteria for Node Classification

In academia, link prediction and node classification are two
common downstream tasks being widely used to evaluate the
quality of network embeddings obtained by different methods.
Meanwhile, classification tasks based on complex networks are
also applied in the field of DNA classification [39]. In fact,
node classification is also a valuable issue in the blockchain
platform. A series of studies on Ethereum has witnessed
various illegal behaviors or scams, such as phishing, Ponzi, and
money laundry, and the identity information of the Ethereum
accounts can be effectively identified by classifying them in
a node classification task. Besides, due to the unavailability
of ground truth of Ethereum accounts, Lin et al. [34] evalu-
ated temporal random walk-based graph embedding by node
classification on realistic Ethereum data.

Probability of all nodes.
L
I
L

Probability of phishing nodes

£

00 w0 0t o 0 10 10
Degree Degree Degree

Fig. 4. Variation of degree under different proportions of ordinary nodes and
phishing nodes.

In order to evaluate the effectiveness of the node classifi-
cation experiment, we use some commonly used evaluation
criteria, i.e., the area under the ROC curve (ROC-AUC) [40]
and the PR curve (PR-AUC) [41] in our experiments, and also
use F1 score as the third metric for evaluation.

Besides, in the task of node classification, it can classify
the nodes in the network based on the observed information,
and in this article, we classify the nodes present in the trading
network as phishing nodes or normal nodes. Since the nodes
we obtain are labeled, it makes no sense to classify the data
with labels. To test the effectiveness of our proposed method,
we will randomly select 70% of the nodes as the training set
and 30% of the nodes as the test set and the validator. It is
important to note that the nodes in the training set are labeled
with the type of node, i.e., normal node or phishing node,
while the type of node in the test set and validation set is
infeasible.

C. Baseline Method

In the experiment, our proposed method is compared with
two typical network embedding approaches based on the
random walk, i.e., DeepWalk and Node2vec, and one popular
heterogeneous network embedding approach based on the
meta-path random walk, i.e., GATNE.

The GATNE model is proposed to learn the embedding
representation of each node under different types of edges. The
model supports both transductive (GATNE-T) and inductive
learning (GATNE-I), and we choose GATNE-I as a baseline
method.

To implement the abovementioned random walk based
representation methods, we have several hyperparameters: the
representation dimension d, the length of walk /, and walks per
node n. In our comparative experiment, the parameter settings
are d = 64, n = 200, and [ = 20. For Node2vec, we set
q = 0.5. Similarly, for heterogeneous network representation
method GATNE, we set several hyperparameters: the base
embedding dimension b and the edge embedding dimension
s; in general, we set b = 100 and s = 5. For our proposed
HNRL, we need to set two parts of hyperparameters. For
random walk-based information representation, we set d = 64,
n = 200, and [ = 20. For heterogeneous network embedding,
we set b =200, e = 15, and a = 15.

In order to reflect the influence of different transaction
characteristics on the overall effect of the model, we select
g = 0.25 when the transaction amount is selected and
g = 0.75 when the transaction time is selected and choose
when the two are combined, g = 0.5.
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Fig. 5. Performance comparisons of different methods with various (a) base embedding b, (b) edge embedding e, and (c) attribute embedding a dimensions

in PR-AUC.

TABLE 1
PERFORMANCE COMPARISONS OF DIFFERENT EMBEDDING METHODS

Method PR-AUC ROC-AUC F1 score
DeepWalk 0.682 0.695 0.644
Node2vec 0.723 0.746 0.687
GATNE-I 0.866 0.873 0.784

Time-based 0.845 0.881 0.863
Amount-based 0.866 0.883 0.879
HNRL 0.889 0.959 0.957

D. Node Classification Performance

Based on the above given parameter settings, Table I
compares the experimental results of each embedding method
from three aspects: PR-AUC, ROC-AUC, and F1 score. Our
proposed HNRL method is superior to other embedding results
in all evaluation indicators with node classification task.
In addition, it is obvious that due to the characteristics of the
transaction network itself and the heterogeneous network rep-
resentation method GATNE algorithm itself, the performance
of the homogeneous network representation method DeepWalk
and Node2vec is better. At the same time, the representation
method based on transaction amount and transaction time
is also better than DeepWalk, which is unbiased sampling.
Two biased representation methods show that the embedding
method based on transaction time has a better effect than the
embedding method based on transaction amount in the node
classification task. Also, it is illustrated in Table I that only
extracting single transaction information does not ensure the
best effect. The embedded method that combines transaction
time and transaction amount shows the best performance.

As shown in Fig. 5, based on the feature representation
of three different walking strategies, we have continuously
improved the embedding dimensions of base embedding, edge
embedding, and attribute embedding, and the performance
of three is improved with the dimension, which shows a
better effect. For base embedding, the larger the dimension,
the richer node information, and network structure can be
retained. At the same time, the larger the dimension for
edge embedding, the greater the information between different

TABLE 11
PERFORMANCE COMPARISONS OF DIFFERENT CLASSIFIERS

Method PR-AUC ROC-AUC F1 score
Naive Bayes 0.739 0.753 0.775
Logistic regression 0.731 0.792 0.791
Decision tree 0.815 0.868 0.871
One-class SVM 0.889 0.959 0.957

transactions. For attribute embedding, the larger the dimension,
the retained the more abundant the attributes of nodes and
edges. In addition, when the base embedding dimension
is 200, the effect of HNRL is close to the effect of the
embedding method based on transaction amount, and when
the embedding dimension is 500, the difference between the
two in the PR-AUC effect is obvious, which means with the
base embedding. As the dimension increases, the embedding
of multiple information is richer, so we choose 500 as the base
embedding dimension.

Then, we use the classifier to classify the nodes into fraud
and normal nodes, and the accuracy of the classified fraud
nodes is equal to the accuracy of identification or illegal
account detection. In addition, the choice of the classifier will
also affect the recognition or detection results. In Table II,
we compare four types of mainstream machine learning clas-
sification methods as baselines, select the embedding results
of HNRL as the input, and choose the embedding dimension
d = 64. The experimental results show that one-class SVM is
better for detecting illegal accounts.

E. Parameter Sensitivity Analysis

For the proposed method, there exist a number of para-
meters, which may influence the results. In Fig. 6(a)—(c),
we evaluate the effects of a series of parameters on the
performance of HNRL on the node classification task on the
Ethereum transaction network. When a particular parameter
is under evaluating, all other parameters are set as default
values. In this section, we also only consider PR-AUC for
performance comparison.

We explore the effect of parameter embedding dimensions
d of random walk-based information representation, as shown
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in Fig. 6(a). As the dimensions of feature representation
increase, the algorithm can achieve better results. When the
dimension reaches 64, the effect reaches its peak, but when
the dimension is 128, the effect decreases because of the large
difference between the dimension of the attribute embedding
and the attribute.

We also examine the influence of the node’s neighborhood
parameters, including the number of walk per node n and
walk length /. As shown in Fig. 6(b), with the increase of
the number of per walk, it has been on an upward trend when
n is less than 200, but it decreases when n is in the range of
200-500. As shown in Fig. 6(c), as the length of the walk
length [ increases, it reaches the maximum when / = 20, but
since the walk length reaches saturation, there is no upward
trend in the increase of [ afterward. As shown in Fig. 6(d),
when the walk strategy parameter ¢ is varied, the chosen walk
strategy differs and therefore varies in the performance of
node classification. When ¢ = 0.5 is a combined time and
amount strategy, the performance reaches the peak, while when
0 <g <0.5and 0.5 < g < 1 due to the limitations of the
walk strategy, it is always worse than the high performance
when g = 0.5.

V. CONCLUSION

In this article, we propose a heterogeneous network rep-
resentation learning method to characterize implicitly inside
Ethereum transactions. Specifically, we build an Ethereum
transaction network by collecting transaction data from nor-
mal and phishing Ethereum accounts. Then, we propose a
walk strategy that combines the timestamps and amounts
of transactions to represent the characteristics, and then to
mine the types of nodes and edges, we use a method of
representation learning for attributed heterogeneous network
to map the transaction network to a low-dimensional space.
Finally, we verify the validity of the results in the task of node
classification, which has important implications for Ethereum
identity identification. The experimental results show that
our heterogeneous network representation learning method
outperforms existing algorithms for analysis on the Ethereum
transaction dataset.

The limitation of the proposed method is that although we
construct the collected Ethereum transaction data in the form
of a heterogeneous network and mine the implicit information
in it, the network structures that appear in life such as social
networks and knowledge networks are dynamic, the nodes or

relationships that appear or disappear over time. In addition,
the task of classifying nodes as a rubric for experiments can
classify Ethereum accounts as either anomalous or normal, but
the classification method can only classify abnormal behavior
that already exists and is unknown for the first appearance of
the category.

In the future, we consider building a dynamic het-
erogeneous network by weighting the time of Ethereum
transactions and explore more types of Ethereum account
identities.
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